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Abstract—In robotic manipulation, acquiring samples is
extremely expensive because it often requires interacting with
the real world. Traditional image-level data augmentation has
shown the potential to improve sample efficiency in various ma-
chine learning tasks. However, image-level data augmentation is
insufficient for an imitation learning agent to learn good manip-
ulation policies in a reasonable amount of demonstrations. We
propose Simulation-augmented Equivariant Imitation Learning
(SEIL), a method that combines a novel data augmentation
strategy of supplementing expert trajectories with simulated
transitions and an equivariant model that exploits the O(2)
symmetry in robotic manipulation. Experimental evaluations
demonstrate that our method can learn non-trivial manip-
ulation tasks within ten demonstrations and outperform the
baselines by a significant margin.

I. INTRODUCTION

Due to the high dimensionality of state and action spaces
in robotic manipulation, learning effective policies often
requires a significant amount of data. When policy learning
is modeled using reinforcement learning [1], the agent needs
to learn from trial and error while interacting with the
environment. This process typically requires thousands or
millions of time steps, which is extremely expensive even
in a simulator. An alternative approach is to model policy
learning as imitation learning [2], [3] by cloning an expert’s
behavior in a supervised way. Even then, the agent still needs
hundreds of episodes of data to learn a simple task like object
picking [4].

One way to combat the problem of high data requirements
is to use data augmentation to improve sample efficiency, i.e.,
helping the neural network to learn more general features
from a limited amount of data. Recently, data augmentation
has led to many successes in both reinforcement learning [5]
and imitation learning [6] because it not only creates extra
training samples, but also acts like a regularizer to prevent
neural networks from overfitting [7]. However, current data
augmentation techniques are typically implemented through
image transformation [8] including cropping, blurring, rotat-
ing, etc, limiting their potential in 3D robotic manipulation
tasks.

In this work, we propose a novel expert data augmenta-
tion method that we call Transition Simulation (TS). Our
method simulates new expert state-action pairs within the
vicinity of existing expert transitions by projecting obser-
vation images from the observed point cloud (Figure 1),
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Fig. 1. Overview of Transition Simulation. Our method generates new
expert transitions by projecting the observed point cloud (bottom) to an
observation image (right) in a simulated arm pose (orange). Green shows
the existing expert transition, and orange shows the simulated transition.

resulting in more diverse augmentations compared with stan-
dard data augmentation techniques. Transition Simulation
can also be combined with image-level data augmenta-
tion to further improve the sample efficiency. In addition,
we combine Transition Simulation with equivariant policy
learning, utilizing the existing O(2) (i.e., planar rotation
and reflection) symmetry in robotic manipulation to make
the policy automatically generalize over different O(2)
transformed states. Our proposed algorithm, Simulation-
augmented Equivariant Imitation Learning (SEIL), achieves
few-shot imitation learning using ten or fewer demonstrations
in non-trivial manipulation tasks.

Our contributions can be summarized as three-fold. First,
we propose a novel data augmentation method, Transition
Simulation, that augments the expert data in imitation learn-
ing by simulating new expert transitions. Second, we com-
bine Transition Simulation with equivariant policy learning
and propose the SEIL method that achieves extremely high
sample efficiency in robotic manipulation imitation learning.
Last, we evaluate SEIL on a set of challenging manipulation
tasks both in simulation and in the real world, and demon-
strate a significant improvement over competing baselines.
Supplementary video and code are available at https:
//saulbatman.github.io/project/seil/.
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II. RELATED WORK

Imitation learning or Behavior Cloning (BC) has been
widely used in robotics. The traditional BC algorithms typi-
cally learn an explicit model that maps from the state space
to the action space in the framework of supervised learning.
Such an approach has been applied to autonomous driving
[9] and robotic manipulation [10], [11], [12], [13], [14].
Recently, implicit behavior cloning [3] is the first behavioral
cloning algorithm to use an energy-based model (EBM),
showing impressive results for learning discontinuous behav-
iors in robotic manipulation. However, implicit models need
large amounts of data and careful hyperparameter tuning
for their sampling strategy. Compared with prior works, this
paper proposes a novel method to improve imitation learning
through simulating new expert transitions.

Manipulation learning is a challenging problem because
of the high dimensionality and complexity of the robot arm
actions. One way to combat that challenge is to use open-
loop control with pre-defined action primitives (e.g., pick,
place, push, etc.) to reduce the action space [13], [15]. On the
other hand, learning in a closed-loop manner [16], [17], [18],
[19] is appealing because it allows the agents to behave more
freely without being constrained by the pre-defined action
choices. However, it also makes the policy harder to learn
because of the continuous action space and the longer time
horizon brought on by the nature of the closed-loop control.
This paper solves such a problem though improving the
expert data sample efficiency, thus providing more guidance
for closed-loop policy learning.

Data augmentation is an indispensable technique in deep
learning to improve sample efficiency. Traditionally, data
augmentation means image-level augmentation like rotation,
reflection [20], and translation [13]. In particular, random
crops [5] have been shown to improve performance in image
classification [20], reinforcement learning [21], and self-
supervised learning [22]. However, image-level augmentation
is not generalizable to the 3D space in which the manip-
ulation agent operates. Some recent works perform novel
data augmentation in the 3D space. [23] augments the offline
dataset by learning a reverse dynamics model. [24] proposes
to apply rigid body transformations for states and actions, but
requires the ground-truth states of the objects, which makes
it highly reliant on high-precision state estimation algorithms
in real-world scenarios. [10] augments expert trajectory by
connecting intermediate points to keyframes, but defines a
keyframe decision function manually, which may possibly
lead to inaccurate augmentations. In such cases, RL agents
can recover from such failures due to their exploration
strategy, but a behavioral cloning agent will suffer from
sub-optimality. Compared with the prior works, our method
implements data augmentation in the 3D space, does not
depend on any state estimators, and ensures the quality of
the augmented expert transitions by simulating them near the
existing expert transitions.

Data efficiency is important in terms of the need to
avoid labor-heavy data labeling. Besides data augmentation,
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(a) PyBullet environment (b) Observation in simulation

Fig. 2. Environments and observations (a) Block in Bowl Scene in
PyBullet simulation; (b) Depth image observation.

another approach is to pre-train neural networks with self-
supervised learning methods like contrastive learning [25]
and auto-encoders [26]. Such approaches are widely adopted
by manipulation works [27], [28], [29]. Recent works in
geometric machine learning show that one can improve the
data efficiency more directly by enforcing symmetries using
equivariant models [30], [31]. Several works have applied
equivariant models in robotic manipulation and show promis-
ing results [32], [33], [14], [34]. This works extends the prior
works by applying equivariant models in conjunction with
Transition Simulation to further improve sample efficiency.

III. PROBLEM STATEMENT

We consider the problem of manipulating (e.g., pick &
place, pushing, etc.) objects in a 3D space in a closed-loop
manner. This problem can be formulated as learning a neural
model mapping a state to the desired delta actions in a 3D
workspace W C R3. Let 7 C W denote the subset of our
workspace that is free of objects.

State space: State is expressed as a tuple s = (C,p,7)
where C' € R™*3 is a point cloud, p € R? C RS is the
d < 6 degrees of freedom gripper pose, and 7 is the other
robot state expressed arbitrarily. We assume that the robot
arm is segmented out from the point cloud C.

Action space: The actions are represented by a = (A, Ap)
where A is the gripper open width, and Ap is the delta
movement of the gripper with respect to the current pose
P.

Five DoF imitation learning with an image observation:
In this work, we focus on gripper poses with d = 4 degrees
of freedom (ie., p = (z,y, 2,0) where 6 is the top-down
rotation; Ap = (Ax, Ay, Az, Af)) and learning policies
from an image observation. The total number of DoF in the
action is five because the agent also needs to control the
gripper open width \. We define IT : s +—+ I € R"*" as an
observation projection function that projects the point cloud
C into an orthographic projection depth image I centered at
the (xz,y, z) position of the gripper. The gripper is located
at the center of I with an orientation 6 (Figure 2). Notice
that the image I effectively encodes the current gripper pose
p inside the image such that a planar rotation or reflection
of the state will lead to a planar rotation or reflection on
the image. Given an expert transition T = (s,a,s’), an
observation-action pair can be created by (I = II(s),a) € B
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Fig. 3. Concept of Transition Simulation. (a) shows how simulated
transitions (orange) are distributed around expert trajectories (green). (b)
shows how Transition Simulation is accomplished for one specific transition,
which is being described in Algorithm 1. (c) shows the breadth and depth
simulation of our method for n = 3 or m = 3.

where B is the buffer of all observation-action pairs. Let
7* : s — a be the expert policy. Our goal is to learn a neural

network 7 : I — a from B such that ||7*(s) — 7(s)||2 — 0.

IV. APPROACH

We propose a novel imitation learning algorithm,
Simulation-augmented Equivariant Imitation Learning
(SEIL). Our method has two main components: a novel
augmentation strategy that we call Transition Simulation
(TS) and an equivariant model that utilizes the geometric
symmetry in the manipulation task.

A. Transition Simulation

Few-shot imitation learning often suffers from poor gen-
eralization due to insufficient demonstration data, which is
not enough to cover all variations in the workspace. As a
result, agents are usually stuck in situations with unseen
and out-of-distribution observations. To solve this problem,
we propose Transition Simulation that can create simulated
expert transitions 7™ from existing pre-collected expert
transition 7', as shown in Figure 3.

Algorithm 1 Transition Simulation

Input: N steps of expert transitions {77,75, ..., T}, buffer
B, valid checking function transition_valid, parameter n and
m.

Output: Observation-action pair Buffer B.

I: fori=1...N do

2 B.append(II(T;.s), T;.a)

3 for j =1...n do # breadth expansion

4 T=T,

5: for k =1...m do # depth expansion
6 (s,a,8")=T

7 Create 7™ using Equation 1, 2, 3.
8 if transition_valid(7*™) then

9: B.append(II(T*™.5), T*"™.a)
10: else # data balancing
11 B.append(II(T'.s), T.a)
12: end if
13: T=((C,p+atr),a,s)
14: end for
15: end for
16: end for

Our key idea is to simulate new expert transitions by
creating new observations using the projection function II
and the rigid transformation of the robot gripper. Specifically,
given a fixed point cloud C, one can generate a depth
image at an arbitrary camera position. This means we can
simulate the observation I as if the gripper is located at
an arbitrary pose in the workspace (a similar method has
been used by [35] to serve as a forward model for rendering
action views). We choose to simulate new transitions that
are nearby to the demonstrated trajectories; these simulated
transitions serve as a funnel that guides the agent toward
expert states. Given an expert transition 7' = (s,a,s’)
where s = (C,p,r),a = (A, Ap),s = (C',p',r"), we
first define the inverse of a as inverting the delta pose Ap:
a~t = (\,—Ap). a~! is defined as adding a Gaussian noise
to a~ L

al=a14+ €,

e~ N(0,0), (1)

where o is a hyper-parameter for the standard deviation of
the Gaussian noise. Then we create a simulated position p =
p'+a~! by applying the delta action in @~ to p’. Since a~!
is close to a ', p is within the vicinity of p. Thus a simulated
state § can be created by replacing p with p in s:

5= (C.p,r). 2

Next, we can take the inverse of @1, @, and form a simulated
expert transition:

T5™ = (5,a, ). (3)

In the end, we can create a new expert observation-action
pair by querying (II(C,p,r),a). After this process, we can
further simulate a state prior to 3 by applying @~ to p again:
(C,p+atr).

Intuitively, our method views an expert trajectory as a tree
with a single path where the initial state is a leaf and the
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Fig. 4. Environments and goal states. (a)-(d) Simulation environments in PyBullet [36]; (e)-(h) Real-world environments on a physical robot.

terminal state is the root. Our method creates new expert
transitions by expanding the tree with new branches within
the vicinity of the existing nodes in the tree. In contrast,
standard data augmentation techniques (e.g., applying a
rotation or translation to the state and action pair [13])
can only duplicate an expert trajectory path under a fixed
transformation applied to all nodes and edges, rather than
creating new connected paths. Moreover, our method can
be used in conjunction with standard data augmentation
techniques to further improve the sample efficiency.

The full algorithm is shown in Algorithm 1. Notice that
n and m are hyper-parameters that control the number
of breadths and the number of depths for the simulated
transitions, illustrated in Figure 3c. Line 8-11 is a data
balancing (DB) technique such that when the simulated
transition is not valid, a duplication of the original transition
will be generated (we empirically find that this data balancing
will improve the performance, see Section V-A.3). In our
work, the transition_valid function is defined as that the
simulated position p is contact-free (i.e., p € T) and the
gripper is not holding any object. However, the method can
be extended to placing transitions while holding objects to
enhance placing behaviors for pick and place tasks. Line 13
creates a transition prior to 5 for depth expansion.

B. Equivariant Behavioral Cloning (Equi BC)

The second main component in our method is an equivari-
ant model that improves sample efficiency through enforcing
O(2) (i.e., the group of all planar rotation and reflection)
symmetry in the network architecture. Inspired by prior
work [33], [37] utilizing an equivariant actor function in
an actor-critic algorithm, we apply a similar approach to
behavior cloning. Specifically, the expert policy function 7*
can be written as a O(2)-equivariant function:

T (gs) = g7 (s), )

where g € O(2). That is to say, when the manipulation scene
is rotated and/or reflected by g, the action should be rotated
and/or reflected accordingly. g acts on the state s through
rotating and reflecting the point cloud C' and the pose of the

gripper p in the state; g acts on the action a through rotating
and reflecting the (z,y) vector in Ap and reflecting the 6
component in Ap. Formally, we define

g5 = (gC,gp,7); ga = (A, (Ry(Ax, Ay), Az, fAD)), (5)

where R, is the 2 x 2 transformation matrix with respect to
g, and f € {1,—1} is the reflection component in g. Notice
that our observation projection function Il : s +— I is an
equivariant function, i.e., II(gs) = gIl(s) = gI because the
image I encodes both the point cloud C' and the gripper pose
p. We can then define our policy network 7 : I — a as an
equivariant function:

m(gI) = gn(I). (6)

We implement such an equivariant policy network using
Steerable CNNs [31], [30]. Steerable CNNs share weights
across different group elements, enabling the network to
automatically generalize to all group transformations and,
consequently, improve the sample efficiency. We use a sim-
ilar network architecture as the prior work [33]. For a more
comprehensive introduction on how to implement such an
equivariant network, please refer to [33].

V. EXPERIMENTS
A. Simulation experiments

1) Tasks: In this experiment, we evaluate SEIL in four
tasks in simulation using PyBullet [36]: Block Stacking,
Block in Bowl, Drawer Opening, and Shoe Packing (Fig-
ure 4)'. For all environments, the maximum moving dis-
tances per step are limited as Az, Ay, Az € [—2cm, 2em];
A0 € [-%, 5 A € [0,1] where 0 indicates fully close
and 1 indicates fully open. We use a state-based planner to
collect N episodes of expert demonstrations. For Transition
Simulation, we set the breadth expansion parameter n to 4
and the depth expansion parameter m to 1. The Gaussian
noise standard deviation o is set to 0.4. In addition to TS, we
also apply a rotational data augmentation where each expert
observation-action pair (including the ones created using TS)

I'The first three environments are from the BulletArm benchmark [38].
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TABLE I
BASELINE COMPARISONS IN SIMULATION. TASK SUCCESS RATES AVERAGED OVER FOUR RUNS.

Block Stacking

Block in Bowl

Drawer Opening Shoe Packing

Method 1 5 10 100 1 5 10 100 1 5 10 100 1 5 10 100
CNN BC 18.5 73.5 79.0 90.5 19.0 93.5 99.0 100 31.0 66.5 76.0 88.5 2.0 4.7 12.0 20.0
Implicit BC 11.0 9.5 51.0 80.5 13.0 99.5 100 100 31.0 63.5 71.5 81.5 0.5 5.5 12.0 13.0
CNN BC +TS 41.0 75.0 87.0 92.0 52.2 91.0 96.5 98.5 53.5 76.0 75.0 84.5 7.5 13.0 22.0 26.0
Equi BC (Ours) 33.5 87.5 93.0 100 46.5 99.5 99.5 100 62.5 88.5 91.0 100 1.5 22.5 39.5 75.0
SEIL (Ours) 71.5 99.5 98.5 100 75.0 98.0 100 100 78.5 87.5 93.5 96.5 16.5 57.3 68.0 72.0
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Fig. 6. Convergence. The plot shows the performance of the learned
policy at different numbers of training steps. Results averaged over four
runs. Shading represents standard error.

is augmented 64 times using random SO(2) rotations. The
models are trained with MSE loss for 20,000 training steps.
For each run, we evaluate the model for 50 episodes every
2000 training steps (eight evaluations in total). We take the
highest success rate of all eight evaluations as the result of
one run. Final results are averaged over four runs.

2) Baseline Comparison: We compare SEIL with the
following baselines: 1) CNN BC: standard Behavior Cloning
method implemented using conventional CNNs; 2) CNN BC
+ TS: CNN BC equipped with our Transition Simulation; 3)
implicit BC [3]: an energy-based model (EBM) that takes
observation and actions as input, outputting corresponding
scalar energies (implicit BC uses infoNCE loss instead of
MSE loss); 4) Equi BC: Behavior Cloning implemented
using our equivariant policy network. We run each method
in each environment with N = 1,5,10,100 demonstration
episodes. Note that all baselines without TS are given more
SO(2) augmentations to ensure that the size of the training
data is the same for all methods.

Table I shows the results. First, notice that our SEIL
algorithm has the best overall performance. It allows the
agent to directly generalize to unseen scenarios with a

Hl SEILw/oTS

Shoe Packing (10 Demos)

T
iili

SEIL

Drawer Opening (1 Demos)
1.0 1.0

= =
0.6 0.6
0.4 0.4
0.2 i 0.2
0.0 0.0

HEE SEILw/o DB

Ablation study. The figure shows how every component of our method improves performance. Results averaged over four runs.

few expert demonstrations. In particular, given only one
episode of expert data, SEIL shows a large performance gap
compared with the baselines. When the agent is provided
with more data, our method still outperforms the baselines
with a high success rate. Second, comparing CNN BC + TS
and Equi BC with CNN BC, both TS and the equivariant
policy function generally improve the performance of CNN
BC, especially with fewer demonstrations. This indicates that
both TS and the equivariant policy can be used as a plug-
in in a standard BC method to boost performance. Another
interesting finding is that equivariant models converge faster
and is more stable than conventional CNN models due to
data efficiency. Figure 6 shows the evaluation curve of SEIL
compared with CNN BC and implicit BC in two environ-
ments. CNN models converge slower and the performance is
not stable at different training steps. Consequently, frequent
evaluations in different training steps are necessary for CNN
models to find the best performance. In contrast, Equivariant
models are able to converge within 2k training steps and
keep their robustness during eight evaluations, which is very
useful for on-robot learning where frequent evaluation is
time-consuming.

3) Ablation Study: In this experiment, we study the im-
portance of each component of our method in an ablation
study. We consider the following baselines: 1) CNN BC: a
baseline without any of our contribution; 2) SEIL w/o Equi:
our method using a standard CNN network instead of an
equivariant network (i.e., only having the TS in Section I'V-
A. This is equivalent to equipping CNN BC with TS); 3)
SEIL w/o DB: our method without data balancing (line 8-
11 in Algorithm 1); 4) SEIL w/o TS: our method without
Transition Simulation completely (i.e., only having the equiv-
ariant policy in Section IV-B); 5) SEIL: our full algorithm.
Figure 5 shows the result. First, notice that removing TS
(green) or removing the equivariant policy (blue) both lead
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TABLE I
BASELINE COMPARISONS IN REAL-WORLD EXPERIMENTS. TASK SUCCESS RATES AVERAGED OVER 30 EPISODES ACROSS THREE SEEDS.

Trash Tidying

Block in Bowl

Drawer Opening Shoe Packing

Method 1 5 10 1 5

10 1 5 10 1 5 10

CNN BC

0.0 33 200 0.0 50.0 76.7 23.3 60.0 70.0 10.0 46.7 70.0

SEIL (Ours) 30.0 60.0 93.3 36.7 90.0 100.0 86.7 96.7 100.0 13.3 60.0 90.0

Fig. 7. Real-world environment and settings. Three cameras are marked
in blue circles. The workspace is highlighted in yellow.

to a significant performance drop compared with our full al-
gorithm (yellow), showing that they are equally important in
our method. Meanwhile, both green and blue are significantly
better than the baseline standard BC method (red). Second,
comparing the purple and the yellow, removing the data
balancing slightly impedes the performance of our method.

B. Real-world experiments

1) System setup: Our real-world experimental platform
consists of a Universal Robots URS5 robotic arm equipped
with a Robotiq 2F-85 parallel-jaw gripper and three depth
cameras (one Intel Realsense D455, one Occipital structure
sensor, and one Microsoft Azure Kinect DK), as is shown
in Figure 7. The point clouds from three cameras are fused
into the point cloud C' in our state space. Our workstation
has an Intel Core i7-9700k CPU (3.60GHz) and an Nvidia
RTX 2080Ti GPU. We experiment with four tasks in the
real world: Trash Tidying, Block in Bowl, Drawer Opening,
and Shoe Packing (Figure 4 e-f). The expert demonstrations
are provided by a person using a PS4 controller. In each
task, we train the model for 20k training steps and evaluate
the success rate over 10 episodes. In Table II, we report the
performance averaged over three random seeds (30 episodes
in total). Other experimental parameters match the simulation
experiment in Section V-A.

2) Results: As shown in Table II our SEIL constantly
outperforms the baseline CNN BC, especially when there
are fewer expert demonstrations. In Trash Tidying, SEIL
achieves 93.3% success rate with ten expert demonstrations,
whereas CNN BC can only reach 20%. The common failure
mode for CNN BC is that it fails to learn a policy to pick up
any trash. Our SEIL algorithm, on the other hand, generalizes
well from the limited demonstrations. In Block in Bowl with
ten demos, SEIL succeeds in all 30 evaluations, whereas

&k W
(a) CNN pick

Fig. 8.

(d) SEIL place

Comparison of SEIL and CNN BC in Shoe Packing. SEIL is
able to pack the shoes with reasonable orientations, but CNN cannot.

(b) CNN place (c) SEIL pick

CNN often fails to accurately pick up the block (e.g., in 2
of the failures, it picks up the bowl instead of the block) and
only achieves 76.7% success rate. With only five demons,
SEIL can still achieve a 90% success rate whereas CNN BC
can only reach 50%. In Drawer Opening with ten demos,
SEIL reaches 100% success rate. CNN BC often fails to stick
the finger into the gap between the drawer and the handle
(in all failures), and only reaches 70% success rate. In Shoe
Packing with ten demons, SEIL not only outperforms the
baseline by 20%, but also packs the shoes with the proper
orientations (Figure 8).

VI. CONCLUSIONS AND LIMITATIONS

This paper proposes Transition Simulation, a novel tra-
jectory generation algorithm that can augment the existing
expert demonstration data. We further integrate Transition
Simulation with equivariant policy learning to introduce
SEIL, a sample-efficient imitation learning algorithm that can
solve robotic manipulation tasks with ten or fewer expert
demonstrations. The major limitation of our work is that
Transition Simulation can only simulate transitions where
the gripper does not come into contact with the environment.
This can be improved by learning an environment model to
predict the outcome of the transition with contact. Another
limitation is that our observations are based on depth images
without color information, preventing the agent from solving
more complex tasks like color-based sorting. In future work,
we plan to include RGB channels in the point cloud and
in the projection image. Another direction for future work
is to extend our Transition Simulation to simulate on-policy
transitions for reinforcement learning.
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