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Laser ablation and fluid flows reveal the 
mechanism behind spindle and centrosome 
positioning

Hai-Yin Wu    1,2  , Gökberk Kabacaoğlu3, Ehssan Nazockdast3,4, 
Huan-Cheng Chang5, Michael J. Shelley    3,6 & Daniel J. Needleman2,3,7

Few techniques are available for studying the nature of forces that drive 
subcellular dynamics. Here we develop two complementary ones. The first 
is femtosecond stereotactic laser ablation, which rapidly creates complex 
cuts of subcellular structures and enables precise dissection of when, where 
and in what direction forces are generated. The second is an assessment 
of subcellular fluid flows by comparison of direct flow measurements 
using microinjected fluorescent nanodiamonds with large-scale 
fluid-structure simulations of different force transduction models. We 
apply these techniques to study spindle and centrosome positioning in 
early Caenorhabditis elegans embryos and to probe the contributions 
of microtubule pushing, cytoplasmic pulling and cortical pulling upon 
centrosomal microtubules. Based on our results, we construct a biophysical 
model to explain the dynamics of centrosomes. We demonstrate that 
cortical pulling forces provide a general explanation for many behaviours 
mediated by centrosomes, including pronuclear migration and centration, 
rotation, metaphase spindle positioning, asymmetric spindle elongation 
and spindle oscillations. This work establishes methodologies for 
disentangling the forces responsible for cell biological phenomena.

The movement and positioning of centrosomes, microtubule (MT) 
organizing centres, govern many important phenomena in cell biology, 
including the orientation and positioning of the spindle1–8, the position 
of the nucleus9–11 and the migration of pronuclei12,13. Centrosomes dis-
play three basic behaviours in various systems: (1) directed motion7,12–15, 
(2) stable positioning7,16,17 and (3) oscillations18–20. All of these behaviours 
are observed in early Caenorhabditis elegans embryos. The pronuclear 
complex (PNC) undergoes directed motion to the cell centre with its 
two centrosomes becoming aligned with the embryo’s long axis14. 
The spindle then forms between the two centrosomes and is stably 

positioned in the cell centre16. Finally, as the spindle elongates and 
is positioned asymmetrically, it and its centrosomes undergo trans-
verse oscillations14,19,21–24. It is poorly understood how these different 
behaviours arise from the underlying mechanical and biochemical 
processes, although extensive work demonstrates the importance of 
astral MTs25–29 that radiate outward from the centrosomes and of the 
molecular motor dynein30–37.

All movements in cells result from forces. Due to the small size of 
the centrosomes (<10 μm), their slow speeds (<1 μm s−1) and the viscous 
nature of the cytoplasm (>100 mPa s), the Reynolds number associated 
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immediately stopped moving along their original course (Fig. 1e,  
Supplementary Video 2 and Extended Data Fig. 2d), indicating that this 
forward movement was primarily driven by pulling from these astral 
MTs. The centrosomes subsequently moved in the opposite direction, 
suggesting that pulling forces are also exerted by the astral MTs at the 
rear of the centrosome. Cutting astral MTs at the rear of the centrosome 
during this same point in the oscillations only marginally impacted 
their velocity (Fig. 1f, Supplementary Video 2 and Extended Data  
Fig. 2d), suggesting that the downward pulling forces greatly dominate 
over upward pulling forces (Fig. 1g).

We next investigated the forces at the peak of the oscillation, when 
their velocity is zero (Fig. 1b, inset, Tp). Cutting the astral MTs below 
the centrosome that faced the distant cortex inhibited the downward 
motion that occurs subsequent to this time in control embryos (Fig. 1h,  
Supplementary Video 2 and Extended Data Fig. 2d), indicating that the 
downward movement in control embryos is primarily driven by pulling 
from these astral MTs. The centrosomes subsequently moved in the 
opposite direction, suggesting that pulling forces are also exerted by 
the astral MTs above the centrosome. Cutting the astral MTs above the 
centrosome during this same point in the oscillation did not signifi-
cantly impact the centrosomes subsequent returning motion (Fig. 1i, 
Supplementary Video 2 and Extended Data Fig. 2d). Taken together, 
these results indicate that, at the peaks of the oscillations, astral MTs 
exert net pulling forces on centrosomes. Since the centrosome has 
zero velocity at this point, the pulling forces from above and below the 
centrosome must be equal and opposite (Fig. 1j).

We next made cuts in the shape of an open cylinder around the pos-
terior centrosome with the cylinder axis aligned with the transverse (y) 
axis (Fig. 2a), thereby severing the MTs perpendicular to the direction 
of oscillation (Fig. 2b,c, and Supplementary Video 3). The centrosomes 
continued to oscillate after cutting (Fig. 2d), with significant increases in 
amplitude immediately afterward (Fig. 2e and Extended Data Fig. 2g,h).  
We also observed oscillations after double (y–z) plane cuts made in 
the MTs in two planes orthogonal to the spindle axis, which left the 
perpendicular MTs of the remaining two planes intact (Extended Data 
Fig. 2e,h). Since the centrosomes still reversed direction after these 
cuts, this result demonstrates that the bending of MTs perpendicular 
to the oscillation axis46 is not required for the restoring mechanism 
of the oscillations. It is possible that substantial pulling and pushing 
forces can simultaneously be exerted by different astral MTs located 
on the same side of the centrosome. To test this, we made cup-shape 
cuts to temporarily eliminate all MTs around centrosomes except for 
those extending to one transverse side (Fig. 2f,g). We observed that the 
centrosome rapidly moved very close to the cortex (Fig. 2h and Sup-
plementary Video 3) after a cup cut, approaching a minimum distance 
of 5.3 ± 0.3 μm from the cortex, compared to 9.7 ± 0.2 μm in uncut 
embryos (Fig. 2i). Thus, pulling forces dominate over pushing forces 
from astral MTs on the same side of a centrosome. Furthermore, the 
observation that centrosomes approach very close to the cortices after 
cup cuts suggests that pushing forces do not substantially contribute 
to the restoring force during normal oscillations.

Cortical pulling forces drive spindle oscillations
We next investigated whether the pulling forces that act on  
centrosomes during transverse oscillations result from force genera-
tors in the cytoplasm (such as from dynein transporting organelles 
along MTs47–50) or on the cell cortex2,14,30,35,37,51–56 (such as cortically 
anchored dynein or MT depolymerizers). Subcellular fluid flows pro-
vide a means to distinguish between these possibilities because cyto-
plasmically based pulling forces tend to produce flows in the direction 
opposite to MT motions, whereas cortically based pulling forces tend 
to produce flows in the same direction as MT motions (Fig. 3a).

We first simulated the effect of cytoplasmic forces generated by 
dynein transporting cargo along MTs at time Tm (Fig. 1b, inset), which 
produced complex, 3D flows, consisting of multiple vortices (Fig. 3b, 

with their motion is Re < 10−7 ≪ 1. Thus, inertial forces are negligible 
in comparison to viscous forces. Consequently, the velocity of a centro-
some is proportional to the forces acting upon it. Thus, a central chal-
lenge is to identify the origin of those forces yielding these distinct 
behaviours of centrosomes (that is directed motions, stable position-
ing and oscillations). Most proposals centre around three possible 
types of forces acting through astral MTs: MTs pushing on the cortex, 
MTs pulled by force generators anchored to the cortex and MTs pulled 
by force generators in the cytoplasm38.

Here, we develop biophysical approaches to unambiguously deter-
mine the extent to which different centrosome motions in one-cell 
Caenorhabditis elegans embryos are driven by MT pushing or pulling, 
and if pulling, whether it is of cortical or cytoplasmic origin. This relies 
on several advances. First, we developed and utilized femtosecond ste-
reotactic laser ablation (FESLA) as a versatile tool for dissecting when, 
where and in what direction forces originate. From our ablation stud-
ies, we conclude that pulling forces dominate during PNC migration 
and rotation, spindle centring, elongation and oscillations. Second, 
at all these stages, we compared subcellular flow measurements using 
microinjected fluorescent nanodiamonds (FNDs) with large-scale fluid 
dynamics simulations of flows resulting from pulling forces on astral 
MTs, from either force generators residing on the cortex or in the cyto-
plasm. The simulations of the former showed remarkable agreement 
with flow measurements, whereas those of the latter were profoundly 
different. This supports the hypothesis of pulling originating from the 
cortex, while also demonstrating that subcellular flows can encode in 
their structure a powerful signature of the mechanical basis of force 
generation. Finally, we constructed a coarse-grained theory, amenable 
to analysis, for centrosome motion that directly relates the biophysi-
cal properties of MT nucleation, growth and interaction with cortical 
force generators to the cell biological behaviour of centrosomes. This 
theory demonstrates that cortical pulling alone is sufficient to explain 
centrosome behaviours. Taken together, our results argue that cortical 
pulling forces provide a unifying explanation of the diverse centro-
some motions—directed, stable positioning and oscillations—found in  
C. elegans embryos. Given the ubiquity of these centrosome behaviours 
across cell biology and the proposed role of cortical pulling forces in 
many different contexts, the investigative framework presented here 
should be widely applicable.

Pulling forces drive spindle oscillations
We began by studying the transverse oscillations of the first mitotic spin-
dle in the late metaphase to the anaphase in C. elegans embryos (Fig. 1a  
and Extended Data Fig. 1a). We used spinning-disc confocal micros-
copy to image GFP::β-tubulin and mCherry::γ-tubulin, and tracked the 
motion of the spindle poles using automated image analysis (Methods 
and Extended Data Fig. 1b–g). As others have noted, the anterior pole 
(Fig. 1a,b, orange) and the posterior pole (Fig. 1a,b, blue) oscillate out 
of phase with each other (Supplementary Video 1), with the posterior 
pole displaying larger amplitudes and more robust oscillations21,22.

To investigate how astral MTs contribute to these motions, we 
utilized a new FESLA system capable of cutting three-dimensional 
(3D) patterns with highly controlled timing and location (Fig. 1c and 
Methods)39,40. FESLA utilizes a reduced-repetition-rate ultrafast fem-
tosecond laser to produce highly localized cuts with submicrometre 
precision41–45. We sought to determine the relative contribution of the 
pushing and pulling forces to spindle oscillations by selectively cutting 
different populations of astral MTs. If a centrosome is being pushed 
from the rear, then cutting the astral MTs behind the centrosome will 
cause the oscillations to stop (Fig. 1d, left). Similarly, if a centrosome 
is being pulled forward, then cutting astral MTs in the front will halt 
its motion (Fig. 1d, right). We first used this approach to explore the 
forces acting on centrosomes when they are at the midpoint of their 
oscillation, moving with maximum speed (Fig. 1b, inset, Tm). When 
astral MTs in front of these centrosomes were cut, the centrosomes 
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Fig. 1 | Laser ablation during spindle oscillations in the first mitotic division 
of C. elegans. a,b, Spindle oscillations in a one-cell C. elegans embryo labelled 
with GFP::β-tubulin. a, One oscillation cycle and the corresponding trajectories 
of the anterior (orange) and posterior (blue) centrosomes (scale bar, 10 μm).  
b, Transverse amplitudes of the centrosomes and the definition of times Tp 
and Tm. c, FESLA. Left, the foci of a Ti:sapphire femtosecond pulsed laser with a 
reduced repetition rate (16–80 kHz) were scanned over the sample in a complex 
3D pattern (red line) for ablation using a three-axis piezo-stage (MTs are in green; 
long brown arrow, the A–P axis; A, anterior; P, posterior; S, shutter; DM, dichroic 
mirror). Right, upper, 2D view of the x–y imaging plane (magenta, chromosomes; 
orange arrow, motion of the anterior centrosome; blue arrow, motion of the 
posterior centrosome). Right, lower, image of a sample after ablation. Arrows 
indicate the cut region (scale bar, 10 μm). d, Illustration of how cutting at 
different locations can distinguish between pushing and pulling scenarios.  
e–j, Arc-shaped cuts made in astral MTs on either transverse side of the posterior 

centrosomes at two different time points in the oscillation cycle. At time Tm (e–g), 
the arc cuts in front of the centrosomes (e) and at the rear of the centrosomes 
(f) give the proposed net forces (yellow arrows) (g). At time Tp (h–j), the arc cuts 
below the centrosomes (h) and above the centrosomes (i) give the proposed net 
forces (j). See Extended Data Fig. 2b,c for the quantification: Δvy = vy(after) − vy(before). 
All statistical results are displayed in Extended Data Fig. 2d and presented 
as mean ± standard error of the mean (SEM) as follows. At time Tm (e,f), 
Δvy = 0.05 ± 0.05 μm s−1 in 11 uncut embryos (control). e, Δvy = 0.86 ± 0.06 μm s−1 
in 18 arc-cut embryos with P = 5.0 × 10−10. f, Δvy = −0.06 ± 0.04 μm s−1 in 11 arc-cut 
embryos with P = 0.087. At time Tp (h,i), Δvy = −0.55 ± 0.04 μm s−1 in 11 uncut 
embryos (control). h, Δvy = 0.18 ± 0.05 μm s−1 in 21 arc-cut embryos with  
P = 5.8 × 10−10. i, Δvy = −0.61 ± 0.04 μm s−1 in 16 arc-cut embryos with P = 0.28.  
The P values were calculated by two-tailed Student’s t-tests based on the 
corresponding uncut and arc-cut data sets. See Extended Data Fig. 2a for the 
FESLA dimensions. w/cut, with cut.
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top). To help visualize these flows, we projected and averaged the flows 
in the two-dimensional (2D) plane of spindle motion (Fig. 3b, bottom). 
This flow pattern occurs because cytoplasmic pulling forces tend to 
create minus-end directed flows along MTs, but fluid incompressibility 
prevents these flows from being uniformly directed inward towards 
centrosomes. A very different pattern of flow is produced by simu-
lating cortical pulling forces, as seen in both 3D (Fig. 3c, top) and 2D 
projections (Fig. 3c, bottom). In this case, the downward motion of the 
posterior centrosome leads to an overall rotational flow, with a much 
smaller, counterrotating backflow between the posterior centrosome 
and the cortex (Fig. 3c, bottom inset).

With these predictions in hand, we next experimentally meas-
ured cytoplasmic fluid flows in C. elegans embryos during spindle 
oscillations. We microinjected passivated57,58 FNDs59–64 into C. elegans 
syncytial gonads, which subsequently became incorporated into 
embryos (Methods). We imaged the FNDs and the spindle, labelled 
with green fluorescent protein (GFP)::β-tubulin, with 3D time-lapse 
spinning-disc confocal microscopy (Fig. 3d and Supplementary 
Video 4). We tracked the FNDs in 3D using automated image analysis  

(Fig. 3d, right) and averaged the 2D projection of the FND trajecto-
ries from multiple embryos and multiple oscillations (Extended Data  
Fig. 3a,b and Methods). Figure 3e shows the resulting measured fluid 
flow throughout the embryo when the centrosomes are at the midpoint 
of their oscillations (Tm). The measured fluid flow remarkably resembles 
that calculated from the cortical pulling model (compare Fig. 3c with  
Fig. 3e), displaying both the characteristic circular motions around 
the two spindle poles as well as the subtler counterrotating backflows 
between the posterior centrosomes and the cortices (see the insets in 
Fig. 3c,e). If both cytoplasmic and cortical pulling forces were present, 
then the resulting flows, and centrosome velocities, would be a linear 
combination of those shown in Fig. 3b,c (Supplementary Methods). 
Since, within experimental error, the measured flow agrees with the 
pattern observed in simulations of cortical pulling, with no sign of 
the complex flows predicted from cytoplasmic pulling, we estimate 
that the contributions from cortical pulling forces are manyfold 
greater than those from cytoplasmic pulling forces. Moreover, aver-
aging the fluid flows at the peak of the oscillation (Tp) revealed no 
coherent fluid motions, in agreement with simulations for cortical 
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Fig. 2 | Open-cylindrical and cup cuts around the posterior centrosomes 
during spindle oscillations. Spindle poles are illustrated by green balls 
connected with green dashed lines in the 3D schematics a and f. The posterior 
portions of the x–y midplanes (view from the top) are shown in the corresponding 
2D schematics b and g, with spindles and astral MTs in green and chromosomes in 
magenta. The ablation geometry is portrayed in red in all schematics. a–e, Open-
cylindrical cuts. a, 3D schematic of a cut aligned along the transverse oscillation 
(y) axis. b, 2D schematic showing the ablation of the MTs perpendicular to the 
oscillations, which leaves the transverse astral MTs intact. c, An image taken 
directly after an open-cylindrical cut (scale bar, 10 μm). d, Example of oscillation 
amplitudes before and after the cut, with the time of ablation marked by the  
light grey vertical strip. e, The amplitudes of the oscillations increased after  

open-cylindrical cuts were made. See Extended Data Fig. 2g for the 
quantification of the amplitude ratio. Aafter/Abefore = 1.6 ± 0.1 in 22 uncut cycles, 
and Aafter/Abefore = 3.5 ± 0.4 in 15 embryos with open-cylindrical cuts. f–i, Cup 
cuts. f, 3D schematic of a cut with opening facing in the transverse direction. 
g, 2D schematic showing the ablation of all astral MTs except those extending 
out from the opening of the cup. h, Images before and after a cup cut (scale bar, 
10 μm). i, Comparison of the minimum distances from the approaching posterior 
centrosomes to the cell cortices, between uncut (9.7 ± 0.2 μm, n = 11) and cup-
cut (5.3 ± 0.3 μm, n = 18) embryos. See Extended Data Fig. 2j for the distance 
measurement. See Extended Data Fig. 2f,i for the FESLA dimensions. All data 
are presented as mean ± SEM, and the P values were calculated using two-tailed 
Student’s t-tests (error bars, SEM).

http://www.nature.com/naturephysics


Nature Physics

Article https://doi.org/10.1038/s41567-023-02223-z

a

Cortical
pulling

Cytoplasmic
pulling

d
GFP::tubulin

fluorescent nanodiamond (FND)

A P

z
(µm)

3:50

5:20

Cell cortex

Intracellular
organelle

Dynein

0.2 µm s–1      
(velocity scale bar)

Tm

P value

0.050.01 0.1 0.5

Post. poleAnt. pole10 µm

e

Cortical pullingcCytoplasmic pullingb

Post. poleAnt. pole10 µm

0.2 µm s−1

(velocity scale bar)
0.2 µm s−1

(velocity scale bar)

x
z

y

x
z

y

0–1–2–3–4 1 2 3 4

Fig. 3 | Fluid flows during spindle oscillations. a, Schematic of fluid flow 
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in a cytoplasmic pulling model, the direction of fluid flow (magenta arrows) is 
opposite to that of centrosome motion (bold black arrow). Bottom, in a cortical 
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b,c, Top panels, 3D computational fluid dynamics simulations near the midpoint 
of the oscillations at time Tm with cytoplasmic pulling (b) or cortical pulling 
(c). Bottom panels, averaged projections of the fluid vector fields onto the x–y 
planes of spindle motion from the above simulations. d, Left panels, two time 
frames (Δt = 90 s) of the maximal intensity projection of z-stack images with 
microinjected FNDs. Right, enlargement of the illustrative 50 s 3D trajectories of 

FNDs (the three from the left image pointed out by white arrows), with their end 
locations marked by red dots. The z positions of the 3D trajectories are indicated 
by the colour bar. (All scale bars in d are 10 μm.) e, Experimentally measured fluid 
flow vector field near the oscillation midpoint at time Tm obtained by tracking 
FNDs from 20 embryos and averaging their projected x–y velocities. The length 
of the arrows is proportional to the flow velocity, and the colour indicates the 
statistical significance of the flow speed (P-value colour bar) (see Methods for 
details). Arrows on centrosomes indicate the mean measured centrosome 
velocities. The enlargements of the backflows in c and e are displayed with  
fixed-length vectors. Ant., anterior; Post., posterior.
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pulling forces at that point in the oscillations and in strong disagree-
ment with simulations for cytoplasmic pulling forces (Extended Data  
Fig. 3d–f). In sum, these results strongly suggest that the pulling forces 
acting on centrosomes during spindle oscillations are predominately 
cortically based.

Cortical pulling positions in prometaphase and 
metaphase spindles
During the first mitotic division of C. elegans (Supplementary Video 1),  
the spindle forms near the cell centre and is aligned along the cell’s 
long axis. The spindle remains centred in the prometaphase and the 
early metaphase, and slowly elongates towards the posterior in the 
late metaphase. We next investigated the nature of the forces acting 
on the spindle at these times.

We first used FESLA to test whether astral MTs exert pushing or 
pulling forces on the spindle when it is stably centred. Ablating rec-
tangular planes either below (x–z plane rectangular cuts, Fig. 4a) or 
posterior (y–z rectangular cuts, Fig. 4b) to the posterior centrosomes 
caused the centrosomes to immediately displace away from the cuts, 
suggesting that astral MTs in both directions exerted net pulling forces 
on the centrosomes (Supplementary Video 5). We next performed 
cups cuts, as described above, leaving only a cone of astral MTs associ-
ated with the centrosome emanating in either the transverse (Fig. 4c) 
or longitudinal (Fig. 4d) directions. In both cases, the centrosomes 
rapidly moved in the direction of the remaining astral MTs, displacing 
farther than in response to plane cuts and only slowing down once the 
astral MTs in the ablated regions had begun to recover (Supplemen-
tary Video 5). Thus, these experiments provide no sign of MT pushing 
forces, even when the centrosomes are displaced by ~5 μm towards 
the cell cortices, suggesting that pushing made a minimal contribu-
tion to the positioning forces near the cell centre (longer MTs push  
more weakly65).

We next used a combination of large-scale fluid dynamics simula-
tions and measurements of fluid flow to determine whether the pulling 
forces that stably centre the spindle originate in the cytoplasm or at 
the cortex. Simulations of cytoplasmic pulling display extensive flows 
organized into vortices (Fig. 4e). Such large flows are necessarily pre-
sent in a cytoplasmic pulling model, even when the spindle is station-
ary, as they are ultimately responsible for the forces that maintain the 
spindle position in this model. In contrast, flows only result from the 
motion of the spindle in a cortical pulling model, so are absent when 
the spindle is stationary (Fig. 4f). To experimentally measure the fluid 
flow when the spindle displayed no appreciable motion in the pro-
metaphase, we tracked FNDs and averaged their trajectories together 
(Methods). No coherent fluid motion was present (Fig. 4g), consistent 
with the prediction of the cortical pulling model and inconsistent with 
cytoplasmic pulling.

We next investigated fluid flow during the slow spindle elonga-
tion in the metaphase when the posterior centrosome moves and the 
anterior centrosome is mostly stationary, before the onset of spindle 
oscillations. Simulations of the cytoplasmic pulling model (Fig. 4h) 
and cortical pulling model (Fig. 4i) produced distinct flows. Experi-
mentally, averaging the trajectories of FNDs during spindle elonga-
tion in the metaphase (Methods) resulted in a flow pattern quite like 
the prediction of the cortical pulling model but inconsistent with the 
cytoplasmic pulling model (Fig. 4j). Since, within experimental error, 
the measured flow agrees with the pattern observed in simulations of 
cortical pulling, we estimate that the contributions to velocities from 
cortical pulling forces are manyfold greater than those from cytoplas-
mic pulling forces.

Taken together, through FESLA and by comparing fluid flow meas-
urements with large-scale fluid dynamics simulations, we demon-
strated that spindle positioning in the prometaphase and metaphase 
is primarily driven by cortical pulling forces, rather than from MT 
pushing or cytoplasmic pulling.

Cortical pulling drives pronuclear centration and 
rotation
At an even earlier stage (Supplementary Video 1), the female and male 
pronuclei meet near the posterior cortex, and the PNC migrates towards 
the cell centre. During the centration process, the PNC rotates to align 
with the long axis of the cell66. We next investigated the nature of the 
forces acting on the PNC.

We first used FESLA to test whether astral MTs exert pushing or 
pulling forces on the PNC. We separately probed astral MTs associated 
with the leading or trailing centrosomes by ablating rectangular planes 
near the centrosomes outside the pronuclei (Fig. 5a and Supplementary 
Video 6). In both cases, the centrosomes rapidly moved away from 
the cut astral MTs (Extended Data Fig. 4f,g), which is clearly seen by 
realigning the centrosomes relative to the cuts (Fig. 5b). These results 
imply that astral MTs primarily exert pulling forces on centrosomes 
during pronuclear centration. Simulations of cytoplasmic pulling dur-
ing pronuclear rotation and centration produce a complex pattern of 
flows (Fig. 5c). In contrast, in both cortical pulling simulations (Fig. 5d 
and the inset) and FND-based measurements (Fig. 5e and the inset), the 
fluid rotates in conjunction with the PNC and contains a subtle backflow 
near the posterior centrosome.

Fluid flow measurements support cortical pulling but not cyto-
plasmic pulling. However, the MTs connecting the PNC to the anterior 
cortex cannot be clearly visualized48, and such MTs are necessary to 
support cortical pulling during pronuclear centration. We performed 
an additional test by cutting a large semicircular arc in front of the 
migrating PNC, close to the anterior cortex, such that only MTs a few 
micrometres away from the cortex would be ablated (Fig. 5f,g). The 
PNC immediately ceased advancing after the cutting (Fig. 5h and Sup-
plementary Video 6), indicating that centration requires astral MTs 
to contact the anterior cortex. This result is not easily explained by a 
cytoplasmic pulling model but would be expected in a cortical pulling 
model. In sum, through FESLA and fluid flow analysis, we demonstrated 
that PNC migration is primarily driven by cortical pulling forces.

Cortical pulling as an explanation for centrosome 
behaviours
Our above work shows that pulling forces always locally dominate (from 
FESLA) and these pulling forces result from cortical force generators 
(by comparing fluid flow measurements with large-scale fluid dynamics 
simulations) at all times in one-cell C. elegans embryos, namely during 
anaphase spindle oscillations, during metaphase and prometaphase 
stable positioning and during PNC centration. We next investigated 
whether cortical pulling forces alone are sufficient to account for these 
diverse centrosome motions. We developed a coarse-grained model 
derived from the biophysics of MT nucleation, growth and interaction 
with pulling cortical force generators (Supplementary Notes). In this 
model (Fig. 6a), a centrosome nucleates MTs at a rate γ, which grow 
from their plus-end with velocity Vg and undergo a catastrophe46,52 
(that is, a switch from growing to shrinking) with rate λ. MTs that hit an 
unoccupied force generator bind to it and experience a pulling force 
f0, which is transmitted to the centrosome. The force generators are 
stoichiometric. Each force generator can bind to at most one MT at 
a time39. Bound MTs detach from force generators at a rate κ, where-
upon they undergo a catastrophe. MTs that hit the cell cortex without 
binding to a force generator undergo an immediate catastrophe. As 
in Fig. 6b, we consider a single centrosome moving along the y axis in 
a spherical cell of radius W, uniformly covered with M cortical force 
generators21,22,24,30,36,46,51,67. The net pulling force on the centrosome is 
the sum of pulling forces on all its MTs. This net pulling force is bal-
anced by a drag force proportional to the centrosome’s velocity (Sup-
plementary Notes).

We first tested this model to see whether it is able to account 
for spindle oscillations. We numerically simulated the model using 
realistic parameters (Extended Data Table 1 and Extended Data Fig. 5)  

http://www.nature.com/naturephysics


Nature Physics

Article https://doi.org/10.1038/s41567-023-02223-z

Time (s)
–5 0 5 10

–2

0

2

4

D
is

pl
ac

em
en

t d
 (µ

m
)

Uncut
w/ cut

Time (s)
–10 –5 0 5 10 15 20

–2

0

2

4

6

8

D
is

pl
ac

em
en

t d
 (µ

m
)

Uncut
w/ cut

Ti
m

e 
(s

)

–5

0

5

10

–2 0 2

Displacement d (µm)

Uncut
w/ cut

Ti
m

e 
(s

)

–10

–5

0

5

10

15

20

–2 0 2 4 6 8

Displacement d (µm)

Uncut

w/ cut

b

d

Trajectories: A before, A after, P before and P after cutting

Trajectories: A before, A after, P before and P after cutting

A Pxz
y

A Pxz
y

a

c

10 µm Post. poleAnt. pole

Cytoplasmic pullinge

0.1 µm s−1

(velocity scale bar)

g

0.1 µm s−1

(velocity scale bar)
P value

0.050.01 0.1 0.5

Cortical pullingf

0.1 µm s−1

(velocity scale bar)

10 µm Post. poleAnt. pole

0.05 µm s−1

(velocity scale bar)

Cytoplasmic pullingh

0.05 µm s−1

(velocity scale bar)

j

P value

0.050.01 0.1 0.5

0.02 µm s−1

(velocity scale bar)

Cortical pullingi

d

d
d

d

Fig. 4 | Laser ablation and fluid flows in prometaphase and metaphase. 
a–d, Laser ablation performed in metaphase (cutting patterns in red). The 
centrosome trajectories before and after cutting are plotted on the images with 
the designated colours. Right panels illustrate the corresponding definition 
of the displacement d in their insets and show the centrosome displacement 
data for uncut and cut embryos, with the mean value curves and SEM error 
bars overlaying the semitransparent raw data curves. All scale bars on images, 
including those of insets, are 10 μm. a, Rectangular (x–z) plane cuts on the 
transverse sides of the posterior centrosomes. b, Rectangular (y–z) plane cuts 
located posteriorly to the posterior centrosomes. c,d, Cup cuts surrounding the 
posterior centrosomes with the opening mouths facing the transverse sides (c) 
or the posterior ends (d). See Extended Data Fig. 4a–d for the FESLA dimensions. 

Sample numbers are a, n = 14 (uncut), n = 14 (with cut); b, n = 14 (uncut), n = 13 
(with cut); c, n = 14 (uncut), n = 10 (with cut) and d, n = 14 (uncut), n = 14 (with cut). 
e,f, Simulated fluid flows in prometaphase under (e) the cytoplasmic pulling or 
(f) the cortical pulling models. g, The flow vector field of averaged experimental 
results from tracking FNDs in nine embryos in prometaphase. h,i, Simulated 
fluid flows during spindle elongation in metaphase under (h) the cytoplasmic 
pulling or (i) the cortical pulling models. j, Experimental flow vector field derived 
from averaging the movements of tracked FNDs in 14 embryos during spindle 
elongation in metaphase. The highlighted backflows in the enlargements in i and 
j are plotted with fixed-length vectors. The statistical significance of the velocity 
vectors is indicated by their colour scale (P-value colour bar) in g and j.
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during the anaphase and found that the centrosome oscillates 
with a similar amplitude and frequency to those seen experimen-
tally (Fig. 6c). When the centrosome is at the top of the oscillations 
(Fig. 6d, t1), MTs are attached to force generators directly above 
the centrosome whereas force generators directly below the cen-
trosome are largely unoccupied. MTs then start to attach to force 
generators below the centrosome, causing it to start moving down-
ward (Fig. 6d, t2). More MTs continue to attach to the lower side and 
detach from the upper side (Fig. 6d, t3), and eventually, the process  
reverses (Fig. 6d, t4).

We gained further insights into the mechanism of oscillations from 
a linear stability analysis. A centrosome at the centre can lose stability to 

an oscillatory state via a Hopf bifurcation if there is more than a critical 
number of cortical force generators, given by:

Mc =
3ηΩ̄

f0 ̄P2
VgW

(κW − 2Vg)

where the steady-state rate of impingement of MTs onto force genera-
tors for a stationary centrosome at the cell centre before the start of 

oscillations is Ω̄ ≈ γ
4
( r
W
)
2
exp(−Wλ/Vg), η is the centrosome drag coef-

ficient (including the associated astral MT array) and r is the capture 
radius of a force generator (which includes the distance over  
which a MT explores the cortex before binding). Here, ̄P = Ω̄/ (Ω̄ + κ) 
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Fig. 5 | Laser ablation and fluid flows during migration of the PNC.  
a,b, Rectangular plane cuts (ablation drawn in red) during PNC migration.  
a, Images indicating the locations of plane cuts. Left, cutting near the anterior 
or leading centrosome. Right, cutting near the posterior or trailing one. In both 
images, the centrosome trajectories within a window from 10 s before to 15 s after 
cutting are plotted. b, Left, the definition of the centrosome displacement d, 
which is the relative orthogonal (away from the cut) displacement from the locus 
right before cutting. Right, uncut (n = 48) and cut (n = 48) displacement data sets. 
c,d, Simulated fluid flows under (c) the cytoplasmic pulling or (d) the cortical 
pulling models. e, Experimental flow vector field obtained from averaging eight 
embryos with tracked FNDs. The statistical significance of the velocity vectors 
is indicated by their colour scale (P-value colour bar). f–h, Large semicircular 

arc cuts close to the anterior cortices during PNC migration. f, 3D schematic 
(left) and 2D schematic (right) of the arc cut (drawn in red). The black arrows on 
the 2D schematic indicate PNC translation and rotation. g, An image taken right 
after a semicircular arc cut. To quantify the progression of PNC migration, the 
displacement d is calculated by projecting the PNC centre onto the embryo long 
axis. h, Migration displacements of uncut (n = 14) and cut (n = 19) embryos. For 
each ablated embryo, the zero point (d = 0) is defined by the PNC location right 
before cutting. All scale bars on images are 10 μm. See Extended Data Fig. 4e,h 
for the FESLA dimensions. All displacement data are presented with mean value 
curves and SEM error bars overlaying the semitransparent raw data curves. In the 
enlargements in d and e, the highlighted circular flow patterns are displayed with 
fixed-length vectors.
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is the steady-state probability of a force generator being bound  
(Supplementary Notes). In this model, oscillations are only possible if 
1
κ
< W

2Vg
, that is, if the time a MT stays attached to a force generator is 

sufficiently small compared to the time it takes for a MT to grow across 
the cell. Thus, the centrosome is driven to oscillate if pulling forces are 
sufficiently strong and the detachment of MTs from force generators 
is sufficiently fast.

These calculations and simulations point to an intuitive picture 
for how oscillations can occur with cortical pulling forces. Since the 
velocity of a growing MT plus-end is a sum of the MT’s polymeriza-
tion velocity in the direction of growth and the centrosome velocity 
(Fig. 6e)46, the motion of a centrosome away from a force generator 
reduces the rate of MT impingement on that force generator, whereas 
motion towards a force generator increases the rate of impingement. 
This results in a decreased probability of attachment and, hence, a 
decreased force from force generators behind the centrosome. It also 
results in an increased probability of attachment and, thus, an increased 
force in front of the centrosome. This self-reinforcing process move 
the centrosome over the midpoint (Y = 0). However, a forward-moving 
centrosome eventually reduces in speed due to a geometric effect. 
When the centrosome is closer to a surface, the force generators pull-
ing it onwards do so from increasingly oblique angles, decreasing 
their pulling efficacy (Fig. 6f). Once the centrosome speed has slowed 
down, the MT impingement rate behind the centrosome gradually 
recovers, eventually stopping the centrosome. Then, MTs reattach to 
the force generators on the distal side of the centrosome, leading to 
a larger restoring force (because of the geometric effect) and, hence, 
oscillations. This phenomenology is robust to details of the system’s 
geometry. The coarse-grained model also predicts that centrosome 
oscillations can occur between two flat plates.

One key assumption of the model is that MTs that contact the 
cortex undergo a catastrophe and depolymerize. Because of this 
effect, the simulations predict that the density of (transverse) MTs 
between the centrosome and the cortex oscillates out of phase 
with the centrosome’s transverse position (Fig. 6g), which also 
occurs experimentally (Fig. 6h and Supplementary Video 7), sup-
porting that MT depolymerization is induced upon contact with  
the cortex46.

We next investigated whether the cortical pulling forces are suf-
ficient to explain the stable positioning of the spindle near the cell 
centre in the prometaphase and metaphase. If the number of cortical 

force generators is reduced sufficiently in this model, then the centro-
some ceases to oscillate and is stably centred (Supplementary Notes), 
which occurs due to a combination of the geometric effect described 
above (Fig. 6f) and the stoichiometric interactions between MTs and 
force generators. That is, each force generator can bind to at most one 
MT at a time39. In the absence of stoichiometric interactions, cortical 
pulling forces are always destabilizing and can never stably centre 
centrosomes (Supplementary Notes).

When the centrosome is stably centred, as in the prometaphase 
and metaphase, the resulting spring constant can be analytically  
calculated as (Supplementary Notes):

ks ≈
2
3
Mf0
W

̄P2

Using the same parameters as those that reproduced anaphase 
spindle oscillations in the stochastic simulations but now lowering 
only M, the number of cortical force generators, this simulation gives 
a spring constant for spindle centring of 4.8 pN μm−1 (Extended Data 
Fig. 5b), which is the same order of magnitude as the measurements 
of Garzon-Coral et al. (16.4 ± 2.1 pN μm−1)16. Therefore, a model with 
only cortical pulling forces is sufficient to explain the stable centring 
of the spindle in the prometaphase and metaphase. A reduction in 
the number of cortical force generators in the prometaphase and 
metaphase compared to the anaphase is consistent with the ablation 
of astral MTs causing more dramatic motions in the anaphase (compare 
Fig. 1 and Fig. 4) and conclusions from previous studies14,30,35,37,54–56. 
The predicted transition between oscillations and stable position-
ing upon changing the number of cortical force generators can 
also account for the observation that gpr-1/2 knockdown prevents  
oscillations21.

We next investigated whether cortical pulling forces are sufficient 
to explain the PNC centration process. We used the same cortical pull-
ing model that reproduced the anaphase oscillations and stable cen-
tring in the prometaphase and metaphase and assumed that there was 
the same number of cortical force generators as in the prometaphase 
and metaphase. The coarse-grained theory can be used to analytically 
calculate (Supplementary Notes) that the PNC should exponentially 
approach the centre with a timescale τc given by:

1
τc

= 1
2 (Ω̄ + κ) (1 − M

Mc
)

Fig. 6 | Coarse-grained model of cortical pulling and model predictions.  
a, Key processes in the coarse-grained model. From left to right, MTs grow from 
their plus-ends with velocity Vg and undergo a catastrophe (that is, a switch from 
growing to shrinking) with rate λ. MTs that hit the cell cortex without binding to a 
force generator undergo an immediate catastrophe. MTs that hit an unoccupied 
force generator bind to it and experience a pulling force f0. Bound MTs detach 
from force generators at a rate κ, whereupon they undergo a catastrophe.  
b, Geometry of the coarse-grained model. The cell is treated as a sphere of radius 
W decorated with force generators (FG, yellow discs). The centrosome (green 
sphere) is located at a distance Y (along the y axis) from the centre of the cell. ̂ξξξ  is a 
unit vector extending from the centrosome to an FG. Ω is the impingement rate of 
MTs onto a FG. c, To illustrate the mechanism of oscillations, it is helpful to 
investigate the forces exerted on the centrosome from small regions (polar caps) 
above and below the centrosomes (upper schematic). The plots show the 
simulated oscillation amplitude and the net cortical forces from FGs in these 
polar cap regions. Note that in the simulations, all astral MTs bound to force 
generators exert forces on the centrosomes (that is, not just those in the polar 
cap regions). d, From a simulation of oscillations with the coarse-grained model, 
the probability of a cortical force generator being bound is P (φ, t), which is a 
function of polar angle φ from the y axis and time, as displayed by the colour scale 
in the bottom colour bar. This information is expressed for a cross section 
through the sphere containing the y axis. The black arrows drawn on 
centrosomes indicate their velocities. The green field shows the centrosomal  

MT directions and the front of unattached plus-ends. e, Relations among the 
centrosome speed Vc, the MT growth (polymerization) speed Vg and the speeds of 
MT plus-ends VMT(+). f, Schematic of the geometric effects that lead to the 
restoring mechanism during oscillations. Viewed from the embryo posterior end, 
the centrosome oscillates along the y direction on the y–z plane (right panel). As 
the centrosome approaches the upper surface, the forces from FGs above the 
centrosome become more oblique, leading to a smaller upward force projected 
along the y axis. g–i, Theoretical predictions and experimental measurements of 
astral MT density and pronuclear centration. g, The simulation predicted that the 
density of astral MTs (lower, yellow curve) within an annular sector along the 
transverse direction oscillates out of phase with the transverse position of the 
centrosome (upper, blue curve). h, Experimental measurement of the 
centrosomes’ transverse amplitudes and the intensities of astral MTs within 
annular sectors (60°, 3 μm inner radius, 9 μm outer radius, as the yellow frame on 
the image) of the transverse directions. Altogether, 44 oscillation cycles were 
extracted from 11 embryos (Methods). Scale bar, 10 μm. i, The simulated (upper) 
and experimental (lower, n = 10) results of pronuclear centration with 
exponential fits (dark red curves) and the resulting centring timescales τc,sim and 
τc,exp. The distance is calculated from the centrosome to the sphere centre in 
simulations, and experimentally from the PNC centre to the embryo centre along 
the longitudinal direction. Experimental data in h and i are presented with mean 
value curves and SEM error bars overlaying the semitransparent raw data curves.
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Consistent with this prediction, exponential relaxation was 
observed in both simulations and experiments (Fig. 6i and Extended 
Data Fig. 5a), with timescales of 26 and 32 s, respectively (95% confi-
dence interval, 29–36 s in our experiments). A second prediction of 

the coarse-grained theory is that the centring timescale τc is the same 
as the timescale τf of approach to a new equilibrium in response to an 
applied force. Consistent with this prediction, the observed centring 
times quoted above are the same as the force response timescale found 
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in simulations of the coarse-grain model, τf,sim = 25 s, and previously 
experimentally measured τf,exp = 28 s (95% confidence interval, 26–31 s, 
from Supplementary Fig. 13 in Garzon-Coral et al.16).

Conclusion
We have shown that cortical pulling forces drive pronuclear migration 
and rotation as well as spindle centring, elongation and oscillations in 
C. elegans embryos, with no discernible contribution from MT pushing 
or cytoplasmic pulling forces. This was accomplished using a combina-
tion of FESLA (to distinguish between pushing and pulling), fluid flow 
analysis (to differentiate between cytoplasmic and cortical pulling) 
and coarse-grained modelling. Previous work demonstrated that the 
asymmetric positioning of the spindle can also be explained by cortical 
pulling forces39. Thus, cortical pulling forces are sufficient to drive the 
diverse cell biological behaviour of centrosomes including directed 
motions, stable positioning and oscillations. Since such centrosome 
behaviours are observed in diverse contexts7,12–20, as are cortical pull-
ing forces38, the principles we have uncovered here should be broadly 
applicable to other systems.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41567-023-02223-z.

References
1.	 Knoblich, J. A. Asymmetric cell division: recent developments 

and their implications for tumour biology. Nat. Rev. Mol. Cell Biol. 
11, 849–860 (2010).

2.	 Kotak, S., Busso, C. & Gönczy, P. Cortical dynein is critical for 
proper spindle positioning in human cells. J. Cell Biol.199, 97–110 
(2012).

3.	 Siller, K. H. & Doe, C. Q. Spindle orientation during asymmetric 
cell division. Nat. Cell Biol. 11, 365–374 (2009).

4.	 Kiyomitsu, T. & Cheeseman, I. M. Chromosome- and 
spindle-pole-derived signals generate an intrinsic code for 
spindle position and orientation. Nat. Cell Biol. 14, 311–317 (2012).

5.	 Pearson, C. G. & Bloom, K. Dynamic microtubules lead the way for 
spindle positioning. Nat. Rev. Mol. Cell Biol. 5, 481–492 (2004).

6.	 Tame, M. A. et al. Astral microtubules control redistribution of 
dynein at the cell cortex to facilitate spindle positioning. Cell 
Cycle 13, 1162–1170 (2014).

7.	 von Dassow, G., Verbrugghe, K. J., Miller, A. L., Sider, J. R. & 
Bement, W. M. Action at a distance during cytokinesis. J. Cell Biol. 
187, 831–845 (2009).

8.	 Minc, N., Burgess, D. & Chang, F. Influence of cell geometry on 
division-plane positioning. Cell 144, 414–426 (2011).

9.	 Reinsch, S. & Gonczy, P. Mechanisms of nuclear positioning—
Commentary. J. Cell Sci. 111, 2283–2295 (1998).

10.	 Reinsch, S. & Karsenti, E. Movement of nuclei along microtubules 
in Xenopus egg extracts. Curr. Biol. 7, 211–214 (1997).

11.	 Rujano, M. A., Sanchez-Pulido, L., Pennetier, C., le Dez, G. &  
Basto, R. The microcephaly protein Asp regulates 
neuroepithelium morphogenesis by controlling the spatial 
distribution of myosin II. Nat. Cell Biol. 15, 1294–1306 (2013).

12.	 Longo, F. J. & Anderson, E. The fine structure of pronuclear 
development and fusion in the sea urchin, Arbacia punctulata.  
J. Cell Biol. 39, 339–368 (1968).

13.	 Meaders, J. L. & Burgess, D. R. Microtubule-based mechanisms of 
pronuclear positioning. Cells 9, 505 (2020).

14.	 Cowan, C. R. & Hyman, A. A. Asymmetric cell division in C. elegans: 
cortical polarity and spindle positioning. Annu. Rev. Cell Dev. Biol. 
20, 427–453 (2004).

15.	 Tanimoto, H., Sallé, J., Dodin, L. & Minc, N. Physical forces 
determining the persistency and centring precision of 
microtubule asters. Nat. Phys. 14, 848–854 (2018).

16.	 Garzon-Coral, C., Fantana, H. A. & Howard, J. A force-generating 
machinery maintains the spindle at the cell center during mitosis. 
Science 352, 1124–1127 (2016).

17.	 Foe, V. E. & von Dassow, G. Stable and dynamic microtubules 
coordinately shape the myosin activation zone during cytokinetic 
furrow formation. J. Cell Biol. 183, 457–470 (2008).

18.	 Du, Q. & Macara, I. G. Mammalian Pins is a conformational switch 
that links NuMA to heterotrimeric G proteins. Cell 119, 503–516 
(2004).

19.	 Riche, S. et al. Evolutionary comparisons reveal a positional 
switch for spindle pole oscillations in Caenorhabditis embryos.  
J. Cell Biol. 201, 653–662 (2013).

20.	 Zhu, M. et al. MISP is a novel Plk1 substrate required for proper 
spindle orientation and mitotic progression. J. Cell Biol. 200, 
773–787 (2013).

21.	 Pecreaux, J. et al. Spindle oscillations during asymmetric cell 
division require a threshold number of active cortical force 
generators. Curr. Biol. 16, 2111–2122 (2006).

22.	 Grill, S. W., Kruse, K. & Jülicher, F. Theory of mitotic spindle 
oscillations. Phys. Rev. Lett. 94, 108104 (2005).

23.	 Grill, S. W., Gonczy, P., Stelzer, E. H. & Hyman, A. A. Polarity 
controls forces governing asymmetric spindle positioning in the 
Caenorhabditis elegans embryo. Nature 409, 630–633 (2001).

24.	 Grill, S. W., Howard, J., Schaffer, E., Stelzer, E. H. & Hyman, A. A.  
The distribution of active force generators controls mitotic 
spindle position. Science 301, 518–521 (2003).

25.	 Bellanger, J. M. et al. ZYG-9, TAC-1 and ZYG-8 together ensure 
correct microtubule function throughout the cell cycle of  
C. elegans embryos. J. Cell Sci. 12016, 2963–2973 (2007).

26.	 Hyman, A. A. & White, J. G. Determination of cell division axes in 
the early embryogenesis of Caenorhabditis elegans. J. Cell Biol. 
105, 2123–2135 (1987).

27.	 Le Bot, N., Tsai, M. C., Andrews, R. K. & Ahringer, J. TAC-1, a 
regulator of microtubule length in the C. elegans embryo. Curr. 
Biol. 13, 1499–1505 (2003).

28.	 Srayko, M., Quintin, S., Schwager, A. & Hyman, A. A. 
Caenorhabditis elegans TAC-1 and ZYG-9 form a complex that is 
essential for long astral and spindle microtubules. Curr. Biol. 13, 
1506–1511 (2003).

29.	 Wright, A. J. & Hunter, C. P. Mutations in a β-tubulin disrupt spindle 
orientation and microtubule dynamics in the early Caenorhabditis 
elegans embryo. Mol. Biol. Cell 14, 4512–4525 (2003).

30.	 Colombo, K. et al. Translation of polarity cues into asymmetric 
spindle positioning in Caenorhabditis elegans embryos. Science 
300, 1957–1961 (2003).

31.	 Bringmann, H., Cowan, C. R., Kong, J. & Hyman, A. A. LET-99, 
GOA-1/GPA-16, and GPR-1/2 are required for aster-positioned 
cytokinesis. Curr. Biol. 17, 185–191 (2007).

32.	 Goulding, M. B., Canman, J. C., Senning, E. N., Marcus, A. H. & 
Bowerman, B. Control of nuclear centration in the C. elegans 
zygote by receptor-independent Gα signaling and myosin II.  
J. Cell Biol. 178, 1177–1191 (2007).

33.	 Galli, M. et al. aPKC phosphorylates NuMA-related LIN-5 to 
position the mitotic spindle during asymmetric division. Nat. Cell 
Biol. 13, 1132–1138 (2011).

34.	 Tsou, M. F., Hayashi, A., DeBella, L. R., McGrath, G. & Rose, L. S.  
LET-99 determines spindle position and is asymmetrically 
enriched in response to PAR polarity cues in C. elegans embryos. 
Development 129, 4469–4481 (2002).

35.	 Nguyen-Ngoc, T., Afshar, K. & Gonczy, P. Coupling of cortical 
dynein and Gα proteins mediates spindle positioning in 
Caenorhabditis elegans. Nat. Cell Biol. 9, 1294–1302 (2007).

http://www.nature.com/naturephysics
https://doi.org/10.1038/s41567-023-02223-z


Nature Physics

Article https://doi.org/10.1038/s41567-023-02223-z

36.	 Krueger, L. E., Wu, J. C., Tsou, M. F. & Rose, L. S. LET-99 inhibits 
lateral posterior pulling forces during asymmetric spindle 
elongation in C. elegans embryos. J. Cell Biol. 189, 481–495 
(2010).

37.	 Gotta, M., Dong, Y., Peterson, Y. K., Lanier, S. M. & Ahringer, J. 
Asymmetrically distributed C. elegans homologs of AGS3/
PINS control spindle position in the early embryo. Curr. Biol. 13, 
1029–1037 (2003).

38.	 Wu, H.-Y., Nazockdast, E., Shelley, M. J. & Needleman, D. J. Forces 
positioning the mitotic spindle: theories, and now experiments. 
BioEssays 39, 1600212 (2017).

39.	 Farhadifar, R. et al. Stoichiometric interactions explain spindle 
dynamics and scaling across 100 million years of nematode 
evolution. eLife 9, e55877 (2020).

40.	 Yu, C.-H. et al. Central-spindle microtubules are strongly coupled 
to chromosomes during both anaphase A and anaphase B. Mol. 
Biol. Cell 30, 2503–2514 (2019).

41.	 Chung, S. H., Clark, D. A., Gabel, C. V., Mazur, E. & Samuel, A. D. 
The role of the AFD neuron in C. elegans thermotaxis  
analyzed using femtosecond laser ablation. BMC Neurosci. 7, 30 
(2006).

42.	 Chung, S. H. & Mazur, E. Surgical applications of femtosecond 
lasers. J. Biophotonics 2, 557–572 (2009).

43.	 Gabel, C. V., Antoine, F., Chuang, C.-F., Samuel, A. D. & Chang, C. 
Distinct cellular and molecular mechanisms mediate initial axon 
development and adult-stage axon regeneration in C. elegans. 
Development 135, 1129–1136 (2008).

44.	 Gabel, C. V. et al. Neural circuits mediate electrosensory behavior 
in Caenorhabditis elegans. J. Neurosci. 27, 7586–7596 (2007).

45.	 Vogel, A., Noack, J., Hüttman, G. & Paltauf, G. Mechanisms of 
femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B 
81, 1015–1047 (2005).

46.	 Kozlowski, C., Srayko, M. & Nedelec, F. Cortical microtubule 
contacts position the spindle in C. elegans embryos. Cell 129, 
499–510 (2007).

47.	 Kimura, A. & Onami, S. Computer simulations and image 
processing reveal length-dependent pulling force as the primary 
mechanism for C. elegans male pronuclear migration. Dev. Cell 8, 
765–775 (2005).

48.	 Kimura, K. & Kimura, A. Intracellular organelles mediate 
cytoplasmic pulling force for centrosome centration in the 
Caenorhabditis elegans early embryo. Proc. Natl Acad. Sci. USA 
108, 137–142 (2011).

49.	 Shinar, T., Mana, M., Piano, F. & Shelley, M. J. A model of 
cytoplasmically driven microtubule-based motion in the 
single-celled Caenorhabditis elegans embryo. Proc. Natl Acad. 
Sci. USA 108, 10508–10513 (2011).

50.	 Xie, J. & Minc, N. Cytoskeleton force exertion in bulk cytoplasm. 
Front. Cell Dev. Biol. https://doi.org/10.3389/fcell.2020.00069 
(2020).

51.	 Gusnowski, E. M. & Srayko, M. Visualization of dynein-dependent 
microtubule gliding at the cell cortex: implications for spindle 
positioning. J. Cell Biol. 194, 377–386 (2011).

52.	 Laan, L. et al. Cortical dynein controls microtubule dynamics to 
generate pulling forces that position microtubule asters. Cell 148, 
502–514 (2012).

53.	 Redemann, S. et al. Membrane invaginations reveal cortical sites 
that pull on mitotic spindles in one-cell C. elegans embryos. PLoS 
ONE 5, e12301 (2010).

54.	 Schmidt, R. et al. Two populations of cytoplasmic dynein 
contribute to spindle positioning in C. elegans embryos. J. Cell 
Biol. 216, 2777–2793 (2017).

55.	 Srinivasan, D. G., Fisk, R. M., Xu, H. & van den Heuvel, S. A complex 
of LIN-5 and GPR proteins regulates G protein signaling and 
spindle function in C. elegans. Genes Dev. 17, 1225–1239 (2003).

56.	 Couwenbergs, C. et al. Heterotrimeric G protein signaling 
functions with dynein to promote spindle positioning in  
C. elegans. J. Cell Biol. 179, 15–22 (2007).

57.	 Daniels, B. R., Masi, B. C. & Wirtz, D. Probing single-cell 
micromechanics in vivo: the microrheology of C. elegans 
developing embryos. Biophys. J. 90, 4712–4719 (2006).

58.	 Valentine, M. T. et al. Colloid surface chemistry critically affects 
multiple particle tracking measurements of biomaterials. Biophys. 
J. 86, 4004–4014 (2004).

59.	 Mochalin, V. N., Shenderova, O., Ho, D. & Gogotsi, Y. The 
properties and applications of nanodiamonds. Nat. Nanotechnol. 
7, 11–23 (2012).

60.	 Fu, C.-C. et al. Characterization and application of single 
fluorescent nanodiamonds as cellular biomarkers. Proc. Natl 
Acad. Sci. USA 104, 727–732 (2007).

61.	 Mohan, N., Chen, C.-S., Hsieh, H.-H., Wu, Y.-C. & Chang, H.-C. In vivo 
imaging and toxicity assessments of fluorescent nanodiamonds in 
Caenorhabditis elegans. Nano Lett. 10, 3692–3699 (2010).

62.	 Vaijayanthimala, V. et al. The long-term stability and 
biocompatibility of fluorescent nanodiamond as an in vivo 
contrast agent. Biomaterials 33, 7794–7802 (2012).

63.	 Chang, Y.-R. et al. Mass production and dynamic imaging of 
fluorescent nanodiamonds. Nat. Nanotechnol. 3, 284–288 (2008).

64.	 Su, L.-J. et al. Fluorescent nanodiamonds enable quantitative 
tracking of human mesenchymal stem cells in miniature pigs. Sci. 
Rep. 7, 45607 (2017).

65.	 Howard, J. Mechanics of motor proteins and the cytoskeleton. 
Appl. Mech. Rev. 55, B39 (2002).

66.	 Coffman, V. C., McDermott, M. B., Shtylla, B. & Dawes, A. T.  
Stronger net posterior cortical forces and asymmetric 
microtubule arrays produce simultaneous centration and rotation 
of the pronuclear complex in the early Caenorhabditis elegans 
embryo. Mol. Biol. Cell 27, 3550–3562 (2016).

67.	 Grill, S. W. & Hyman, A. A. Spindle positioning by cortical pulling 
forces. Dev. Cell 8, 461–465 (2005).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with 
the author(s) or other rightsholder(s); author self-archiving of the 
accepted manuscript version of this article is solely governed by the 
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 
2023

http://www.nature.com/naturephysics
https://doi.org/10.3389/fcell.2020.00069


Nature Physics

Article https://doi.org/10.1038/s41567-023-02223-z

Methods
Experimental subjects
Worm strains. The C. elegans line AZ244 (unc-119(ed3) III; 
ruIs57[unc-119(+) pie-1::GFP::tubulin]) and a new line DJN004 
( u n c -11 9 ( e d 3 )  I I I ;  r u I s 5 7 [ u n c -11 9 ( + )  p i e -1 : : G F P: : t u b u l i n ; 
[mCherry::tbg-1]) obtained by crossing AZ244 with a line expressing 
mCherry-labelled γ-tubulin were used throughout this study. Addi-
tionally, to visualize chromosomes, SA250 (tjIs54 [pie-1p::GFP::tbb-2 +  
pie-1p::2xmCherry::tbg-1 + unc-119(+)]; tjIs57 [pie-1p::mCherry::his-48 +  
unc-119(+)]) were used for the metaphase experiments shown in  
Fig. 4a–d. This line helped to determine the timing of the metaphase 
and ensure that the chromosomes were not ablated.

C. elegans culturing conditions and embryo preparation. Worms 
were grown on nematode growth medium plates seeded with OP50 
Escherichia coli bacteria and incubated at 24 °C. Gravid C. elegans her-
maphrodites were dissected by needle tips to release their embryos into 
M9 buffer. Then, mouth pipettes were used to pick and transfer early 
embryos onto flat 4% agarose pads (Bio-Rad), which were prepared 
on microscopic slides68. A freshly made agarose pad was promptly 
trimmed to a size smaller than the area of a coverslip. After adding 
a small amount of M9 buffer to keep the embryos moist, the sample 
was covered with a coverslip and sealed swiftly for imaging. Under this 
mounting condition, embryos were slightly squeezed and were held in 
place by the sunk agarose pad.

After the embryos were prepared, they were imaged either at 22 °C 
or 18 °C. For different laser-ablation conditions, each set of embryos, 
including both control uncut and ablated embryos, were imaged at the 
same temperature for comparison (either all at 22 °C or all at 18 °C).

Experimental methods
Microscopy and imaging. We imaged mounted early C. elegans 
embryos on an inverted microscope (Nikon, TE2000) using a ×60 
water-immersion objective (Nikon, CFI Plan Apo VC 60X WI, NA 1.2). 
Images were acquired using a spinning-disc confocal unit (Yokugawa, 
CSU-X1) equipped with continuous-wave lasers for fluorescence excita-
tion and an electron-multiplying charge-coupled device (Hamamatsu, 
ImagEM Enhanced C9100-13) for detection. GFP fluorescence was 
excited at 488 nm and collected through a bandpass filter with 514 nm 
centre and 30 nm full width at half maximum (FWHM) wavelength. 
mCherry fluorescence was excited at 561 nm and collected through a 
bandpass filter with 593 nm centre and 40 nm FWHM wavelength. The 
FNDs were excited at 561 nm and collected through a long-pass filter 
with a 647 nm cut-on wavelength.

All images displayed in the figures and videos in this article were 
processed in MATLAB (MathWorks) or ImageJ.

Extended Data Fig. 1a indicates the terminology for embryo ori-
entation and axis labels used throughout this manuscript. The x–y 
midplane is defined as the imaging plane. The longitudinal direction 
(or the long axis) of an oblong embryo is assigned as the x direction, 
whereas the transverse direction is in the y direction.

Femtosecond stereotactic laser ablation. Our laser-ablation setup 
was incorporated into an inverted microscope with a spinning-disc 
unit (Fig. 1c). A near-infrared Ti:sapphire femtosecond pulsed laser 
beam with a reduced repetition rate (16–80 kHz, compared to the 
common 80 MHz repetition rate output)41–45 was directed and 
merged into the microscope light path through a dichroic mirror. 
The ablation laser pulses were focused onto the sample by the same 
high-numerical-aperture objective used for confocal imaging. We used 
two different methods to reduce the repetition rate of the femtosecond 
laser pulses: (1) Using a cavity-dumped Ti:sapphire laser (Cascade-1, 
KML, with 830–840 nm centre wavelength and 20–30 fs pulse width) 
with either a 40 kHz pulse train with 2.5–4 nJ pulse energy (the energy 
measured under our ×60 water-immersion objective) or an 80 kHz 

pulse train with 2.5–3.5 nJ pulse energy. (2) Using a pulse picker (Eclipse, 
KMLabs) to select a 16 kHz pulse train from the 80 MHz Ti:sapphire 
laser pulses (Mai-Tai, Spectra-Physics, with 800 nm centre wavelength 
and ~70 fs pulse width).

We ablated complex patterns by moving the sample on a three-axis 
piezo-stage (P-545 PInano XYZ, Physik Instrumente) and controlling 
laser exposure with a fast mechanical shutter (Newport). Ablation 
patterns and image acquisition were controlled with custom LabVIEW 
codes. The dimensions of the FESLA ablated regions are displayed in 
extended data figures: (1) For experiments during the late metaphase 
to anaphase spindle oscillations, see Extended Data Fig. 2a (for arc 
cuts in Fig. 1e–j), Extended Data Fig. 2e (for double rectangular plane 
cuts), Extended Data Fig. 2f (for open-cylindrical cuts in Fig. 2a–e) and 
Extended Data Fig. 2i (for cup cuts in Fig. 2f–i). (2) For experiments dur-
ing the metaphase, see Extended Data Fig. 4a,b (for rectangular plane 
cuts in Fig. 4a,b) and Extended Data Fig. 4c,d (for cup cuts in Fig. 4c,d). 
(3) For experiments during the PNC stage, see Extended Data Fig. 4e 
(for rectangular plane cuts in Fig. 5a,b) and Extended Data Fig. 4h (for 
large semicircular arc cuts in Fig. 5f–h).

Fluorescent nanodiamonds. Passivated FNDs were used as tracer 
particles to visualize cytoplasmic flows. We adopted a two-step sur-
face treatment to coat FNDs with mono-methyl polyethylene glycol 
(mPEG). FNDs (40–50 nm in diameter, after acid wash treatment, a gift 
from Dr Huan-Cheng Chang)60–62,64 in Milli-Q water were sonicated for 
30 min and then mixed with α-lactalbumin (Sigma, α-lactalbumin from 
calcium-depleted bovine milk) at a weight ratio of FND:α-lactalbumin of 
1:2. The mixture was gently shaken overnight at 4 °C, and then washed 
through a centrifugal filter (Amicon Ultra, 100 kDa) several times. The 
FND concentrate was dispersed in Milli-Q water again and sonicated in 
ice water bath for 15 min and then optionally syringe filtered (Millex-VV, 
0.1 µm, Durapore polyvinylidene fluoride membrane). After diluting 
the solution of FND (with absorbed α-lactalbumin) to ~0.1 mg ml−1, 
boric acid was added to reach a final concentration of 5 mM and the 
pH was adjusted to 8. For the second mPEG coating, fresh mPEG-SVA 
(mPEG-succinimidyl valerate, mol. wt. 5,000, Laysan Bio) was added 
to a weight ratio of FND: mPEG-SVA ≈ 1:1, and the mixture was stirred 
overnight at 4 °C. Then, the FNDs were washed through a centrifugal 
filter several times and dispersed in Milli-Q water. Immediately before 
use, the FND solution was sonicated in an ice water bath for 15 min, 
syringe filtered (Pall Acrodisc, 0.2 µm, HT Tuffryn membrane) and 
diluted to a concentration of 0.25–1 mg ml−1.

We microinjected freshly coated FNDs (within 48 h) into 
the distal gonads of AZ244 (unc-119(ed3) III; ruIs57[unc-119(+) 
pie-1::GFP::tubulin]) young adult hermaphrodites using needles pulled 
from borosilicate glass capillaries (World Precision Instruments,1.0 mm 
outer diameter, 0.58 mm internal diameter, with filament) with a P-87 
micropipette puller (Sutter Instrument). We cut the hermaphrodites 
6–10 h after microinjection and retrieved their embryos for imaging.

We imaged AZ244 embryos with injected FNDs at 18 °C. Time-lapse 
z-stack confocal images of both GFP::β-tubulin and FND were acquired 
every 2.5–5 s. Centrosomes were visualized in GFP::β-tubulin images, 
which included several z sections with 1 μm spacing and were taken 
around PNCs or spindles. FND signals were captured through z stacks 
having 9 or 15 z section images with 1 μm spacing.

Quantification and data analysis
All image analyses and data quantification for experimental data were 
done in MATLAB (MathWorks). Numerical simulations and their analy-
ses were also done in MATLAB.

Tracking centrosomes. The locations of centrosomes were extracted 
from either fluorescent γ-tubulin or fluorescent β-tubulin (Extended 
Data Fig. 1b). For γ-tubulin images (Extended Data Fig. 1b, upper right), 
we adopted the particle-finding codes from the MATLAB Particle 
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Tracking Code Repository by D. Blair and E. Dufresne (http://site.phys-
ics.georgetown.edu/matlab/) (adapted from IDL Particle Tracking soft-
ware from David D. Grier, John C. Crocker and Eric R. Weeks)69 to find 
the centrosome locations. We used high-pass background subtraction 
followed by thresholding and identification of local maxima. Subpixel 
localization of the anterior and posterior centrosomes (orange and blue 
circles on the upper right image of Extended Data Fig. 1b) was achieved 
by calculating the centroid near the identified local maximum. For 
β-tubulin images, the tracking algorithm described above worked well 
at the PNC stage, but the complex appearance of spindle centrosomes 
(Extended Data Fig. 1b, lower right image) necessitated an alternative 
approach. In this case, we used an image-correlation-based approach. 
We constructed a square region with an artificial ring with a size close 
to that of a centrosome (Extended Data Fig. 1c, upper), convolved this 
‘synthetic’ centrosome against background-subtracted and thresh-
olded images of spindles (Extended Data Fig. 1c, lower) and identified 
the position of centrosomes as the local maximum of this correlation 
(labelled with circles in Extended Data Fig. 1b, lower right image). After 
acquiring the locations of the centrosomes in each frame (for either 
γ-tubulin or β-tubulin imaging), we then used the tracking routines 
from the MATLAB Particle Tracking Code Repository to link these 
positions into trajectories.

During centrosome oscillations, we defined the longitudinal direc-
tion of motion to be along the best-fitting straight line to the combined 
trajectories of the two centrosomes (Extended Data Fig. 1d). During 
the metaphase and the PNC stage and for certain ablation data dur-
ing the oscillations, we instead defined the longitudinal direction of 
motion by an embryo’s geometry. We determined the cell boundary 
by thresholding (and smoothing) the β-tubulin image (Extended Data 
Fig. 1e, purple), fitted the contour to an ellipse (Extended Data Fig. 1e, 
dashed yellow) and used the long axis of the ellipse as the longitudinal 
direction (Extended Data Fig. 1e, solid yellow line). We defined the 
location of the anterior and posterior ends of the embryo to be the 
location on the embryo contour that intersected with this longitudinal 
axis (Extended Data Fig. 1f). We defined the transverse direction to be 
orthogonal to the longitudinal direction.

Analysis of spindle oscillations. Centrosome motions. To determine 
the amplitude and timing of centrosome oscillations, we examined the 
transverse position of the centrosomes, obtained rough peak positions 
by identifying local maximum and minima after smoothing the trajec-
tories and then obtained refined peak positions by fitting the raw data 
for the unsmoothed transverse positions around these local maxima 
and minima to Gaussians (Extended Data Fig. 1g).

We analysed the impact of laser-ablation arc cuts (Fig. 1e–j  
and Extended Data Fig. 2a) on oscillations by calculating 
Δvy = vy(after) − vy(before), the difference in centrosome (y) velocity imme-
diately before vy(before) and after ablation vy(after) (Extended Data Fig. 2b). 
Ablation itself took a time window τw of 2.3 s on average to complete. 
Velocities were measured by linear fits of transverse centrosome posi-
tions over for a mean of 2.7 s (at least three data points, Extended 
Data Fig. 2c, for example). The resulting change in the centrosome 
transverse velocity (Δvy = vy(after) − vy(before)) was calculated for all arc-cut 
experiments shown in Fig. 1e,f,h,i (Δvy in Extended Data Fig. 2d).

We analysed the impact of laser-ablation double rectangular plane 
cuts (Extended Data Fig. 2e) and open-cylindrical cuts (Fig. 2a–c and 
Extended Data Fig. 2f) on oscillations by calculating Aafter/Abefore, the 
ratio of amplitudes for the oscillations immediately before Abefore and 
after Aafter the cuts (Extended Data Fig. 2g). Both double-plane cuts and 
open-cylindrical cuts exhibited a highly significant difference in the 
Aafter/Abefore ratio compared to controls (Extended Data Fig. 2h).

We analysed the impact of laser-ablation cup cuts (Extended Data 
Fig. 2i) on oscillations by calculating the minimum distance dmin that 
the centrosome came to the cell boundary after ablation (Extended 
Data Fig. 2j).

Analysis of astral microtubules. To measure the changes in astral MTs 
during spindle oscillations, we imaged GFP::β-tubulin in 11 embryos 
and calculated the intensity of pixels in three annular sectors with a 
3 μm inner radius, a 9 μm outer radius and subtended angles of 60° 
(Extended Data Fig. 6a): an ‘up’ transverse section oriented in the 
direction of centrosome motion, a ‘down’ transverse section oriented 
in the direction opposite centrosome motion and a ‘lateral’ section 
between the centrosome and the lateral cortex. The orientations of 
the annular sectors remained unchanged while their locations varied 
as the posterior centrosome moved (Supplementary Video 7). For each 
embryo, we measured the tubulin intensity with background subtrac-
tion in these three regions throughout the five-half-cycle temporal 
window with the maximal five consecutive peak-to-valley amplitudes 
(for example, see Extended Data Fig. 6b, left panel). Two full cycles of 
the upward part (positive y direction, T1 and T2) and two full cycles of the 
downward part (negative y direction, T3 and T4) after vertical flipping 
were taken into consideration (Extended Data Fig. 6b, middle panel), 
giving a total of 44 full oscillation cycles from 11 embryos. For each full 
cycle, the time period was rescaled to the mean time period T(m) of the 
44 cycles (Extended Data Fig. 6b, right panel), and the intensity values 
from the transverse region were further normalized by the temporal 
mean intensity of the lateral region. After aligning the oscillation mid-
points at zero, all amplitude values were divided by half the mean trans-
verse displacement (maximum y value minus minimum y value) of the  
44 cycles, to set the amplitude nearly between 1 and −1.

To analyse the predicted changes in astral MTs during spindle oscil-
lations from the coarse-grained model, we derived an analytical formula 
for the total length of MTs in an annular sector (which is analogous to the 
experimentally measured intensity of tubulin in such a sector). To do this, 
we consider an angle θ′ ∈ [−π,π]  encircling the centrosome in the 
coarse-grained model, where θ′ is related to the polar angle φ′ (defined 
in Supplementary Notes Section II.v) by θ′ = φ′ for θ′ > 0 and θ′ = −φ′ for 
θ′ < 0. Consider a discal sector S = [D1,D2] × [θ′1,θ

′
2], where we assume 

that D1,2 < d(θ′) for θ′1 ≤ θ
′ ≤ θ′2. There are three types of MTs emanating 

from the centrosome: (1) those with length l ≤ D1, which contribute  
nothing to the discal intensity; (2) those with length D1 ≤ l ≤ D2, which 
contribute a length of l − D1 and (3) those with length D2 ≤ l ≤ D(θ′), which 
contribute a length of D2 − D1. Hence, the total MT length in S is

L = ∫θ
′
1
θ′1
dθ′ [∫D2

D1
dl (l − D1)ψ (l) + ∫D(θ

′)
D2

dl (D2 − D1)ψ (l)]

= ∫θ
′
1
θ′1
dθ′ [1 − D2−D1

lMT

exp(−D(θ′)/lMT)
exp(−D1/lMT)−exp(−D2/lMT)

]

with lMT = Vg/λ and using that ψ (l) = γ
Vg

exp(−lλ/Vg).

Simulations with the coarse-grained model of cortical pulling. We 
numerically calculated the centrosome movement using the equations 
of motion from our coarse-grained model of cortical pulling. Balancing 
the net force from the force generators (𝐹fg) with the drag force of the 
centrosome (𝐹drag) gives Fdrag + Ffg = 0, resulting in

̇Y =
Mf0
2η ∫

π

0
dφ sinφ W

√W2 − 2WY cosφ + Y2
(cosφ − Y

W )P (φ)

And the dynamical equation for P can also be derived from the 
equations of motion:

∂tP (φ) = Ω ( ̇Y,Y,φ) (1 − P (φ)) − κP (φ), where the impingement rate 
is given by:

Ω ( ̇Y,Y,φ) = ( ̇Y cosφ +
VgW − VgY cosφ

d ) 1
2
⎛
⎜⎜
⎝
1 − 1

√1 + (r/d)2
⎞
⎟⎟
⎠

γ
Vg

e−dλ/Vg ,

and d = √W2 − 2WY cosφ + Y2 .
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Then, we can numerically calculate the centrosome velocity and 
position and the probability of force generators being bound using 
estimated motor numbers for different stages. Using a motor number 
slightly higher than Mc, we can produce anaphase oscillation behav-
iours. Using a motor number much lower than Mc while keeping all the 
other parameters the same, we can simulate PNC centration. Finally, 
we use the same motor number for PNC to simulate the spindle stable 
centring in the metaphase as in the experiments of Garzon-Coral et al.16, 
where an external force (𝐹ext) was exerted and then released. Under this 
condition, the force-balance equation becomes:

Fdrag + Ffg + Fext = 0

We swept the parameters in the simulations to investigate how the 
biophysical parameters affect the centrosome movements. Extended 
Data Fig. 5a–c gives examples of pronuclear centration, metaphase 
stable centring and centrosome oscillation while different param-
eters were swept. Extended Data Fig. 5d–h demonstrates how varying 
different parameters affected the outcome observations. Finally, we 
adopted the parameters shown in Extended Data Table 1, which yielded 
realistic results like those from the experiments. These simulation data 
are shown in the main text and figures.

Measuring cytoplasmic fluid flows with FNDs. We measured cyto-
plasmic fluid flows using FNDs as passive tracer particles. This entailed 
tracking the motions of individual FNDs and averaging the velocities 
of FNDs over multiple time points and embryos to determine the fluid 
flow velocities.

We imaged FNDs in embryos by 3D time-lapse microscopy with 
either 9 or 15 z sections spaced 1 μm apart. We adopted and modi-
fied the MATLAB 3D feature finding algorithms, which were writ-
ten by Yongxiang Gao and Maria Kilfoil70 based on IDL codes from  
John C. Crocker and David G. Grier69, to extract the FND particle features 
and obtain their 3D positions with subpixel precision. Then we tracked 
the 3D trajectory of each individual FND again using the MATLAB 
Particle Tracking Code Repository. We calculated the 3D instantane-
ous velocity of every FND, at each time and location, as the difference 
between its positions at two consecutive frames divided by the time 
interval between those frames. While tracking FNDs, we also imaged 
and tracked centrosomes using GFP::β-tubulin images.

To determine the pattern of fluid flow throughout the cytoplasm, 
we averaged together FND velocities from different time points and 
embryos. Positioning stages can mainly be recognized through 
GFP::β-tubulin images. We also used the position and movement of 
the centrosomes to determine the frames to include and the coordi-
nate system with which to perform this averaging. For spindle oscilla-
tions midpoints at time Tm, we selected times in which the posterior 
centrosome was located within 1 μm transversely from the oscillation 
midpoint and moving with a transverse speed greater than 0.15 μm s−1. 
For prometaphase spindles, we included times after rotation had nearly 
ceased. For metaphase spindles, we included spindles with lengths 
between 20% and 40% of their embryo lengths and before spindle 
oscillations had begun. After determining which time points to include, 
we aligned the position and velocity data based on the locations of the 
centrosomes and the embryos’ anterior-to-posterior directions. Then 
we projected the 3D positions and instantaneous velocity vectors of 
the FNDs onto the x–y plane and determined the 2D fluid flow velocity 
on grid points with 2.5 μm (x) by 2.5 μm (y) spacing (Extended Data 
Fig. 3a) by averaging FND velocities in overlapping cuboid domains. 
From the prometaphase to the late anaphase (Figs. 3e and 4g,j), the 
averaging domain was a 5 μm (x) by 5 μm (y) by 6 μm (z) cuboid with 
the grid point at the cuboid centre (Extended Data Fig. 3b). To calculate 
fluid flows around pronuclei (Fig. 5e), we used a 5 μm (x) by 5 μm (y) 
by 9 μm (z) overlapping averaging domain (Extended Data Fig. 3c). 
For PNC migration and rotation, we considered two different criteria 

for averaging: (1) As in the main text (Fig. 5e), we adopted times when 
the longitudinal distance between the PNC centre and the embryo 
posterior end measured 35–50% of the embryo length (or R = 0.35–0.5; 
Extended Data Fig. 3g, left). (2) Alternatively, we used times when the 
angle A between the PNC axis (centrosome-to-centrosome) and the 
longitudinal axis of the cell ranged between 33° and 66° (Extended 
Data Fig. 3d, right). Both methods gave qualitatively similar results.

The averaged experimental velocity vectors were plotted accord-
ing to a P-value-related colour map. The P value of each cuboid block 
of 2D velocity data was calculated with a one-sample two-tailed t-test 
using the lengths of those pooled velocity vectors projected onto the 
direction of their averaged vector. The null hypothesis is that there is 
no cytoplasmic flow and particles merely exhibit Brownian motion. The 
colour map makes those significant flow vectors more prominent to 
improve visibility. Finally, we drew an imaginary embryo cell contour 
to represent the averaged cell boundary and removed those data points 
outside the drawn boundary.

To compare the computational fluid mechanics simulations to the 
experimental data, we performed analogous projections and averag-
ing. For the simulations, we calculated projected 2D vector fields of 
fluid flow on 2 μm by 2 μm grids by averaging the continuous velocity 
field in overlapping domains. For simulations from the prometaphase 
to the late anaphase (Figs. 3b,c, 4e,f and 4h,i), we used a 4 μm (x) by 
4 μm (y) by 6 μm (z) cuboid averaging domain. For simulations at the 
PNC stage (Fig. 5c,d), we used a 4 μm (x) by 4 μm (y) by 8 μm (z) cuboid 
averaging domain.

Data availability
All data in this study are available from the corresponding authors 
upon reasonable request.

Code availability
The codes used in this study are available from the corresponding 
authors upon reasonable request.
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Extended Data Fig. 1 | Orientation terminology, image analysis and 
centrosome motion quantification. a, The configuration and the terminology 
of embryo orientation used in this study. The mitotic spindle is simply illustrated 
by the green dumbbell, while astral MTs illustrated by slender green sticks. The 
confocal imaging plane, which is parallel to the coverslip, is defined as the x-y 
plane, with the z = 0 plane falling at the centre of the spindle or the PNC. The 
embryo’s A–P direction is assigned as the longitudinal direction (x axis), with 
the embryo’s posterior end facing the positive x direction. And the transverse 
direction refers to the y direction. b,c, An example of the centrosome-tracking 
image. b, The two-colour merged image of an C. elegans embryo expressing 
mCherry-tagged γ-tubulin (red) and GFP-tagged β-tubulin (green). The two 
separate images of the dashed-line region are shown in the right panel. The 
upper one is a γ-tubulin-labeling image with its labeled centrosome locations 
derived by MATLAB Particle Tracking Code Repository by Daniel Blair and Eric 
Dufresne. The lower one is a β-tubulin-labeling image, while its centrosome 
information is derived from the particle tracking code plus the second-step 

correlation method. c, Top, the square image patch with the artificial ring 
structure mimicking a centrosome. Bottom, an example of the post-processed 
(background-subtraction and thresholding) β-tubulin-labeling image used for 
correlation calculation. (The top and bottom images are displayed on the same 
scale.) d,e, The information of the embryo long axis (or longitudinal direction) 
can be extracted automatically in two ways: d, through linear fitting on the 
trajectory data of the anterior and posterior centrosomes, or e, through fitting 
the automatic detected embryo contour with a simple ellipse. f, An example of 
the automatic detected embryo contour and the embryo anterior/posterior 
ends. g, An example of oscillation peak detection. The crests/troughs (or the 
peak points) of the transverse oscillations were calculated by (1) first finding the 
local maxima/minima from the smoothed amplitude data, and then (2) fitting the 
raw amplitude data, which fall within the 15-second windows around the above 
detected maxima/minima, by Gaussian function (see the enlargements).  
The derived peak points are marked by pink asterisks. All scale bars on images  
are 10 μm.
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Extended Data Fig. 2 | Dimensions of laser ablations performed during 
transverse spindle oscillations and the results quantifications. In 3D 
schematics a, e, f, and i, centrosomes are represented by two green balls and 
the spindle body is simplified into the green dashed line. The A–P direction 
(embryo polarity) is indicated by the brown arrow. The orange and blue arrows 
displayed on the centrosomes imply the transverse oscillations of the anterior 
and posterior centrosomes respectively. The posterior part of the corresponding 
x-y imaging midplane (2D view from the top) is exhibited on the right of each 3D 
schematic, with the spindle and astral MTs sketched in green and chromosomes 
in magenta. All ablation geometrics are portrayed in red for both 2D and 3D 
schematics. a, Dimensions of the arc cuts in Fig. 1e,f, and h,i (all performed with 
the same angular span stated here). b,c, Calculation of centrosome velocity 
change (Δvy) for arc cuts. b, Definition of Δvy at timing Tm and Tp respectively. And 
τw is the sandwiched window (for ablated embryos: this window is the ablation 
execution time) between the two intervals Δt used for calculating centrosome 
transverse velocity vy(before) and vy(after). c, The raw data of centrosome position 
falling within the interval Δt are used to calculate transverse (y) velocity by linear 
fitting. d, The Δvy data for uncut (control) and arc-cut embryos. Left, the data 

for Fig. 1e,f (Tm). Right, the data for Fig. 1h,i (Tp). e, A schematic of the double 
rectangular (y-z) plane cut and the detailed dimensions. f, Dimensions of the 
open-cylindrical cuts in Fig. 2a–e. g, Measurement on oscillation amplitude 
change by calculating the amplitude ratio Aafter /Abefore (mentioned in Fig. 2e). 
The notation A means oscillation transverse amplitude, and D stands for peak-
to-valley transverse amplitude/displacement. The oscillation example (pink 
curve) is the one from Fig. 2d (open-cylindrical cut). The ablation execution is 
highlighted by the light pink vertical strip. h, The comparison of the amplitude 
ratios among uncut, double-plane-cut, and open-cylindrical-cut embryos. 
We found that the more perpendicular MTs that were ablated, the more the 
oscillation amplitude increased. This is consistent with the perpendicular MTs 
being subject to pulling forces, and hence constraining centrosome motion. 
i, Dimensions of the cup cuts in Fig. 2f–i. j, An example image of calculating 
the minimum distance to the cell cortex (mentioned in Fig. 2i). The minimum 
distance, from the posterior centrosome to the cell cortex, of each embryo, is 
extracted from the time frame with minimal dmin (scale bar, 10 μm). All P values 
were calculated by two-tailed Student’s t-tests (error bars, SEM).

http://www.nature.com/naturephysics
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Extended Data Fig. 3 | Averaging operations for experimental flow 
measurements and fluid results. a, The fluid flow vector field is displayed by  
2D vectors (magenta arrows) plotted on grid points with 2.5 μm x spacing  
and 2.5 μm y spacing (the bottom enlargement). After proper alignment and  
data grouping, each velocity vector represents the mean x-y velocity of the  
FNDs located within the averaging domain surrounding the centre grid point  
(the purple square frame surrounding the purple dot, further described in b  
and c). b,c, Schematics of the averaging cuboid domain (purple transparent 
cuboid) with the grid point located at the centre of the cuboid. Centrosomes  
are illustrated by green balls, and the magenta particles inside the cuboids 
represent tracked FNDs. The A–P direction is indicated by the brown arrow.  
b, For prometaphase to late anaphase, the averaging domain is a 5 μm (x) by  
5 μm (y) by 6 μm (z) cuboid. Spindles are aligned onto the x-y midplane (z = 0), at 
which plane the mean 2D projection vector field is plotted. And the purple frame 

(3D view) is the purple square frame in a. c, An exception for the PNC stage, the 
averaging cuboid measures 5 μm (x) by 5 μm (y) by 9 μm (z) (larger size in the z 
direction). The purple square in the upper panel is the purple frame (3D view) 
in the bottom panel. d,e, The simulated fluid flows (in the x-y plane of spindle 
motion) at the peak of the oscillations, time Tp, under (d) the cytoplasmic pulling 
or (e) the cortical pulling models. f, The experimental flow vector field derived 
from averaging the movements of tracked FNDs in 17 embryos at time Tp.  
g, Left, definition of pronuclear migration/centration and rotation progression. 
Middle, the averaged pronuclear experimental fluid data with migration ratio 
R = 0.35 ~ 0.5 (the same data as Fig. 5e). Right, the data with rotation angle A = 33° 
~ 66°. For all experimental fluid data, the statistical significance of the velocity 
vectors is indicated by their colour scale (P-value colour bar) (see Methods for 
details). Arrows on centrosomes indicate mean measured centrosome velocities.

http://www.nature.com/naturephysics
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Extended Data Fig. 4 | Dimensions of laser ablation experiments performed 
in metaphase and the PNC stage. Centrosomes are presented by green balls 
in all 3D schematics. Centrosomes and astral MTs are sketched in green and 
chromosomes in magenta in all 2D schematics. All ablation geometrics are 
portrayed in red. The A–P directions are indicated by brown arrows.  
a,b, Metaphase: dimensions of the rectangular plane cuts in Fig. 4a,b 
respectively. c,d, Metaphase: dimensions of the cup cuts in Fig. 4c,d respectively. 
e, The PNC stage: dimensions of the rectangular plane cuts in Fig. 5a,b. f,g, The 
PNC stage: the plane cuts near the anterior or leading centrosomes (f), and the 
plane cuts near the posterior or trailing centrosomes (g). Both upper parts are 
the schematics showing the definition of centrosome centre displacement d, 

which is the relative orthogonal (away from the plane cut) displacement from 
the locus right before cutting. The black arrows indicate the progression of 
pronuclear migration and rotation. The mean displacement results with SEM 
error bars, including uncut and cut embryos, are shown in both lower parts. 
Their raw data are plotted semi-transparently in the back layer. Sample numbers 
are f, n = 25 (uncut), n = 25 (with cut) and g, n = 23 (uncut), n = 23 (with cut). And 
the data in Fig. 5b is the combination of these two data sets (f and g), including 
both plane cuts near the leading and the trailing centrosomes. h, The PNC stage: 
dimensions of the large semicircular arc cuts (near anterior cortices) in Fig. 5f–h. 
All scale bars on images are 10 μm.
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Extended Data Fig. 5 | Parameter sweeping simulations of the cortical pulling 
model. a-c, The examples of simulated centrosome movements while parameter 
sweeping. a, How varying the pulling force f0 per force generator affects the 
PNC centration and the corresponding exponential fitting of τc. b, How varying 
the motor number M in metaphase affects the stable centring behavior under 
the condition of exerting an external force for 150 seconds and releasing. The 
centrosome motion is shown with the corresponding exponential fitting of τf and 

the spring constant ks calculated from the theory. c, How changing the cortical 
motor detachment rate κ affects the spindle oscillations. The corresponding Mc 
were derived from the theory and we adopted the same motor number (above 
all Mc) to simulate the oscillations. The averaged oscillation frequencies and 
amplitudes are specified. d-h, The results of PNC centration (τc), metaphase 
stable centring (τf and spring constant ks), and anaphase oscillation (Mc, and 
oscillation frequency and amplitude) under different parameters.

http://www.nature.com/naturephysics
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Extended Data Fig. 6 | Quantification of astral MTs intensity during 
transverse oscillations. a, One snapshot from the example GFP::β-tubulin  
time-series with the assigned transverse and lateral annular-sector regions shown 

(scale bar, 10 μm). The dimensions of the annular sectors are depicted on the top. 
b, Detailed information about data alignment for intensity measurement. Please 
refer to Methods for detailed operations.
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Extended Data Fig. 7 | Models of the force transduction mechanisms and 
initial position values in computational fluid dynamics simulations. 
a,b, Schematics for the computational models of the force transduction 
mechanisms. The figure shows the PNC stage (see Fig. 5e for the corresponding 
experiment). Our simulations have five structural elements: the cell cortex (gray 
purple ellipses), the spindle/pronuclei (light green circles), the centrosomes 
(green circles), elastic MTs (green lines) and the cytoplasm, the fluid filling 
inside the cortex. a, Cortical pulling. Due to the cortical pulling forces, MTs 
remain straight and the forces directly act on the PNC without any loss for the 
MT bending. Hence, in a short time horizon, the cytoplasmic flow arises from the 

translation and rotation of the pronuclei-centrosome- MT complex. We model 
that mechanism by applying an external force Fext and torque Lext on the PNC. 
b, Cytoplasmic pulling. Cytoplasmic dynein motors attach to the MTs and walk 
towards the centrosomes with velocity v (black arrow). As they do so, they apply 
a pulling force on the MTs in the opposite direction to their motion. We model 
the force applied by the motors by a continuum model: fmotor (s). c, The initial (x,y) 
positions (in μm) of the spindle’s (or pronuclei’s) and the centrosomes’ centres 
in the simulations. All objects are at z = 0. We decided on those values based on 
the experiments (see Fig. 3e for oscillation, Fig. 4g for prometaphase, Fig. 4j for 
metaphase elongation, and Fig. 5e for the pronuclear migration).
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Extended Data Table 1 | Simulation parameters for the cortical pulling coarse-grained model
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Supplementary Methods: computational fluid dynamics simulations 

I) Numerical methods for computing intracellular flows 

We give a brief description of the computational methods used to compute the cytoplasmic 

flow results shown in the main text. These methods were developed and applied originally to 

study the dynamics of pronuclear migration and centering 73, 74. These methods, based upon 

boundary integral methods, slender-body theory, and fast Stokes equation solvers, account for 

the hydrodynamic interactions that couple together microtubules (MTs), any internal bodies 

(here, the spindle or pronuclear complex (PNC), and centrosomes) and the cell cortex. They also 

account for MT flexibility, dynamic instability, and MT interactions with molecular motors or 

boundaries. 

The cell interior is treated as having five structural elements (See Extended Data Fig. 7a): 

the spindle body or pronuclei, the centrosomes, the cell cortex (boundary), the arrays of MTs 

nucleated from the centrosomes, and the cytoplasmic fluid. Given the slow speed and small scale 

of intracellular flows, any inertial effects can safely be ignored. While we assume the cytoplasm 

is itself a Newtonian fluid 16, the response of the MT-laden cytoplasmic system is non-

Newtonian. The flow of a Newtonian cytoplasm is described by the incompressible Stokes 

equations: 

𝜇Δ𝒖 − ∇𝑝 = 𝟎			&			∇ ⋅ 𝒖 = 0, 

where 𝜇 is the cytoplasmic viscosity, 𝒖 is the (cytoplasmic) fluid velocity, and 𝑝 is the pressure 

which maintains flow incompressibility. 

Solutions to the Stokes equations can be represented through boundary integral formulations 
75, where the fluid velocity is represented as an integral distribution of fundamental solutions to 

the Stokes equations on all immersed and bounding surfaces. That is, for N MTs and M other 

immersed surfaces (cortex, centrosomes, …) we can represent these distributions in the form	
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The densities of these distributions are determined and coupled together by the application of 

boundary conditions, such as the no-slip condition (surface velocity is equal to fluid velocity) or 

applied forces and torques. A boundary integral formulation reduces the computational problem 

from being three-dimensional (solving the Stokes equations in the fluid volume) to the two-

dimensional problem of solving coupled singular integral equations on all the immersed and 

bounding surfaces.  

Of particular interest here are MTs. MTs have a diameter of 𝑎 ≈ 25 nm and lengths of 𝐿 ~ 1 - 

20 μm, yielding small slenderness ratios of 𝜖 = 10-3 - 10-2. This allows their flow contributions to 

be treated specially: their surface integrals can be reduced, through asymptotics, to line integrals 

of ‘’Stokeslet’’ fundamental solutions along their centerlines 76, 77, 78. In particular, to leading 

order in slenderness ratio, the induced fluid velocity from the 𝑚)*	MT, having centerline 

coordinates 𝑿&(𝑠, 𝑡), with 𝑠 ∈ [0, 𝐿&] the arclength from its minus end and 𝐿& the MT length, is	

𝒖&#'(𝒙) 	= 	> 𝑺@𝒙 − 𝑿&(𝑠+)A𝒇&(𝑠+)	𝑑𝑠+.
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Here the second-rank tensor 𝑺(𝒓) = (𝑰 + 𝒓F𝒓F)/(8𝜋𝜇|𝒓|), with 𝒓F = 	𝒓/|𝒓|, is the (single-layer) 

Stokeslet fundamental solution of the Stokes equations, and 𝒇& is the force/length the MT exerts 

upon the fluid. To leading order,	the velocity of the 𝑛)* MT centerline is given by	
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The force 𝒇& arises from internal elastic forces, and from external forces either at MT ends 

(through boundary conditions), or along MT lengths. The internal elastic forces are related to MT 

conformation by Euler-Bernoulli beam theory using the constitutive relation 𝒇 = −𝐸𝑿1111 +

(𝑇𝑿1)1, with 𝐸 the MT flexural modulus, and 𝑇 is MT axial tension. The first term is the 



bending force per unit length and the second is the tensile force per unit length. The tension 𝑇 is 

determined by the condition of MT inextensibility 79. 

MTs are nucleated from, and clamped rigidly to, centrosomes which are themselves 

mechanically coupled to the spindle or PNC. In our modeling, motion results from the 

application of forces and/or torques to these structural elements. The spatial discretization of all 

surfaces and MTs, application of quadrature formulae for surface integral equations, and the 

discretization in time of MT and body velocities results in a linear system of equations to be 

solved at each time-step to update all body positions and MT conformations. To solve this large 

system, we use the GMRES iterative solver 80 with a block-diagonal preconditioner 74. Within 

this iterative method, we use a parallel implementation of the Kernel-Independent Fast Multipole 

Method 81 to hierarchically and efficiently evaluate all hydrodynamic interactions, leading to 

linear cost per time-step in the number of spatial unknowns (again, determined by the 

discretization of surfaces and MT center-lines). 

I.i) Changes for the cytoplasmic pulling model. 

In the cytoplasmic pulling model, cargo-carrying dyneins walk along MTs towards the 

centrosomes (MTs' minus ends) and so apply pulling forces on MTs (see Extended Data Fig. 7b). 

By Newton's third law of motion, the pulling forces on MTs are equal in magnitude and opposite 

in direction to the force that dynein exerts on the cytoplasm to drag the cargo through it. We treat 

the density of the attached dynein as a continuum field with constant number of attachments per 

unit length of MT, and the motor force as aligned along the MT. Thus, the pulling forces on a 

MT per unit length is 𝒇&2)23 = 𝐹45.𝑛45.𝑿1 where 𝐹45. is the magnitude of the force applied 

from a single motor to a MT, 𝑛45. is the motor number density per unit length, and 𝑿1 is the 

tangent vector to the MT. Accordingly, we modify the dynamics equation for MT motion to  
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However, for induced flows away from the MT, the pulling forces on MTs are balanced by the 

forces exerted on the cytoplasm to drag the cargo (i.e. the far-field motor-induced flow is from a 

dipolar force), and the dominant effect is that from the internal elastic force 𝒇.. Thus, the 

expression for 𝒖&#'(𝒙) is unmodified 74, 82. 

 

II) Simulation setups 

We used the experimentally measured centrosome velocities of the spindle assembly at 

various stages to set the conditions of comparison with our simulations. In particular, we 

performed short time simulations, explicitly to recover the instantaneous cytoplasmic velocity 

fields induced by motion of the spindle/pronuclei-centrosome assembly and the attached MTs.  

In the cortical pulling model (Extended Data Fig. 7a), previous studies of Nazockdast et al 73 

show that MTs remain nearly straight under their extensile loading from cortically bound dynein 

motors. Hence, the cortical pulling forces directly act on the spindle/pronuclei-centrosome 

assembly without substantial loss to MT bending, which is equivalent to applying an external 

force and torque at the assembly’s center. In this case, the cytoplasmic velocity arises from the 

translations and rotations of the spindle/pronuclei-centrosome-MT complex 73. We implemented 

the cortical pulling mechanism by applying an external force and torque on the assembly which 

we adjusted to match the centrosome velocities in the experiments. 

For the cytoplasmic pulling model, at short times as in our simulations, we find that the 

instantaneous velocities scale to a very good approximation with the magnitude of the applied 

pulling forces. Hence, we adjusted the motor force/length to match, in each case, the 

experimental centrosome velocities.  

We also used experimentally measured positions and sizes of the spindle/pronuclei and 

centrosomes in the simulations (see Extended Data Fig. 7c). We modeled the centrosomes as 

rigid spheres of diameter 1 μm which, in most cases, were moved in a rigid frame with the 



pronucleus or spindle body. Each centrosome had on the order of 300 attached MTs. This 

number is smaller than the actual number of astral MTs 72, however, by running the simulations 

for different numbers of MTs we found that the qualitative features remain similar. 

Before starting the fluid dynamics simulations, we simulated MTs’ dynamic instability with 

a MT catastrophe rate of 0.015 sec-1, nucleation rate per centrosome of 62.5 sec-1 and MT growth 

velocity of 0.75 μm/sec. In particular, holding fixed the positions of the spindle/pronuclei and the 

centrosomes, we let MTs nucleate and grow from the centrosomes. Depolymerization occurred 

either through spontaneous catastrophe during free growth, or upon colliding with the cortex. 

After the MTs reached their steady-state length distribution (i.e., an exponential distribution 

truncated by catastrophe at the cortex), we activated either cortical or cytoplasmic pulling forces, 

depending upon the scenario. For each stage, we ran simulations for ten different initializations 

of MT arrays and presented averaged results over those samples. 

 

II.i) Spindle in oscillation 

At this stage, the spindle is modelled as a rigid ellipsoid of length 16.8 μm along the 

anterior-posterior axis (A-P axis), and of width 4 μm at the spindle center. The spindle was also 

slightly rotated in the counterclockwise direction (0.005 rad) because the anterior centrosome is 

below the A-P axis whereas the posterior one is upon it (see Fig. 3e). The centrosomes are 

constrained to move in the same rigid frame as the spindle. 

Cytoplasmic pulling. The cytoplasmic pulling model does not lend itself straightforwardly to 

capturing the observed centrosome and spindle speeds, and so adjustments are necessary. During 

spindle oscillation the spindle center is shifted towards the posterior of the cell. Hence, in our 

modeling of the centrosomal array, the posterior centrosome has shorter MTs towards the 

posterior end than does the anterior centrosome towards the anterior (see Extended Data Fig. 7c). 

Loading the MTs uniformly with motors then leads the spindle-centrosome assembly to move 

towards the anterior. Additionally, both centrosomes are almost on the A-P axis (see Fig. 3e). 



Thus, the centrosomes have MTs of similar lengths above and below their centers, which 

generates weaker flow in the axis perpendicular to the A-P axis than that along the A-P axis. So, 

to match the centrosomes' velocities, we varied the motor density across the MTs instead of 

having them uniformly distributed. 

Cortical pulling. To capture the experimentally observed centrosome and spindle speeds, we 

applied forces in the x- and y-directions, and a torque in the z-direction, on the spindle-

centrosome assembly. 

 

II.ii) Spindle in prometaphase 

We modeled the spindle in prometaphase as a sphere of 5 μm diameter. The experiment 

observations (see Fig. 4g) show negligible motion of the centrosomes or spindle at this stage.  

Cytoplasmic pulling. Since there is not any reference velocity for us to scale the motor 

force/length, we used the same value for all the MTs which is the same as in the pronuclear 

migration simulations. Their symmetry produces no motion of the centrosomes, but considerable 

cytoplasmic motion.  

Cortical pulling. It is assumed that the total pulling force upon the spindle-assembly was zero, 

which generates neither centrosome nor cytoplasmic motion. 

 

II.iii) Spindle in metaphase elongation 

The spindle was modelled as a rigid ellipsoid of 12.5 μm in length, and of 4 μm in width at 

the spindle center. We modeled the elongation of the spindle as a prescribed rate of increase in 

distance between the centrosomes, as measured experimentally, with the spindle body 

constrained to stay at their midpoint. 



Cytoplasmic pulling. Again, this model requires some adaptation to achieve the experimentally 

observed centrosome velocities. Here, the motor force/length was the same for all the MTs which 

has the same magnitude as in the prometaphase and pronuclear migration simulations. But, it was 

taken as slightly greater on the posterior MTs so as to prevent the anterior centrosome from 

moving. Due to greater motor force/length on the posterior MTs, one could expect to see faster 

streaming velocity on the posterior. However, this is not observed because the posterior 

centrosome's motion in the x-direction drags fluid in the opposite direction to the flow the motor 

forces generate, and these counter-acting flows cancel each other near the posterior centrosome. 

Cortical pulling. We let the centrosomes move as a result of the elongation of the spindle-

centrosome complex along the A-P axis. Then, to reproduce the experimentally observed 

centrosome velocities, we applied a force on the spindle-centrosome assembly in the x-direction 

that canceled out the anterior centrosome's velocity. 

 

II.iv) Pronuclear migration 

We modeled the pronuclei as a rigid sphere of 5 μm diameter. The centrosomes were 

constrained to move in the same rigid frame as the pronuclei. 

Cytoplasmic pulling. We used the same motor force/length for all the MTs, keeping it similar in 

magnitude to those used in the other simulations, but adjusting it to achieve the observed 

centrosome velocities. 

Cortical pulling. To achieve the observed centrosome velocities, we applied a torque in the 

clockwise direction and a force with components in the anterior and y-directions. 

 

II. v) Combining the pulling models 

In the both cortical and cytoplasmic pulling models (Extended Data Fig. 7), previous studies 

of Nazockdast et al 73 show that MTs remain nearly straight under their extensile loading by 



dynein motors. Hence, in our computations here, again, we take the MTs to be straight for both 

models and so contributions from bending forces are absent. The consequent velocity field will 

then be that for a rigid structure of MTs, centrosomes, and PNC or spindle. That velocity field is 

then found through solution of linear equations for MT tension 𝑇, and the surface vector density 

𝐪 of the double-layer integrals that captures the velocity contributions from the immersed 

surfaces of the centrosomes, PNC/spindle, and cortex 73. 

For the cortical pulling model these equations can be written in the form 

ℋ%[𝑇723)] + ℒ%[𝐪723)] = Y	
𝐅
τ	\ 

ℋ0[𝑇723)] + ℒ0[𝐪723)] = 𝟎 

where 𝐅 and τ are the applied force and torque, and ℋ%,0 and ℒ%,0 are linear integral and 

differential operators acting along MTs and all surfaces. For the cytoplasmic fulling model the 

equations instead have the form 

ℋ%]𝑇75)2^ + ℒ%]𝐪75)2^ = Y	
0
0	\ 

ℋ0]𝑇75)2^ + ℒ0]𝐪75)2^ = 𝐟& 

where 𝐟& is comprised of the vectors 𝑓&𝐗& of motor forcing. Note that in either case that if 𝐅 =

τ	 = 𝟎, or 𝐟& = 0, then the tension and density will both be zero. 

Given a tension 𝑇, and a density 𝐪, the cytoplasmic velocity can generally be expressed as 

𝐮(𝐱) = ℳ[𝑇] +𝒩[𝐪] 

Where ℳ and 𝒩 are again linear integral and differential operators. Now, if instead we consider 

a mixed model, with contributions from both cortical and cytoplasmic pulling, of the form 

ℋ%[𝑇&!8] + ℒ%[𝐪&!8] = 𝛼 Y	
𝐅
τ	\ 

ℋ0[𝑇&!8] + ℒ0[𝐪&!8] = 𝛽	𝐟& 



then 𝑇&!8 = 𝛼𝑇723) + 𝛽𝑇75)2 and 𝐪&!8 = 𝛼𝐪723) + 𝛽𝐪75)2 is its solution. Hence, the induced 

cytoplasmic velocity, using linearity, is 

𝐮(𝐱) = 𝛼ℳ[𝑇723)] + 𝛽ℳ]𝑇75)2^ + 𝛼𝒩[𝐪723)] + 𝛽𝒩]𝐪75)2^ 

= 𝛼𝐮723)(𝐱) + 𝛽𝐮75)2(𝐱) 

that is, is a linear combination of both cortical and cytoplasmic pulling models. As a verification 

on our code, we have directly checked this property of a mixed pulling model. 

 

 

Supplementary Notes: coarse-grained model of cortical pulling 

Here we derive a coarse-grained model of a centrosome moving in a spherical cell, subject 

to pulling forces from force generators on the cell surface. We start by considering an isolated 

centrosome nucleating microtubules (MTs) that undergo dynamic instability (section I). We then 

construct a model of stoichiometric force generators in which each force generator can bind to at 

most one MT at a time (section II). We show that pulling forces from stoichiometric force 

generators are sufficient to stably position the centrosome or produce oscillations (even in the 

absence of additional forces from MT pushing or bending). We next construct a model of non-

stoichiometric force generators in which force generators bind all MTs that contact them (section 

III). We show that pulling forces from non-stoichiometric force generators are always 

destabilizing and cannot stably position the centrosome. 

 

I) Nucleation and growth of microtubules (MTs) from a centrosome 

We consider a centrosome with MTs nucleating with equal probability in all directions with 

rate 𝛾, which then grow with velocity 𝑉9 and undergo catastrophe with rate 𝜆. The length 

distribution of MTs, 𝜓(𝑙, 𝑡), satisfies the Fokker-Planck equation: 



𝜕)𝜓(𝑙, 𝑡) + 𝑉9𝜕:𝜓(𝑙, 𝑡) = −𝜆𝜓(𝑙, 𝑡) 

Setting the flux 𝑉9𝜓 at 𝑙 = 0 to be equal to the nucleation rate gives 𝑉9𝜓(0, 𝑡) = 𝛾, or 

𝜓(0, 𝑡) = 𝛾 𝑉9⁄ . Starting from an initial state with no MTs present (i.e. 𝜓(𝑙 > 0,0) = 0), the 

complete time-dependent solution for the length distribution of MTs is 

𝜓(𝑙, 𝑡) = 	
𝛾
𝑉9
𝑒;:< ="⁄ Θ@𝑙 − 𝑉9𝑡A 

where Θ(𝑎) = 1 for 𝑎 ≤ 0 and Θ(𝑎) = 0 for 𝑎 > 0. Thus, there is a front of MTs propagating 

outwards at a speed 𝑉9. No MTs extend beyond the front, while MTs behind the front have a 

(truncated) exponential length distribution. At long times, this approaches the steady state MT 

length distribution 𝜓(𝑙) = 	 ?
="
𝑒;:< ="⁄ .  

The total number of MTs, 𝑁#'(𝑡), is given by 𝑁#'(𝑡) = ∫ 𝜓(𝑙, 𝑡)@
- 𝑑𝑙, which, for an 

unconfined centrosome at steady-state, becomes 𝑁#' = ∫ 𝜓(𝑙)@
- 𝑑𝑙 = ∫ ?

="
𝑒;:< ="⁄@

- 𝑑𝑙 = 𝛾 𝜆⁄ . 

 

II) Stoichiometric force generators 

II.i) An individual stoichiometric force generator: Here we derive a model for stoichiometric 

force generators, in which each force generator can bind to at most one MT at a time. An 

unbound force generator will bind to a MT that contacts it, while a bound force generator 

detaches from the MT it is associated with at rate 𝜅. When the force generator is bound to a MT, 

it exerts a pulling force on the centrosome of 𝑓-𝝃v, where 𝝃v is the unit vector pointing from the 

centrosome to the force-generator (Fig. 6b). Thus, the expected force that the force generator 

exerts on the centrosome at time 𝑡 is 𝒇w⃑ A9(𝑡) = 𝑓-𝑃(𝑡)𝝃v, where 𝑃(𝑡) is the probability that the 

force generator is bound to a MT at time 𝑡. 𝑃(𝑡), in turn, obeys the dynamics 

𝑃̇(𝑡) = Ω(𝑡)(1 − 𝑃(𝑡)) − 𝜅𝑃(𝑡) 



Where Ω(𝑡) is the rate at which MTs impinge upon the force generator at time 𝑡. We next 

calculate Ω(𝑡). 

 

MT impingement rate: We calculate the rate that growing MTs impinge upon a disk-shaped 

force-generator of radius 𝑟, located a distance 𝑑 away from a centrosome at the origin. Only MTs 

located in a cone defined by the position of the centrosome and the projected area of the force-

generator can grow to contact the force-generator. The number of MTs located in this cone is 

(approximately) 

𝑁(𝑡) = >
sin 𝜗
2

B!

-
𝑑𝜗> 𝜓

4

-
(𝑙, 𝑡)𝑑𝑙 = 𝜒(𝑑)> 𝜓

4

-
(𝑙, 𝑡)𝑑𝑙 

where 𝜗& = tan;% (𝑟 𝑑)⁄  is the solid angle of the cone and 𝜒(𝑑) = %
0
Q1 − %

C%D(3 4⁄ )#
R is the 

fraction of MTs nucleated from the centrosome that fall inside the cone. 

 

For the moment we shall assume that growing MTs are impinging directly upon the force 

generator, i.e. that 𝜓(𝑑, 𝑡) > 0, and that the centrosome is moving at speeds slower than 𝑉9. The 

time derivative of the number of MTs inside the cone is then 

𝑁̇(𝑡) = 𝛾𝜒(𝑑) − 𝜆𝑁(𝑡) +
𝜒′(𝑑)
𝜒(𝑑) 𝑑̇𝑁

(𝑡) − @𝑉9 − 𝑑̇A𝜒(𝑑)𝜓(𝑑, 𝑡) 

The first term is gain from nucleation and the second term is loss from catastrophes. The third 

term is change from the cone getting wider or narrower from changes in d. The last term is a loss 

term from MTs hitting the force generator at the cone end, a distance 𝑑 from the centrosome. If 

the centrosome is moving with speed 𝑉7G. = −𝑑̇, either directly away from or to the force 

generator, then the rate of impingement of MTs is given by 

Ω(𝑡) = @𝑉7G. + 𝑉9A	𝜒(𝑑)𝜓(𝑑, 𝑡) 



and since, by assumption, |𝑉7G.| < 𝑉9, this rate is always positive. More generally, if the 

centrosome is moving with velocity 𝑽ww⃑ 7G., then the plus ends of MTs in the cone move with net 

velocity 𝑽ww⃑ = 𝑽ww⃑ 7G. + 𝑉9𝝃v, and the rate of impingement of MTs on the force generator is  

Ω(𝑡) = @𝑽ww⃑ ∙ 𝒏âA𝜒(𝑑)𝜓(𝑑, 𝑡) 

where 𝒏â is an outward unit vector normal to the surface of the force generator. At any time 𝑡 >

𝑑/𝑉9, after the onset of nucleation, one can assume that 𝜓(𝑑, 𝑡) =
?
="
𝑒;4< ="⁄ . 

 

In this model, MTs grow until they hit the cell boundary at which point they either bind to 

an unoccupied force generator, or disassemble. If the centrosome moves away from the force 

generator at speeds greater than 𝑉9	(i.e. 𝑽ww⃑ ∙ 𝒏â < 0), then the growing MT plus ends will have a 

net velocity that also causes them to move away from the force generator, and hence the rate of 

impingement Ω(𝑡) of these MTs onto the force generator will be zero. As described in section I, 

these MTs will form a free front of plus-ends growing away from the centrosome at speed 𝑉9. 

The evolution of that front, and determining when it reattaches to the boundary, becomes part of 

the full dynamics and is discussed in section II.v on nonlinear dynamics. 

 

II.ii) Net pulling force in a spherical cell with stoichiometric force generators: We next 

calculate the net pulling force acting on a centrosome in a spherical cell of radius 𝑊 with 𝑀 

stoichiometric force generators uniformly spread over the cell surface (Fig. 6b, right). We 

consider a centrosome moving along the y-axis, located at position 𝑌(𝑡), moving with velocity 

𝑽ww⃑ 7G. = 𝑌̇(𝑡)𝒚â. Again, for the moment we assume that the centrosome is moving at speeds 

slower than 𝑉9. 

 

The net force acting on the centrosome is obtained by summing the force from all 𝑀 force 

generators, each located at position 𝒙ww⃑ ! 



𝑭ww⃑ A9 =1𝒇w⃑ A9(𝒙ww⃑ !)
#

!

=1𝑓-𝑃(𝒙ww⃑ ! , 𝑡)𝝃v
#

!

(𝒙ww⃑ !) 

To make further progress, we coarse-grain by approximating the sum over discrete force 

generator positions by an integral over all positions on the surface of the sphere (which is 

equivalent to assuming a continuum of force generators, uniformly covering the sphere) 

𝑭ww⃑ A9 ≈
𝑀𝑓-
4𝜋𝑊0> 𝑑𝑆8𝑃(𝒙ww⃑ , 𝑡)𝝃v(𝒙ww⃑ )

|𝒙JJ⃑ |$L
 

We assume symmetry about the y-axis and parameterize the location of the force generators by 

the polar angle 𝜑 (Fig. 6b). A force generator at angle 𝜑 on the surface of the cell is located at 

position 𝒙ww⃑ = 𝑊𝒏â(𝜑), where 𝒏â(𝜑) = sin𝜑 𝒙â + cos𝜑 𝒚â is the unit vector normal to the surface 

of that force generator. The vector from the centrosome to the force generator is 𝑊𝒏â(𝜑) −

𝑌(𝑡)	𝒚â, so the unit vector pointing from the centrosome to the force-generator is 𝝃v(𝜑) =

(𝑊𝒏â(𝜑) − 𝑌(𝑡)	𝒚â) 𝑑(𝜑)⁄ . The distance from the centrosome to the force generator is 𝑑(𝜑) =

ï𝑊0 − 2𝑊𝑌 cos𝜑 + 𝑌0. Thus, the MT plus ends move at velocity 𝑽ww⃑ = 𝑌̇(𝑡)𝒚â + 𝑉9𝝃v(𝜑), and 

the projection of the MT plus end velocity onto the direction of the force generator is 𝑽ww⃑ ∙ 𝒏â(𝜑) =

𝑌̇ cos𝜑 + ="
	4(N)

(𝑊 − 𝑌 cos𝜑). 

Then, projecting the net pulling force in the 𝒚â direction gives 

𝐹A9 =
𝑀𝑓-
2 > 𝑑𝜑sin𝜑	𝝃v(𝜑)

O

-
∙ 𝒚â	𝑃(𝜑)

=
𝑀𝑓-
2 > 𝑑𝜑sin𝜑	

𝑊
ï𝑊0 − 2𝑊𝑌cos𝜑 + 𝑌0

O

-
	Qcos𝜑 −

𝑌
𝑊R𝑃

(𝜑) 

 

II.iii) Equations of motion with stoichiometric force generators: In addition to pulling forces 

from the force-generators, we also consider the drag on the centrosomes, 𝐹43P9 = −𝜂𝑌̇, with 

drag coefficient 𝜂, which accounts for the drag of both the centrosome itself and the associated 

astral microtubule array. From force-balance, 𝐹43P9 + 𝐹A9 = 0, which gives 



𝑌̇ =
𝑀𝑓-
2𝜂 > 𝑑𝜑sin𝜑	

𝑊
ï𝑊0 − 2𝑊𝑌cos𝜑 + 𝑌0

O

-
	Qcos𝜑 −

𝑌
𝑊R𝑃

(𝜑)				[𝟏] 

The equations of motion for the system consist of two coupled equations, the force-balance 

equation	[𝟏] for 𝑌̇, and the dynamical equation for P: 

𝜕)𝑃(𝜑) = Ω@𝑌̇, 𝑌, 𝜑A@1 − 𝑃(𝜑)A − 𝜅𝑃(𝜑)							[𝟐] 

where 

Ω@𝑌̇, 𝑌, 𝜑A = @𝑽ww⃑ ∙ 𝒏âA𝜒(𝑑)𝜓(𝑑)

= Q𝑌̇cos𝜑 +
𝑉9𝑊 − 𝑉9𝑌cos𝜑

𝑑 R ∙
1
2 ô1 −

1
ï1 + (𝑟 𝑑⁄ )0

ö ∙
𝛾
𝑉9
𝑒;4< ="⁄ 			[𝟑] 

is the impingement rate, and 

𝑑 = 𝑑(𝑌, 𝜑) = ï𝑊0 − 2𝑊𝑌cos𝜑 + 𝑌0 

 

II.iv) Centered steady-state and its stability with stoichiometric force generators: At steady-

state,	𝑌̇ = 0 and 𝑃̇ = 0, which results when the centrosome is at the center of the sphere, with 

steady-state position 𝑌ú = 0, and steady-state attachment probability 

𝑃ú =
Ωù

Ωù + 𝜅
 

Where the steady-state rate of impingement of MTs onto the surface of the sphere is 

Ωù = 𝑉9𝜒(𝑊)𝜓(𝑊) =
1
2ô1 −

1
ï1 + (𝑟 𝑊⁄ )0

ö 𝛾𝑒;L< ="⁄ ≈
𝛾
4 û

𝑟
𝑊ü

0
𝑒;L< ="⁄  

We next investigate the stability of the centered state by considering small perturbations: i.e. 

𝑌 = 𝑌ú + 𝜀𝑌°(𝑡) = 𝜀𝑌°(𝑡) and 𝑃 = 𝑃ú + 𝜀𝑃°(𝜑, 𝑡) for 𝜀 ≪ 1. Inserting the perturbations into the 

equations for 𝑌̇ and 𝑃̇, retaining only the leading-order 𝑂(𝜀) terms, and integrating the 𝑃̇ 

equation against sin𝜑 cos𝜑, yields two ODEs:  

𝑌°̇ = #A$
0Q
𝑃°〈N〉 −

0
T
UV#A$
LQ

𝑌°   and  𝑃°̇〈N〉 =
0
T
WUVX
L
𝑌° + 0

T
WUV

="
𝑌°̇ − YZ

UV
𝑃°〈N〉 



Where 𝑃°〈N〉 = 𝑃°〈N〉(𝑡) = ∫ 𝑑𝜑 sin𝜑 cos𝜑 𝑃°(𝜑, 𝑡)O
-  and 𝐵 = L<

="
+ 3

L
[+(L)
[(L)

≈ L<
="
+ 2 

with	𝜒(𝑊) = %
0
Q1 − %

C%D(3 L⁄ )#
R and 𝜒′(𝑊) = 3 L⁄

0[%D(3 L⁄ )#]% #⁄  . 

The approximate expression for 𝐵 omits terms of order û 3
L
ü
0
, which can be safely neglected 

because the force-generators are substantially smaller than the cell in all cases of interest. Taking 

a time derivative of the 𝑌°̇  equation, and substituting back in the 𝑃°̇〈N〉 equation, leads to a single 

second-order ODE for this system: 

𝑌°̈ + ®
𝑀𝑓-𝑃ú
3𝜂𝑉9𝑊

@2𝑉9 − 𝜅𝑊A +
Ωù
𝑃ú
™ 𝑌°̇ + ®

2𝑀𝑓-
3𝜂𝑊 ôΩù −

𝜅𝑃ú𝐵
2 ö™𝑌° = 0 

We search for solutions of the form 𝑌° ∝ 𝑒^), yielding  

𝜎0 + ®
𝑀𝑓-𝑃ú
3𝜂𝑉9𝑊

@2𝑉9 − 𝜅𝑊A +
Ωù
𝑃ú
™ 𝜎 +

2𝑀𝑓-
3𝜂𝑊 ôΩù −

𝜅𝑃ú𝐵
2 ö = 0 

This gives two roots. If the real parts of both roots are negative, then the centrosome will 

stably position in the center of the cell. Starting from stable centering, we consider two ways to 

lose stability: 1) if both roots remain real, but one becomes positive, then the centrosome will 

tend to spontaneously decenter; 2) if both roots become purely imaginary, then the centrosome 

undergoes a Hopf bifurcation to an oscillatory state. We next perform a more detailed 

examination of three cases –spontaneous decentering, oscillations, and stable centering. 

Spontaneous decentering: If  Ωù < WUVX
0
 then both roots are real, and at least one of them is 

positive. Under this scenario, the centrosome will tend to spontaneously decenter. This criterion 

can be roughly interpreted as stating that the center will lose stability if the rate that unbound 

motors become bound, ~Ωù, becomes less than the rate that bound motors unbind MTs, ~𝜅𝑃ú. The 

inequality can be approximated as ?
_
û 3
L
ü
0
𝑒;L< ="⁄ < WL<

0="
. Thus, the center becomes unstable 



when the nucleation rate, 𝛾, size of the force generators, 𝑟, or average MT length, 𝑉9 𝜆⁄ , becomes 

too small; when the size of the cell, 𝑊, increases too much; or when the detachment rate, 𝜅, 

becomes too large. Note, that in the case considered here, of non-interacting force generators, the 

criterion for spontaneous decentering is independent of 𝑀, the number of force generators. Thus, 

the centrosome can remain stably positioned with arbitrarily more force generators than MTs, 

demonstrating that the stability of the center is not due to a “limiting number” of force 

generators. 

Oscillations: When Ωù = #A$
TQ="L

@𝜅𝑊 − 2𝑉9A𝑃ú0 the eigenvalues are purely imaginary, i.e. 𝜎 =

±𝜎7 = ±𝑖𝜔7, which indicates oscillatory behavior. Passing from the stable centering regime, 

described above, through this point to an oscillatory state is a loss of stability via a Hopf 

bifurcation. This Hopf bifurcation can only occurs if %
W
< L

0="
, i.e. only if the time a MT stays 

attached to a force generator is sufficiently small compared to the time it takes for a MT to grow 

across the cell. In that case, increasing motor number causes such a transition from stable 

centering to oscillations at a critical number of motors 

𝑀7 =
3𝜂Ωù
𝑓-𝑃ú0

𝑉9𝑊
@𝜅𝑊 − 2𝑉9A

=
3𝜂(Ωù + 𝜅)0

𝑓-Ωù
𝑉9𝑊

@𝜅𝑊 − 2𝑉9A
 

with a frequency 

𝜔70 =
2
3
𝑀7𝑓-
𝑊𝜂 ôΩù −

𝜅𝑃ú𝐵
2 ö ≈

2
3
𝑀7𝑓-
𝑊𝜂 𝑃úΩù =

Ωù(Ωù + 𝜅)

Q𝜅𝑊2𝑉9
− 1R

≈
2𝑉9
𝑊 Ωù ô1 +

Ωù
𝜅ö 

Stable centering: The centrosome is stable in the center position if the real parts of both roots are 

negative. This occurs when the rate at which MT impinge upon the cell surface is sufficiently 

high. Specifically, it requires that  

Ωù > #A$
TQ="L

@𝜅𝑊 − 2𝑉9A𝑃ú0 and Ωù >
WUVX
0
 



When the centrosome is stably positioned at the cell center, it is natural to ask how it 

responds to an externally applied force. Force-balance then becomes 𝐹43P9 + 𝐹A9 + 𝐹G8) = 0. 

Taking the external force to be small, 𝐹G8) = 𝜀𝑓G8), and expanding to linear order yields 

𝑌°̈ + ®
𝑀𝑓-𝑃ú
3𝜂𝑉9𝑊

@2𝑉9 − 𝜅𝑊A +
Ωù
𝑃ú
™ 𝑌°̇ + ®

2
3
𝑀𝑓-
𝜂𝑊 ôΩù −

𝜅𝑃ú𝐵
2 ö™ 𝑌° =

Ωù
𝜂𝑃ú

𝑓G8) +
1
𝜂 𝑓Ġ8) 

Note that the response of the centrosome to an applied force is not equivalent to a spring-

and-dashpot model because the additional degree of freedom associated with motor attachments 

makes the dynamics of 𝑌°  contain a second derivative with respect to time and explicitly 

dependent on the rate of change of the applied force (i.e. it is a second order system with 

numerator dynamics). However, at steady-state, this becomes 

2
3
𝑀𝑓-
𝑊

𝑃ú
Ωù
ôΩù −

𝜅𝑃ú𝐵
2 ö𝑌° = 𝑓G8) 

Thus, at steady-state, the displacement, 𝑌° , varies linearly with the applied force, like a spring, 

with spring-constant 

𝑘1 =
2
3
𝑀𝑓-
𝑊

𝑃ú
Ωù
ôΩù −

𝜅𝑃ú𝐵
2 ö ≈

2
3
𝑀𝑓-
𝑊 𝑃ú0 

If the center position is stable then, Ωù > WUVX
0
, and thus 𝑘1 > 0, as expected. Note that the spring 

constant is roughly the average number of engaged force generators, 𝑀𝑃ú, times the average force 

per force generator, 𝑓-𝑃ú, divided by the width of the cell, 𝑊. 

If the centrosome is displaced from the center (or if it starts off center), then it will move to 

the cell center. After a quick initial transient, the approach to the center will be exponential, with 

a time scale, 𝜏7, given by 

1
𝜏7
=
1
2
(Ωù + 𝜅) Q1 −

𝑀
𝑀7
R 

This same time-scale dominates in the response to an applied force. Note that a naïve guess for 

𝜏7 would be the spring constant, 𝑘1, divided by the drag coefficient, 𝜂, as would result from a 

simple spring and dashpot mechanical model. However, in our model, based on the biophysics of 



MTs and molecular motors, 𝜏7 is not simply related to the spring constant, but rather depends on 

processes such as MT detachment rate and polymerization dynamics.  

 

II.v) Non-linear dynamics with stoichiometric force generators: We next consider the full non-

linear, time-dependent behavior of a centrosome in a spherical cell with stoichiometric cortical 

force generators (including allowing for centrosome speeds greater than 𝑉9). As described in 

section I, the full time-dependent solution of 𝜓(𝑙, 𝑡) contains a front of MTs propagating 

outwards at a speed 𝑉9. If this front of leading MT plus-ends is not in contact with a force 

generator, then Ω(𝑡), the impingement rate of MTs upon that force generator, is zero. If the front 

does contact the force generator, then the impingement rate is given by the value calculated in 

section II.i. With this procedure for determining Ω(𝑡), we numerically solve the equations of 

motion for 𝑌̇ and 𝑃̇ given in section II.iii, while numerically tracking the front of leading MT 

plus-ends.  

We describe the front of leading MT plus-ends in terms of a coordinate system centered on 

the centrosome with polar angle 𝜑+. There is a one-to-one mapping between this coordinate 

system and the coordinate system used to describe the position of the motors, which is centered 

on the cell center with polar angle 𝜑. Thus, we can write 𝜑 = 𝜑(𝜑+, 𝑡). We assume that the 

centrosomal array does not rotate, and represent the location of the plus-end front as 𝑺ww⃑ (𝜑+, 𝑡) =

𝑌(𝑡)𝒚â + 𝐷(𝜑+, 𝑡)𝒆F(𝜑+), where 𝒆F(𝜑+) = (cos𝜑+ , sin 𝜑+) and 𝐷(𝜑+, 𝑡) is the distance from the 

centrosome to the front. The front is in one of two states; either 

(i) the front is at the cortex, i.e. 𝐷(𝜑+, 𝑡) = 𝑑(𝜑(𝜑+, 𝑡), 𝑡). So, MTs are impinging on force 

generators, which implies Ω(𝜑(𝜑+, 𝑡), 𝑡) > 0; or 

(ii) the front is short of, and growing towards, the cortex, i.e. 𝐷(𝜑+, 𝑡) < 𝑑(𝜑(𝜑+, 𝑡), 𝑡) and 

𝜕)𝐷(𝜑+, 𝑡) = 𝑉9. So, MTs are not impinging on force generators, which implies Ω(𝜑(𝜑+, 𝑡), 𝑡) =

0. 



Moreover, the front remains in contact with the cortex, i.e. in state (i), only so long as the 

centrosome is not moving away faster than 𝑉9. 

 

We numerically track the front through a first-order time-stepping framework: Initial data 

𝑌-, 𝑃-(𝜑), and 𝐷-(𝜑+) are specified. Then, 

1. given a time-step ∆𝑡, and (𝑌., 𝑃., 𝐷., Ω.) (and hence 𝑑.) at time 𝑡. = 𝑛∆𝑡, find 𝑌.D% and 

𝑃.D% at time 𝑡.D% = (𝑛 + 1)∆𝑡 using Euler’s method for the equations of motion for 𝑌̇ and 𝑃̇ 

given in section II.iii. 

2. Let 𝐷∂(𝜑+) = 𝐷.(𝜑+) + ∆𝑡𝑉9; Given 𝑌.D% determine the mappings 𝜑 = 𝜑(𝜑+, 𝑡.D%)	and its 

inverse 𝜑+ = 𝜑+(𝜑, 𝑡.D%), and 𝑑.D%(𝜑). 

3. Update 𝐷 and Ω according to the following scheme: 

  If 𝐷∂(𝜑+) ≥ 𝑑.D%(𝜑(𝜑+, 𝑡.D%)) 

   𝐷.D%(𝜑+) = 𝑑.D%(𝜑(𝜑+, 𝑡.D%)) 

   Ω.D%@𝜑(𝜑+, 𝑡.D%)A = ]𝑉w⃑ .D% ∙ 𝑛F^
D
𝜒(𝑑.D%)𝜓(𝑑.D%),  

    with 𝜓(𝑑) = 	 ?
="
𝑒;4< ="⁄  

  else (𝐷∂(𝜑+) < 𝑑.D%(𝜑(𝜑+, 𝑡.D%))) 

   𝐷.D%(𝜑+) = 𝐷∂(𝜑+) 

   Ω.D%@𝜑(𝜑+, 𝑡.D%)A = 0 

this completes one time-step. 

 

III) Non-stoichiometric force generators 

III.i) An individual non-stoichiometric force generator: Here we derive a model for non-

stoichiometric force generators, in which any MT that contacts a force-generator is subject to 

pulling forces, even if that force-generator is already pulling on other MTs. An MT that contacts 



a force generator binds to it, while bound MTs detach from force generators at rate 𝜅. Every MT 

bound to the force generator is subject to a pulling force 𝑓-𝝃v, where 𝝃v is the unit vector pointing 

from the centrosome to the force-generator (Fig. 6b). Thus, the force that the force generator 

exerts on the centrosome at time 𝑡 is 𝒇w⃑ A9(𝑡) = 𝑓-𝑚(𝑡)𝝃v, where 𝑚(𝑡) is the number of MTs 

bound to the force generator at time 𝑡. The expected value of 𝑚(𝑡), in turn, obeys the dynamics 

𝑚̇(𝑡) = Ω(𝑡) − 𝜅𝑚(𝑡) 

where Ω(𝑡) is the rate at which MTs impinge upon the force generator at time 𝑡. As derived in 

section II.ii,  

Ω(𝑡) = ]𝑽ww⃑ ∙ 𝒏â^
D
𝜒(𝑑)𝜓(𝑑, 𝑡) 

Here [𝑎]D = 𝑎 for 𝑎 > 0 and zero otherwise, and its appearance here reflects the fact that MTs 

will not reach the force generator if the centrosome is moving away faster than the MT growth 

speed. 𝒏â is a unit vector normal to the surface of the force generator, 𝑑 is the distance between 

the force generator and the centrosome, and the net velocity of the plus ends of MTs is  𝑽ww⃑ =

𝑽ww⃑ 7G. + 𝑉9𝝃v (where 𝑽ww⃑ 7G. is the velocity of the centrosome). 

 

III.ii) Net pulling force in a spherical cell with non-stoichiometric force generators: We next 

calculate the net pulling force acting on a centrosome in a spherical cell of radius 𝑊 with 𝑀 non-

stoichiometric force generators uniformly spread over the cell surface (Fig. 6b). We consider a 

centrosome moving along the y-axis, located at position 𝑌(𝑡), moving with velocity 𝑽ww⃑ 7G. =

𝑌̇(𝑡)𝒚â. The net force acting on the centrosome is obtained by summing the force from all 𝑀 

force generators, each located at position 𝒙ww⃑ ! 

𝑭ww⃑ A9 =1𝒇w⃑ A9(𝒙ww⃑ !)
#

!

=1𝑓-𝑚(𝒙ww⃑ ! , 𝑡)𝝃v
#

!

(𝒙ww⃑ !) 

To make further progress, we coarse-grain by approximating the sum over discrete force 

generator positions by an integral over all positions on the surface of the sphere (which is 

equivalent to assuming a continuum of force generators, uniformly covering the sphere) 



𝑭ww⃑ A9 ≈
𝑀𝑓-
4𝜋𝑊0> 𝑑𝑆8𝑚(𝒙ww⃑ , 𝑡)𝝃v(𝒙ww⃑ )

|𝒙JJ⃑ |$L
 

Projecting this net pulling force in the 𝒚â direction, and using the geometry described in section 

II.ii gives 

𝐹A9 =
𝑀𝑓-
2 > 𝑑𝜑sin𝜑	𝝃v(𝜑)

O

-
∙ 𝒚â	𝑚(𝜑)

=
𝑀𝑓-
2 > 𝑑𝜑sin𝜑	

𝑊
ï𝑊0 − 2𝑊𝑌cos𝜑 + 𝑌0

O

-
	Qcos𝜑 −

𝑌
𝑊R𝑚(𝜑) 

 

III.iii) Equations of motion with non-stoichiometric force generators: In addition to pulling 

forces from the force-generators, we also consider the drag on the centrosomes, 𝐹43P9 = −𝜂𝑌̇, 

with drag coefficient 𝜂. From force-balance, 𝐹43P9 + 𝐹A9 = 0, which gives 

𝑌̇ =
𝑀𝑓-
2𝜂 > 𝑑𝜑 sin𝜑	

𝑊
ï𝑊0 − 2𝑊𝑌 cos𝜑 + 𝑌0

O

-
	Qcos𝜑 −

𝑌
𝑊R𝑚(𝜑) 

The equations of motion of the system consist of three coupled equations, this force-balance 

equation for 𝑌̇, the dynamical equation for 𝑚̇, and the evolution equation for the MT length 

distribution, 𝜓: 

𝜕)𝑚(𝜑) = Ω@𝑌̇, 𝑌, 𝜑A − 𝜅𝑚(𝜑) 

𝜕)𝜓(𝜑, 𝑙) + 𝑉9𝜕:𝜓(𝜑, 𝑙) = −𝜆𝜓(𝜑, 𝑙) 

where the MT length distribution, 𝜓, can vary with angle around the centrosome. 𝜓(0, 𝑡) = 𝛾 𝑉9⁄  

and 𝜓 is coupled to the boundary by the condition that MTs do not grow past the cell surface. 𝑚 

is coupled to 𝜓 through the rate of impingement of MTs 

Ω@𝑌̇, 𝑌, 𝜑A = ]𝑉w⃑ ∙ 𝑛F^
D
𝜒(𝑑)𝜓(𝜑, 𝑑)

= ®𝑌̇ cos𝜑 +
𝑉9𝑊 − 𝑉9𝑌cos𝜑

ï𝑊0 − 2𝑌𝑊cos𝜑 + 𝑌0
™
D

1
2ô1 −

1
ï1 + (𝑟 𝑑⁄ )0

ö𝜓(𝜑, 𝑑) 

and 



𝑑 = 𝑑(𝑌, 𝜑) = ï𝑊0 − 2𝑊𝑌cos𝜑 + 𝑌0 

 

III.iv) Steady-state and stability with non-stoichiometric force generators: At steady-state,	𝑌̇ =

0 and 𝑚̇ = 0, which results when the centrosome is at the center of the sphere, with steady-state 

position 𝑌ú = 0, and steady-state number of attached MTs per force generator 𝑚ù = YZ

W
. Where the 

steady-state rate of impingement of MTs onto the surface of the sphere is 

Ωù = 𝑉9𝜒(𝑊)𝜓(𝑊) =
1
2ô1 −

1
ï1 + (𝑟 𝑊⁄ )0

ö 𝛾𝑒;L< ="⁄ ≈
𝛾
4 û

𝑟
𝑊ü

0
𝑒;L< ="⁄  

We next investigate the stability of the centered state by considering small perturbations: i.e. 

𝑌 = 𝑌ú + 𝜀𝑌°(𝑡) = 𝜀𝑌°(𝑡) and 𝑚 = 𝑚ù + 𝜀𝑚∏(𝜑, 𝑡) for 𝜀 ≪ 1. Inserting the perturbations into the 

equations for 𝑌̇ and 𝑚̇, retaining only the leading-order 𝑂(𝜀) terms, and integrating the 𝑚̇ 

equation against sin𝜑 cos𝜑, yields two ODEs:  

𝑌°̇ = #A$
0Q
𝑚∏ 〈N〉 −

0
T
YZ#A$
WLQ

𝑌°   and  𝑚∏̇ 〈N〉 =
0
T
YZX
L
𝑌° + 0

T
YZ

="
𝑌°̇ − 𝜅𝑚∏ 〈N〉 

Where 𝑚∏ 〈N〉 = 𝑚∏ 〈N〉(𝑡) = ∫ 𝑑𝜑 sin𝜑 cos𝜑𝑚∏(𝜑, 𝑡)O
-  and 𝐵 = L<

="
+ 3

L#
[+(L)
[(L)

≈ L<
="
+ 2. The 

approximate expression for 𝐵 omits terms of order û 3
L
ü
0
, which can be safely neglected because 

the force-generators are substantially smaller than the cell in all cases of interest. Taking a time 

derivative of the 𝑌°̇  equation, and substituting back in the 𝑚∏̇〈N〉 equation, leads to a single second-

order ODE for this system: 

𝑌°̈ + ®
𝑀𝑓-Ωù
3𝑊𝜂𝑉9𝜅

@2𝑉9 − 𝜅𝑊A + 𝜅™ 𝑌°̇ + ®
𝑀𝑓-Ωù
3𝑊𝜂

(2 − 𝐵)™ 𝑌° = 0 

We search for solutions of the form 𝑌° ∝ 𝑒^), yielding  



𝜎0 + ®
𝑀𝑓-Ωù
3𝑊𝜂𝑉9𝜅

@2𝑉9 − 𝜅𝑊A + 𝜅™ 𝜎 +
𝑀𝑓-Ωù
3𝑊𝜂

(2 − 𝐵) = 0 

This gives two roots. Note that since 𝐵 > 2, one of the roots is always positive: i.e. small 

perturbations will grow and the center position is generically unstable. Thus, non-stoichiometric 

force generators produce pulling forces that are destabilizing. In contrast, pulling forces from 

stoichiometric force generators can result in stable centering (see section II.iv). 
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