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1 Introduction

In the study of the flow of viscoelastic or complex fluids it is
necessary to utilize constitutive descriptions that capture the
local deformations, e.g., reorientations, stretching, compres-
sion, that give rise to the stress in a material element following
the flow." Although perhaps simple to state in words, as in the
previous sentence, the mathematical description is complex as
the stress and material deformation, the latter expressed via the
velocity gradients at the position of the fluid element, are
second-rank tensorial quantities.

Most presentations of the mathematical descriptions begin
by describing the need for material objectivity of a tensorial
property when translating, rotating, and deforming with the
local flow, then give (messy) details of covariant and contra-
variant characterizations of vectors and tensors. Thus, different
constitutive descriptions, utilizing different time derivatives of
tensorial quantities, e.g., known as upper- or lower-convected
derivatives, are obtained. These steps lead to the forms of the
stress versus rate-of-strain relation known as the Oldroyd-B or
Oldroyd-A constitutive description.””* It is reasonable to
assume that most readers do not find such mathematical,
Cartesian tensor presentations helpful for forming a physical
picture of the underlying dynamics.
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complex fluid flows, harnessing the principles of the kinematics of line elements. The evolution of the
microstructural conformation tensor in a flow and the physical interpretation of different derivatives then

Alternatively, a physical picture of a dilute polymer solution
can be gained by considering a dumbbell model.>***° It is well
known that a dumbbell model, written moving with flow,
provides a description of the stress versus rate-of-strain relation,
expressed in terms of the conformation tensor, that yields the
upper-convected time derivative and the Oldroyd-B constitutive
description.>”** The dumbbell model also allows various
physically plausible modifications.”*

Here, we provide a direct derivation of the typical time
derivatives using the idea of kinematics of line elements. The
physical interpretation, and even some of the steps, have over-
lap with the common derivation of the dumbbell description of
the state of stress, but we are not otherwise aware of the style of
presentation we provide here (see also ref. 24 Section 12.4 and
ref. 8 Section 1.1). We believe that the physical picture asso-
ciated with this derivation, focusing as it does on the material
line kinematics, which should be familiar from a standard
graduate mechanics course, is more transparent than existing
alternatives as to the origin of terms in the time derivative
associated with the material deformation. It is then straightfor-
ward to discuss other uses of the time derivatives in the
development of constitutive descriptions.

Il. Kinematics of a line element
A. The material derivative of a line element

Consider an Eulerian velocity field u(x,t) at position x and time
t. Recall the definition of the material derivative,

—=_+u-V. (1)

It is shown in fluid dynamics textbooks that discuss kinematics
(see, e.g., ref. 25 pp. 131-132) that an infinitesimal line element
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Fig. 1 Kinematics of (a) a material line element r and (b) conformation
tensor A = (rr).

r(x,t) moving with the local fluid velocity is reoriented and
changed in length according to

—=r-Vu 2
Dt ' 2)
as illustrated in Fig. 1(a). Next, we introduce the vectorial
upper-convected time derivative representing the motion of a
line element in the flow,
vV def Dr
r=—

—r-Vu
;1 Vu (3)

It follows that ¥ = 0 means that a line element translates with
the local fluid velocity, and rotates and stretches (or com-
presses) according to the local velocity gradient.” In Section
111, we apply this idea to second-rank tensors.

B. Lagrangian trajectories of a line element and a theorem of
Cauchy on invariance

Before proceeding, we link the above ideas to a Lagrangian descrip-
tion, which makes clear that time derivatives are really expressing
invariances associated with following a vectorial or tensorial quan-
tity along the trajectory of a fluid particle. These features have a
direct connection to a theorem of Cauchy, which is most simply
understood using a Lagrangian description. In this subsection, we
discuss the ideas for a vector field, and in Section IIIC we show how
the same ideas apply to the conformation tensor (see also ref. 26).

To describe motion, we follow Lagrangian trajectories,
x = x(t;X), where x(0;X) = X, with the label X indicating the
initial position. A differential displacement dX is mapped to a
differential displacement dx according to

dx = dXF, (4)
where F(t;X) = Vxx is the deformation gradient tensor; in index

notation we write, F; = —Z. Taking the material time deriva-
i

0X ox

. .o . . .. DF L
tive, we write in a Lagrangian description D= VXE = Vxu-,

where the Lagrangian velocity is u"(¢;X) = u(x,t). Using the chain
rule, we can involve the Eulerian representation as Vxu = F-Vu.
Therefore, the material derivative of F at fixed X (as in eqn (1)) is

OF DF
—| =—=F-Vu 5
ot|y Dt " (5)
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Since by definition F~"F = I, where I is the identity tensor, then
. i . . OF OF~!
differentiating with respect to time means F~! - 5w e F,
which are two identities (at fixed X) that will prove useful. The
reader should note that in some presentations, eqn (5), because of
a notational choice, appears with the transpose (see, e.g., ref. 6).
Given these geometric preliminaries, for the (infinitesimal)
line element transport eqn (2), we use the identity tensor in the

form F~'.F = I and write (r(x,t) = r(£X)),

Dr O L plF.vy
Dt Ot|x —~—
OF

ot (6)

F F-!
=rL~F"~a—:—rL~%

En -F.

Taking the inner product on the right with F~*, we then have
for fixed X,

8rL 1
Z~.F .
ot tI

-1
ag[ =0 or g(r]_ Fh)=o. (7)
We conclude that r,-F ! = constant following the fluid motion,
i.e., it is an invariant. Since initially F(0) =1, then rp-F " = r(0),
the initial vectorial line element. As F is a function of time that
is in principle known, once a velocity field is determined, we
conclude that the line element, as a Lagrangian object, evolves
in time according to

1 (6:X) = 1. (0) F(6X). (8)

This result is known as Cauchy’s theorem and yields how any
initial line element is changed in magnitude and orientation by
the time-dependent deformation tensor F. The short derivation
presented here may be helpful to readers to see the origin of
this idea. Below we indicate the extension of these ideas to
second-rank tensors, such as the conformation tensor and the
convected time derivatives.

Ill. The material derivative of a second-
rank tensor
A. Conformation tensor

Consider an end-to-end vector R, whose magnitude at equili-
brium is R.q. We define the dimensionless conformation tensor

AY (RR)/Rcq? déf(rr), where (-) denotes the ensemble average

and the dyadic product rr characterizes the state of deformation
of a given microstructure, as sketched in Fig. 1(b); for example,
A =1 represents an undeformed isotropic (equilibrium) state.
For simplicity of the notation, we drop (-) in the calculation that
follows.

Proceeding formally to take the material derivative, and
applying the product rule for differentiation, we obtain

D D D D
EA = E(rr) = e 9)

This journal is © The Royal Society of Chemistry 2023
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Using eqn (2) and the properties of the dyadic product, we find
D D

EA = E(rr) =r- (Vur+rr- (Vu)

= (Vu)"A+A-Vu

(10)

This identity is also recognized in ref. 24 Section 12.4. There-
fore, we introduce a time derivative for the change of the tensor
(dyadic product) deforming in a fluid flow:

v of D
Ad:fEA — (Vu)A—A-Vu.

(11)

v
The derivative A is known as the upper-convected or contra-

v
variant time derivative." We conclude that A = 0 means that the
conformation tensor deforms exactly as does the corresponding

line elements in a flow. In contrast, X #0 means that A does
not deform comparable to the line elements in the flow.

To the best of our knowledge, Giesekus® was the first to use the
idea of vectorial line element kinematics when modeling the stress
response of dilute suspensions of chain-like elastic particles. The
stress response, which is a second-rank tensor, then led to the
upper-convected derivative for the conformation tensor.*® We also
note that Graham, in an excellent book, provides a derivation
similar in spirit to what we have presented (see ref. 8 Section 1.1),
though introduces basis vectors that are attached to the material
line elements, so requires many more steps to arrive at the upper-
convected derivative, eqn (11). Also, the physical interpretation of

v
A = 0 is only given much later in the book.

B. Arbitrary dyadic products and second-rank tensors

As a further remark, we note that the kinematic approach here
is valid for any dyadic product. Since an arbitrary second-rank
tensor, such as the stress tensor, can be written as a linear
combination of three dyadic products (see ref. 29 Sections 61-
63), then it follows that the derivation of the time derivatives
discussed above also applies to an arbitrary second-rank tensor.
For example, if we define the dyadic product B = ab, where a
and b are vectors, then taking the material derivative and
treating a and b as line elements (see eqn (2)), we obtain

D D
B =~
Dt Dt

+ ab- (Vu) = (Vu)"-B+B - Vu,

(ab) :—b—i-a—t:

which is the form of the upper-convected derivative.

C. Invariance associated with convected time derivatives of
the conformation tensor

Recall Section II on the kinematics of line elements, where the

upper-convected time derivative r=0 following the flow (eqn (3))
implies the invariant solution r;-F~' = constant, from which the
time variation of r;(;X) can be determined for a given flow or F (see
eqn (8)). Following similar steps, one can take a Lagrangian view

. . Y _DA T
and integrate the equation A = D~ (Vu)" " A—A-Vu=0.
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These ideas are known in the literature and the notation from
Section II provides a compact way to proceed (see ESIt). In
particular, using a Lagrangian notation with A(x,f) = A;(¢;X) one

\Y
can show that A = 0 leads to

2(F*T “AL-F) =0.

% (13)

It follows that F~"-A.-F~' = constant, following the fluid motion,
i.e., it is an invariant. Using the initial data, we obtain F~ A -F " =
A;(0;X) since F(0) = I, which means A (£;X) = F"-A(0;X)-F. In other
words, the initial data and F determine the evolution of the
conformation tensor in this case.

IV. The Jeffery equation for a particle
in a linear flow
A. A line element that lags the flow

A slender extensible filament or rod with orientation and length
r, not necessarily infinitesimal, in a flow with vorticity w = VAu
and rate-of-strain tensor E = (1/2)(Vu + (Vu)”) is assumed to
reorient approximately according to (see, e.g., ref. 30-32)

Dr 1

szf)/\r—i—ﬁrE, (14)
where f is a constant. A rigid rod is unable to change length so
eqn (14) is then modified to preserve length by adding an extra
term —fr-E-rr to the right-hand side, resulting in the Jeffrey
equation®® (see Section V(vii)). Recalling the vorticity tensor =
(1/2)(Vu — (Vu)"), where Vu =E + Q and (1/2)oAr =1-Q, eqn (14)
can be written as

Dr

—=r-Vu+(f—Dr-E,

BT, (15)

where the last term indicates that the straining motion pro-
duces non-affine motion of the filament, relative to following
the motion and deformation of the fluid. Therefore, a filament
behaves like a line element and follows the flow for = 1, and
lags the deformation for f < 1, as arises below.

B. A surface element

In the same way that the divergence of the velocity vector
expresses the fractional rate of change of volume (V) of an
infinitesimal fluid element in a flow (so is zero for an incom-
pressible flow), and a line element r changes its length and
orientation according to eqn (2), one can consider an infinite-
simal (vectorial) surface element S, i.e., V =rS. It is an exercise
to show that for an incompressible flow, V-u = 0, then (see, e.g.,
ref. 25 pp. 131-132 and ref. 34 and 35)

DS 1
—=—(Vu)-S=-oAS—-S-E. 16
= —(Vu)-S =3 (16)
Hence, we see that an infinitesimal surface element satisfies
eqn (14) with # = —1. We also note that, similar to eqn (3), we
can introduce the vectorial lower-convected time derivative
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A
S@%Jr(Vu) -S. Thus, from eqn (16) it follows that an

A
infinitesimal surface element satisfies S = 0.

V Non-affine motion of the
conformation tensor

The derivation of eqn (11), and the steps that now follow, are
the main contributions of this note focusing on the meaning of
time derivatives for the kinematics of fluids with deformable
microstructure. Substituting eqn (15) into eqn (9), we obtain

D D
A :E(rr):(Vu)T-A+A-Vu+(ﬁf1)(A-E-E-A),

(17)
v
or, using the definition of A,
vV D r
A:EA—(Vu) ‘A—A-Vu=(f—-1)(A-E4+E-A). (18)

The right-hand side of eqn (18) yields non-affine motion that
changes the response from purely following the deformation of

the fluid, i.e., we no longer have X = 0. We next make several
observations.

(i) p = 1: we observe that § = 1 gives back the case of a line
element following the flow, i.e., the upper-convected derivative

v
vanishes, i.e., A = 0.
(ii) B = 0: using the relation Q = Vu — E, we obtain
© gef D

ASEA-QT . A-A.Q=0.
5 0

t (19)

o

A is referred to as the (Jaumann) co-rotational derivative,
representing the rate of change of a fluid element advected with
the flow and rotating with the local vorticity, e.g., see eqn (14).

(iii) p = — 1: in this case, using the definition for the rate-of-
strain tensor E = (1/2)(Vu + (Vu)”), eqn (17) becomes

36,37

D — (Vo) A+A-Vu-2A-E+E-A)

= —(Vu)-A—A-(Vu)’.

Similar to eqn (11), we can introduce the lower-convected or
covariant time derivative (see, e.g., ref. 1, 3 and 9):

A

AL D

T
DZA + (Vu)-A+A-(Vu)'.

(21)
(iv) B = const: for a constant value of 8, using eqn (17), we
can introduce the Gordon-Schowalter convected time deriva-
0
tive A (see, e.g., ref. 3, 9 and 32),

g def D

ASSA— (VW A-A Vu—(f-1)A-E+E-A). (22)

(v) We note that, in practice, , appearing in eqn (22), can be
a function of the conformation tensor A. In fact, for a dumbbell
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model, Hinch™ and Phan-Thien et al'® pointed out that f
depends on the trace of A via

_trA-—a

ﬂ_UA+H

(23)
where tr A represents the square of the dumbbell extension and
a and b are constants (see also ref. 9 and 38).

(vi) An interesting property of the conformation tensor A

v
that satisfies A =0 (upper-convected derivative) is that its
inverse A" satisfies (A"")* = 0 (lower-convected derivative).
This result can be readily shown by left and right multiplying
v -l 0A

A =0 by A™"' and using the identity TR —A"! T AL

Similarly, A = 0 (co-rotational derivative) implies that (A™")° =
0. In fact, this symmetric property is more general and can be

extended to the Gordon-Schowalter convected time derivative
A, that if A p =0 for some f, then (A~') =)= 0 with —p.

(vii) For a rigid inextensible rod, we modify eqn (14) to
preserve the length of the rod by including an additional term
—prEar on the right-hand side. Thus, we have the Jeffrey
equation for the motion of a rigid ellipsoid,*

Dr 1
E—Ew/\r-l-ﬁ(r-E—rEmr), (29)
which also can be written as
%:r-Vu+(ﬂ71)r-E7ﬂr-E-rr. (25)

Here, the parameter 8 is f = (L> — 1)/(L* + 1), where L is the
length-to-radius aspect ratio of an axisymmetric ellipsoid.**
Substituting eqn (24) into eqn (9), we obtain the time-rate-of-
change of the corresponding conformation tensor,

Dy B(rr) = (Vu)". A+ A-Vu

FZ Dt (26)
+ (B—-1)(A-E+E-A)—26A-E-A.
v
Using the definition of A yields,
v
A =LA (Vo' A—A-Vu
Dt (27)

=(B-1)(A-E+E-A) —2BA-E-A.

Again, we see how f causes the conformation tensor to evolve
differently than a “passive” structure simply following the fluid

flow, X #0. As noted by Hinch and Harlen,’ fibers, long thin
rods, and elongated particles with L > 1 behave like line
elements (of zero thickness) for which f =~ 1, so that the
upper-convected derivative is appropriate. On the other hand,
flattened particles with L « 1 are assumed to behave liked area
elements, so that f§ ~ —1, and thus, the lower-convected
derivative is appropriate; however, see the recent analysis of
Eggers et al.>® showing that the dynamics in this limit is more
complex.

This journal is © The Royal Society of Chemistry 2023
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(viii) As a particular case of the time derivative in eqn (27),
consider the case with f§ = 1. We refer to this time derivative as
the constrained upper-convected time derivative, given as

v D T
A+2A-E-A =—A— (Vu)"A—A-Vu
Dt (28)

+2A-E-A=0.

This time derivative arises, for example, in the so-called quad-
ratic closure for the Doi-Onsager rod theory as shown in Weady
et al.>® and in the sharply aligned case of the Doi-Onsager rod
theory.”” It is possible to extend the ideas introduced above
(Sections II and IIIC) for identifying invariances following the

v v
fluid motion to the special case of A #0 when A = —2A -E - A.

For example, using a Lagrangian notation with A(x,f) =
AL (t;X) one can show (see ESIt) that eqn (28) leads to

9 - _ 1 0
&(F T AL-FY)=—(FT-AL-F 1)E(F.FT)
C(FTAL-FY), (29)
or
0L _ g Q) .6y wi

GL=FT.A_ - F..

Under the assumption that Gy, (in fact, A;) is invertible and

-1
using the identities Gy~ * = F-A, “-F” and % -G 8(:,;[ _
GL, from eqn (30) it follows that

oGL™" 9 .
——(F-F
ot 8[( ) or
Q(G[il _FFT) :Q(F-ALil FT_FFT) -0
o ot :
(31)

It follows that F-A, "-F” — F-F” = constant, following the fluid
motion, ie., it is an invariant. Using the initial data, we obtain
F-A, "F' — FF" = A, (0;X) — I since F(0) = I, which means
A (X)=1—F “F "+ F A, (0;X)-F". Note that if A;(0;X) =
I, then A;, = I, which is a steady-state solution of eqn (28).

By analogy to eqn (30) for the constrained upper-convected
time derivative, one can show (see ESIt) for the constrained

A
lower-convected time derivative, A = 2A - E - A, that

%(HLil _ FfT 3 Ffl)
:g(F’T~Afl S S ) (32)

with Hp =F-Ap-F’.

Thus, F-TA;, “F !
motion.

For the constrained upper-/lower-convected derivatives, we
have conserved quantities Gy, = F A, F ! and H;, = F-A_F,
respectively, whose invariant structure is essentially through

— F 7F ' is an invariant following the

This journal is © The Royal Society of Chemistry 2023
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inverses of each other. The co-rotational derivative arises from
adding these two transport derivatives together, thus suggesting
that finding an invariance for the co-rotational time derivative is
challenging, if possible at all.

VI. Connecting conformation and its
change to stress

A. The continuity and Cauchy momentum equations with
additional microstructural stresses

Although the focus of this note is on the time derivatives, it is
natural to now ask about the physical effects that exert forces
on suspended filaments, which cause additional changes to
these material derivatives and contribute to stress in the fluid.
Describing the incompressible hydrodynamics of a complex
fluid generally requires incorporating two new equations for
the conformation tensor in addition to the continuity and
Cauchy momentum equations. The first equation indicates
how changes in the conformation give rise to stress in the
fluid, whereas the second equation connects the evolution of
the conformation to the gradients in the velocity field. As a
specific example, consider the case of a viscoelastic dilute
polymer solution, whose fluid motion is governed by the
continuity equation and Cauchy momentum equations,

Du

V.u=0 and th

=V.o, (33)

where p is fluid density and ¢ is the stress tensor given by

6= —pl+25E + 1. (34)

The first term on the right-hand side of eqn (34) is the pressure
contribution, the second term is the viscous stress contribution of
Newtonian solvent with a constant viscosity 1, and the last term, 7y,
is the polymer contribution to the stress tensor. The latter contribu-
tion arises due to the response of polymer chains to fluid flow so
that their microstructure deviates from the equilibrium state and
deforms, A # 1. This deformation results in a polymer contribution
to the stress tensor, which, in the simplest Hookean case and affine
motion, can be expressed via A as (see, e.g., ref. 9-11 and 26)

(35)

where G(A) is the elastic modulus, which may be a function of A.
When non-affine effects are present, one should be cautious while
identifying the proper form for the relation between the polymer
contribution to the stress tensor and microstructure. We refer the
reader to ref. 41 Ch. 8 for further discussion and the connection
to irreversible dynamics associated with non-affine motion in
contrast to the reversible, Hamiltonian dynamics corresponding
to the affine one.

Equations (33)-(35) show the coupling between the fluid
velocity and deformation of microstructure. Understanding this
two-way coupling also requires determining the evolution
equation for the conformation changes that describes how
polymer chains deform in the flow.

7, = G(A)A — 1),

Soft Matter, 2023,19, 5353-5359 | 5357
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If we treat polymer chains like line elements transported

and freely deformed by the flow, it implies X = 0, according to
eqn (11). However, polymer chains have elastic features with an
inherent restoring mechanism opposing stretching/compres-
sion in the flow and causing relaxation to an equilibrium
(coiled) state in the absence of flow. In general, this relaxation
process may be characterized by several time scales; we denote
by / the longest relaxation time of the polymers. Thus, for affine
motion (f = 1), accounting for the relaxation to an undeformed
state on a time scale 4, the evolution equation for A can be
written as

1

v
A=

(A-T), (36)
which, for a constant /, is known as the Oldroyd-B constitutive
equation.”'® We note that A(A) may be a function of A, as was
first elucidated by de Gennes'® and Hinch."?

From eqn (36), it follows that when the observation time ¢,ps

v
is much shorter than the relaxation time , typs < A, A ~ 0 and
thus, polymer chains behave like line elements that are trans-
ported and deformed by the flow without relaxing. The ratio A/

tobs is known as the Deborah number, Ded:ef/l/tobs,l’2 which
follows from eqn (36). In many cases, the observation time .y is
based on the convective time scale L.u., where L. is the
characteristic length scale and u. is the characteristic velocity,
so that the Deborah number is De = Au./L.. Furthermore, as
many flows are characterized by a shear rate, 7, Eqn (36) also
naturally introduces the Weissenberg number, Wi = 1j. While,
for brevity, we have considered only the Oldroyd-B model, the
approach illustrated here allows various physically plausible
modifications similar to the modeling of dumbbells.®**™
Finally, we refer the reader to the recent work by Eggers et a
on flat elastic particles in a Newtonian fluid that, by analogy with
dumbbell models, were modeled as three beads connected by
nonlinear springs. In this work, a lower-convected time deriva-
tive naturally arises as part of the constitutive equation.

1.35

B. Lagrangian integration of the Oldroyd-B constitutive
equation

The ideas introduced above (Sections II and IIIC) for identifying
invariances following the fluid motion can also be applied to
the evolution equation for the conformation tensor when
elastic stresses are included. In this case, the conformation
tensor evolves according to the deformation tensor F and the
time constant 4,. Again, the detailed steps can be found in the
literature (see, e.g., ref. 1 pp. 431-432),>>** and (ESIY).

For example, we can consider the Oldroyd-B constitutive

v
equation (eqn (36)), A = —4o~'(A —I), where /, is a constant
relaxation time. Again, we use the notation A(x,f) = A(£X). The
v
equation for A can be rearranged to find an ordinary differential
equation for F~"-A;-F ! with a time-dependent forcing,
0

1 1
_ —1 — —1 — —1
E(FT-AL-F )+TOFTAAL~F :TOFT~F . (37)
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This equation is solved with initial data (suppressing depen-
dence on X) F A -F ' = A;(0) since F(0) = L Therefore,
integrating, we obtain (see also e.g. ref. 26 and 42),

AL(t) = e PFT (1) - AL(0) - F(1)

t
+}iFT(z) ~ J F (") - F(¢"e ="/ ds’  F(r).
0

| (38)

Thus, we observe that the flow history matters and the material
is always relaxing, relative to the local flow features, according to
an exponential in time. The reader is referred to ref. 26 for more
discussion and the connection of these ideas to the theory of
elastic solids.

VII. Concluding remarks

The approach illustrated here for the derivation of the typical
time derivatives of the conformation tensor, eqn (11) and (18),
commonly used in the study of the flow of complex fluids, is
the main contribution of this note. Our derivation utilizes the
idea of the kinematics of line elements, and we believe that the
physical picture associated with this derivation may be useful in
providing insight and developing intuition when using these
time derivatives and the corresponding constitutive equations.
For completeness, in Section VI, we briefly discussed the con-
nection of the flow kinematics to the conformation changes that
produce stresses. In several places in the discussion, we high-
lighted how a Lagrangian view of the kinematics allows one to
identify invariances following the flow, or, in the case of elastic
stresses, how the conformation tensor relaxes in a time-varying
way relative to the stretch expected due to the flow alone.
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