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For human autonomy teaming, information for promoting transparency could lead to information overload, negatively
impacting performance and workload. This paper presents an empirical study investigating how different level of details
(LODs) about the autonomy represented on the user interface would influence speed, accuracy, and workload. Specifically,
we compared visualizations of a lost person model at four different LODs to aid in directing human and unmanned aerial
vehicles searchers in search and rescue missions. The lowest LOD was found to support higher accuracy but at the expense
of speed. The highest LOD induced the highest workload, while the other three LODs induced lower and similar levels of
workload. The results indicate that the LOD in transparent displays could induce a speed and accuracy tradeoff.
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Introduction

Human and autonomous agents must work as a team to take
advantage of their respective capabilities to accomplish com-
plex tasks (Lyons et al., 2021; McNeese et al., 2018; Shively
et al., 2018). The collaboration between humans and auton-
omy is commonly referred to as human autonomy teaming
(HAT). Though essential, the collaboration between human
and autonomous agents often requires extensive efforts in
interacting with one another, expressing thoughts, monitor-
ing others, attending to immediate tasks, and establishing
common ground that could induce cognitive load and con-
sume time (Kolfschoten & Brazier, 2013). Complex tasks
also demand that human and autonomous agents must have
shared activity, joint intention, common ground, and intended
goals (Hoffman & Breazeal, 2004). Thus, HAT requires
human to have a good understanding and prediction of the
actions by autonomy (Endsley, 2017).

In HAT, transparency, specifically transparent displays,
has been commonly proposed to be the solution for facilitat-
ing the understanding of autonomy. Transparency refers to
“the descriptive quality of an interface about its abilities to
afford an operator’s comprehension about an intelligent
agent’s intent, performance, plans, and reasoning process”
(J.'Y. Chen et al., 2014, p. 2). Koo et al. (2015) found that
providing drivers with situational information explaining the
reason for autonomous agents’ reactions before taking action
could promote acceptance in semi-autonomous driving tasks.

In multi-unmanned vehicle management, Mercado et al.
(2016) found that a display with projection information, rea-
soning and rationale of the agent in path recommendation
offered better usability than a display with only basic path
information. Stowers et al. (2020) found higher acceptance
rate of correct recommendations with the display presenting
perception, comprehension, and projection about states of
autonomy along with uncertainty information than with dis-
plays presenting just perception and comprehension. For a
helicopter operator managing multiple unmanned aerial
vehicles (UAVs) in simulation, Roth et al. (2020) found
response time reduced when using a transparent display with
critical information and future information than using the
one with only currently adopted actions. Zhang et al. (2020)
found that showing confidence scores in Al-assisted deci-
sion-making could facilitate appropriate trust for applying
people’s knowledge to improve decision outcomes in predic-
tion tasks. Kraus et al. (2020) found that providing informa-
tion on the ambiguous sensor information caused by
reflections and glares and consequences due to malfunctions
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of a level 3 automated vehicle prior to driving could avoid
the decline of trust.

However, indiscriminate inclusion of information about
autonomy may overwhelm human information processing
(Moacdieh & Sarter, 2015). It is not practical for a human to
perceive and analyze all information about the autonomous
agents given the time, accuracy, and quality constraints
(Westin et al., 2016). Moreover, important information could
be buried by a large amount of less useful information result-
ing in a transparency paradox (Stohl et al., 2016).

Transparent displays with too much information may
demand more cognitive effort to process the information and
hinder performance. Stowers et al. (2016) found that with
additional uncertainty information displayed in texts, the
proportion of correct response increased, but the usability of
the user interface decreased. In a follow-up study, Stowers
et al. (2020) found that additional uncertainty information
displayed in texts increased acceptance rate of correct rec-
ommendations but decreased response time. Skraaning and
Jamieson (2021) found that, in the context of operating an
automated power plant system, transparent displays for oper-
ating components (e.g., controllers, protections) improved
response time, overall task performance, and workload;
whereas for operating plant-wide functions, the transparent
display could lead to decreased performance and increased
workload. Helldin et al. (2013) found that the presence of
uncertainty information about the autonomy in the user inter-
face induced the highest trust ratings but the longest classifi-
cation time for pilots to classify friendly versus enemy
aircraft. Guznov et al. (2020) found workload increased with
more detaled information delivered in text messages for pro-
moting transparent communication when humans monitor
and intervene in an autonomous robot to avoid collisions
during navigation. For routing UAV through hazardous areas
requiring occasional operator engagement, T. Chen et al.
(2014) found that a display containing a medium amount of
information on system status yielded the lowest workload
compared to a display with the most information on raw data
from system components and a display with the least infor-
mation only about general representation of the system sta-
tus. Thus, information postulated to promote a better
understanding of autonomy may result in unintended effects
on performance and workload depending on contexts.

Empirical studies focusing on transparent displays have
revealed that the inclusion of information regarding auton-
omy on displays can have intricate effects on usability, work-
load, and performance. However, drawing a definitive
conclusion regarding the optimal quantity of autonomy-
related information is challenging due to variations in the
types of information presented across different transparent
displays in these studies, rather than variations in the amount
of information within a single type. Therefore, further
research is required to determine the suitable level of detail
(LOD) for specific types of information, as well as the overall
quantity of information pertaining to autonomy. To address

this research gap, we investigated the effects of visualization
of a lost person model (LPM) at different LODs on speed,
accuracy, and workload in the context of search and rescue
(SAR).

LOD represents the amount of information aggregated or
organized in communication for the human to perceive, com-
prehend, and respond to autonomy. Ideally, LOD should be
objective and measurable to establish quantitative relation-
ships of LOD with usability, workload, and performance.
High LOD delivers less information so that users can easily
acquire an overview of a specific aspect or feature of auton-
omy. In contrast, low LOD delivers more information so that
users can access the details on a specific aspect of autonomy,
such as raw data or the decision mechanisms.

Lost person modeling (LPM) computes the probability of
lost person for a given location and probability of area based
on the probable movements given the behavioral profile of
the lost persons, and environmental conditions, such as dis-
tance, weather, and elevation (Koester, 2008; Mansfield
et al., 2020). Given typical sizable search area, the search
region usually needs to be divided into smaller segments for
prioritizing and assigning search teams given resource con-
straints (Hill, 2012).

The LPMs could be categorized by statistic based model
(such as distance ring model, watershed model), and agent
based model. The distance ring model computes radii from
IPP for 25%, 50%, 75%, and 95% chance of finding the lost
person (Syrotuck, 2000). Doke (2012) developed the water-
shed model that divides the search area into segments based
onridge lines then incrementally indexed from initial planned
point to outside boundarie. Agent-based modeling simulates
possible and likely lost-person movement trajectories by ran-
domly selecting movement behaviors from the distribution
of known lost person reorientation strategies for the given
terrain. Adopting Monte Carlo simulation of moving parti-
cles based on behavioral heuristics and environmental ele-
ments (Kratzke et al., 2010; Lin & Goodrich, 2010), our
research team (Hashimoto & Abaid, 2019) developed an
agent-based model, which uses the lost-person profile and
environmental parameters captured by Koester (2008) as
inputs to define the parameters of lost-person behaviors. The
probability map can then be estimated based on the distribu-
tion of lost-person location for all simulated trajectories at a
given time (Hashimoto et al., 2022).

Wilderness SAR missions are time-critical, sometimes
situated in high-risk environments. SAR would benefit from
deploying UAVs to reduce the risk of humans traveling to
dangerous or difficult-to-access terrains (Jiang et al., 2022;
Karaca et al., 2018). With autonomous path planning, human
resources (e.g., UAV pilots and sensor operators) can be fur-
ther relieved (Goodrich et al., 2007). To enhance the effi-
ciency of search, LPMs are used in UAV path planning for
SAR (Heintzman et al., 2021). For this reason, SAR profes-
sionals need to interpret the LPM results in order to under-
stand the UAV path planner.
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Figure |. SAR web application prototype. Teams were assigned to segments and map tools on the right. The image from UAVs is

shown by clicking on the spotted clue.

Our investigation involved an empirical study recruiting
participants to assign search teams to different areas with the
support of visualizing the LPM at different LODs in simu-
lated SAR missions. We hypothesized that lower LODs
would improve the decision-making accuracy of the mission
because more information at lower LODs illustrated the
modeling mechanism more accurately. However, more infor-
mation would increase the time and effort for information
processing.

Method

Twenty-five students (10M, 15F) were recruited from a major
university in southwest Virginia. The average age was 24.90
years (SD=5). Seven and eighteen participants were under-
graduate and graduate students, respectively. Participants
self-reported normal or corrected-to-normal vision.

Experimental Platform

The SAR web application prototype was developed as the
experimental platform for this study (Williams et al., 2020).
The application was connected to a geographical information
system (GIS), specifically ArcGIS, to gather high-quality
maps with many different layers of information and built on
JavaScript to provide custom user interface features.
Critically for this study, this web application supported dif-
ferent visualizations of the agent-based LPM (Hashimoto &
Abaid, 2019), automatic segmentation of the search area
around IPP, and assignment of search teams to different
search segments (Figure 1). The POAs estimated by the LPM
are visualized by overlays on the geographic map.

Experimental Design and Manipulation

A within-subjects design was employed to test the single
treatment of LOD with four levels — Ring, Weighted map,
Heat map, and Trajectory (Table 1 and Figure 2). Based on
the amont of information, the four visualizations were classi-
fied into four LODs. All the actionable items in the user
interface were the same across the four treatment levels.

Procedure

The experiment was conducted over an online meeting soft-
ware and the SAR web application prototype. Upon joining
the online meeting, the participant was first briefed on the
experimental procedure, followed by requesting an electronic
signature for the online consent form. Then, the participant
completed a demographics questionnaire. Participants were
provided a training trial, in which the participant could assign
teams and explore the user interface. The participant could
assign teams for a maximum of five rounds but could com-
plete the scenario prior to this limit. For each round, the par-
ticipant assigned four search teams to different segments of
the search area. The searched segments and the discovered
clue would be marked on display. The participant was asked
to complete the task with the minimum number of rounds at
the fastest speed. The training ended when the participant had
no questions about the user interface or the experimental task.
After training and a short break, the participants completed
four trials, each presented with a different level of LODs (i.e.,
the four different visualizations). Upon completion of each
trial, the participants would fill in the workload questionnaire.
All participant interactions with the web application were
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Table I. The visualizations in four LODs.

Visualization

Description

Ring High LOD, presenting four concentric rings from IPP with 25%, 50%, 75%, and 95% probabilities that the lost

person can be located, respectively.
Weighted map

Medium LOD, presenting POAs aggregated by search segments shaded in different color saturation. The

information may be most efficient for the task of assigning search teams because the POA for each segment is
color coded, although the computational mechanism/model process is not represented.

Heat map

Trajectory

Low LOD, generated with a Gaussian kernel for the entire search area. Unlike weighted map, heat map can
highlight variations within a search segment.
The lowest LOD, presenting raw data by lines of the possible moving paths generated by the LPM/Monte Carlo

simulation. Thus, the Trajectory visualization indicated how the model computed the POAs, providing more

details than the other three visualizations.

Figure 2. The four treatment levels for the LPM for a SAR mission: a) Ring, b) Weighted map, c) Heat map, d) Trajectory.

logged to compute task performance metrics. The presenta-
tion order of the experimental conditions was counterbal-
anced. The experiment lasted about 1.5 hours.

Measures

Two performance metrics were computed to reflect accuracy
and speed in SAR decision-making. 7otal rounds were the
number of rounds of assigning teams to segments for locat-
ing the lost person. In each scenario trial, participants could
have a maximum of five rounds to finish the search task. If
the lost person was not located within the limit of five rounds,
the total rounds were set to six for scoring. Duration per

assignment round (DPR) was the time to assign the four
teams to segments in one round.

Workload scores were the averaged ratings across six
NASA TLX items, administered after every trial without
pairwise comparison (i.e., Raw TLX, Hart, 2006).

Results

Correlations

Spearman’s p rank-order correlation statistics were used to
examine the relationships between workload and task perfor-
mance. Workload was positively and strongly correlated to
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Figure 3. The medians of total number of rounds and DPR of
the four LODs.
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total rounds of task (7, (98) =0.77, p <.001), and also posi-
tively and moderately correlated to duration per assignment
round (7, (98) =0.50, p <.001). Workload was higher when
participants had to perform more rounds and spend more
time per round. Correlation between total rounds and dura-
tion per round was not significant.

Task performance

A Friedman test revealed a marginal main effect of LOD on
total rounds of team assignment to finding the lost person
(x2 (3,N = 25) =74,p= .06). Wilcoxon signed-rank tests
with a Bonferroni-adjusted alpha of 0.008 (i.e., 0.05/6) were
used for post hoc comparison. We consider Bonferroni correc-
tion with an alpha of 0.016 (i.e., 0.1/6) as a marginal effect.
Participants marginally required fewer total rounds with the
Trajectory (Mdn = 3) than Ring (Mdn= 6;Z =-2.43, p = .015).
Other comparisons were not significant.

A Friedman test revealed a main effect of LOD on DPR
(XZ (3,N = 25) =10.8,p = .0132. Wilcoxon signed-rank tests
with a Bonferroni-adjusted alpha of .008 (i.e., 0.05/6) were
used for post hoc comparisons. Participants spent longer
time per round of assignments on Trajectory (Mdn = 0.56)
than Heat map ( Mdn = 0.42;Z =-2.97, p =.003 ), Weighted
map  (Mdn=0.40;Z=-3.32,p <.001), and  Ring
(Mdn =0.41;Z =-2.70, p =.007). Figure 3 present the bar
graphs of total rounds and DPR, respectively.

Workload

A Friedman test revealed a significant effect of LOD on the
overall workload (y? (3, N = 25) =8.75, p =.033). Wilcoxon
signed-rank test with a Bonferroni-adjusted alpha level of
.008 (i.e., 0.05/6) was used for post hoc comparisons. Ring
(Mdn = 2.67) was found to be higher than the Weighted map
on workload (Mdn =183,Z=-297,p= .003). Figure 4
shows the medians of workload scores.

Discussion

This paper presents the first study explicitly investigating how
different LODs about an agent-based LPM could influence

Workload
&
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Figure 4. The medians of the workload of the four LODs.

performance and workload for SAR missions. The results
indicated that the LODs about LPM influenced performance
and workload in a complex manner that does not conform to
the simplistic notion that conveying more information about
autonomy would improve outcomes.

As LOD decreased, the number of rounds to finding the
lost person tended to decrease, whereas the duration per
assignment round tended to increase. The number of rounds
to completing a mission scenario and DPR represented deci-
sion accuracy and speed supported by the visualizations of
the LPM at different LODs, respectively. The Trajectory
visualization with the lowest LOD facilitated the fewest
rounds to completion (i.e., highest accuracy), but this
improvement in decision accuracy seemed to incur a cost in
decision speed, as the Trajectory visualization resulted in the
longest DPR (Figure 3). The results indicate that LODs could
induce the speed-accuracy tradeoff (Wickelgren, 1977). At
lower LODs, more cognitive resources are needed to process
more details or information, thereby increasing the decision
time. Stowers et al. (2020) also observed an increase in
response time with additional information that facilitated
more correct responses to recommendations proposed by an
intelligent agent for operating multiple UAVs.

LODs about autonomy exerted a non-linear impact on
cognitive workload. Trajectory visualization, Heat map, and
Weighted map visualization all induced similar cognitive
workload that was lower than the load with the Ring map
visualization. This finding suggests that lower LOD about
autonomy could reduce the subjective workload of thinking
about the rationale of the decisions by the autonomy, irre-
spective of whether the amount of information is sufficient to
support the best performance. A major implication is that
LODs of the LPM visualization inducing the lowest work-
load may not necessarily yield the best performance.

The empirical results contrasting the impacts of different
LODs on accuracy, speed, and workload highlight the com-
plexity of designing for HAT. The results did not indicate any
one LOD to be universally optimal for all human perfor-
mance constructs. For example, the lowest LOD or the
Trajectory visualization yielded the highest decision accu-
racy but the worst in speed. These findings point to adaptive
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and/or adaptable user interfaces/interactions (Jameson, 2007;
Lavie & Meyer, 2010) that would enable dynamic LODs
according to the need of the users and systems/situations.

Limitations And Future Work

The manipulation of LOD in this study cannot be perfectly
controlled in that “content” (i.e., LODs) and forms (i.e., visu-
alization methods) cannot be fully separated. That is, the
visualizations or representational forms could not be identi-
cal across all LODs. For example, a Heat map may be more
visually appealing besides containing fewer details than the
Trajectory visualization. The current study assumes all the
search teams have the same search capability with the same
speed and accuracy. Future research should recruit SAR pro-
fessionals to assess generalizability of this research.

Conclusion

This study presents the first study explicitly investigating
how different LODs about an agent-based LPM could influ-
ence speed, accuracy, and workload. The LOD about auton-
omy impacts performance in a complex manner. The
increased decision accuracy seemed to incur a cost in deci-
sion speed, indicating that LODs could induce the speed-
accuracy tradeoff. Lower LODs about autonomy (i.e., more
information) could reduce the subjective workload of think-
ing about the decisions by the autonomy, irrespective of
whether the amount of information is sufficient to support
the best performance. The results suggest that researchers
and practitioners must pay careful attention to presenting
details about autonomy to achieve desirable outcomes.
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