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Introduction

Human and autonomous agents must work as a team to take 

advantage of their respective capabilities to accomplish com-

plex tasks (Lyons et al., 2021; McNeese et al., 2018; Shively 

et al., 2018). The collaboration between humans and auton-

omy is commonly referred to as human autonomy teaming 

(HAT). Though essential, the collaboration between human 

and autonomous agents often requires extensive efforts in 

interacting with one another, expressing thoughts, monitor-

ing others, attending to immediate tasks, and establishing 

common ground that could induce cognitive load and con-

sume time (Kolfschoten & Brazier, 2013). Complex tasks 

also demand that human and autonomous agents must have 

shared activity, joint intention, common ground, and intended 

goals (Hoffman & Breazeal, 2004). Thus, HAT requires 

human to have a good understanding and prediction of the 

actions by autonomy (Endsley, 2017).

In HAT, transparency, specifically transparent displays, 

has been commonly proposed to be the solution for facilitat-

ing the understanding of autonomy. Transparency refers to 

“the descriptive quality of an interface about its abilities to 

afford an operator’s comprehension about an intelligent 

agent’s intent, performance, plans, and reasoning process” 

(J. Y. Chen et al., 2014, p. 2). Koo et al. (2015) found that 

providing drivers with situational information explaining the 

reason for autonomous agents’ reactions before taking action 

could promote acceptance in semi-autonomous driving tasks. 

In multi-unmanned vehicle management, Mercado et al. 

(2016) found that a display with projection information, rea-

soning and rationale of the agent in path recommendation 

offered better usability than a display with only basic path 

information. Stowers et al. (2020) found higher acceptance 

rate of correct recommendations with the display presenting 

perception, comprehension, and projection about states of 

autonomy along with uncertainty information than with dis-

plays presenting just perception and comprehension. For a 

helicopter operator managing multiple unmanned aerial 

vehicles (UAVs) in simulation, Roth et al. (2020) found 

response time reduced when using a transparent display with 

critical information and future information than using the 

one with only currently adopted actions. Zhang et al. (2020) 

found that showing confidence scores in AI-assisted deci-

sion-making could facilitate appropriate trust for applying 

people’s knowledge to improve decision outcomes in predic-

tion tasks. Kraus et al. (2020) found that providing informa-

tion on the ambiguous sensor information caused by 

reflections and glares and consequences due to malfunctions 
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For human autonomy teaming, information for promoting transparency could lead to information overload, negatively 

impacting performance and workload. This paper presents an empirical study investigating how different level of details 

(LODs) about the autonomy represented on the user interface would influence speed, accuracy, and workload. Specifically, 

we compared visualizations of a lost person model at four different LODs to aid in directing human and unmanned aerial 

vehicles searchers in search and rescue missions. The lowest LOD was found to support higher accuracy but at the expense 

of speed. The highest LOD induced the highest workload, while the other three LODs induced lower and similar levels of 

workload. The results indicate that the LOD in transparent displays could induce a speed and accuracy tradeoff.
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of a level 3 automated vehicle prior to driving could avoid 

the decline of trust.

However, indiscriminate inclusion of information about 

autonomy may overwhelm human information processing 

(Moacdieh & Sarter, 2015). It is not practical for a human to 

perceive and analyze all information about the autonomous 

agents given the time, accuracy, and quality constraints 

(Westin et al., 2016). Moreover, important information could 

be buried by a large amount of less useful information result-

ing in a transparency paradox (Stohl et al., 2016).

Transparent displays with too much information may 

demand more cognitive effort to process the information and 

hinder performance. Stowers et al. (2016) found that with 

additional uncertainty information displayed in texts, the 

proportion of correct response increased, but the usability of 

the user interface decreased. In a follow-up study, Stowers 

et al. (2020) found that additional uncertainty information 

displayed in texts increased acceptance rate of correct rec-

ommendations but decreased response time. Skraaning and 

Jamieson (2021) found that, in the context of operating an 

automated power plant system, transparent displays for oper-

ating components (e.g., controllers, protections) improved 

response time, overall task performance, and workload; 

whereas for operating plant-wide functions, the transparent 

display could lead to decreased performance and increased 

workload. Helldin et al. (2013) found that the presence of 

uncertainty information about the autonomy in the user inter-

face induced the highest trust ratings but the longest classifi-

cation time for pilots to classify friendly versus enemy 

aircraft. Guznov et al. (2020) found workload increased with 

more detaled information delivered in text messages for pro-

moting transparent communication when humans monitor 

and intervene in an autonomous robot to avoid collisions 

during navigation. For routing UAV through hazardous areas 

requiring occasional operator engagement, T. Chen et al. 

(2014) found that a display containing a medium amount of 

information on system status yielded the lowest workload 

compared to a display with the most information on raw data 

from system components and a display with the least infor-

mation only about general representation of the system sta-

tus. Thus, information postulated to promote a better 

understanding of autonomy may result in unintended effects 

on performance and workload depending on contexts.

Empirical studies focusing on transparent displays have 

revealed that the inclusion of information regarding auton-

omy on displays can have intricate effects on usability, work-

load, and performance. However, drawing a definitive 

conclusion regarding the optimal quantity of autonomy-

related information is challenging due to variations in the 

types of information presented across different transparent 

displays in these studies, rather than variations in the amount 

of information within a single type. Therefore, further 

research is required to determine the suitable level of detail 

(LOD) for specific types of information, as well as the overall 

quantity of information pertaining to autonomy. To address 

this research gap, we investigated the effects of visualization 

of a lost person model (LPM) at different LODs on speed, 

accuracy, and workload in the context of search and rescue 

(SAR).

LOD represents the amount of information aggregated or 

organized in communication for the human to perceive, com-

prehend, and respond to autonomy. Ideally, LOD should be 

objective and measurable to establish quantitative relation-

ships of LOD with usability, workload, and performance. 

High LOD delivers less information so that users can easily 

acquire an overview of a specific aspect or feature of auton-

omy. In contrast, low LOD delivers more information so that 

users can access the details on a specific aspect of autonomy, 

such as raw data or the decision mechanisms.

Lost person modeling (LPM) computes the probability of 

lost person for a given location and probability of area based 

on the probable movements given the behavioral profile of 

the lost persons, and environmental conditions, such as dis-

tance, weather, and elevation (Koester, 2008; Mansfield 

et al., 2020). Given typical sizable search area, the search 

region usually needs to be divided into smaller segments for 

prioritizing and assigning search teams given resource con-

straints (Hill, 2012).

The LPMs could be categorized by statistic based model 

(such as distance ring model, watershed model), and agent 

based model. The distance ring model computes radii from 

IPP for 25%, 50%, 75%, and 95% chance of finding the lost 

person (Syrotuck, 2000). Doke (2012) developed the water-

shed model that divides the search area into segments based 

on ridge lines then incrementally indexed from initial planned 

point to outside boundarie. Agent-based modeling simulates 

possible and likely lost-person movement trajectories by ran-

domly selecting movement behaviors from the distribution 

of known lost person reorientation strategies for the given 

terrain. Adopting Monte Carlo simulation of moving parti-

cles based on behavioral heuristics and environmental ele-

ments (Kratzke et al., 2010; Lin & Goodrich, 2010), our 

research team (Hashimoto & Abaid, 2019) developed an 

agent-based model, which uses the lost-person profile and 

environmental parameters captured by Koester (2008) as 

inputs to define the parameters of lost-person behaviors. The 

probability map can then be estimated based on the distribu-

tion of lost-person location for all simulated trajectories at a 

given time (Hashimoto et al., 2022).

Wilderness SAR missions are time-critical, sometimes 

situated in high-risk environments. SAR would benefit from 

deploying UAVs to reduce the risk of humans traveling to 

dangerous or difficult-to-access terrains (Jiang et al., 2022; 

Karaca et al., 2018). With autonomous path planning, human 

resources (e.g., UAV pilots and sensor operators) can be fur-

ther relieved (Goodrich et al., 2007). To enhance the effi-

ciency of search, LPMs are used in UAV path planning for 

SAR (Heintzman et al., 2021). For this reason, SAR profes-

sionals need to interpret the LPM results in order to under-

stand the UAV path planner.
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Our investigation involved an empirical study recruiting 

participants to assign search teams to different areas with the 

support of visualizing the LPM at different LODs in simu-

lated SAR missions. We hypothesized that lower LODs 

would improve the decision-making accuracy of the mission 

because more information at lower LODs illustrated the 

modeling mechanism more accurately. However, more infor-

mation would increase the time and effort for information 

processing.

Method

Twenty-five students (10M, 15F) were recruited from a major 

university in southwest Virginia. The average age was 24.90 

years (SD=5). Seven and eighteen participants were under-

graduate and graduate students, respectively. Participants 

self-reported normal or corrected-to-normal vision.

Experimental Platform

The SAR web application prototype was developed as the 

experimental platform for this study (Williams et al., 2020). 

The application was connected to a geographical information 

system (GIS), specifically ArcGIS, to gather high-quality 

maps with many different layers of information and built on 

JavaScript to provide custom user interface features. 

Critically for this study, this web application supported dif-

ferent visualizations of the agent-based LPM (Hashimoto & 

Abaid, 2019), automatic segmentation of the search area 

around IPP, and assignment of search teams to different 

search segments (Figure 1). The POAs estimated by the LPM 

are visualized by overlays on the geographic map.

Experimental Design and Manipulation

A within-subjects design was employed to test the single 

treatment of LOD with four levels – Ring, Weighted map, 

Heat map, and Trajectory (Table 1 and Figure 2). Based on 

the amont of information, the four visualizations were classi-

fied into four LODs. All the actionable items in the user 

interface were the same across the four treatment levels.

Procedure

The experiment was conducted over an online meeting soft-

ware and the SAR web application prototype. Upon joining 

the online meeting, the participant was first briefed on the 

experimental procedure, followed by requesting an electronic 

signature for the online consent form. Then, the participant 

completed a demographics questionnaire. Participants were 

provided a training trial, in which the participant could assign 

teams and explore the user interface. The participant could 

assign teams for a maximum of five rounds but could com-

plete the scenario prior to this limit. For each round, the par-

ticipant assigned four search teams to different segments of 

the search area. The searched segments and the discovered 

clue would be marked on display. The participant was asked 

to complete the task with the minimum number of rounds at 

the fastest speed. The training ended when the participant had 

no questions about the user interface or the experimental task. 

After training and a short break, the participants completed 

four trials, each presented with a different level of LODs (i.e., 

the four different visualizations). Upon completion of each 

trial, the participants would fill in the workload questionnaire. 

All participant interactions with the web application were 

Figure 1. SAR web application prototype. Teams were assigned to segments and map tools on the right. The image from UAVs is 
shown by clicking on the spotted clue.
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logged to compute task performance metrics. The presenta-

tion order of the experimental conditions was counterbal-

anced. The experiment lasted about 1.5 hours.

Measures

Two performance metrics were computed to reflect accuracy 

and speed in SAR decision-making. Total rounds were the 

number of rounds of assigning teams to segments for locat-

ing the lost person. In each scenario trial, participants could 

have a maximum of five rounds to finish the search task. If 

the lost person was not located within the limit of five rounds, 

the total rounds were set to six for scoring. Duration per 

assignment round (DPR) was the time to assign the four 

teams to segments in one round.

Workload scores were the averaged ratings across six 

NASA TLX items, administered after every trial without 

pairwise comparison (i.e., Raw TLX, Hart, 2006).

Results

Correlations

Spearman’s ρ rank-order correlation statistics were used to 

examine the relationships between workload and task perfor-

mance. Workload was positively and strongly correlated to 

Table 1. The visualizations in four LODs.

Visualization Description

Ring High LOD, presenting four concentric rings from IPP with 25%, 50%, 75%, and 95% probabilities that the lost 
person can be located, respectively.

Weighted map Medium LOD, presenting POAs aggregated by search segments shaded in different color saturation. The 
information may be most efficient for the task of assigning search teams because the POA for each segment is 
color coded, although the computational mechanism/model process is not represented.

Heat map Low LOD, generated with a Gaussian kernel for the entire search area. Unlike weighted map, heat map can 
highlight variations within a search segment.

Trajectory The lowest LOD, presenting raw data by lines of the possible moving paths generated by the LPM/Monte Carlo 
simulation. Thus, the Trajectory visualization indicated how the model computed the POAs, providing more 
details than the other three visualizations.

Figure 2. The four treatment levels for the LPM for a SAR mission: a) Ring, b) Weighted map, c) Heat map, d) Trajectory.
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total rounds of task (r ps 98 0 77 001( ) = <. , . ), and also posi-

tively and moderately correlated to duration per assignment 

round (r ps 98 0 50 001( ) = <. , . ). Workload was higher when 

participants had to perform more rounds and spend more 

time per round. Correlation between total rounds and dura-

tion per round was not significant.

Task performance

A Friedman test revealed a marginal main effect of LOD on 

total rounds of team assignment to finding the lost person 

χ2 3 25 7 4 06, . , .N p=( ) = =( ). Wilcoxon signed-rank tests 

with a Bonferroni-adjusted alpha of 0.008 (i.e., 0.05/6) were 

used for post hoc comparison. We consider Bonferroni correc-

tion with an alpha of 0.016 (i.e., 0.1/6) as a marginal effect. 

Participants marginally required fewer total rounds with the 

Trajectory (Mdn = 3) than Ring (Mdn Z p= =− =6 2 43 015; . , . ). 

Other comparisons were not significant.

A Friedman test revealed a main effect of LOD on DPR 

χ2 3 25 10 8 013, . , .N p=( ) = =( ). Wilcoxon signed-rank tests 

with a Bonferroni-adjusted alpha of .008 (i.e., 0.05/6) were 

used for post hoc comparisons. Participants spent longer 

time per round of assignments on Trajectory Mdn =( )0 56.  

than Heat map (Mdn Z p= = − =0 42 2 97 003. ; . , . ), Weighted 

map (Mdn Z p= = − <0 40 3 32 001. ; . , . ), and Ring 

(Mdn Z p= = − =0 41 2 70 007. ; . , . ). Figure 3 present the bar 

graphs of total rounds and DPR, respectively.

Workload

A Friedman test revealed a significant effect of LOD on the 

overall workload (χ
2
3 25 8 75 033, . , .N p=( ) = = ). Wilcoxon 

signed-rank test with a Bonferroni-adjusted alpha level of 

.008 (i.e., 0.05/6) was used for post hoc comparisons. Ring 

Mdn =( )2 67.  was found to be higher than the Weighted map 

on workload Mdn Z p= = − =( )1 83 2 97 003. ; . , . . Figure 4 

shows the medians of workload scores.

Discussion

This paper presents the first study explicitly investigating how 

different LODs about an agent-based LPM could influence 

performance and workload for SAR missions. The results 

indicated that the LODs about LPM influenced performance 

and workload in a complex manner that does not conform to 

the simplistic notion that conveying more information about 

autonomy would improve outcomes.

As LOD decreased, the number of rounds to finding the 

lost person tended to decrease, whereas the duration per 

assignment round tended to increase. The number of rounds 

to completing a mission scenario and DPR represented deci-

sion accuracy and speed supported by the visualizations of 

the LPM at different LODs, respectively. The Trajectory 

visualization with the lowest LOD facilitated the fewest 

rounds to completion (i.e., highest accuracy), but this 

improvement in decision accuracy seemed to incur a cost in 

decision speed, as the Trajectory visualization resulted in the 

longest DPR (Figure 3). The results indicate that LODs could 

induce the speed-accuracy tradeoff (Wickelgren, 1977). At 

lower LODs, more cognitive resources are needed to process 

more details or information, thereby increasing the decision 

time. Stowers et al. (2020) also observed an increase in 

response time with additional information that facilitated 

more correct responses to recommendations proposed by an 

intelligent agent for operating multiple UAVs.

LODs about autonomy exerted a non-linear impact on 

cognitive workload. Trajectory visualization, Heat map, and 

Weighted map visualization all induced similar cognitive 

workload that was lower than the load with the Ring map 

visualization. This finding suggests that lower LOD about 

autonomy could reduce the subjective workload of thinking 

about the rationale of the decisions by the autonomy, irre-

spective of whether the amount of information is sufficient to 

support the best performance. A major implication is that 

LODs of the LPM visualization inducing the lowest work-

load may not necessarily yield the best performance.

The empirical results contrasting the impacts of different 

LODs on accuracy, speed, and workload highlight the com-

plexity of designing for HAT. The results did not indicate any 

one LOD to be universally optimal for all human perfor-

mance constructs. For example, the lowest LOD or the 

Trajectory visualization yielded the highest decision accu-

racy but the worst in speed. These findings point to adaptive 

Figure 3. The medians of total number of rounds and DPR of 
the four LODs.

Figure 4. The medians of the workload of the four LODs.
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and/or adaptable user interfaces/interactions (Jameson, 2007; 

Lavie & Meyer, 2010) that would enable dynamic LODs 

according to the need of the users and systems/situations.

Limitations And Future Work

The manipulation of LOD in this study cannot be perfectly 

controlled in that “content” (i.e., LODs) and forms (i.e., visu-

alization methods) cannot be fully separated. That is, the 

visualizations or representational forms could not be identi-

cal across all LODs. For example, a Heat map may be more 

visually appealing besides containing fewer details than the 

Trajectory visualization. The current study assumes all the 

search teams have the same search capability with the same 

speed and accuracy. Future research should recruit SAR pro-

fessionals to assess generalizability of this research.

Conclusion

This study presents the first study explicitly investigating 

how different LODs about an agent-based LPM could influ-

ence speed, accuracy, and workload. The LOD about auton-

omy impacts performance in a complex manner. The 

increased decision accuracy seemed to incur a cost in deci-

sion speed, indicating that LODs could induce the speed-

accuracy tradeoff. Lower LODs about autonomy (i.e., more 

information) could reduce the subjective workload of think-

ing about the decisions by the autonomy, irrespective of 

whether the amount of information is sufficient to support 

the best performance. The results suggest that researchers 

and practitioners must pay careful attention to presenting 

details about autonomy to achieve desirable outcomes.
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