

1 **Reductive Amination of Oxidized Hydroxypropyl Cellulose with ω -Aminoalkanoic Acids as**
2 **an Efficient Route to Zwitterionic Derivatives**

3 Yang Zhou ^{*a,c,e}, Yimin Yao ^{b,c}, Zhenghao Zhai ^c, Mennatallah A. Mohamed ^d, Fiorella Mazzini
4 ^{a,c}, Qingqing Qi ^d, Michael J. Bortner ^{b,c}, Lynne S. Taylor ^d, Kevin J. Edgar ^{a,c}

5 ^a *Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24061, United States*

6 ^b *Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States*

7 ^c *Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States*

8 ^d *Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN
9 47907, United States*

10 ^e *Division of Chemistry and Chemical Engineering, California Institute of Technology,
11 Pasadena, CA 91125, United States*

12 *Corresponding author. E-mail: zhouyang@vt.edu

13 **Abstract**

14 Zwitterionic polymers, with their equal amounts of cationic and anionic functional groups,
15 have found widespread utility including as non-fouling coatings, hydrogel materials, stabilizers,
16 antifreeze materials, and drug carriers. Polysaccharide-derived zwitterionic polymers are attractive
17 because of their sustainable origin, potential for lower toxicity, and possible biodegradability, but
18 previous methods for synthesis of zwitterionic polysaccharide derivatives have been limited in
19 terms of flexibility and attainable degree of substitution (DS) of charged entities. We report herein
20 successful design and synthesis of zwitterionic polysaccharide derivatives, in this case based on
21 cellulose, by reductive amination of oxidized 2-hydroxypropyl cellulose (Ox-HPC) with ω -
22 aminoalkanoic acids. Reductive amination products could be readily obtained with DS(cation) (=
23 DS(anion)) up to 1.6. Adduct hydrophilic/hydrophobic balance (amphiphilicity) can be influenced
24 by selecting the appropriate chain length of the ω -aminoalkanoic acid. This strategy is shown to

25 produce a range of amphiphilic, water-soluble, moderately high glass transition temperature (T_g)
26 polysaccharide derivatives in just a couple of efficient steps from commercially available building
27 blocks. The adducts were evaluated as crystallization inhibitors. They are strong inhibitors of
28 crystallization even for the challenging, poorly soluble, fast-crystallizing prostate cancer drug
29 enzalutamide, as supported by surface tension and Flory–Huggins interaction parameter results.

30 **Keywords:** Cellulose, zwitterionic polymers, ω -aminoalkanoic acids, amphiphilicity

31 1. Introduction

32 Zwitterionic polymers are unusual in that they possess, by definition, both cationic and
33 anionic functional groups (Harijan & Singh, 2022); therefore they may exhibit properties
34 characteristic of both ionic and nonionic polymers (Laschewsky & Rosenhahn, 2018). Zwitterionic
35 polymers have shown particular utility as non-fouling coatings, addressing important problems
36 including that of marine biofouling (Cheng et al., 2009; Wang et al., 2015). They also have value
37 in hydrogels (Haag & Bernards, 2017), as stabilizers (Rodriguez et al., 2018), as antifreeze
38 materials (Matsumura & Hyon, 2009), and as carriers for drugs (Blackman, Gunatillake, Cass, &
39 Locock, 2019; Shen, Akagi, & Akashi, 2012). Polymers with both positively and negatively
40 charged groups include polyampholytes and polyzwitterions. Unlike polyampholytes, which may
41 contain different numbers of anionic and cationic groups (and their associated counterions),
42 polyzwitterions have equal numbers of positively and negatively charged groups, even at
43 nanometer length scale under certain conditions (Laschewsky, 2014; Laschewsky et al., 2018).
44 Polyzwitterions are typically quite responsive to external environmental stimuli, including pH,
45 temperature, and salt concentration (Blackman et al., 2019). There have historically been two
46 categories of approaches to zwitterionic polymer synthesis: direct polymerization of zwitterionic
47 monomers, and post-polymerization modification to introduce zwitterionic moieties (Zheng,
48 Sundaram, Wei, Li, & Yuan, 2017). Direct polymerization frequently involves protection and
49 deprotection steps, since the unprotected ionic functionality may not be compatible with the chosen
50 polymerization technique (Blackman et al., 2019). Post-polymerization introduction of ionic or
51 zwitterionic groups can be an alternative to painstaking direct polymerization processes. However,
52 it is generally difficult to achieve the desired content of zwitterionic groups. This may be due to
53 restricted approach angles, repulsion between like charges, and/or slow diffusion of the polymeric

54 substrate (Blackman et al., 2019; Zheng, Sun, et al., 2017). Sulfobetaines (SB), carboxybetaines
55 (CB), and phosphorylcholines (PC) are among the zwitterionic groups commonly introduced to
56 polymers to impart zwitterionic character (Debayle et al., 2019).

57 Natural zwitterionic polysaccharides have been identified from bacteria (Tzianabos, Wang,
58 & Kasper, 2003). Synthetic polysaccharide-based polymers have also attracted significant interest
59 (Elschner et al., 2016; Gabriel, Gericke, & Heinze, 2019; Zheng, Sun, et al., 2017). However, the
60 low aqueous solubility of the most abundant, commercially significant polysaccharides including
61 cellulose, chitosan, and starch restricts the approaches available for synthesis of zwitterionic
62 polysaccharide derivatives (Zheng, Sun, et al., 2017). Some of the zwitterionic polysaccharide
63 derivatives that have been prepared had only low degree of substitution (DS) (< or << 1) of the
64 charged moieties (Calabrese et al., 2018; Haro-Mares et al., 2020; Laureano-Anzaldo, Robledo-
65 Ortiz, & Manríquez-González, 2021; Liu, Liu, Esker, & Edgar, 2016; Zeng et al., 2012), or bore
66 an overall net charge (so were not truly zwitterionic) (Calabrese et al., 2018; Laureano-Anzaldo et
67 al., 2021). The DS of charged entities in a polymer can substantially influence its physical and
68 chemical properties.

69 Hydroxypropyl cellulose (HPC), which has broad solubility including in water and several
70 organic solvents, is a derivative of natural cellulose that has widespread commercial applications.
71 It is made by condensation of cellulose and propylene oxide in aqueous alkaline media, providing
72 cellulose ethers that have oligo(hydroxypropyl) substituents, each of which is terminated by a
73 secondary alcohol (Arca et al., 2018). Among its other uses, this polymer made from renewable
74 cellulose finds use in amorphous solid dispersions for enhancing drug solubility and bioavailability
75 (Dong, Mosquera-Giraldo, Troutman, et al., 2016), as well as in targeted drug and gene delivery
76 systems (Ganta, Devalapally, Shahiwala, & Amiji, 2008). Recently, the Edgar group discovered
77 that the presence of terminal secondary alcohols of the HPC oligo(hydroxypropyl) substituents,
78 with their wider approach angles than those of anhydroglucose ring hydroxyls, can be exploited
79 for regioselective oxidation. In particular, treatment of HPC with simple household bleach (NaOCl)
80 oxidizes those secondary alcohols to ketones with remarkable regioselectivity, introducing
81 moieties that are amenable to further modification (Nichols, Chen, Mischnick, & Edgar, 2020;
82 Stevens, Chapman, & Weller, 1980) including for conversion to all-polysaccharide hydrogels by
83 reaction with polyfunctional amine-containing polymers (Chen, Nichols, Norris, Frazier, & Edgar,
84 2020). This reaction requires neither protecting groups for the introduced ketones, nor does it

85 cleave monosaccharide rings (introducing instability, reducing degree of polymerization (DP), and
86 impacting physical properties), as does the commonly employed periodate oxidation (Amer et al.,
87 2016; Strätz, Liedmann, Heinze, Fischer, & Groth, 2020). It struck us that these newly introduced
88 ketone groups could be attractive sites for introducing zwitterionic groups by a post-
89 polymerization approach. In particular, we made note of the fact that ω -aminoalkanoic acids are
90 commercially available, relatively inexpensive materials. Several ω -aminoalkanoic acids are used
91 in vast amounts as monomers, producing polymers including nylons and polyesters (Song, Lee,
92 Bornscheuer, & Park, 2014). The shortest ω -aminoalkanoic acid is actually the natural amino acid
93 glycine ($\text{H}_2\text{NCH}_2\text{CO}_2\text{H}$). These could be attractive reagents for our purposes, not least because
94 they might permit simultaneous introduction of the cation and anion, ensuring charge neutrality
95 and true zwitterionic character under near-neutral environmental conditions, such as those that
96 exist in normal cells, in circulation, or in the human small and large intestines (Elschner et al.,
97 2016). This is a potentially appealing new route to poly(zwitterionic) polysaccharides that might
98 bring biodegradability, renewability, and lower toxicity to traditional zwitterionic polymer
99 applications. In addition, these zwitterionic polysaccharides also promise to be amphiphilic
100 materials with improved water solubility, thereby making them potentially attractive candidates as
101 amorphous solid dispersion polymers (Liu, Taylor, & Edgar, 2015).

102 We hypothesize that a simple two-step strategy could be effective for synthesis of
103 zwitterionic cellulose derivatives: (1) regioselective oxidation of the terminal hydroxyl of HPC to
104 introduce ketone groups, and (2) reductive amination of these ketones with ω -aminoalkanoic acids.
105 We predict that the DS(zwitterions) (hereafter we use the general term DS(Zw)) should be highly
106 controllable by this approach, since the oligo(hydroxypropyl) termini are flexible and have wide
107 approach angles. We further hypothesize that amphiphilic, poly(zwitterionic) polysaccharide
108 derivatives will be effective stabilizers against crystallization of hydrophobic drug actives, and
109 display surface activity. Herein we describe attempts to use this approach to synthesize a range of
110 zwitterionic polymers that vary in ω -aminoalkanoate side chain length, and investigations of their
111 properties, including thermal stability, solubility, drug release enhancement and crystallization
112 inhibition, and surface activity. It is important to note that referring the products as “zwitterionic
113 polymers” indicates their potential to exist in zwitterionic form under specific circumstances (e.g.,
114 at neutral pH); at extremes of pH, the zwitterionic character can be lost.

115 **2. Methods and materials**

116 HPC was purchased from Acros Organics and used as received (average M.W. 100,000
117 g/mol (as reported by manufacturer); molar substitution (MS) and DS of HP 4.7 and 2.3,
118 respectively (see ^1H NMR method description below)). Glycine ($\geq 99\%$), 4-aminobutyric acid (γ -
119 aminobutyric acid, $\geq 99\%$), 5-aminovaleric acid (97%), 6-aminohexanoic acid, and sodium
120 cyanoborohydride were purchased from Sigma-Aldrich. Spectra/Por 7 dialysis membranes
121 (MWCO 3.5 K) were purchased from Thermo Fisher Scientific. Enzalutamide was purchased from
122 ChemShuttle (Hayward, California). All samples for Fourier transform infrared spectroscopy
123 (FTIR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) were
124 dried at 80 °C under vacuum overnight.

125 **2.1. Measurements**

126 ^1H , ^{13}C , ^1H - ^1H COSY, and ^1H - ^{13}C HSQC NMR spectra were acquired on either Bruker
127 Avance 500 or 600 MHz spectrometers. Samples were analyzed as solutions in D_2O at 25 °C in
128 standard 5 mm o.d. tubes. ^1H NMR spectra were referenced to D_2O (4.79 ppm). ^{13}C NMR spectra
129 were referenced to 3-(trimethylsilyl)propionic-2,2,3,3-d₄ acid, sodium salt (0 ppm). Attenuated
130 total reflectance sampling FTIR (ATR-FTIR) was performed with a Nicolet iS50 spectrometer.
131 TGA was performed using a TA Instruments Q5500 under nitrogen. Samples were equilibrated at
132 30 °C and ramped to 800 °C with a heating rate of 10 °C/min under nitrogen. DSC was carried out
133 using a TA Instrument Q2000. Each sample was loaded into an individual Tzero aluminum pan.
134 Samples were subjected to a heat/cool/heat cycle between -50 °C and 180 °C under nitrogen purge
135 at heating and cooling rates of 10 °C/min. Second heating scans were used to determine T_g .

136 **2.2. HPC MS and DS determination**

137 MS(HP) was calculated by ^1H NMR spectroscopy in D_2O from the ratio of HPC methyl
138 and backbone proton integrals. DS(HP) was determined from the ratio of terminal (1.09 ppm) to
139 internal (0.94 ppm) methyl group integrals. Carbanilation of HPC hydroxyl groups was employed
140 to shift the terminal methyl resonances downfield (method modified from (Arca, Mosquera-
141 Giraldo, Taylor, & Edgar, 2017; Dong, Mosquera-Giraldo, Troutman, et al., 2016)). Measured
142 values: DS(HP) 2.3, MS(HP) 4.7.

143 **2.3. Determination of DS(ketone) of Ox-HPC and DS(Zw) of HPC-AA1, HPC-AA3, HPC-
144 AA4, and HPC-AA5**

145 DS(ketone) was determined by ^1H NMR spectroscopy (**Figure 1**).

$$\frac{I(a'')}{I(a \& a') + I(a'')} = \frac{DS(\text{ketone})}{MS(\text{HP})} \quad (1)$$

146 Letters correspond to those of Ox-HPC in **Figure 1**. In the equation, **a** refers to methyl protons of
147 internal hydroxypropyl monomers; the letter **a'** refers to methyl protons of the terminal
148 hydroxypropyl group on oligomers where no oxidation has occurred; the letter **a''** refers to methyl
149 protons of the terminal hydroxypropyl group that has been oxidized to a ketone.

150

151 DS(Zw) was determined by ^1H NMR spectroscopy (**Figure 1**).

152 For HPC-AA1:

$$\frac{I(a'')}{I(a \& a') + I(a'')} = \frac{DS(\text{Zw})}{MS(\text{HP})} \quad (2)$$

153 Letters correspond to those of HPC-AA1. Letter **a** refers to methyl protons of internal
154 hydroxypropyl monomers; **a'** refers to methyl protons of the terminal hydroxypropyl group on
155 oligomers where no oxidation has occurred; **a''** refers to methyl protons of the terminal
156 hydroxypropyl group that bears an amine substituent. The overlapped resonances **a''** and (**a** and
157 **a'**) were deconvoluted using the *Gaussian LorenCross* function.

158

159 For HPC-AA3, HPC-AA4, and HPC-AA5:

$$\frac{I(\text{CH}_2 \text{ next to carboxyl group})}{I(a \& a') + I(a'')} = \frac{2 \times DS(\text{Zw})}{3 \times MS(\text{HP})} \quad (3)$$

160 Letters correspond to those of HPC-AA3, HPC-AA4, and HPC-AA5 in **Figure 1**. Letter **a** refers
161 to methyl protons of internal hydroxypropyl monomers; **a'** refers to methyl protons of the terminal
162 hydroxypropyl group on oligomers where no oxidation has occurred; **a''** refers to methyl protons
163 of the terminal hydroxypropyl group that bears an amine substituent. “CH₂ next to carboxyl group”
164 means: **f** for HPC-AA3, **g** for HPC-AA4, or **h** for HPC-AA5.

165 **2.4. Synthesis of Ox-HPC**

166 The method was adapted from that of (Nichols et al., 2020; Zhou, Zhai, et al., 2022). HPC
167 (8 g, 18.4 mmol) was dissolved in DI water (100 mL) in a 1000 mL round-bottom flask. Acetic
168 acid (10 mL, 174.8 mmol, 9.5 equiv. per AGU) was added to the NaOCl aqueous solution (100
169 mL, 366.7 mmol, 19.9 equiv. per AGU) dropwise in an ice bath. Then, the mixture was added to
170 the round-bottom flask dropwise with vigorous stirring using ice bath cooling. The solution then
171 was kept at RT with stirring for 12 h. Isopropyl alcohol (16 mL, 209.3 mmol, 11.4 equiv. per AGU)
172 was added and the solution stirred 30 min to consume any residual hypochlorite. Then the mixture
173 was poured into a 2000 mL beaker. Aqueous sodium carbonate (140 mL 20% (w:v) Na₂CO₃, 264.2
174 mmol, 14.4 equiv. per AGU) was added to the beaker dropwise with stirring using a cool water
175 bath, then the mixture was stirred at RT for 1 h. The reaction mixture was then dialyzed against DI
176 water for 6 days. The final product was collected by freeze-drying as a white fibrous material (4.60
177 g, yield 58%, DS(ketone): 1.8). ¹H NMR (500 MHz, D₂O): 1.15 (CH₃—CH(—OH)—CH₂—O— and (—
178 O—CH(—CH₃)—CH₂—)_n in side chains), 2.15 (CH₃—C(=O)—CH₂—O— in side chains), 3.05—4.76
179 (cellulose backbone; CH and CH₂ in side chains). ¹³C NMR (500 MHz, D₂O): 17.4—22.0 (CH₃—
180 CH(—OH)—CH₂—O— and (—O—CH(—CH₃)—CH₂—)_n in side chains), 28.3 (CH₃—C(=O)—CH₂—O— in
181 side chains), 68.2—107.0 (cellulose backbone; CH and CH₂ in side chains), 213.7 (CH₃—C(=O)—
182 CH₂—O— in side chains).

183 **2.5. General procedure for synthesis of zwitterionic cellulose adducts**

184 Ox-HPC (1 g, 2.3 mmol) was dissolved in 40 mL DI water in a round-bottom flask. ω -
185 Aminoalkanoic acid (19.4 mmol, 4.7 equiv. per ketone group) was added to the solution with
186 stirring, then sodium cyanoborohydride (2.44 g, 38.8 mmol, 9.3 equiv. per ketone group) was
187 added to the solution. The solution was stirred at 37 °C for 48 h. After cooling to RT, the solution
188 was dialyzed against DI water for 7 days, then finally freeze-dried to afford product.

189 **2.6. Synthesis of HPC-glycine adduct (HPC-AA1)**

190 Prepared according to the general procedure, with glycine (1.46 g, 19.4 mmol, 4.7 equiv.
191 per ketone group) employed as the ω -aminoalkanoic acid. The product was a white fibrous material
192 (1.07 g, yield 88%, DS(Zw) 1.6). ¹H NMR (500 MHz, D₂O): 1.15 (CH₃—CH(—OH)—CH₂—O— and
193 (—O—CH(—CH₃)—CH₂—)_n in side chains), 1.30 (CH₃—CH(—N)—CH₂—O— in side chains), 3.05—4.76

194 (cellulose backbone; CH and CH₂ in side chains). ¹³C NMR (500 MHz, D₂O): 15.6 (CH₃–CH(–N)–CH₂–O– in side chains), 17.4–22.0 (CH₃–CH(–OH)–CH₂–O– and (–O–CH(–CH₃)–CH₂–)n in side chains), 49.3 (–NH₂⁺–CH₂–COO[–] in side chains), 56.6 (CH₃–CH(–N)–CH₂–O– in side chains), 68.2–107.0 (cellulose backbone; CH₃–CH(–OH)–CH₂–O–, CH₃–CH(–N)–CH₂–O–, and (–O–CH(–CH₃)–CH₂–)n in side chains), 174.1 (–NH₂⁺–CH₂–COO[–] in side chains).

199 **2.7. Synthesis of HPC-(γ -aminobutyric acid) adduct (HPC-AA3)**

200 Prepared according to the general procedure with γ -aminobutyric acid (2.00 g, 19.4 mmol, 201 4.7 equiv. to ketone groups) employed as the ω -aminoalkanoic acid. The product was a white 202 fibrous material (1.11 g, yield 93%, DS(Zw) 1.0). ¹H NMR (500 MHz, D₂O): 1.15 (CH₃–CH(–OH)–CH₂–O– and (–O–CH(–CH₃)–CH₂–)n in side chains), 1.31 (CH₃–CH(–N)–CH₂–O– in side 203 chains), 1.91 (–NH₂⁺–CH₂–CH₂–CH₂–COO[–] in side chains), 2.31 (–NH₂⁺–CH₂–CH₂–CH₂–COO[–] 204 in side chains), 3.09 (–NH₂⁺–CH₂–CH₂–CH₂–COO[–] in side chains), 3.05–4.76 (cellulose backbone; 205 CH₃–CH(–OH)–CH₂–O–, CH₃–CH(–N)–CH₂–O–, and (–O–CH(–CH₃)–CH₂–)n in side 206 chains). ¹³C NMR (500 MHz, D₂O): 15.6 (CH₃–CH(–N)–CH₂–O– in side chains), 17.4–22.0 (CH₃–CH(–OH)–CH₂–O– and (–O–CH(–CH₃)–CH₂–)n in side 207 chains), 25.2 (–NH₂⁺–CH₂–CH₂–CH₂–COO[–] in side chains), 37.5 (–NH₂⁺–CH₂–CH₂–CH₂–COO[–] 208 in side chains), 47.5 (–NH₂⁺–CH₂–CH₂–CH₂–COO[–] in side chains), 56.4 (CH₃–CH(–N)–CH₂–O– in side 209 chains), 68.2–107.0 (cellulose backbone; CH₃–CH(–OH)–CH₂–O–, CH₃–CH(–N)–CH₂–O–, and (–O–CH(–CH₃)–CH₂–)n in side 210 chains), 184.0 (–NH₂⁺–CH₂–CH₂–CH₂–COO[–] in side chains).

213 **2.8. Synthesis of HPC-(5-aminovaleric acid) adduct (HPC-AA4)**

214 Prepared according to the general procedure with 5-aminovaleric acid (2.28 g, 19.4 mmol, 215 4.7 equiv. to ketone groups) employed as the ω -aminoalkanoic acid. The product was a white 216 fibrous material (1.11 g, yield 91%, DS(Zw) 0.9). ¹H NMR (500 MHz, D₂O): 1.15 (CH₃–CH(–OH)–CH₂–O– and (–O–CH(–CH₃)–CH₂–)n in side chains), 1.31 (CH₃–CH(–N)–CH₂–O– in side 217 chains), 1.64 (–NH₂⁺–CH₂–CH₂–CH₂–CH₂–COO[–] in side chains), 1.68 (–NH₂⁺–CH₂–CH₂–CH₂–CH₂–COO[–] 218 in side chains), 2.22 (–NH₂⁺–CH₂–CH₂–CH₂–CH₂–COO[–] in side chains), 3.08 (–NH₂⁺–CH₂–CH₂–CH₂–CH₂–COO[–] 219 in side chains), 3.05–4.76 (cellulose backbone; CH₃–CH(–OH)–CH₂–O–, CH₃–CH(–N)–CH₂–O–, and (–O–CH(–CH₃)–CH₂–)n in side 220 chains). ¹³C NMR (500 MHz, D₂O): 15.6 (CH₃–CH(–N)–CH₂–O– in side chains), 17.4–22.0 (CH₃–CH(–OH)–CH₂–O– in side chains),

223 O- and ($-\text{O}-\text{CH}(-\text{CH}_3)-\text{CH}_2-$)_n in side chains), 25.5 ($-\text{NH}_2^+-\text{CH}_2-\text{CH}_2-\underline{\text{CH}_2}-\text{CH}_2-\text{COO}^-$ in side
224 chains), 28.3 ($-\text{NH}_2^+-\text{CH}_2-\underline{\text{CH}_2}-\text{CH}_2-\text{CH}_2-\text{COO}^-$ in side chains), 39.6 ($-\text{NH}_2^+-\text{CH}_2-\text{CH}_2-\text{CH}_2-$
225 $\underline{\text{CH}_2}-\text{COO}^-$ in side chains), 47.2 ($-\text{NH}_2^+-\underline{\text{CH}_2}-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{COO}^-$ in side chains), 56.4 (CH_3-
226 $\underline{\text{CH}}(-\text{N})-\text{CH}_2-\text{O}-$ in side chains), 68.2–107.0 (cellulose backbone; $\text{CH}_3-\underline{\text{CH}}(-\text{OH})-\underline{\text{CH}_2}-\text{O}-$,
227 $\text{CH}_3-\text{CH}(-\text{N})-\underline{\text{CH}_2}-\text{O}-$, and ($-\text{O}-\underline{\text{CH}}(-\text{CH}_3)-\underline{\text{CH}_2}-$)_n in side chains) 185.5 ($-\text{NH}_2^+-\text{CH}_2-\text{CH}_2-$
228 $\text{CH}_2-\text{CH}_2-\underline{\text{COO}}^-$ in side chains).

229 **2.9. Synthesis of HPC-(6-aminohexanoic acid) adduct (HPC-AA5)**

230 Prepared according to the general procedure with 6-aminohexanoic acid (2.55 g, 19.4 mmol,
231 4.7 equiv. to ketone groups) employed as the ω -aminoalkanoic acid. The product was a white
232 fibrous material (1.13 g, yield 89%, DS(Zw) 1.0). ¹H NMR (500 MHz, D₂O): 1.15 ($\underline{\text{CH}_3}-\text{CH}(-$
233 $\text{OH})-\text{CH}_2-\text{O}-$ and ($-\text{O}-\text{CH}(-\underline{\text{CH}_3})-\text{CH}_2-$)_n in side chains), 1.31 ($\underline{\text{CH}_3}-\text{CH}(-\text{N})-\text{CH}_2-\text{O}-$ in side
234 chains), 1.38 ($-\text{NH}_2^+-\text{CH}_2-\text{CH}_2-\underline{\text{CH}_2}-\text{CH}_2-\text{CH}_2-\text{COO}^-$ in side chains), 1.59 ($-\text{NH}_2^+-\text{CH}_2-\text{CH}_2-$
235 $\text{CH}_2-\underline{\text{CH}_2}-\text{CH}_2-\text{COO}^-$ in side chains), 1.70 ($-\text{NH}_2^+-\text{CH}_2-\underline{\text{CH}_2}-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{COO}^-$ in side
236 chains), 2.18 ($-\text{NH}_2^+-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\underline{\text{CH}_2}-\text{COO}^-$ in side chains), 3.07 ($-\text{NH}_2^+-\underline{\text{CH}_2}-\text{CH}_2-$
237 $\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{COO}^-$ in side chains), 3.05–4.76 (cellulose backbone; $\text{CH}_3-\underline{\text{CH}}(-\text{OH})-\underline{\text{CH}_2}-\text{O}-$,
238 $\text{CH}_3-\underline{\text{CH}}(-\text{N})-\underline{\text{CH}_2}-\text{O}-$, and ($-\text{O}-\underline{\text{CH}}(-\text{CH}_3)-\underline{\text{CH}_2}-$)_n in side chains). ¹³C NMR (500 MHz,
239 D₂O): 15.7 ($\underline{\text{CH}_3}-\text{CH}(-\text{N})-\text{CH}_2-\text{O}-$ in side chains), 17.4–22.0 ($\underline{\text{CH}_3}-\text{CH}(-\text{OH})-\text{CH}_2-\text{O}-$ and ($-\text{O}-\text{CH}(-\underline{\text{CH}_3})-\text{CH}_2-$)_n in side chains), 28.0 28.2 28.4 ($-\text{NH}_2^+-\text{CH}_2-\underline{\text{CH}_2}-\underline{\text{CH}_2}-\underline{\text{CH}_2}-\text{CH}_2-\text{COO}^-$ in
240 side chains), 40.0 ($-\text{NH}_2^+-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\underline{\text{CH}_2}-\text{COO}^-$ in side chains), 47.4 ($-\text{NH}_2^+-\underline{\text{CH}_2}-$
241 $\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{COO}^-$ in side chains), 56.3 ($\text{CH}_3-\underline{\text{CH}}(-\text{N})-\text{CH}_2-\text{O}-$ in side chains), 68.2–
242 107.0 (cellulose backbone; $\text{CH}_3-\underline{\text{CH}}(-\text{OH})-\underline{\text{CH}_2}-\text{O}-$, $\text{CH}_3-\text{CH}(-\text{N})-\underline{\text{CH}_2}-\text{O}-$, and ($-\text{O}-\underline{\text{CH}}(-$
243 $\text{CH}_3)-\underline{\text{CH}_2}-$)_n in side chains), 186.0 ($-\text{NH}_2^+-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\underline{\text{CH}_2}-\text{COO}^-$ in side chains).

245 **2.10. Titration**

246 HPC-AA1 (60 mg) was dissolved in DI water (15 mL) in a 30 mL beaker with magnetic
247 stirring. The pH meter was calibrated with a two-point calibration before starting the titration
248 process. Solution pH was adjusted to 2 by adding 0.1 N HCl solution. Subsequently, the solution
249 was titrated with 0.1 N NaOH until reaching pH of 12 under continuous stirring. The added base
250 volume and solution pH at each point were recorded. Titration was performed in triplicate at RT.

251 **2.11. Surface tension measurements**

252 Surface tension values of polymer solutions prepared in 50 mM phosphate buffer (pH 6.8)
253 at a polymer concentration of 50 μ g/mL were determined using a KRÜSS Tensiometer (KRÜSS
254 Scientific Instruments, Matthews, NC), which employs the Wilhelmy plate method to measure the
255 surface tension of liquid samples. Each measurement was repeated at least 50 times with the goal
256 of having a standard deviation less than or equal to 0.05 dyne/cm between the last 10 measurements.

257 **2.12. Nucleation-induction time experiments**

258 Polymers were dissolved in 15 mL 50 mM phosphate buffer (pH 6.8) at a concentration of
259 50 μ g/mL and equilibrated for 60 min at 37 °C. An enzalutamide supersaturated solution was
260 created by adding a concentrated stock solution of the drug in MeOH to the polymer solution
261 stirred at 300 rpm to yield a final drug concentration of 35 μ g/mL. This is far above the reported
262 crystalline solubility of 2.9 μ g/mL, hence the solution is supersaturated (supersaturation ratio,
263 which is the ratio of the observed solution concentration at supersaturation to that of the
264 equilibrium solubility (that is to say, the thermodynamic solubility of the drug), is 35/2.9 = 12)
265 (Wilson et al., 2020). The induction time, which is the time to detect the onset of crystallization in
266 the solution, was measured using a SI Photonics UV-Vis spectrometer (Tucson, AZ) coupled to a
267 fiber optic probe (path length 10 mm). The time at which there was an increase in scattering at a
268 non-absorbing wavelength (380 nm) was recorded as the induction time. Experiments were
269 performed in triplicate.

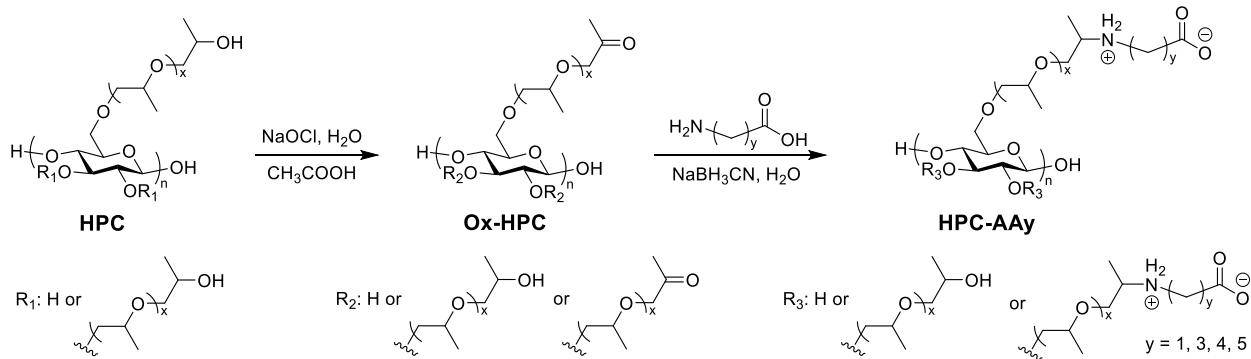
270 **2.13. Determination of polymer-water Flory–Huggins interaction parameter**

271 The isothermal water sorption and desorption profiles (**Figure S16**) were collected by
272 placing polymer powders in a pan and exposing to increasing and then decreasing relative
273 humidities (RH) using a Dynamic Vapor Sorption (DVS) Adventure System (Surface
274 Measurement System, Allentown, PA). Each sample was equilibrated at 37 °C and 0% RH for 60
275 min under a nitrogen purge, then the % RH was increased from 0 % to 95% with a 5 % increment
276 step with an equilibrium criterion of < 0.005% change in 5 min. The relative vapor pressure
277 obtained from the DVS data was used to calculate the Flory–Huggins interaction parameter using
278 the following equation (Zhang & Zografi, 2000):

279
$$\ln(p/p_0) = \ln V_1 + (1 - \frac{1}{x}) V_2 + \chi V_2^2 \quad (4)$$

280 where p is the partial pressure of water vapor, p_0 is the saturation pressure of water at the designated
281 temperature, V_1 is the volume fraction of the absorbed vapor, V_2 is the volume fraction of the
282 polymer, x is the relative molecular volume of the polymer and χ is the Flory–Huggins interaction
283 parameter. Calculations were based on HPC density (1.17 g/mL) (Samuels, 1969), with a
284 molecular volume of 1.42E-19 cm³/mol.

285 **2.14. Preparation and dissolution of amorphous solid dispersion (ASD) films**


286 ASD films containing 25 wt. % drug loading and either HPC or HPC-AA1 were prepared
287 using a Buchi Rotavapor-R (Newcastle, Delaware) equipped with Yamato BM-200 water bath set
288 at 70 °C. In brief, enzalutamide and the polymer were dissolved in methanol in a scintillation vial
289 followed by drying to form a film, which upon complete dissolution would generate solutions with
290 a supersaturation level of either 12 or 6.8. The films were prepared in scintillation vials and left
291 overnight under vacuum to ensure complete solvent removal. All dissolution studies were
292 conducted in triplicate in 50 mM phosphate buffer (pH 6.8) using a Hanson Vision G2 Classic 6
293 dissolution system (Teledyne Hanson Research, Chatsworth, CA), and an *in situ* Rainbow fiber
294 optic ultraviolet spectrometer coupled with 10 mm fiber optic dip probes (Pion, Billerica, MA,
295 USA) was used to monitor drug concentration over time. Second derivative analysis was applied
296 to correct the spectral baseline and the area under the curve was determined over the spectral range
297 of 310 – 320 nm. A calibration curve for enzalutamide was built over a concentration range 1 – 70
298 µg/mL.

299 **3. Results and discussion**

300 In this work, a highly substituted commercial HPC was chosen as starting material. We
301 hypothesized that by chemoselectively oxidizing the terminal secondary hydroxy groups of the
302 oligo(hydroxypropyl) substituents to ketones, using simple household bleach and a modification
303 of our recently published method (Nichols et al., 2020), we would create an ideal substrate for
304 adding ω -aminoalkanoic acid substituents by reductive amination. In the event, bleach oxidation
305 of the HPC terminal secondary hydroxy groups afforded DS(ketone) of Ox-HPC up to 1.8, creating
306 ample amine-reactive groups. Reductive amination is one of the most important methods for C–N

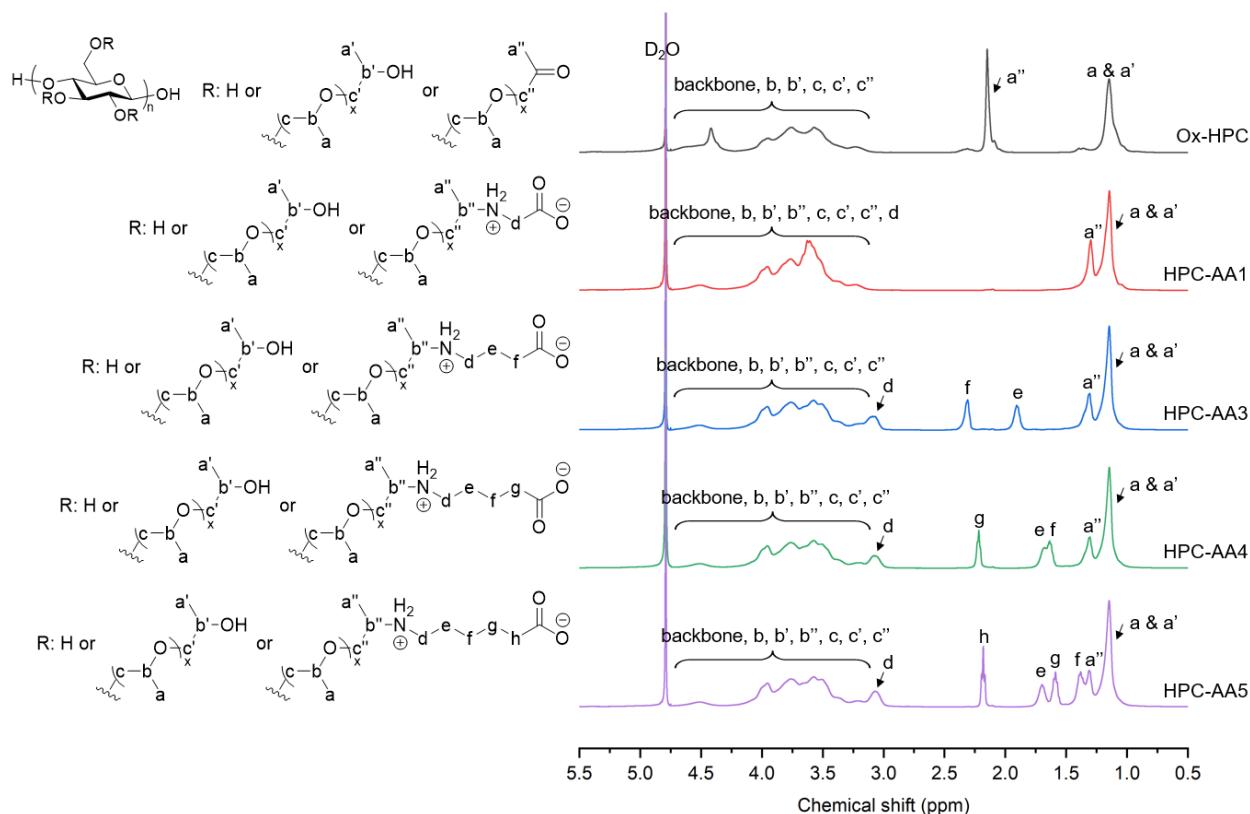
single bond construction, and involves nucleophilic attack of an amine upon (in our case) the ketone with loss of water to form imine bonds (Silva, 2020; Zhou, Petrova, & Edgar, 2021). The imine is then reduced to an amine, often using a borohydride derivative (Zhang & Edgar, 2015); this can be carried out in a separate step, or *in situ* to create a one-pot process from ketone to amine. Tertiary amines have frequently been used to introduce zwitterionic moieties in post-polymerization processes; it can be anticipated that the primary amines of ω -aminoalkanoic acids would be much better nucleophiles, leading to higher, faster conversions (Kanzian, Nigst, Maier, Pichl, & Mayr, 2009; Zhou & Edgar, 2022).

315

316

317

318 **Scheme 1.** Two-step synthesis of zwitterionic cellulose adducts starting from HPC. Products are
319 referred to herein as HPC-AA1, HPC-AA3, HPC-AA4, and HPC-AA5, corresponding to $y = 1$,
320 3, 4, and 5 respectively in the scheme above. Note that structures in this and other figures are not
321 meant to imply regioselective substitution; depictions used are merely for clarity and simplicity
322 for the reader.


323

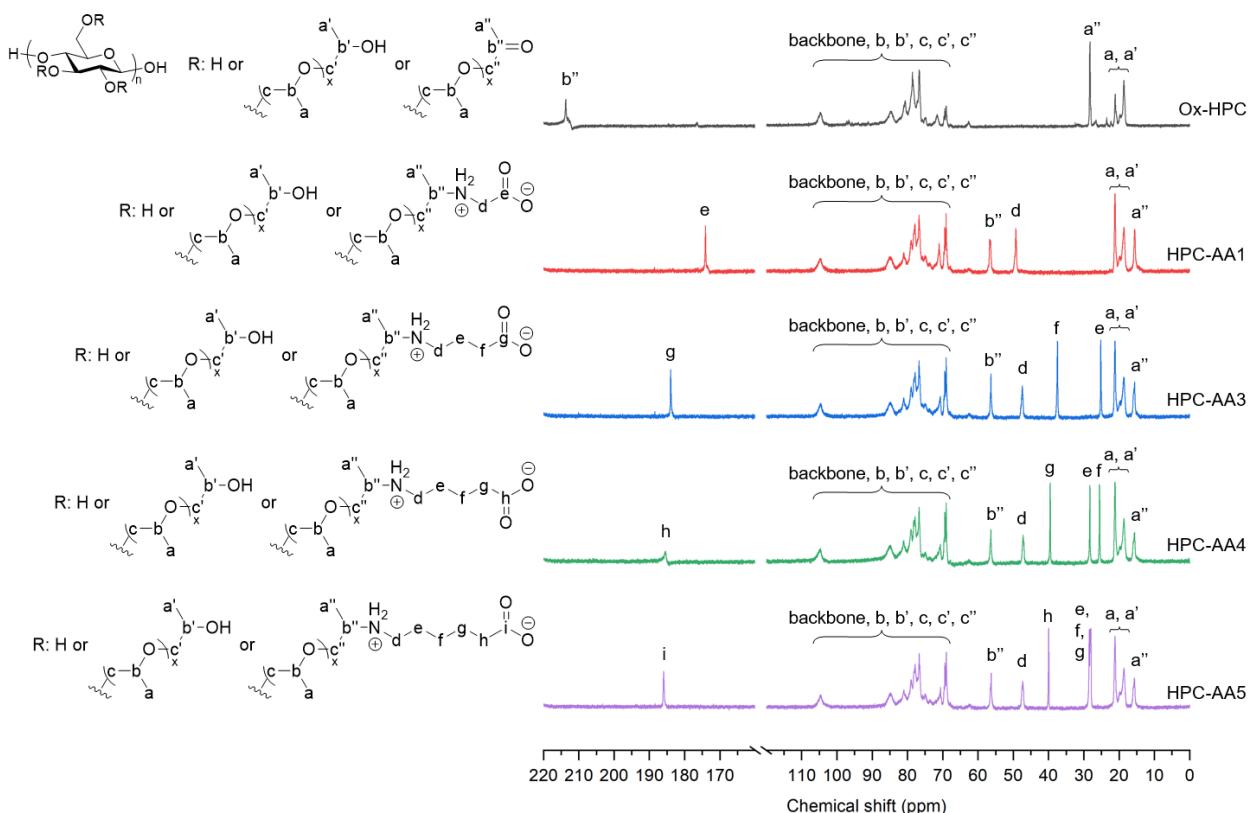
324 3.1. Synthesis and characterization of zwitterionic cellulose adducts

325 Water was chosen as a green, benign, inexpensive solvent for reductive amination of HPC,
326 and we chose to explore the potentially efficient one-pot approach. The equilibrium between non-
327 zwitterionic and zwitterionic forms of ω -aminoalkanoic acids in aqueous solution was taken
328 advantage to facilitate the reactions (Kaßner, Kronawitt, Klimm, Seifert, & Spange, 2019).
329 Moderate temperatures (37°C) were explored for the condensation between Ox-HPC ketones and
330 the amine termini of the ω -aminoalkanoic acids, based on our previous work preparing all-

331 polysaccharide hydrogels by reaction of Ox-HPC ketones with the amino groups of chitosan (Chen
 332 et al., 2020; Zhou, Zhai, et al., 2022). These reductive aminations could be monitored by ^1H NMR
 333 spectroscopy, and product structures were confirmed by FTIR, as well as by ^1H NMR, ^{13}C , ^1H - ^1H
 334 COSY, and ^1H - ^{13}C HSQC NMR spectroscopic methods. **Figure 1** shows an overlay of the ^1H
 335 NMR spectra of Ox-HPC and its zwitterionic derivatives. The methyl group of Ox-HPC adjacent
 336 to the new ketone resonates at 2.2 ppm. After reductive amination with glycine, that methyl
 337 resonance almost completely disappeared. A new resonance appeared at 1.3 ppm, which we
 338 assigned to the methyl groups adjacent to the secondary amine (a'') in the spectrum of HPC-AA1,
 339 **Figure 1**.

340

341


342 **Figure 1.** ^1H NMR spectra of Ox-HPC, HPC-AA1, HPC-AA3, HPC-AA4, and HPC-AA5.

343

344 The DS(Zw) of product HPC-AA1 was 1.6, calculated from the ratio of integrals of
 345 resonances a'' and (a & a'), corresponding to 91% of the available ketone groups having been
 346 reductively aminated. The high DS(Zw) achieved can be attributed to the structure of Ox-HPC and
 347 ω -aminocarboxylic acids, where the Ox-HPC ketones at the termini of the oligo(HP) substituents

348 have broader approach angles compared to the functionalities on the polysaccharide backbone
 349 (Zhou et al., 2021), and the glycine amines likewise have wide approach angles. We selected
 350 sodium cyanoborohydride for the reduction step, since it is a less reactive, more selective reducing
 351 agent for reductive amination (Clinton, 1975). However, competitive direct reduction of the
 352 ketones to hydroxyls was still a concern as a potential side-reaction (Borch, Bernstein, & Durst,
 353 1971; Clinton, 1975). It was possible to quantify the direct ketone reduction side reaction by
 354 difference; subtracting the measured values (^1H NMR) of DS(Zw) from the original DS(ketone),
 355 and subtracting the measured residual ketone from that number, afforded an estimate of the amount
 356 of ketone reduction. In the reductive amination of Ox-HPC with glycine, ca. 9% of the original
 357 ketone groups were lost due to the side reaction of reduction to hydroxy groups.

358

359

360 **Figure 2.** ^{13}C NMR spectra of Ox-HPC, HPC-AA1, HPC-AA3, HPC-AA4, and HPC-AA5.

361

362 Further characterization evidence was provided by the HPC-AA ^{13}C NMR spectra (**Figure**
 363 **2**), where the resonance of the methyl next to the ketone group at 28 ppm in Ox-HPC moved to 16
 364 ppm in HPC-AA1 after reductive amination, supporting the expected formation of the new

secondary amine. The ^{13}C resonance at 16 ppm was correlated to the proton at 1.3 ppm in the ^1H – ^{13}C HSQC spectrum, supporting this assignment (**Figure S2**). A new resonance attributed to the methylene of the glycine substituent was observed at 49 ppm. It was correlated in HSQC with a proton at roughly 3.6 ppm, within the backbone region of cellulose, consistent with the expected shift of the glycine methylene. Ketone carbons resonated at 214 ppm in the ^{13}C NMR spectrum of Ox-HPC, but in the ^{13}C spectrum of HPC-AA1 the ketone resonance was not significant, consistent with high conversion of ketone to imine (and a much lower percentage of alcohol). On the other hand, a resonance assigned to the glycine carboxyl group at 174 ppm was observed in HPC-AA1. No ^{13}C resonance was observed at 44 ppm, which is the chemical shift of the glycine alpha-carbon, indicating that there was no significant evidence for free glycine in the product.

It was of interest to investigate the influence of the length of the oligo(methylene) linker between amine and carboxyl upon reactivity, product solubility, and other properties, and ultimately upon performance in ASD and other applications. Therefore, we sought to broaden the applicability of this reductive amination approach to include 4-aminobutyric acid (γ -aminobutyric acid, or GABA; an important neurotransmitter (Michels et al., 2012)), 5-aminovaleric acid, and 6-aminohexanoic acid as potential reactants. These condensations were also all attempted in water, at 37 °C, and for 48 h. The signature resonance for methyl groups at the oligo(HP) chain termini, next to the appended amine substituent, was observed at ca. 1.3 ppm in each product ^1H NMR spectrum. In each case, the proton resonance for the methyl group adjacent to the ketone in Ox-HPC at 2.2 ppm was insignificant, illustrating near complete consumption of ketone after 48 h. Conversions for products with tethers longer than that of glycine were easier to calculate because they possessed at least one methylene that was not proximal to a strong electron-withdrawing group (thus not overlapping with the cellulose backbone region or other resonances) that could be observed and quantified from the ^1H NMR spectrum. Conversion of ketone moieties to zwitterionic ω -aminoalkanoate substituents was somewhat lower overall for ω -aminoalkanoates with longer oligo(methylene) tethers, with DS(Zw) decreasing from 1.6 for glycine to between 0.9 – 1.0 for the higher analogs, as determined by ^1H NMR integration ratios (**Table 1**). In the ^{13}C NMR spectra of these products, no significant ketone carbon was observed, consistent with near-complete conversion of the ketone. In each case a new resonance at 16 ppm was present, assigned to the methyl group near the new formed secondary amine. All expected carbon and proton resonances from the internal methylenes of the appended ω -aminoalkanoate substituents were

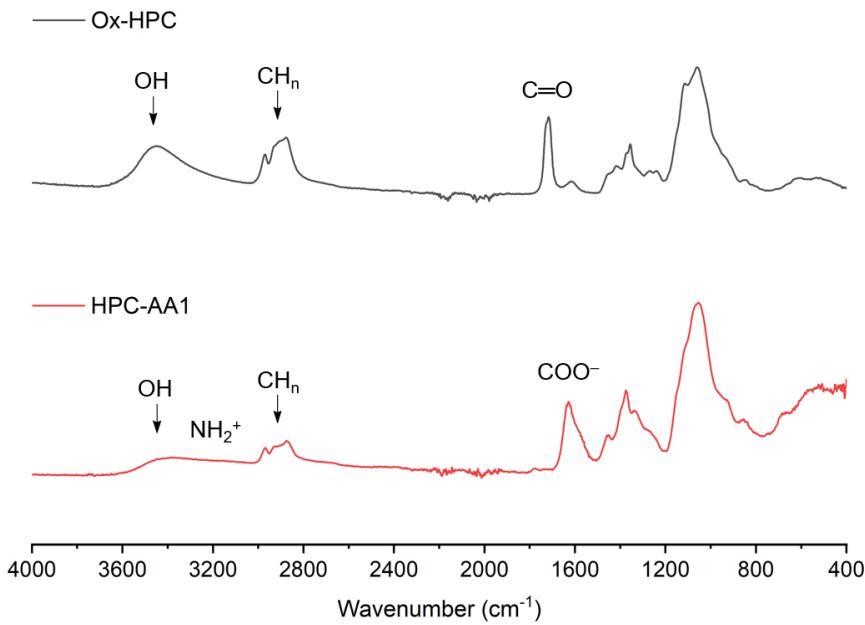
present as expected and with predictable chemical shifts, supporting successful synthesis of the targeted reductive amination products. It is also noteworthy that these chemical shifts of methylenes adjacent to amine all differed from those of the corresponding groups in the monomeric ω -aminoalkanoate reactants (**Figure S9**); there was no evidence of monomeric contaminants in the products. Resonance assignments for the appended ω -aminoalkanoate moieties were supported by ^1H – ^1H COSY and ^1H – ^{13}C HSQC NMR spectra (**Figure S3 – S8**). All the methylenes in ω -aminocarboxylic acids could be identified even more easily by ^1H – ^{13}C HSQC NMR spectra because they appeared as blue in the negative phase. Proton resonances at 3.1 ppm were particularly distinctive and were assigned to the methylene adjacent to the newly formed secondary amine. The proton spectra also revealed, by the difference methods (DS(ketone) – DS(Zw)) described above, that the lower conversion of ketones to ω -aminoalkanoate substituents for the ω -aminoalkanoates with tethers longer than that of glycine was due to competing direct reduction of the ketone by sodium cyanoborohydride, where about 40% of the ketone groups were reduced to secondary hydroxy groups. We speculate that this was due to slower kinetics for condensation of the higher ω -aminoalkanoates with Ox-HPC ketones. This is surely influenced by steric factors, but could also be influenced by self-association of the higher ω -aminoalkanoate analogs in water, due to their larger proportions of hydrophobic components.

413

414

Table 1. Conversions to zwitterionic polysaccharides and DS(Zw).

	HPC-AA1	HPC-AA3	HPC-AA4	HPC-AA5
Conversion	91%	54%	52%	57%
DS	1.6	1.0	0.9	1.0


415

416 **3.2. Polymer properties**

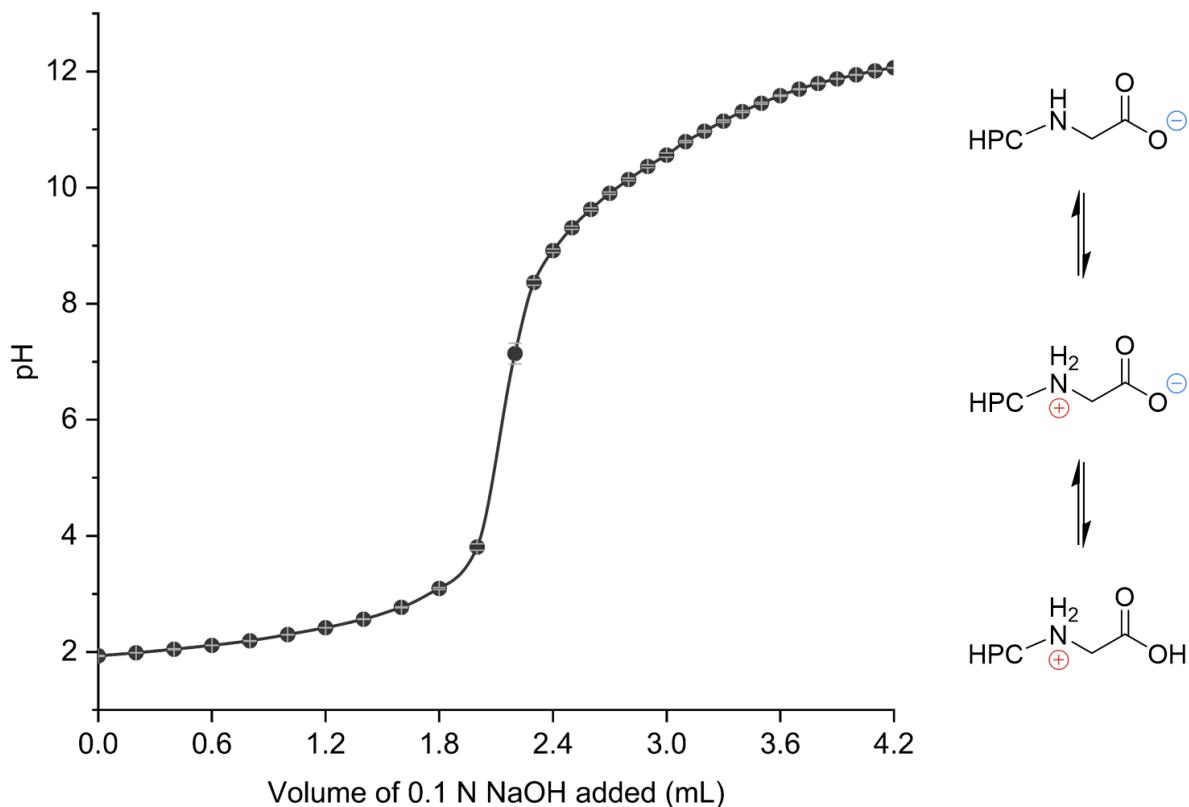
417 FTIR spectra were recorded to gather further evidence for product identities (**Figure 3**).
418 Broad absorbances near 3440 cm^{-1} corresponding to O–H stretching vibrations, at 2965 cm^{-1} and
419 2870 cm^{-1} corresponding to C–H stretching vibrations, and at 1056 cm^{-1} (C–O–C stretching
420 vibration) were observed for all cellulose derivatives. Ox-HPC displayed the expected C=O ketone

421 stretch at 1712 cm^{-1} (Eguchi, Kawabata, & Goto, 2017; Nichols et al., 2020; Zhang et al., 2016).

422

423

424 **Figure 3.** FTIR spectra of Ox-HPC, and HPC-AA1.


425

426 No significant ketone stretch (ca. 1700 cm^{-1} , see Ox-HPC spectrum, **Figure 3**) was
427 observed in reductive amination product spectra. The key features supporting the purported
428 reductive amination product structures were the broad absorbances in the vicinity of 3200 cm^{-1} ,
429 attributed to N–H stretch, and the moderately strong absorbances centered at approximately 1620 cm^{-1} ,
430 attributed to the ionized carboxylates (COO⁻). In the FTIR spectrum of HPC-AA1, a broad
431 band between O–H stretch and C–H stretch appeared, likely resulting from N–H stretching
432 vibrations. The band at 1624 cm^{-1} can be attributed to COO⁻ asymmetric stretching. These
433 assignments reference (Ambujam, Selvakumar, Prem Anand, Mohamed, & Sagayaraj, 2006;
434 Kumar, Vizhi, Sivakumar, Vijayan, & Babu, 2012; Mary, Ushakumari, Harikumar, Varghese, &
435 Panicker, 2009; Rosado, Duarte, & Fausto, 1998). Regarding the FTIR spectra of HPC-AA3, HPC-
436 AA4, and HPC-AA5 (**Figure S10**), absorbances at around 1560 cm^{-1} were observed. These
437 characteristic absorbances could be attributed to COO⁻ asymmetric stretching (Vamecq et al.,
438 2009). A weak peak of N–H bending might be overlapped between $1620 - 1560\text{ cm}^{-1}$ (Heacock &
439 Marion, 1956; Smith, 2019; Smith, 2018).

440 ¹H NMR spectra (**Figure S11**) confirmed that the amines of the polymers were in

441 protonated form in aqueous solution. We compared the ^1H NMR spectra of HPC-AA3 in D_2O , and
442 10 vol% acetic acid- d_4 in D_2O . The protons a" and d near the amine did not change chemical shifts
443 significantly upon addition of acetic acid. This evidence supports the hypothesis that the amines
444 are in protonated form in D_2O or water, as expected if the polymer is zwitterionic. Based on this
445 evidence and on supportive facts and theory (the pKa values of amines (ca. 10) and carboxylic
446 acids (ca. 4.5), and the fact that natural amino acids are zwitterionic at neutral pH), we are
447 confident that the ω -aminocarboxylic acid reductive amination products (HPC-AA) are in
448 zwitterionic form in neutral or near-neutral aqueous solutions.

449 A titration experiment was conducted to determine the effect of pH on product ionization
450 state (**Figure 4**). An HPC-AA1 solution was acidified and subsequently titrated with base from pH
451 2 to 12. The titration profile showed a similar trend compared to that of glycine (Darvey & Ralston,
452 1993). The two distinct inflection points indicated the deprotonation of carboxylic acid and
453 secondary ammonium ion, respectively. HPC-AA1 was primarily in its zwitterionic form in the
454 pH range between 4 – 8. It implies that as an oral drug carrier, the adducts would be mostly in
455 zwitterionic form in the environments of most important sites of oral drug absorption: small
456 intestine (pH range of 6.6 – 7.5) and colon (pH range of 6.4 – 7.0) (Evans et al., 1988). Under
457 strong acidic or alkaline conditions, HPC-AA1 showed a net positive or negative charge.

Figure 4. Titration profile of HPC-AA1.

Given the potential impact on polymer thermal stability of the introduced charged groups, structure-property relationships were further probed by TGA. Preliminary TGA experiments revealed that the zwitterionic products were hygroscopic, which was unsurprising given the abundance of charged groups. Therefore, all samples were dried at 80 °C overnight under vacuum prior to TGA analysis in order to remove free water, and potentially some bound water. Less than 1 wt% weight loss occurred up to 150 °C. According to the TGA (**Figure S12**) and (Derivative Thermogravimetry) DTG (**Figure S13 – S14**) curves of the products, significant weight loss of all samples began at ca. 200 °C, indicating the start of pyrolysis (Zhang et al., 2021). The majority of the weight loss occurred between 250 – 400 °C. The fastest weight loss HPC-AA1 was at ca. 300 °C, which was lower than that for Ox-HPC (ca. 330 °C). This phenomenon is consistent with previous studies indicating that the introduction of zwitterionic side chains is not conducive for the thermal stability of the polymer (Ma, Zhou, Wu, & Zhang, 2011). Meanwhile, HPC-AA3,

474 HPC-AA4, and HPC-AA5 exhibited the fastest weight loss temperature at ca. 350 °C. Factors
475 including lower DS(Zw) and extended side chains possibly led to an increased resistance to
476 degradation (Heinze, Mang, Popescu, & Weichold, 2016). The 5% weight loss temperature (T_{d5})
477 is frequently used to characterize polymer thermal stability. HPC-AA3, HPC-AA4, and HPC-AA5
478 showed slightly higher T_{d5} values than Ox-HPC, while HPC-AA1 had the lowest T_{d5} (214 °C).
479 This observation may have been due to the higher DS(Zw) of HPC-AA1 and higher hydrophilicity
480 of glycine compared to other ω -aminocarboxylic acids. Overall, the zwitterionic cellulose
481 derivatives were relatively thermally stable.

482 Glass transition temperature (T_g) is an important property of amorphous polymers for many
483 applications, reflecting macro-manifestation of chain flexibility (Wang, Zheng, & Zheng, 2011).
484 With regard to potential application in ASD, T_g has particular importance; ASDs are metastable
485 molecular dispersions of amorphous bioactive compounds in polymer matrices. For storage
486 stability, it is critical that ASD formulations have T_g values above ambient temperature (i.e., remain
487 in the glassy phase) even at high ambient temperatures, in high humidity, and when the bioactive
488 species happens to be a plasticizer for the polymer. T_g values obtained from DSC are shown in
489 **Table 2**. Further analysis of the DSC results reveals that ω -aminoalkanoate-substituted,
490 zwitterionic derivatives did not exhibit crystallization or melting thermal transitions, supporting
491 the contention that all derivatives were amorphous. All zwitterionic products displayed T_g values
492 higher than that of the starting polymer Ox-HPC (T_g 81 °C). The zwitterionic side chains are
493 capable of strong dipole–dipole interactions which may restrict polymer flexibility (Bengani-Lutz,
494 Converse, Cebe, & Asatekin, 2017); T_g of HPC-AA1 reached 135 °C with its high DS(Zw). As the
495 oligo(methylene) tether length increased, and with lower DS(Zw), the higher analogs displayed
496 lower T_g values than that of the glycine adduct (but still higher than Ox-HPC).

497

498 **Table 2.** Thermal properties of zwitterionic cellulose derivatives: glass transition (T_g) and 5%
499 weight loss (T_{d5}) temperatures.

	T_g (°C)	T_{d5} (°C)
Ox-HPC	81	242
HPC-AA1	135	214

HPC-AA3	92	247
HPC-AA4	96	246
HPC-AA5	94	247

500

501 Water solubility is a key property for many applications, not least for ASD. ASD polymers
 502 must have sufficient aqueous solubility to release the drug in the aqueous medium of the
 503 gastrointestinal (GI) tract, and it is beneficial that the polymer dissolve rapidly, since this controls
 504 the drug release rate (Saboo, Mugheirbi, Zemlyanov, Kestur, & Taylor, 2019). Solubility of the
 505 HPC ω -aminoalkanoate reductive amination products was evaluated (**Table 3**) in water, dimethyl
 506 sulfoxide (DMSO), *N,N*-dimethylacetamide (DMAc), methanol, ethanol, and acetone (the last
 507 three being important solvents for spray-drying of ASD formulations). All ω -aminoalkanoate
 508 products were soluble in water because of their high ionic content. Polar organic solubility of the
 509 derivatives was influenced by the length of the oligo(methylene) tether. Products HPC-AA1 and
 510 HPC-AA3 were soluble in methanol, but HPC-AA4 and HPC-AA5 were not. No products were
 511 soluble in the less polar solvents ethanol and acetone.

512

513

Table 3. Solubility of zwitterionic polymers.

	Ox-HPC	HPC-AA1	HPC-AA3	HPC-AA4	HPC-AA5
Water	+	+	+	+	+
DMSO	+	S	+	S	+
DMAc	+	—	—	S	S
Methanol	+	+	+	S	S
Ethanol	S	—	—	—	—
Acetone	—	—	—	—	—

514 (+) soluble; (-) insoluble; (S) swellable.

515 Conditions: Visual examination using 5 mg sample in 1 mL solvent after vortex mixing for 5 min,
516 followed by gentle rolling overnight. Solubility of Ox-HPC was from (Zhou, Zhai, et al., 2022).

517

518 HPC is a thermoresponsive polymer that displays a lower critical solution temperature
519 (LCST) in aqueous solution (usually between 40 and 45 °C), as do several cellulose ethers
520 (Gosecki, Setälä, Virtanen, & Ryan, 2021; Weißenborn & Braunschweig, 2019). The mechanism
521 of thermal gelation by cellulose ethers is still the subject of active investigation. Generally it is
522 accepted that cellulose ethers like HPC interact strongly with water at lower temperatures (e.g.
523 room temperature), but the hydrophobic interaction between polymer chains lead to coil-to-globule
524 transition at temperatures above their LCST and, frequently, gelation (Coughlin et al., 2021;
525 Pasparakis & Tsitsilianis, 2020). We measured the lowest temperature at which visible phase
526 transition of HPC, Ox-HPC, and the zwitterionic adducts could be observed (**Table 4**). Solutions
527 of Ox-HPC started to become turbid at 64 °C, even though Ox-HPC has significantly fewer
528 hydroxyl groups than HPC. No turbidity of the zwitterionic adduct solutions was observed up to
529 99 °C. It is likely that the stronger interaction between the zwitterionic sidechains and water is
530 more persistent even at higher temperatures.

531

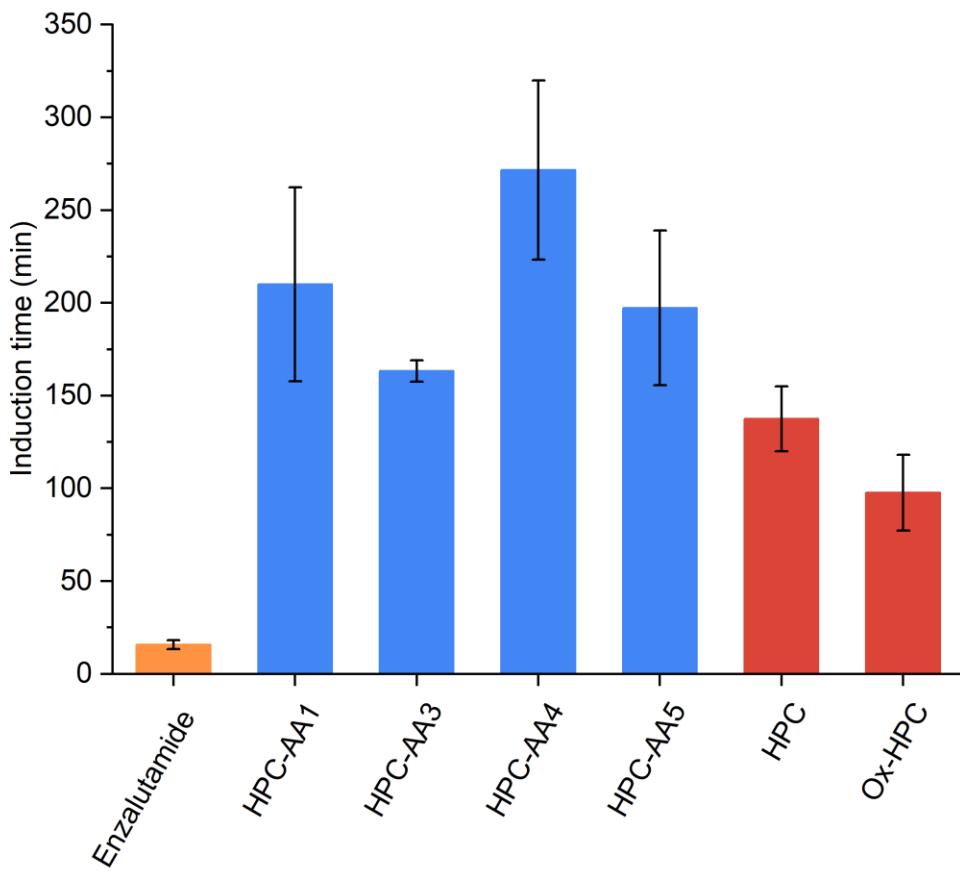
532 **Table 4.** Thermoresponsivity of zwitterionic polymers.

	HPC	Ox-HPC	HPC-AA1	HPC-AA3	HPC-AA4	HPC-AA5
Phase transition ^a	37 °C	64 °C	None ^b	None ^b	None ^b	None ^b

533 Measurements at 100 mg polymer/1 mL water.

534 ^a Lowest temperature of visible phase transition.

535 ^b No turbidity observed up to 99 °C.


536 **3.3. Application of the zwitterionic cellulose adducts as ASDs**

537 Besides high T_g , the hydrophilic/hydrophobic balance of polymers is also considered as a
538 key factor for inhibiting drug crystallization effectively because the polymer must interact with the

539 hydrophobic drug, both in the solid pill and in the aqueous medium of the GI tract (Dong,
540 Mosquera-Giraldo, Taylor, & Edgar, 2016). However, if the polymer becomes too hydrophobic,
541 self-interactions are favored over interactions with the drug, hence, a fine balance is required
542 (Mosquera-Giraldo et al., 2016). The zwitterionic cellulose adducts have high aqueous solubility;
543 this could assist rapid drug release from the ASD, but could impede the necessary association with
544 the hydrophobic drug. We evaluated the ability of these polymers to inhibit crystallization using
545 the hydrophobic, poorly soluble (< 3 μ g/mL), fast-crystallizing, anti-prostate cancer drug
546 enzalutamide as a challenging model drug, by *in vitro* experiments.

547 The induction time measurements (**Figure 5**) show that the zwitterionic polymers were
548 more effective as crystallization inhibitors than precursor HPC. These polymers may have a better
549 amphiphilic balance, because of the hydrophilic zwitterionic groups and hydrophobic hydrocarbon
550 portions of the side chains, allowing them to have more favorable interactions with both the
551 hydrophobic drug and the aqueous solution (Mosquera-Giraldo et al., 2016). It has been shown
552 that the conformation of the commercial polymer, hydroxypropyl methyl cellulose (hypromellose)
553 acetate succinate at the solid-liquid interface of the hydrophobic drug surface depends on the
554 polymer's ionization state (Schram et al., 2015). Higher degrees of ionization caused the polymer
555 chains to repel one another with reduced tendency to form coiled globules, allowing for more
556 uniform adsorption on the crystal surface and thereby more efficient maintenance of the
557 supersaturated state. Zwitterionic polymers may have an added advantage as they remain ionized
558 over a wide pH range, allowing for maintenance of supersaturation across a larger absorption
559 window throughout the GI tract. It is notable that all HPC-AA polymers increased crystallization
560 induction time at least to > 150 min, even in an *in vitro* test where enzalutamide permeation through
561 the epithelial membrane was not possible. In the actual small intestine where permeation occurs
562 as well as dissolution, 2.5 h may be more than enough delay in crystallization to greatly enhance
563 bioavailability, even for the extremely challenging drug enzalutamide.

564

565

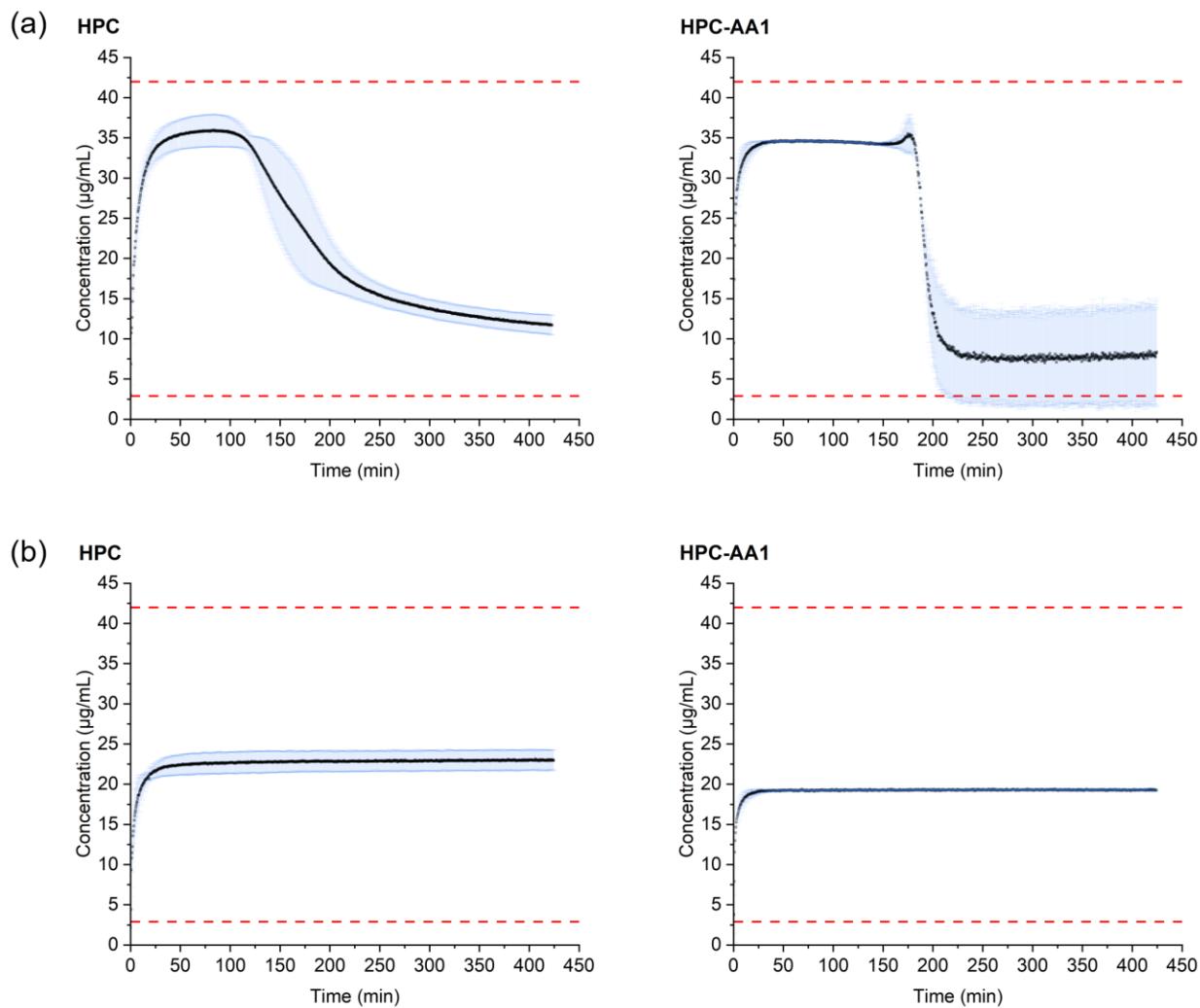
566 **Figure 5.** Mean induction time measurements of supersaturated enzalutamide solutions (35
 567 $\mu\text{g/mL}$) in presence of 50 $\mu\text{g/mL}$ pre-dissolved polymer. Error bars represent standard
 568 deviations, $n = 3$.

569 The amphiphilicity of the polymers is reflected in the surface tension measurements (**Table**
 570 **5**) where it can be noted that all HPC-AA polymers have similar ability to reduce the surface
 571 tension of water as does the starting material, HPC. While the surface tension measurements do
 572 not trend exactly with the induction time measurements discussed above, they provide an
 573 indication of the tendency of the polymers to adsorb at a hydrophobic (air)-hydrophilic interface,
 574 and provides surrogate information about adsorption tendency at the crystal-water interface.
 575 Amphiphilic polymers are known to adsorb on the crystal-water interface, blocking access of
 576 solute molecules to the crystal surface, and decreasing the rate of crystallization (Schram, Taylor,
 577 & Beaudoin, 2015). However, while adsorption is a prerequisite for preventing incorporation of
 578 molecules into the crystal lattice, the conformation of the adsorbed polymer is also important

579 (Schram, Beaudoin, & Taylor, 2015; Schram, Taylor, et al., 2015); this is determined by
580 interactions with both the solid surface and the aqueous media. The importance of the polymer
581 conformation at the crystal-water interface may well explain the lack of direct correlation between
582 polymer surface tension measurements and induction times. The Flory–Huggins interaction
583 parameters shown in **Table 5** provide a measure of how favorable the interaction is with water,
584 whereby lower values indicate better interactions. Based on these values, zwitterionic polymers
585 interact more favorably with water compared to HPC, and as a result, may have more extended
586 conformations on the crystal surface. This extended conformation, in turn, may provide more
587 efficient blocking of crystal growth (Schram, Beaudoin, et al., 2015).

588

589 **Table 5.** Aqueous-air surface tension (pH 6.8) and Flory–Huggins interaction parameters of
590 zwitterionic polymers at a polymer concentration of 50 $\mu\text{g/mL}$ ^a.


	HPC	Ox-HPC	HPC-AA1	HPC-AA3	HPC-AA4	HPC-AA5
Surface tension (dyne/cm)	43.63 (0.05)	49.66 (0.05)	43.63 (0.05)	47.43 (0.05)	52.36 (0.05)	43.11 (0.05)
Flory–Huggins interaction parameter (χ)	2.18	ND ^b	1.63	1.24	1.33	1.43

591 ^a Standard deviations are shown in parentheses, where n = 20.

592 ^b ND: Not determined.

593 These differences are reflected in the release data for amorphous solid dispersion films
594 made with enzalutamide and either HPC-AA1 or HPC. Both polymers enabled rapid and complete
595 release of the drug as they are both water-soluble, however at the higher supersaturation ratio, the
596 HPC-AA1 polymer was able to maintain the supersaturated concentration without crystallization
597 for 200 mins compared to 120 mins in the case of HPC, as shown in (**Figure 6a**). A longer duration,
598 higher supersaturation ratio is favorable to promote drug absorption as the dosage form transits
599 through the small intestine. Both polymers maintained supersaturation for 6 h at a lower
600 supersaturation ratio as shown in (**Figure 6b**).

601
602

603

604 **Figure 6.** Dissolution profiles of HPC and HPC-AA1 ASD films at two different supersaturation
605 ratios: (a) 12 and (b) 6.8. The upper and lower dashed lines represent the amorphous and
606 crystalline solubility of enzalutamide as previously determined (Wilson et al., 2018). Error bars
607 represent standard deviations, $n = 3$.

608 4. Conclusions

609 We have successfully demonstrated a new approach to zwitterionic cellulose derivatives
610 by exploiting reductive amination of selectively oxidized hydroxypropyl cellulose and readily

611 available ω -aminocarboxylic acids. The ω -aminoalkanoate-substituted products exhibited
612 interesting properties including excellent thermal stability, tailorabile solubility, and highly
613 effective crystallization inhibition of the hydrophobic, fast-crystallizing, anti-cancer drug
614 enzalutamide. The ability to make zwitterionic polymers with high DS(Zw) is a valuable and
615 unusual feature of this method. Overall, this work provides a simple, efficient, versatile, cost-
616 effective synthetic strategy for preparing zwitterionic cellulose derivatives of readily adjustable
617 properties, providing promise for pharmaceutical and other applications. Clearly it should be
618 applicable to any natural polysaccharide, since all polysaccharides possess hydroxy groups that
619 can be reacted with propylene oxide to append oligo(hydroxypropyl) groups that can then be
620 oxidized and reductively aminated; it is reasonable to anticipate that hydroxypropylation of amine
621 groups (e.g. of 2-amino-2-deoxy groups on polysaccharides such as chitosan) could also be a
622 useful entrée to such derivatives. The ability of these zwitterionic polymers to dissolve in water
623 offers great promise for their application from aqueous-based coating systems; this ability could
624 enable green surface coatings (with solubility adjustable by post-application crosslinking) with
625 antibacterial, antifouling, or other useful properties.

626

627 **CRediT authorship contribution statement**

628 Yang Zhou: Conceptualization, Methodology, Investigation, Validation, Formal analysis,
629 Visualization, Writing – original draft, Writing – review & editing.

630 Yimin Yao: Investigation, Validation, Formal analysis, Writing – review & editing.

631 Zhenghao Zhai: Investigation, Validation, Writing – review & editing.

632 Mennatallah A. Mohamed: Investigation, Formal analysis, Visualization, Writing – original
633 draft.

634 Fiorella Mazzini: Investigation, Formal analysis.

635 Qingqing Qi: Investigation, Formal analysis.

636 Michael J. Bortner: Methodology, Formal analysis, Writing – review & editing, Resources.

637 Lynne S. Taylor: Methodology, Formal analysis, Writing – review & editing, Resources.

638 Kevin J. Edgar: Conceptualization, Methodology, Formal analysis, Writing – review & editing,
639 Resources, Supervision.

640

641 **Declaration of competing interest**

642 The authors declare that they have no conflict of interest.

643

644 **Acknowledgements**

645 We thank the Virginia Tech Institute for Critical Technology and Applied Science, the
646 Department of Sustainable Biomaterials, and the College of Natural Resources and Environment
647 for partial support of this work. We are grateful for the David W. Francis & Lillian Francis
648 Research Fellowship (YZ) which provided partial support of this work. We are grateful to the
649 U.S. Department of Agriculture (NIFA) for partial support of this work through grant 2020-
650 67021-31379 (ZZ). We thank the U.S. National Science Foundation for partial support of this

651 work through grants DMR-2204996 and DMR-2204995 (MM, QQ). We thank Dr. Murthy
652 Shanaiah for guidance about NMR experiments.

653

654 **References**

655 Ambujam, K., Selvakumar, S., Prem Anand, D., Mohamed, G., & Sagayaraj, P. (2006). Crystal
656 growth, optical, mechanical and electrical properties of organic NLO material γ -glycine.
657 *Crystal Research and Technology: Journal of Experimental and Industrial*
658 *Crystallography*, 41(7), 671-677.

659 Amer, H., Nypelö, T., Sulaeva, I., Bacher, M., Henniges, U., Potthast, A., & Rosenau, T. (2016).
660 Synthesis and characterization of periodate-oxidized polysaccharides: dialdehyde xylan
661 (DAX). *Biomacromolecules*, 17(9), 2972-2980.

662 Arca, H. C., Mosquera-Giraldo, L. I., Bi, V., Xu, D., Taylor, L. S., & Edgar, K. J. (2018).
663 Pharmaceutical applications of cellulose ethers and cellulose ether esters.
664 *Biomacromolecules*, 19(7), 2351-2376.

665 Arca, H. C., Mosquera-Giraldo, L. I., Taylor, L. S., & Edgar, K. J. (2017). Synthesis and
666 characterization of alkyl cellulose ω -carboxyesters for amorphous solid dispersion.
667 *Cellulose*, 24(2), 609-625.

668 Bengani-Lutz, P., Converse, E., Cebe, P., & Asatekin, A. (2017). Self-assembling zwitterionic
669 copolymers as membrane selective layers with excellent fouling resistance: effect of
670 zwitterion chemistry. *ACS applied materials & interfaces*, 9(24), 20859-20872.

671 Blackman, L. D., Gunatillake, P. A., Cass, P., & Locock, K. E. (2019). An introduction to
672 zwitterionic polymer behavior and applications in solution and at surfaces. *Chemical*
673 *Society Reviews*, 48(3), 757-770.

674 Borch, R. F., Bernstein, M. D., & Durst, H. D. (1971). Cyanohydridoborate anion as a selective
675 reducing agent. *Journal of the American Chemical Society*, 93(12), 2897-2904.

676 Calabrese, V., da Silva, M. A., Schmitt, J., Muñoz-Garcia, J. C., Gabrielli, V., Scott, J. L.,
677 Angulo, J., Khimyak, Y. Z., & Edler, K. J. (2018). Surfactant controlled zwitterionic
678 cellulose nanofibril dispersions. *Soft Matter*, 14(38), 7793-7800.

679 Chen, J., Nichols, B. L., Norris, A. M., Frazier, C. E., & Edgar, K. J. (2020). All-polysaccharide,
680 self-healing injectable hydrogels based on chitosan and oxidized hydroxypropyl
681 polysaccharides. *Biomacromolecules*, 21(10), 4261-4272.

682 Cheng, G., Li, G., Xue, H., Chen, S., Bryers, J. D., & Jiang, S. (2009). Zwitterionic
683 carboxybetaine polymer surfaces and their resistance to long-term biofilm formation.
684 *Biomaterials*, 30(28), 5234-5240.

685 Clinton, F. (1975). Sodium cyanoborohydride—a highly selective reducing agent for organic
686 functional groups. *Synthesis*, 3, 135-146.

687 Coughlin, M. L., Liberman, L., Ertem, S. P., Edmund, J., Bates, F. S., & Lodge, T. P. (2021).
688 Methyl cellulose solutions and gels: Fibril formation and gelation properties. *Progress in
689 Polymer Science*, 112, 101324.

690 Darvey, I. G., & Ralston, G. B. (1993). Amino acid titration curves-misshapen or mislabeled?
691 *Trends in biochemical sciences*, 18(3), 69-71.

692 Debayle, M., Balloul, E., Dembele, F., Xu, X., Hanafi, M., Ribot, F., Monzel, C., Coppey, M.,
693 Fragola, A., & Dahan, M. (2019). Zwitterionic polymer ligands: an ideal surface coating
694 to totally suppress protein-nanoparticle corona formation? *Biomaterials*, 219, 119357.

695 Dong, Y., Mosquera-Giraldo, L. I., Taylor, L. S., & Edgar, K. J. (2016). Amphiphilic cellulose
696 ethers designed for amorphous solid dispersion via olefin cross-metathesis.
697 *Biomacromolecules*, 17(2), 454-465.

698 Dong, Y., Mosquera-Giraldo, L. I., Troutman, J., Skogstad, B., Taylor, L. S., & Edgar, K. J.
699 (2016). Amphiphilic hydroxyalkyl cellulose derivatives for amorphous solid dispersion
700 prepared by olefin cross-metathesis. *Polymer Chemistry*, 7(30), 4953-4963.

701 Eguchi, N., Kawabata, K., & Goto, H. (2017). Electrochemical polymerization of 4, 4-dimethyl-
702 2, 2'-bithiophene in concentrated polymer liquid crystal solution. *Journal of Materials
703 Science and Chemical Engineering*, 5(2), 64-70.

704 Elschner, T., Lüdecke, C., Kalden, D., Roth, M., Löffler, B., Jandt, K. D., & Heinze, T. (2016).
705 Zwitterionic cellulose carbamate with regioselective substitution pattern: a coating
706 material possessing antimicrobial activity. *Macromolecular Bioscience*, 16(4), 522-534.

707 Evans, D., Pye, G., Bramley, R., Clark, A., Dyson, T., & Hardcastle, J. (1988). Measurement of
708 gastrointestinal pH profiles in normal ambulant human subjects. *Gut*, 29(8), 1035-1041.

709 Gabriel, L., Gericke, M., & Heinze, T. (2019). Modular synthesis of non-charged and ionic xylan
710 carbamate derivatives from xylan carbonates. *Carbohydrate polymers*, 207, 782-790.

711 Ganta, S., Devalapally, H., Shahiwala, A., & Amiji, M. (2008). A review of stimuli-responsive
712 nanocarriers for drug and gene delivery. *Journal of Controlled Release*, 126(3), 187-204.

713 Gosecki, M., Setälä, H., Virtanen, T., & Ryan, A. J. (2021). A facile method to control the phase
714 behavior of hydroxypropyl cellulose. *Carbohydrate polymers*, 251, 117015.

715 Haag, S. L., & Bernards, M. T. (2017). Polyampholyte hydrogels in biomedical applications.
716 *Gels*, 3(4), 41.

717 Harijan, M., & Singh, M. (2022). Zwitterionic polymers in drug delivery: A review. *Journal of
718 Molecular Recognition*, 35(1), e2944.

719 Haro-Mares, N. B., Meza-Contreras, J. C., López-Dellamary Toral, F. A., González-Cruz, R.,
720 Silva-Guzmán, J. A., & Manríquez-González, R. (2020). A Simplified Method of
721 synthesis to obtain zwitterionic cellulose under mild conditions with active ionic
722 moieties. *Molecules*, 25(13), 3065.

723 Heacock, R., & Marion, L. (1956). The infrared spectra of secondary amines and their salts.
724 *Canadian Journal of Chemistry*, 34(12), 1782-1795.

725 Heinze, D., Mang, T., Popescu, C., & Weichold, O. (2016). Effect of side chain length and
726 degree of polymerization on the decomposition and crystallization behaviour of
727 chlorinated poly (vinyl ester) oligomers. *Thermochimica Acta*, 637, 143-153.

728 Kanzian, T., Nigst, T. A., Maier, A., Pichl, S., & Mayr, H. (2009). Nucleophilic reactivities of
729 primary and secondary amines in acetonitrile. *European Journal of Organic Chemistry*,
730 2009(36), 6379-6385.

731 Kaßner, L., Kronawitt, J., Klimm, D., Seifert, A., & Spange, S. (2019). Molecular aspects on the
732 amino acid-mediated sol-gel process of tetramethoxysilane in water. *Journal of Sol-Gel
733 Science and Technology*, 90, 250-262.

734 Kumar, R. A., Vizhi, R. E., Sivakumar, N., Vijayan, N., & Babu, D. R. (2012). Crystal growth,
735 optical and thermal studies of nonlinear optical γ -glycine single crystal grown from
736 lithium nitrate. *Optik*, 123(5), 409-413.

737 Laschewsky, A. (2014). Structures and synthesis of zwitterionic polymers. *Polymers*, 6(5), 1544-
738 1601.

739 Laschewsky, A., & Rosenhahn, A. (2018). Molecular design of zwitterionic polymer interfaces:
740 searching for the difference. *Langmuir*, 35(5), 1056-1071.

741 Laureano-Anzaldo, C. M., Robledo-Ortíz, J. R., & Manríquez-González, R. (2021). Zwitterionic
742 cellulose as a promising sorbent for anionic and cationic dyes. *Materials Letters*, 300,
743 130236.

744 Liu, H., Taylor, L. S., & Edgar, K. J. (2015). The role of polymers in oral bioavailability
745 enhancement; a review. *Polymer*, 77, 399-415.

746 Liu, S., Liu, J., Esker, A. R., & Edgar, K. J. (2016). An efficient, regioselective pathway to
747 cationic and zwitterionic N-heterocyclic cellulose ionomers. *Biomacromolecules*, 17(2),
748 503-513.

749 Ma, C., Zhou, H., Wu, B., & Zhang, G. (2011). Preparation of polyurethane with zwitterionic
750 side chains and their protein resistance. *ACS applied materials & interfaces*, 3(2), 455-
751 461.

752 Mary, Y. S., Ushakumari, L., Harikumar, B., Varghese, H. T., & Panicker, C. Y. (2009). FT-IR,
753 FT-raman and SERS spectra of L-proline. *Journal of the Iranian Chemical Society*, 6(1),
754 138-144.

755 Matsumura, K., & Hyon, S.-H. (2009). Polyampholytes as low toxic efficient cryoprotective
756 agents with antifreeze protein properties. *Biomaterials*, 30(27), 4842-4849.

757 Michels, L., Martin, E., Klaver, P., Edden, R., Zelaya, F., Lythgoe, D. J., Lüchinger, R.,
758 Brandeis, D., & O'Gorman, R. L. (2012). Frontal GABA levels change during working
759 memory. *PloS one*, 7(4), e31933.

760 Mosquera-Giraldo, L. I., Borca, C. H., Meng, X., Edgar, K. J., Slipchenko, L. V., & Taylor, L. S.
761 (2016). Mechanistic design of chemically diverse polymers with applications in oral drug
762 delivery. *Biomacromolecules*, 17(11), 3659-3671.

763 Nichols, B. L., Chen, J., Mischnick, P., & Edgar, K. J. (2020). Selective oxidation of 2-
764 hydroxypropyl ethers of cellulose and dextran: simple and efficient introduction of
765 versatile ketone groups to polysaccharides. *Biomacromolecules*, 21(12), 4835-4849.

766 Pasparakis, G., & Tsitsilianis, C. (2020). LCST polymers: Thermoresponsive nanostructured
767 assemblies towards bioapplications. *Polymer*, 211, 123146.

768 Rodriguez, A. K., Ayyavu, C., Iyengar, S. R., Bazzi, H. S., Masad, E., Little, D., & Hanley, H. J.
769 (2018). Polyampholyte polymer as a stabiliser for subgrade soil. *International Journal of
770 Pavement Engineering*, 19(6), 467-478.

771 Rosado, M. T., Duarte, M. L. T., & Fausto, R. (1998). Vibrational spectra of acid and alkaline
772 glycine salts. *Vibrational Spectroscopy*, 16(1), 35-54.

773 Saboo, S., Mugheirbi, N. A., Zemlyanov, D. Y., Kestur, U. S., & Taylor, L. S. (2019). Congruent
774 release of drug and polymer: A “sweet spot” in the dissolution of amorphous solid
775 dispersions. *Journal of Controlled Release*, 298, 68-82.

776 Samuels, R. J. (1969). Solid-state characterization of the structure and deformation behavior of
777 water-soluble hydroxypropylcellulose. *Journal of Polymer Science Part A-2: Polymer
778 Physics*, 7(7), 1197-1258.

779 Schram, C. J., Beaudoin, S. P., & Taylor, L. S. (2015). Impact of polymer conformation on the
780 crystal growth inhibition of a poorly water-soluble drug in aqueous solution. *Langmuir*,
781 31(1), 171-179.

782 Schram, C. J., Taylor, L. S., & Beaudoin, S. P. (2015). Influence of polymers on the crystal
783 growth rate of felodipine: correlating adsorbed polymer surface coverage to solution
784 crystal growth inhibition. *Langmuir*, 31(41), 11279-11287.

785 Shen, H., Akagi, T., & Akashi, M. (2012). Polyampholyte nanoparticles prepared by self-
786 complexation of cationized poly (γ -glutamic acid) for protein carriers. *Macromolecular
787 Bioscience*, 12(8), 1100-1105.

788 Silva, P. J. (2020). New insights into the mechanism of Schiff base synthesis from aromatic
789 amines in the absence of acid catalyst or polar solvents. *PeerJ Organic Chemistry*, 2, e4.

790 Smith, B. (2019). Organic nitrogen compounds V: Amine salts. *Spectroscopy*, 34(9), 30-37.

791 Smith, B. C. (2018). The carbonyl group, part V: Carboxylates—Coming clean. *Spectroscopy*,
792 33(5), 20-23.

793 Song, J. W., Lee, J. H., Bornscheuer, U. T., & Park, J. B. (2014). Microbial synthesis of
794 medium-chain α , ω -dicarboxylic acids and ω -aminocarboxylic acids from renewable
795 long-chain fatty acids. *Advanced Synthesis & Catalysis*, 356(8), 1782-1788.

796 Stevens, R. V., Chapman, K. T., & Weller, H. N. (1980). Convenient and inexpensive procedure
797 for oxidation of secondary alcohols to ketones. *The Journal of Organic Chemistry*,
798 45(10), 2030-2032.

799 Strätz, J., Liedmann, A., Heinze, T., Fischer, S., & Groth, T. (2020). Effect of sulfation route and
800 subsequent oxidation on derivatization degree and biocompatibility of cellulose sulfates.
801 *Macromolecular Bioscience*, 20(2), 1900403.

802 Tzianabos, A., Wang, J. Y., & Kasper, D. L. (2003). Biological chemistry of immunomodulation
803 by zwitterionic polysaccharides. *Carbohydrate Research*, 338(23), 2531-2538.

804 Vamecq, J., Feutelais, Y., Maurois, P., Sghaier, M., Dichi, E., German-Fattal, M., Herrenknecht,
805 C., Gressens, P., Cecchelli, R., & Dehouck, L. (2009). Engineering a GABA endowed
806 with pharmacological CNS activity when given by an extracerebral route. *Medicinal
807 Chemistry Research*, 18(4), 255-267.

808 Wang, J., Sun, H., Li, J., Dong, D., Zhang, Y., & Yao, F. (2015). Ionic starch-based hydrogels
809 for the prevention of nonspecific protein adsorption. *Carbohydrate polymers*, 117, 384-
810 391.

811 Wang, R.-M., Zheng, S.-R., & Zheng, Y.-P. G. (2011). *Polymer Matrix Composites and
812 Technology*: Elsevier.

813 Weißenborn, E., & Braunschweig, B. (2019). Hydroxypropyl cellulose as a green polymer for
814 thermo-responsive aqueous foams. *Soft Matter*, 15(13), 2876-2883.

815 Wilson, V., Lou, X., Osterling, D. J., Stolarik, D. F., Jenkins, G., Gao, W., Zhang, G. G., &
816 Taylor, L. S. (2018). Relationship between amorphous solid dispersion in vivo absorption
817 and in vitro dissolution: phase behavior during dissolution, speciation, and membrane
818 mass transport. *Journal of Controlled Release*, 292, 172-182.

819 Wilson, V. R., Lou, X., Osterling, D. J., Stolarik, D. F., Jenkins, G. J., Nichols, B. L., Dong, Y.,
820 Edgar, K. J., Zhang, G. G., & Taylor, L. S. (2020). Amorphous solid dispersions of
821 enzalutamide and novel polysaccharide derivatives: Investigation of relationships
822 between polymer structure and performance. *Scientific reports*, 10(1), 18535.

823 Zeng, R., Guo, K., Wang, Z., Tu, M., Zhao, J., & Wang, J. (2012). Synthesis and self-assembly
824 of biomimetic phosphorylcholine-bound chitosan derivatives. *Reactive and Functional
825 Polymers*, 72(10), 745-751.

826 Zhang, C., Chao, L., Zhang, Z., Zhang, L., Li, Q., Fan, H., Zhang, S., Liu, Q., Qiao, Y., & Tian,
827 Y. (2021). Pyrolysis of cellulose: Evolution of functionalities and structure of bio-char
828 versus temperature. *Renewable and Sustainable Energy Reviews*, 135, 110416.

829 Zhang, J., & Zografi, G. (2000). The relationship between "BET" and "free volume"-derived
830 parameters for water vapor absorption into amorphous solids. *Journal of pharmaceutical
831 sciences*, 89(8), 1063-1072.

832 Zhang, R., & Edgar, K. J. (2015). Water-soluble aminocurdlan derivatives by chemoselective
833 azide reduction using NaBH4. *Carbohydrate polymers*, 122, 84-92.

834 Zhang, Y., Luo, C., Wang, H., Han, L., Wang, C., Jie, X., & Chen, Y. (2016). Modified
835 adsorbent hydroxypropyl cellulose xanthate for removal of Cu²⁺ and Ni²⁺ from aqueous
836 solution. *Desalination and Water Treatment*, 57(56), 27419-27431.

837 Zheng, L., Sun, Z., Li, C., Wei, Z., Jain, P., & Wu, K. (2017). Progress in biodegradable
838 zwitterionic materials. *Polymer Degradation and Stability*, 139, 1-19.

839 Zheng, L., Sundaram, H. S., Wei, Z., Li, C., & Yuan, Z. (2017). Applications of zwitterionic
840 polymers. *Reactive and Functional Polymers*, 118, 51-61.

841 Zhou, Y., & Edgar, K. J. (2022). Regioselective synthesis of polysaccharide–amino acid ester
842 conjugates. *Carbohydrate polymers*, 277, 118886.

843 Zhou, Y., Petrova, S. P., & Edgar, K. J. (2021). Chemical synthesis of polysaccharide–protein
844 and polysaccharide–peptide conjugates: A review. *Carbohydrate polymers*, 274, 118662.

845 Zhou, Y., Zhai, Z., Yao, Y., Stant, J. C., Landrum, S. L., Bortner, M. J., Frazier, C. E., & Edgar,
846 K. J. (2022). Oxidized hydroxypropyl cellulose/carboxymethyl chitosan hydrogels permit
847 pH-responsive, targeted drug release. *Carbohydrate polymers*, 300, 120213.

848