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Effective electric field: Quantifying the sensitivity of searches
for new P,T -odd physics with EuCl3 · 6H2O
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Laboratory-scale precision experiments are a promising approach to searching for physics beyond the standard
model. Noncentrosymmetric solids offer favorable statistical sensitivity for efforts that search for new fields,
whose interactions violate the discrete parity and time-reversal symmetries. One example is the cosmic axion
spin precession experiment (CASPEr), which can be sensitive to the defining interaction of the quantum
chromodynamics (QCD) axion dark matter with gluons in atomic nuclei. The effective electric field is the
parameter that quantifies the sensitivity of such experiments to new physics. We describe the theoretical approach
to calculating the effective electric field for noncentrosymmetric sites in ionic insulating solids. We consider the
specific example of the EuCl3 · 6H2O crystal, which is a particularly promising material. The optimistic estimate
of the effective electric field for the 153Eu isotope in this crystal is 10MV/cm. The calculation uncertainty is
estimated to be two orders of magnitude, dominated by the evaluation of the europium nuclear Schiff moment.
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I. INTRODUCTION

Noncentrosymmetric solids are a promising platform
for experiments that search for violations of parity (P)
and time-reversal (T ) symmetries, due to physics beyond
the standard model. One possible approach is to search
for permanent electric dipole moments (EDMs) [1–3]. The
strongest constraints on (non-Cabibbo–Kobayashi–Maskawa)
hadronic P, T violation are placed by experimental bounds
on the permanent EDM of the neutron dn [4] and of the
neutral 199Hg atom [5]. The suggestion to use ferroelectrics
to search for the permanent EDM dates back to Leggett [6].
Since then, a number of solid material-based experiments
have been developed, including efforts that use multiferroic
materials [7–10], and atoms and polar molecules trapped in
cryogenic noble gas matrices [11,12]. In this work our primary
motivation is the CASPEr-electric search for the EDM and
the gradient interactions of axionlike dark matter [13–15].
We consider a noncentrosymmetric crystal that contains no
unpaired electron spins but does contain an atomic species
with nonvanishing nuclear spin I. Fundamental P, T -odd
interactions can give rise to an energy shift δE for such a
nuclear spin that depends on its orientation relative to a
particular crystallographic direction [16]. Since we focus on
P, T violation in nuclei, it is convenient to use the neutron
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EDM as the benchmark that quantifies this energy shift:

δE = −dnE∗ · I/I, (1)

where E∗ is the effective electric field, the key parameter that
determines the sensitivity of a given material to P, T -odd
physics [14,17–19]. We note that E∗ is not a real electric
field in the sense that it is not sourced by electric charges and
does not obey Maxwell’s equations. It does have the same
dimensions and the same discrete transformation properties
as an electric field; the details of its physical origin are
elucidated in this work.

There are two necessary conditions to have a nonzero E∗.
(i) The discrete P, T symmetries are violated at the funda-
mental level; in this work we consider the effect arising from
the nuclear Schiff moment. (ii) The crystalline site that hosts
the nuclear spin I is noncentrosymmetric. The P, T -odd ef-
fect that is described by Eq. (1) is that it is energetically favor-
able for the nuclear spin I to orient along the crystallographic
direction, given by the orientation of the vector E∗. In this
work we calculate this energy shift for the Eu nuclear spins in
EuCl3 · 6H2O. This compound is under study as a promising
candidate for the CASPEr-e experiment. The detailed experi-
mental proposal is the subject of a separate manuscript [20].
Here we briefly summarize the key features of this material
that make it especially attractive. The Eu 7F0 ↔ 5D0 opti-
cal transition at 579.7 -nm wavelength is remarkably sharp:
25-MHz inhomogeneous linewidth has been observed in the
stoichiometric crystal, isotopically purified in 35Cl [21]. Since
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this is smaller than the Eu hyperfine sublevel splittings, it may
be possible to optically hyperpolarize the Eu nuclear spins
in the entire crystal. There are two stable Eu isotopes, both
with nuclear spin I = 5/2: 153Eu has 52% natural abundance,
and 151Eu has 48% natural abundance. It is possible that the
nuclear Schiff moment of 153Eu is strongly enhanced due to
the closely spaced opposite-parity nuclear energy levels, split
by ≈100 keV [22]. A low-energy collective octupole mode
3− or even a static octupole deformation can further enhance
the Schiff moment [23]. We estimate that the 153Eu nuclear
Schiff moment can be enhanced by a factor between ≈5 and
≈100, compared to that of 207Pb, which was used in the first-
generation CASPEr-e experiments. This enhancement, along
with the possibility of achieving a high degree of nuclear-spin
hyperpolarization, makes EuCl3 · 6H2O a promising candi-
date for future generations of CASPEr-e.

In order to interpret future experimental measurements
with EuCl3 · 6H2O it is necessary to calculate the effective
electric field E∗ in this compound. Our calculation is divided
into three sections. In Sec. II we consider the nuclear Schiff
moment of the two Eu stable isotopes and how it can arise
from fundamental physics violating discrete P, T symme-
tries. In Sec. III we describe the interaction between the
nuclear Schiff moment and the Eu atomic electrons. In Sec. IV
we consider the Eu ion in the EuCl3 · 6H2O crystal lattice and
outline the solid-state calculation of its nuclear-spin energy
shift, extracting the magnitude and direction of the effective
electric field.

II. THE SCHIFF MOMENT OF A NUCLEUS

A. Background

New hadronic parity (P) and time-reversal (T ) violating
(P, T -odd) physics, such as the quantum chromodynamics
(QCD) theta parameter θ , gives rise to P, T -odd nuclear
interactions. The nucleon-nucleon P, T -odd interaction
is usually parametrized in terms of pion exchange. The
pion-nucleon interaction vertex is

HπNN = gπ(N̄τiγ5N ) + ḡ0π(N̄τN ) + ḡ1π0(N̄N )

+ ḡ2[π(N̄τN ) − 3π0(N̄τ3N )], (2)

where τ is the isospin, π is the pion wave function, N is
the nucleon wave function, and γ5 is the Dirac matrix. The
first line in Eq. (2) represents the usual strong interaction
which conserves the isospin, g = 14.1 [24]. The second line
represents the P, T -odd interaction. In QCD the constants ḡi
(i = 0, 1, 2) can be expressed in terms of the θ parameter [25]:

ḡ0 = 15.5 × 10−3θ,

ḡ1 = −3.4 × 10−3θ,

ḡ2 ≈ 0. (3)

The interaction (2) gives rise to the permanent neutron electric
dipole moment (EDM) [25,26]:

dn = −2.7 × 10−16 θ e cm. (4)

The interaction in Eq. (2) also results in the P, T -odd
nucleon-nucleon interaction. In a heavy nucleus with a single
valence nucleon, within the nonrelativistic approximation we

can average over the frozen core and be left with theP, T -odd
effective single-particle potential for the valence nucleon:

W = GF√
2

ηa

2m
σ · ∇ρN (x), (5)

where a = n (neutron) or a = p (proton), m is the nucleon
mass, σ is its spin, and ρN (x) is the density of core nucleons,
with x being the nuclear coordinate [27]. The effective
dimensionless coupling constant is given by

ηn = −ηp = 0.7

√
2

GFm2
π

g

(
−N − Z

N + Z
ḡ0 + ḡ1 + 2

N − Z

N + Z
ḡ2

)
,

(6)

where N is the number of neutrons, and Z is the
number of protons in the nucleus; for many nuclei
(N − Z )/(N + Z ) ≈ 0.2. The approximate factor ∼0.7 in
Eq. (6) arises from numerical averaging of the pion exchange
over the shell model wave functions [27,28].

The potential (5) allows us to calculate the EDM of a
nucleus:

dN = 〈0|dN |0〉 = 2
∑
n

〈0|W |n〉〈n|ex|0〉
E0 − En

, (7)

where |0〉 is the nuclear ground state of energy E0, and the sum
is over excited states |n〉 with energies En, having opposite
parity compared to |0〉.

Does this nuclear EDM give rise to linear Stark shift for
an atom in an applied external electric field E0? The answer
is yes, but caution is advised. A naive expectation might be
that the atomic Hamiltonian is modified: Hatom → Hatom −
dN · E0. This is wrong. According to the Schiff theorem,
there is no first-order Stark shift due to the nuclear EDM dN

[29]. Under the assumption of a pointlike nucleus, the atomic
electron wave functions are perturbed such that in the new
atomic ground state, the electric field at the nucleus vanishes.
The dominant nonvanishing effect is due to the finite size of
the nucleus [27]. The effect is parametrized by the P, T -odd
nuclear Schiff moment,

S = SI/I = 1

10

(
〈x2x〉 − 5

3
〈x2〉q dN

)
, (8)

where 〈x2〉q is the nuclear-mean-squared electric charge ra-
dius, and the other terms are calculated using the P, T -odd
correction to the nuclear charge density δρ(x), which is due
to the P, T -odd interaction in Eq. (5). Specifically,

〈x2x〉 =
∫

x2xδρ(x)d3x, dN =
∫

xδρ(x)d3x, (9)

where dN is the nuclear EDM, given by Eq. (7). The second
term in Eq. (8) originates from the Schiff screening by atomic
electrons [27].

The effect of the Schiff moment on the atomic electrons
is described by the P, T -odd electrostatic potential of the
nucleus,

V (r) = 4π (S · ∇ )δ(r), (10)

where r is the electron coordinate [27]. We note that the
definition of the Schiff moment in Ref. [30] differs from this
one by a factor of 4π .
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As a naive order-of-magnitude estimate, one might expect
S ≈ a2NdN , where aN is the nuclear radius, and the atomic
energy shift on the order of S · E0/a20, where a0 is the Bohr
radius and E0 is the external electric field. If this were true, the
energy shift due to the Schiff moment would be suppressed by
a small factor of order a2N/a20 ≈ 10−8. Fortunately, due to the
enhancement of the relativistic electron wave function at the
nucleus, this suppression is offset by a factor ≈RZ2 ≈ 105,
where R is the relativistic factor, see Eq. (30). Thus the
estimate for the energy shift of a neutral atom in an external
electric field E0 is (RZ2/a20)S · E0.

B. Estimates of the Schiff moments of 153Eu and 151Eu

The Schiff moment arises due to the mixing between nu-
clear quantum states of opposite parity. The 153Eu nucleus
is deformed because there are clear rotational towers in its
excitation spectrum [22]. The standard theoretical description
of this nucleus is based on the Nilsson model of a quadrupolar-
deformed nucleus. In agreement with experimental data, the
model predicts the spin and parity of the ground state, 5/2+. It
also predicts the existence of the low-energy excited state with
opposite parity, 5/2−. The wave functions of the odd proton
in the Nilsson scheme are |5/2+〉 = |4135

2 〉, |5/2−〉 = |5325
2 〉.

The experimentally measured energy splitting between these
sates is 97.4 keV [22].

The 151Eu nucleus does not manifest clear rotational spec-
tra at low angular momenta. However, the ground state is still
|5/2+〉. Therefore it is reasonable to assume that the Nilsson
model is still relevant. The opposite-parity state in this nucleus
is at higher energy: E5/2− = 350 keV.

The generic estimate for the Schiff moment of a heavy
spherical nucleus is S ≈ 10−8η e fm3 [27]. The energy split-
ting between opposite-parity states in 153Eu, 	E = 97.4 keV,
is 100 times smaller than that in spherical nuclei where
	E ≈ 8MeV. Therefore, naively, one can expect that due to
the small energy denominator in 153Eu the Schiff moment is
enhanced by two orders of magnitude. However, the overlap
between the Nilsson single-particle states |5/2+〉 = |4135

2 〉
and |5/2−〉 = |5325

2 〉 is small, ≈10−2 [31]. As a result, in
spite of the small energy denominator, in the single-particle
picture, the Schiff moment of 153Eu is practically the same
as that of a spherical nucleus [27]. However, there can be a
collective enhancement by an order of magnitude [27]. This
enhancement is related to the admixture to the ground state of
the octupole collective vibrational excitation [32]. Hence we
arrive to the estimate that we call conservative:

Sc(
153Eu) ∼ 10 × 10−8η e fm3 ≈ 10−7η e fm3. (11)

The conservative estimate for the Schiff moment of the 151Eu
nucleus is a factor of 3 smaller, due to the correspondingly
larger energy denominator 	E .

There is an alternative description of the structure of
low-energy quantum states of the 153Eu nucleus [23].
The view is not based on the Nilsson scheme. Within
this alternative approach the nucleus has a pear-shape static
octupole deformation, and the single-particle proton state | 52

+〉
and the opposite-parity state | 52

−〉 are the same single-particle
state, with the only difference being the global rotation of the

octupole pear. If this is the case, this state doubling would
have to occur for each Nilsson state, which is not observed in
the nuclear spectrum, implying that the Nilsson model would
have to be completely invalid for this nucleus. However,
the Nilsson model does correctly predict the ground-state
quantum numbers | 52

+〉. Thus it is unlikely that the Nilsson
model is completely irrelevant here. Nevertheless, if we accept
the assumptions of the alternative approach with the static oc-
tupole deformation, the overlap of single-particle components
of the | 52

+〉 and the | 52
−〉 states is 100%, which leads to the

dramatic enhancement of 153Eu Schiff moment [23]:

So(
153Eu) ≈ 10−5η e fm3. (12)

This corresponds to ×103 enhancement, compared to the typ-
ical ≈10−8η e fm3 Schiff moment of a spherical nucleus, such
as 199Hg and 129Xe. This is likely the most optimistic possible
value for the 153Eu Schiff moment. As before, the optimistic
estimate for 151Eu is a factor of 3 lower than Eq. (12).

The optimistic estimate in Eq. (12) is two orders of mag-
nitude larger than the conservative estimate in Eq. (11). The
true answer is likely to be somewhere between these two
estimates, but more accurate calculations are needed to reduce
the uncertainty. A reliable first-principles calculation is likely
impossible, but a phenomenological approach, based on a fit
of experimentally measured E1-transition amplitudes, could
work. In any case, the conservative estimate (11) is at least a
factor of 5 greater than the 207Pb Schiff moment estimate in
Ref. [14].

Next we need to express the Schiff moment in terms of the
QCD θ parameter. Using Eqs. (6) and (3),

η = ηp = 0.5 × 106θ. (13)

This value has to be used with Eqs. (12) and (11).

III. INTERACTION OF THE NUCLEAR SCHIFF MOMENT
WITH ELECTRONS IN AN ISOLATED Eu3+ ion

A. The calculation of electron wave functions at the nucleus
of an isolated Eu3+ ion

In Sec. IV we calculate the energy shift of a Eu nuclear
spin in EuCl3 · 6H2O due to the nuclear Schiff moment. In this
calculation we will make use of the Eu atom 6s and 6p elec-
tron wave functions near the nucleus. In the current section we
present an approximate treatment for the nonrelativistic wave
functions that extends the analysis presented in Ref. [30].

Let us define the effective principal quantum number ν that
determines the outer electron energy:

ε = −Z2
i

ν2

e2

2a0
, (14)

where e2/2a0 = 13.6 eV is the Rydberg energy, a0 is the Bohr
radius, and Zi = 3 is the ionic core charge of the Eu3+. In
terms of the other quantum numbers,

ν = nr + l + 1 − σl , (15)

where nr is the radial quantum number, l is the orbital angular
momentum, and σl is the quantum defect.

Let us consider the spatial region near the nucleus:
r � a0/Z , where Z = 63 for Eu. In this region the nuclear
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Coulomb potential is unshielded, and the radial nonrelativistic
electron wave functions can be approximated as

R6s(r � a0/Z ) ≈ As,

R6p(r � a0/Z ) ≈ Ap
r

a0
,

(16)

where As and Ap are normalization constants.
Let us now consider the spatial region a0/Z � r � a0/Zi.

Here the WKB approximation holds (see Ref. [33]), and the
radial wave function can be written in the semiclassical form:

R(r) = B

r
√
p
sin φ(r), (17)

where B is a normalization constant, φ(r) is the semiclassical
phase, and p is the electron momentum given by

p(r) =
√
2m

[
ε −Va(r) − (l + 1/2)2

2mr2

]
, (18)

where Va is the self-consistent atomic potential. In order to
find the constant B, we note that the wave function oscillates
in the spatial region between the inner and the outer turning
points r1, r2, and decays exponentially outside this region
[34]. Therefore the wave function normalization integral is
dominated by this spatial region:

1 ≈
∫ r2

r1

R2r2 dr ≈ B2

2

∫ r2

r1

dr

p
. (19)

To calculate this integral we write the Bohr quantization rule
for radial motion: ∫ r2

r1

pdr = π h̄(nr + β ), (20)

where nr is the radial quantum number and β is the quantum
defect. Next we differentiate with respect to nr . To take the
derivative on the left-hand side we use

d p

dnr
= d p

dε

dε

dnr
= m

p

2Z2
i

ν3

e2

2a0
, (21)

where in the last step we used Eq. (14). Substitution into
Eq. (20) gives

2mZ2
i

ν3

e2

2a0

∫ r2

r1

dr

p
= π h̄. (22)

Comparing with Eq. (19) and using e2/2a0 = h̄2/(2ma20),
we get

B = Zi
a0

√
h̄

πν3
. (23)

We match the wave functions (16) and (17) at r ≈ a0/Z .
At this radius the momentum p ≈ h̄/r ≈ h̄Z/a0. Dropping
factors of order unity this gives

As = B

√
Z

h̄a0
= Zi

√
Z

a30ν
3
s

,

Ap = ZB

√
Z

h̄a0
= ZiZ

√
Z

a30ν
3
p

. (24)

For completeness we write the full expressions for the
nonrelativistic radial wave functions near the origin, including
numerical factors taken from Ref. [30]:

R6s(r � a0/Z ) = 2Zi

(
Z

a30ν
3
6s

)1/2

,

R6p(r � a0/Z ) = 2

3
ZiZ

(
Z

a30ν
3
6p

)1/2
r

a0
. (25)

The values of the effective principal quantum numbers ν

for the Eu3+ 6s and 6p electrons can be extracted from their
ionization energies [35]:

ε6s = −151 000 cm−1 → ν6s = 2.60,

ε6p1/2 = −118 000 cm−1 → ν6p1/2 = 2.92. (26)

B. The matrix element of the Schiff moment potential
for an isolated Eu3+ ion with a single electron

The nuclear Schiff moment S = S I/I , where I is the
nuclear spin, creates the electrostatic potential V (r), see
Eq. (10). This potential creates the following perturbation
acting on an electron:

δH (r) = −|e|V (r) = −|e|4π (S · ∇ )δ(r), (27)

where −|e| is the electron charge. The Schiff moment couples
to the gradient of the electron wave function at the nucleus.

The electron configuration of Eu3+ is [Xe]4 f 6, and the
ground state is 7F0. Let us outline the calculation of the matrix
element 〈6s|V (r)|6pz〉 for an isolated Eu3+ ion. We will use
this matrix element in the following section, Sec. IV. We note
that the choice of the 6s and 6p wave functions is somewhat
arbitrary, and we could have chosen s and p wave functions
with any principal quantum number � 6.

Due to the δ function in Eq. (27), we can use the wave
functions near the nucleus, given by Eq. (25). In addition to
the radial wave functions, we need the spherical harmonics:
Y00 = √

1/4π and Y10 = √
3/4π cos θ . The matrix element

then reduces to the integral

〈6s|V |6pz〉 = 4πSz
4

3

Z2Z2
i

a30(ν6sν6p)
3/2

∫
r

a0

√
1

4π

√
3

4π

× cos θ

[
∂

∂z
δ(r)

]
d3r

= Sz
4√
3

Z2Z2
i

a40(ν6sν6p)
3/2

∫ [
∂

∂z
δ(r)

]
z d3r, (28)

where we used r cos θ = z. Then, integrating by parts,∫ [
∂

∂z
δ(r)

]
z d3r = −

∫
δ(r) d3r = −1. (29)

The full expression for the atomic matrix element is

〈6s|V |6pz〉 = − 4√
3
Sz

Z2Z2
i

a40(ν6sν6p)
3/2

R, (30)

where R is the relativistic factor that arises when calculating
with the full Dirac relativistic wave function [27]. In the
nonrelativistic limit Zα → 0, R → 1. Because we consider
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FIG. 1. The structure of the cationic [Eu(H2O)6Cl2]+ unit in
EuCl3 · 6H2O [36].

the electrons with definite values of the l, s quantum numbers,
we use Clebsch-Gordan coefficients to express the relativistic
factor as a linear combination of factors for electrons with
definite value of the total angular momentum j:

R = 1
3R1/2 + 2

3R3/2, (31)

where R1/2 and R3/2 are the relativistic factors for the p1/2
and p3/2 electrons, respectively. In turn, these are given in
Ref. [27]:

R1/2 ≈ 4γ1/2x
2γ1/2−2
0

[�(2γ1/2 + 1)]2
,

R3/2 ≈ 48γ1/2x
γ1/2+γ3/2−3
0

�(2γ1/2 + 1)�(2γ3/2 + 1)
. (32)

Here γ1/2 = √
1 − Z2α2, γ3/2 = √

4 − Z2α2, and x0 = 2
ZaN/a0, where aN is the nuclear radius.

We have calculated the atomic matrix element of the Schiff
moment interaction. In order to evaluate the energy shift in
a EuCl3 · 6H2O crystal, we need to consider how the crystal
electronic wave functions behave near the Eu nuclei. We will
do this by expanding them in terms of the Eu atomic wave
functions.

IV. A Eu3+ ION IN THE EuCl3 · 6H2O CRYSTAL

A. Crystal structure of EuCl3 · 6H2O

The crystal structure of EuCl3 · 6H2O at 293 K is
monoclinic, space group P2/n [36]. The molar mass is
366.41. The Eu3+ ion sites have C2 symmetry, with the axis
corresponding to the b axis of the crystal. The corresponding
lattice constant is b = 6.5322Å. The unit cell has two Eu
sites that are symmetric conjugates of each other. The local
environment of each Eu ion is highly asymmetric, Fig. 1.
This suggests that there may be a substantial effective electric
field. We choose the coordinate system with the origin at the
Eu site and the z axis along the C2 symmetry axis, as shown
in Fig. 1. The two nearest Cl ions are at negative z. The third
Cl ion is further away and is not shown.

(b)
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FIG. 2. Electronic band structure of EuCl3 · 6H2O. The energy
is presented with respect to the chemical potential. (a) Bands formed
by p electrons of Cl. (b) Bands formed by p electrons of Ne (H2O).
The right subpanel in each panel gives a spectral weight of the
corresponding band when it is decomposed in terms of s and pz
orbitals of the Eu3+ ion.

B. Electron wave functions in the EuCl3 · 6H2O crystal

Our goal is to calculate the Eu nucleus energy shift due
to the interaction of crystal electrons with the nuclear Schiff
moment. To do so we need the many-body electron wave
function of the crystal. There are two methods to approach
this problem. (i) The finite cluster method, used previously for
calculation of the similar effect for Pb nucleus in ferroelectric
PbTiO3 or PMN-PT crystal [17,18]. (ii) The band-structure
method, used in the present work. For the band-structure cal-
culations we use the linear muffin-tin orbital (LMTO) method.
The code is described in Ref. [37]. Since it is difficult to treat a
water molecule with very short oxygen-proton distance by the
LMTO code, we replace water molecules by Ne atoms, which
have the same electronic configuration as H2O. The band
structure of EuCl3 · 6H2O calculated in this way is presented
in Fig. 2. The energy difference between the Cl p bands and
the Ne p bands is≈12–3.5 = 8.5 eV. In order to verify our ap-
proximation, we compare this with the difference between the
water molecule ionization energy and the electron affinity in
the Cl− ion: 12.6–3.6 = 9 eV. These values are close, which
means that for calculation of the electron band energies, the
H2O molecule can be replaced with the Ne atom.

Naively one might expect that, having calculated the crys-
tal electronic wave functions and band energies, it should
be possible to directly calculate the expectation value of the
Schiff interaction in Eq. (27), giving the energy shift we are
after. The problem is that the dominant contribution to this
energy shift is from the spatial region inside the Eu nucleus,
where the electron dynamics are ultrarelativistic. No existing
band-structure calculation can provide accurate wave func-
tions down to such small distances from the atomic nucleus.
To overcome this problem we match the band-structure wave
functions with wave functions of an isolated Eu ion. As soon
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FIG. 3. (a) Band-structure projected electron densities near the Eu ion. The densities are defined in Eq. (33). (b) Electron densities
corresponding to atomic 6s and 6p orbitals calculated in the frozen core of Eu3+ ion.

as matching coefficients are established we use the analytic
results obtained for states of an isolated ion, Sec. III. As
matching wave functions we use 6s and 6pz states calculated
in a frozen Eu3+ core. The states with higher orbital angular
momenta (d , f , ...) are also present; however they do not
contribute to the Schiff moment interaction because they do
not penetrate into the nucleus.

We define the band structure s- and pz-wave electron den-
sities near the Eu ion as

ρs(r) =
∑
k

|〈ψk (r)|s〉|2

ρp(r) =
∑
k

|〈ψk (r)|pz〉|2,
(33)

where k is the quasimomentum, ψk are the band-structure
wave functions, and |s〉 and |pz〉 are the spherical harmonics
Y00, Y10, centered at the Eu site. The summation is performed
over all filled bands, Ek < 0. Plots of these densities, re-
sulting from our band-structure calculations, are presented
in Fig. 3(a). In Fig. 3(b) we present the electron densities
corresponding to atomic 6s and 6pwave functions, calculated
in the approximation of the frozen Eu3+ core with electronic
configuration 1s2 . . . 4 f 6. The core itself is obtained by the
Hartree-Fock procedure averaged over polarizations of the
open 4 f 6 shell. As expected, near the Eu site (at r < 1 Å)
the corresponding densities in panels (a) and (b) of Fig. 3
are of similar shape but different amplitudes. Let us compare
the densities at r = 0.6 Å, where their values are near a local
maximum. The ratio of the s-wave densities is ≈0.24, and the
ratio of the p-wave densities is ≈0.44. We take square roots
of these numbers to obtain the coefficients of the expansion of
the effective band wave function at r < 1 Å:

ψ = 0.49ψ6s ± 0.66ψ6pz . (34)

Note that, for now, the sign is undetermined.
Equation (34) gives the total weights but does not account

for the many-body character of the crystal wave function.
The effect we consider arises from the interference of the Eu
s and p waves. However, the Eu is not an isolated ion but is
located in a crystal lattice, where states that have different
quasimomenta k cannot interfere because they belong to

different electrons, see Eq. (33). To address this crucial issue
we must consider each subband separately. We calculate
the s- and p-spectral density for each subband, plotting the
densities as a function of energy in the right-hand panels
of Fig. 2. Let us enumerate the 14 subbands with the index
i ∈ {1, . . . , 14}, so that the wave function of each band near
the Eu site can be represented as

ψ (i) = a(i)s ψ6s + a(i)p ψ6pz , (35)

where a(i)s , a(i)p are the expansion coefficients. For each
subband the integrated spectral density w(i)

s ∝ |a(i)s |2 and
w(i)

p ∝ |a(i)p |2 is proportional to the weight of this subband’s
contribution to the sum over quasimomentum k in Eq. (33).
The overall normalization of the contributions is determined
by Eq. (34), so that

∣∣a(i)s ∣∣ = 0.49

√√√√ w
(i)
s∑

j w
( j)
s

,
∣∣a(i)p ∣∣ = 0.66

√√√√ w
(i)
p∑

j w
( j)
p

, (36)

where the index j ∈ {1, . . . , 14} also enumerates the bands.
The spectral weights w(i)

s and w(i)
p , extracted for all 14

subbands from Fig. 2, are listed in Table I.
Finally, we have to determine the signs of the coefficients

a(i)s,p. As shown in Fig. 1, the z axis of our coordinate system
is along the crystal C2 axis, pointing in the direction from the
nearest Cl ions towards the oxygen ions. Our atomic radial
wave functions R6s(r) and R6p(r) are defined to be positive
as r → 0, see Eq. (25). Therefore they have opposite signs at
r > 1 Å, since the 6p wave function has an extra radial node.
We chose the coefficients a(i)s to be positive; their values are
presented in Table I. Let us consider the electron density z
asymmetry with respect to the Eu site, defined for each band
i as 	n(i) = |ψ (i)(z > 0)|2 − |ψ (i)(z < 0)|2, where z is some
typical interatomic distance, say z ≈ 1.5 Å. We expand each
ψ (i) into the 6s and the 6pwave functions, as in Eq. (35). Since
the electron densities of the 6s state |ψ6s|2 and of the 6p state
|ψ6p|2 are spherically symmetric, only the cross terms remain
in the asymmetry: 	n(i) ∝ a(i)s a(i)p R6s(r = |z|)R6p(r = |z|).
The cross terms add instead of canceling, because the cos θ

factor in the spherical harmonic of the pz orbital is positive for
z > 0 and negative for z < 0. Consider the two Cl ions nearest
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TABLE I. The values of the crystal band wave-function expan-
sion coefficients. The second column presents the energy of each
of 14 bands shown in Fig. 2. The third and the fifth columns give
spectral weights ws and wp of the bands, and the overall spectral
weight scale is arbitrary. The fourth and the sixth columns list the
coefficients in the wave function, Eq. (35).

Band index Band energy (eV) ws as wp ap

1 (Cl) −3.5 0.02 0.166 0.004 0.145
2 (Cl) −3.9 0.071 0.313 0.046 0.491
3 (Ne) −11.0 0.0011 0.039 0.0021 −0.105
4 (Ne) −11.05 0.0015 0.0455 0.0044 −0.152
5 (Ne) −11.1 0.002 0.0526 0.009 −0.217
6 (Ne) −11.25 0.0027 0.0611 0.0004 −0.046
7 (Ne) −11.3 0.0008 0.0333 0.002 −0.102
8 (Ne) −11.6 0.025 0.186 0 0
9 (Ne) −11.7 0.008 0.105 0 0
10 (Ne) −12.4 0.004 0.0744 0.0058 −0.174
11 (Ne) −12.45 0.00012 0.0129 0.00017 −0.030
12 (Ne) −12.55 0.0006 0.0288 0.0017 −0.0944
13 (Ne) −12.6 0.00026 0.019 0.0001 −0.023
14 (Ne) −12.8 0.038 0.229 0.008 −0.205

Total area 0.175 0.084

to the Eu site, Fig. 1. Their electron density is shifted towards
negative z, so for the Cl bands 	n(i∈{1,2}) < 0. Keeping in
mind that as was defined to be positive and R6s(r) and R6p(r)
have opposite signs, the coefficient a(i)p is positive for the
two Cl bands i = 1, 2. Analogously, the Ne(H2O) electron
density is shifted towards positive z, so for the Ne bands
	n(i∈{3,...,14}) > 0. Therefore the coefficient a(i)p is negative
for the 12 Ne bands i = 3, . . . , 14. These signs correspond to
the values listed in Table I.

C. Calculation of the nuclear-spin energy shift
due to the Schiff moment

Having the multielectron wave function determined in the
previous section and taking the expectation value of the Schiff
interaction (27), we find the energy shift due to the Eu Schiff
moment:

δE = −2|e|
∑
k

〈ψk|V (r)|ψk〉 = −2|e|
14∑
i=1

〈ψ (i)|V (r)|ψ (i)〉,

(37)

where the factor of 2 is due to electron spin degeneracy. We
now use the expansion in Eq. (35):

δE = −4|e|
14∑
i=1

a(i)s a(i)p 〈6s|V (r)|6pz〉. (38)

Finally, using the coefficients from Table I and the atomic
matrix element given in Eq. (30) we find

δE = − 4|e| × 0.086〈6s|V (r)|6pz〉

= + 4|e|×0.086× 4√
3
Sz

Z2Z2
i

a40(ν6sν6p)
3/2

(
1

3
R1/2+2

3
R3/2

)
.

(39)

TABLE II. The values of parameters in Eq. (40).

Z Zi ν6s ν6p R1/2 R3/2

63 3 2.60 2.92 3.3 2.5

Converting to atomic units we get

δE
e2/a0

= + 4 × 0.086 × 4√
3

Z2Z2
i

(ν6sν6p)3/2

×
(
1

3
R1/2 + 2

3
R3/2

)
Sz

|e|a30
. (40)

We note that there is a degree of cancellation between the
contributions from the Cl and the Ne (H2O) electrons, see
Table I. This warrants the careful calculation presented in our
work.

D. Calculation of the effective electric field in EuCl3 · 6H2O

The values of the parameters in Eq. (40) are given in
Table II. Substitution of these parameters into Eq. (40) gives
the P, T -odd energy shift of the Eu nucleus:

δE = +1.1 × 105
Sz

|e|a30
eV. (41)

This has to be compared with the result for the 207Pb nucleus
in the PMN-PT crystal [17,18], δE = −5.9 × 105 Sz

|e|a30 eV.
The numerical coefficients in these expressions have to be
obtained from a quantum chemistry calculation such as the
one we describe in Sec. IV. The difference in the absolute
value of these coefficients is mainly due to the Z scaling.
The difference in sign is due to the different choice of the
positive direction of the z axis. In PMN-PT the positive
direction is along the direction of increasing electron density.
For EuCl3 · 6H2O we chose the z axis pointing from the Eu
to the O ions, along the crystal C2 axis, Fig. 1. The electron
density decreases along this direction.

Using Eq. (41) with the optimistic estimate of the 153Eu
nuclear Schiff moment (12) and together with the relation (13)
we arrive at the following energy shift of the 153Eu nuclear
spin in EuCl3 · 6H2O:

δEo = 8 × 10−15η = 3 × 10−9θ [eV]. (42)

Comparing this with Eqs. (1) and (4), we find the value of the
effective electric field:

E∗
o = 10MV/cm. (43)

The results (42), (43) are optimistic estimates for 153Eu. Con-
servative estimates, based on the conservative 153Eu nuclear
Schiff moment (11), are two orders of magnitude smaller.
We reiterate that the true answer is likely to be somewhere
between these two limits. An accurate analysis of the nuclear
part of the problem is needed to reduce the uncertainty. For
151Eu the values are approximately three times smaller than
for 153Eu.
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E. The two Eu sites

The Eu site in EuCl3 · 6H2O is noncentrosymmetric, so
E∗ at each site is nonzero. However, a unit cell contains two
different Eu sites with opposite orientation. In other words,
there are two different Eu sublattices with equal and opposite
values of E∗. Therefore if we include both these sublattices
and average the energy shift (42) over the entire Eu ensemble
in the crystal, the effect will vanish. In order to avoid this,
we plan to apply an electric field to the crystal in order to
resolve the optical hyperfine transitions of the two different
sublattices, and optically pump the 135Eu nuclear spins of
only one of them. This is enabled by the remarkably nar-
row inhomogeneous linewidth of the Eu 7F0 → 5D0 optical
transition at 579.7-nm wavelength: Linewidths of 25MHz
have been observed in the stoichiometric crystal, isotopically
purified in 35Cl [21]. The presence of the 151Eu isotope, with
a different magnetic moment and different Schiff moment,
also enables comagnetometer measurements that control
systematic effects. Experimental details are described in
Ref. [20].

V. CONCLUSION

We consider the methodology for calculating the mag-
nitude of nuclear P, T -odd effects in noncentrosymmetric
crystalline solids containing heavy atomic species. We focus

on the crystal EuCl3 · 6H2O as a promising candidate for
CASPEr-electric experiments for searches of the electric
dipole moment and the gradient interactions of axionlike
dark matter. The CASPEr-e search for axion dark matter
will search for the spin precession of the 153Eu nuclear-spin
ensemble. In the present work we calculate the magnitude of
the effective electric field, which is necessary to calculate the
magnitude of the expected signal. We address the possible
enhancement of the 153Eu nuclear Schiff moment and perform
the solid-state band-structure calculation of the nuclear-spin
energy shift. Our optimistic estimate shows a significant
enhancement of the effective electric field, compared to, for
example, 207Pb-containing ferroelectrics, which were used for
first-generation CASPEr-e measurements. The uncertainty
is dominated by the estimate of the 153Eu nuclear Schiff
moment.
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