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Abstract
Capturing evidence for dynamic changes in self-
regulated learning (SRL) behaviours resulting from 
interventions is challenging for researchers. In the 
current study, we identified students who were likely 
to do poorly in a biology course and those who were 
likely to do well. Then, we randomly assigned a por-
tion of the students predicted to perform poorly to a 
science of learning to learn intervention where they 
were taught SRL study strategies. Learning out-
come and log data (257 K events) were collected 
from n = 226 students. We used a complex systems 
framework to model the differences in SRL including 
the amount, interrelatedness, density and regular-
ity of engagement captured in digital trace data (ie, 
logs). Differences were compared between students 
who were predicted to (1) perform poorly (control, 
n = 48), (2) perform poorly and received intervention 
(treatment, n = 95) and (3) perform well (not flagged, 
n = 83). Results indicated that the regularity of stu-
dents' engagement was predictive of course grade, 
and that the intervention group exhibited increased 
regularity in engagement over the control group im-
mediately after the intervention and maintained that 
increase over the course of the semester. We discuss 
the implications of these findings in relation to the 
future of artificial intelligence and potential uses for 
monitoring student learning in online environments.
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INTRODUCTION

Modern reform in postsecondary science, technology, engineering and mathematics 
(STEM) education has prioritized teaching not only declarative and conceptual knowledge, 
but also authentic STEM practices, dispositions and norms (Andrews et al., 2022). Such 
modern STEM education foci require moving beyond lecture-based instruction to embrac-
ing high-structure course designs with active learning pedagogies (Freeman et al., 2014; 
Lombardi et al., 2021; Theobald et al., 2020). Such designs and pedagogies can be far more 
beneficial than lecture-based instruction, but often students struggle to take advantage of 
these innovations (Miller & Bernacki, 2019) because they lack the self-regulated learning 
(SRL; Greene, 2018) knowledge and skill to thoughtfully use them (Greene et al., 2019). 
SRL knowledge and skills, involving the active pursuit of academic goals via metacogni-
tive planning, monitoring, control and evaluation of the cognitive, motivational, behavioural 
and affect aspects of learning (Schunk & Greene, 2018), are strong predictors of postsec-
ondary STEM student success (Theobald, 2021). SRL knowledge and skills can be taught 
(Bernacki et al.,  2019), but existing evidence has focused mostly on such interventions' 
effects on learning outcomes (Cogliano et al., 2021) with less attention to how students' 
actual online engagement (Martin & Borup,  2022) changes. Such changes can be diffi-
cult to observe using traditional frequentist data gathering and modelling approaches (eg, 
Greene et al., 2019) because SRL is a dynamic, contingent, temporal process (Ben-Eliyahu 
& Bernacki, 2015) where increasing sophistication often leads to more organized and pur-
poseful engagement (Zimmerman, 2013). To continue to iteratively evolve SRL theory and 
interventions (Greene, 2022), what is needed are methods of capturing SRL behavioural 
data over time and analytic tools that can measure how comprehensive, adaptive and orga-
nized students' SRL behaviours become as a result of intervention and growing experience 
(Hilpert & Marchand, 2018).

Practitioner notes

What is already known about this topic
•	 Self-regulated learning (SRL) knowledge and skills are strong predictors of post-

secondary STEM student success.
•	 SRL is a dynamic, temporal process that leads to purposeful student engagement.
•	 Methods and metrics for measuring dynamic SRL behaviours in learning contexts 

are needed.

What this paper adds
•	 A Markov process for measuring dynamic SRL processes using log data.
•	 Evidence that dynamic, interaction-dominant aspects of SRL predict student 

achievement.
•	 Evidence that SRL processes can be meaningfully impacted through educational 

intervention.

Implications for theory and practice
•	 Complexity approaches inform theory and measurement of dynamic SRL 

processes.
•	 Static representations of dynamic SRL processes are promising learning analytics 

metrics.
•	 Engineered features of LMS usage are valuable contributions to AI models.
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1206  |      HILPERT et al.

In this study, we utilized digital trace data (Bernacki, 2018) to capture, understand, in-
tervene upon and model students' SRL knowledge and skills to better understand not just 
whether they engaged more after intervention, but also whether that engagement was in fact 
more organized and adaptive, and how those changes were associated with course perfor-
mance. We used data from the first 2 weeks in the semester of a large introductory STEM 
course to predict student success and then deliver a targeted SRL intervention to students 
in need of support. Then, we continued to gather digital trace data throughout the course, 
which allowed us to model the dynamic and temporal aspects of SRL, which in turn proved 
to be a statistically significant and positive predictor of student success in the course and a 
difference in the outcome of intervention.

LEARNING ANALYTICS AND STUDENT SUCCESS

Although many forms of evidence can be gleaned from an LMS, one form that can be 
particularly useful is student log data (Cicchinelli et al.,  2018; Lu et al.,  2017). Log data 
provide an electronic history of digital traces of student interactions (ie, clicks) with course 
content (Bernacki, 2018). Log data can be used for various analytic applications such as 
prediction modelling (Cogliano et al., 2022), recommender systems (Fazeli et al., 2017) and 
data dashboards (Klerkx et al., 2017) that provide instructors and students with information 
about learners' engagement with digital content. Within the area of prediction modelling, 
logs of student click events within an LMS are often used to examine frequency of access 
to particular pieces of course content or elements of the LMS. These event data are typi-
cally organized into features of student learning behaviour including counts and patterns of 
usage of single items, or classes of items, merged with outcome variables and historical 
achievement data such as GPA or pretest scores, and used to train and test prediction mod-
els (Arizmendi et al., 2022; Baker et al., 2015; Brooks & Thompson, 2017). These models 
can be useful for identifying students likely to be at risk of a poor educational outcome, but 
are often not aligned with educational principles or theory in a meaningful or explainable 
way (Turek, 2018).

Making meaning of learning analytics

Knight and Shum (2017) described one of the foundational concepts of learning analytics 
as going from clicks to constructs. What they meant is that learning analytics frameworks 
necessitate epistemological assumptions about the use of a tool or data. Analytics can be 
used in ways that are theory-free and rely purely on machine derived patterns and predic-
tions, or learning analytics can be aligned with educational principles so end users can 
interpret them in a meaningful way. For example, interpreting learning analytics from a SRL 
perspective has become a popular way to align LMS log data with an established theoreti-
cal construct. Cicchinelli et al.  (2018) described a method for aligning analytics with SRL 
constructs by triangulating self-assessments with LMS log data. Winne and colleagues have 
crafted a careful body of work aligning log data within digital learning platforms with self-
regulated engagement (eg, Winne, 2017a; Perry & Winne, 2006). Bernacki and colleagues 
have also accumulated a body of work aligning various features of technologically enhanced 
learning environments with SRL principles and models (Ben-Eliyahu & Bernacki,  2015; 
Bernacki, 2017; Bernacki et al., 2011). Other researchers have also used various types of 
network analysis to align SRL micro-processes with click events, including the use of tran-
sition networks (Siadaty et al., 2016) and the use of sequence mining (Saint et al., 2020). 
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       |  1207LEVERAGING COMPLEXITY

These approaches have largely focused on studying specific combinations of click events 
or graph systems.

Hoppe (2017) described a trinity of network analytic methods for analysing LMS data 
that can be used to examine collaboration patterns, dynamic resource access and the evo-
lution of communities and pathways through a learning platform. These types of network 
structures are what Hilpert and Marchand (2018) described as interaction-dominant ways 
to represent educational or learning phenomena (c.f. Lerner's notion of strong interaction-
ist research). As opposed to a component-dominant approach such as sequence mining, 
which prioritizes operationalizing and measuring specific combinations or a priori psycho-
logical constructs, an interaction-dominant approach prioritizes the examination of dynamic 
relationships among components of a learning or educational system and interpreting them 
from a theoretical stance. Rooted in a complex systems epistemological tradition (Jacobson 
et al.,  2019; Koopmans, 2020) interaction-dominant approaches seek to understand the 
emergent behaviour of complex combinations of elements within a system. Psychological 
phenomena are the product of large, complex systems composed of components that in-
teract with one another. Research can concern itself with understanding the components 
or the interactions among the components and related structures that emerge from those 
interactions. In a component-dominant system, outcomes are the summed activity of the 
constituent parts. In an interaction-dominant system, outcomes are emergent and parts 
arrange themselves according to the changing demands of context (Dixon et al., 2012). 
Complexity frameworks can be used to examine interaction-dominant behaviours of a sys-
tem. Complex systems are operationalized as networked interactions among agents in a 
system such as dynamic interactions among children in educational settings (see Jacobson 
et al.,  2019 for a review of examples), or within-person phenomena such as the Web of 
complex interactions that underscore psychological constructs or dynamic patterns of be-
haviour (eg, Beymer et al., 2022; Epskamp et al., 2018; Fried & Robinaugh, 2020). Below, 
we describe our interaction-dominant approach to studying student engagement using click 
stream logs collected by an LMS system.

An interaction-dominant approach to student self-regulation in LMS

Interaction-dominant forms of student log data can provide rich information about SRL. We 
differentiate two different ways of making meaning of events that are recorded as student 
logs. The first is a component-dominant approach where the log of a click, or event, is in-
terpreted in a defined way. For example, if a student clicks on the course calendar, that may 
be interpreted as a cognitive construct, such as planning for an upcoming event in class. 
In this example, it may be useful to count the number of times the student plans (or clicks 
on the calendar) to determine whether it is useful in some way, such as to predict student 
outcomes. This example is component-dominant because the log itself is the object of study. 
This has been a predominant approach in well understood learning contexts where indi-
vidual objects are provided to students by an instructor and researcher during co-design 
(Lockyer et al., 2013), and inferences can be made that a certain click represents a learning 
event that can be classified based on the way the target object affords the learner an op-
portunity to engage in a cognitive or metacognitive process (Bernacki, 2018).

The second is an interaction-dominant approach, where the relationships among the clicks 
are interpreted in a defined way. For example, if a student clicks on the course calendar (ie, 
to plan one's study session), then on the course homepage (ie, to find resources that enable 
them to enact their plan) and then on a practice quiz (ie, to engage in retrieval practice), a 
triadic structure emerges among the clicks. This is an example of an interaction-dominant 
approach because the relationships between the logs are the object of study. Although we 
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1208  |      HILPERT et al.

use these three example clicks to illustrate how one possible structure may emerge, the 
specific components that form the structure are not fixed in our analytics approach and thus 
not component-dominant. Component-dominant approaches treat a click as having a pre-
determined meaning and view variance in the meaning of the same behaviour as problem-
atic. This provides little recourse for establishing the validity of the inference beyond the a 
priori affordances for the behaviour. In contrast, our interaction-dominant approach consid-
ers a click as part of a system that accounts for contextually different meanings of the same 
click when it appears in different emergent structures and different relations to other clicks. 
This flexibility allows for a more valid inference about its meaning to student self-regulation.

Interaction-dominant objects of study are often examined using intensive (ie, many obser-
vations closely spaced in proximity) forms of time series and network data (Wallot & Kelty-
Stephen,  2018). Intensive forms of data provide unique information about micro-genetic 
change, or studying change as it occurs, that cross-sectional or repeated measures data 
cannot (Hilpert & Marchand, 2018). In the case of network data, nodes describe the compo-
nents of the LMS landscape (eg, clicking on the calendar) and edges describe the relation-
ships between the components (eg, navigating from the calendar to the home page). A time 
series of student logs can be transformed into a network using a Markov approach where 
the node describes the components of the LMS (eg, calendar, homepage, etc) and the 
edges describe the probability of clicking from one component to the next (eg, the likelihood 
of clicking from the calendar to the home page).

Figure 1 provides a simplified graphical representation of how a time series of discrete 
LMS click events for an individual student can be transformed into a probability transition 
matrix and then represented as a network. The figure provides a streamlined example of 
three LMS components, a homepage, a calendar and a module. In this type of network, 
the number of nodes for a given student describes the components of the LMS they 

F I G U R E  1   Graphical representation of LMS click event network model. Panel (a) contains example time 
series of click events for an individual student. Panel (b) contains the first-order probability transition matrix for 
the time series (ie, the probability of transitioning from one event to another based on the observations). Panel 
(c) contains the graphical representation of the probability matrix.
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       |  1209LEVERAGING COMPLEXITY

have clicked on (nodes = 3 for Figure 1). The number of edges describes the number of 
transitions between the components (edges = 6 for Figure 1). The density of the network 
describes the portion of the potential transitions that were actualized (density = 0.83 for 
Figure 1). And, the transitivity of the network describes the overall probability of having 
adjacent nodes interconnected (ie, in triangular form; transitivity = 0.75 for Figure 1). We 
provide a technical description of calculating these types of networks in the Methods 
section.

For this study, we posited that an interaction-dominant approach to digital trace data 
would capture changes in students' SRL processing as a result of intervention and over 
time. Specifically, SRL theory does not suggest a single, prescribed set of useful or not-
useful digital tools, nor does it dictate a single sequence or pattern of engagements with 
those tools (Winne & Hadwin, 1998). Rather, SRL processing is necessarily the result of 
context-, person- and task-specific factors that result in often idiosyncratic patterns and 
types of engagement (Efklides, 2011; Greene & Azevedo, 2009). As but one example, stu-
dents with little time to study due to economic pressures to work (ie, context-specific factor), 
who lack relevant prior knowledge (ie, person-specific factor), may have to engage with 
summative digital tools (eg, downloaded PowerPoint slides from lectures) to best optimize 
their task engagement, whereas students in different circumstances might have more time 
and prior preparation to engage with more substantive tools (eg, practices quizzes). Thus, 
the optimal choice of digital tool and the optimal nature of engagement with that tool can 
and often should vary from student to student (Efklides, 2011), resulting in different patterns 
of engagement with any particular tool across students, which can obfuscate relations with 
course outcomes. As such, rather than focusing on which tools were used how often (ie, 
component-dominant approach), we examined the number, types and regularities of en-
gagement across these components (ie, interaction-dominant approach). Specifically, we 
posited that the number of nodes might represent how comprehensive students were in 
engaging with the suite of digital tools available, the number of connections between tools 
might capture the degree to which students dynamically engaged with tools, and the density 
of the network might indicate how actively students were in engaging with the suite of digital 
tools available, and transitivity might indicate the degree to which students engaged in a cy-
clical, intentional manner with digital tools. These metrics, if demonstrated to have predictive 
validity with expected outcomes (Dent & Koenka, 2016), such as course grade, would argue 
for the utility of using network statistics to capture not just what students engage with in 
LMSs, but also the nature of that engagement (ie, comprehensive, dynamic, active, cyclical, 
intentional), which is a fundamental aspect of SRL theory (Ben-Eliyahu & Bernacki, 2015; 
Efklides, 2011).

Purpose of the current study

For the current study, we transformed intensive time series log data taken from individual 
students enrolled in a postsecondary biology course into first-order probability transition 
networks using a Markov approach. Network statistics were calculated for each student, 
including the number of nodes, the number of edges, network density and network transitiv-
ity. Our research questions were: (1) does regularity in click events account for a significant 
amount of variance in students' final grade in the course?, (2) does regularity in students' 
click events increase over the course of the semester? and (3) did students who received 
treatment (ie, a science of learning to learn intervention) and who were predicted to perform 
well in the course show greater regularity of click events after intervention, and greater in-
creases in regularity of click events over the semester, than students who were predicted to 
perform poorly and did not receive treatment?
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1210  |      HILPERT et al.

METHOD

Sample

The sample contained 257 K logged events produced by 226 students who were enrolled 
in sections of an introductory biology course and who consented to share their data and 
receive correspondence from the research team. Students ranged in age from 18 to 72, 
with 82% of the sample falling between the ages of 18 to 21 years old. According to the 
university classification system, 73% of the students were female, 25% were Asian, 13.3% 
were Black, 30% were Hispanic, 11% were Multiracial, 1% were Pacific Islander, and 19% 
were white. 10% of the students received a failing grade in the course, 15% received a D, 
33% received a C, 33% received a B, and 9% received an A. Students were classified1 into 
control (n = 48), treatment (n = 95) and not flagged (n = 83) using a combination of a pretest 
score and counts of resources accessed in the course which were submitted to a forward 
selection logistic regression with a 10-fold cross-validation process. Full description of the 
prediction model approach is outside the scope of the current study and but can be found 
elsewhere (Cogliano et al., 2022).

Measures

Event logs

Student log data were extracted from the university data lake that houses records of all stu-
dent LMS data using SQL queries written in SQL developer. The events were extracted as 
system-driven, web-application controller descriptions of each student click event. The logs 
were classified into 19 different categories. These categories included various online learn-
ing behaviours including viewing the home page; viewing course notifications; viewing and 
submitting assignments; viewing and submitting quizzes; viewing, submitting and respond-
ing to discussions; viewing and downloading course files; viewing course resources such as 
the gradebook, calendar and syllabus; and using external course tools.

Final course grade

Students' final course grade was extracted from the electronic gradebook housed in the 
course LMS. Students' final grade represented the culmination of their effort in the course, 
including one final examination, four semester examinations, weekly quizzes and regular 
homework. The first two unit-examinations consisted of approximately 45 multiple-choice 
questions plus five short-answer questions. The latter two unit examples consisted of ap-
proximately 25 multiple-choice questions plus five short-answer questions. All the examina-
tion questions were aligned with learning objectives reflected in the course readings and 
instructional materials, indicating good content validity.

Self-efficacy

A self-efficacy scale was used to measured students' beliefs about their ability to be suc-
cessful in their current STEM course using five items drawn from the Patterns of Adaptive 
Learning Scale (Midgley et al., 2000). The items were measured on a six-point Likert-type 
scale from strongly disagree to strongly agree (sample item: ‘I'm certain I can master the 
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       |  1211LEVERAGING COMPLEXITY

skills taught in this course’). The self-efficacy scale was administered twice during the se-
mester, once during the first week of class and then again during the tenth week of class. 
Items at both time points exhibited good evidence of internal reliability with alphas >0.80.

Markov process calculation

For each individual student, a Markov process was calculated from the time series of their 
click events. A Markov process{Xt}is a stochastic process, whereby the values of {Xt+1} are 
only influenced by the present value. The probability of any future behaviour of the process 
when the current state is known is not influenced by any additional knowledge concerning its 
past behaviour. A discrete chain Markov process contains a knowable or finite set of states 
whose time index set is T = (0, 1, 2, …). In formal terms, the Markov property is that

For all time points n and all states i0, …, in–1, i, j.
The probability of Xn=1 being in state j given that Xn is in state i is called the first-order 

transition probability and is denoted by Pij
n,n+1 = Pr{Xn+1 = j|Xn=i} where Pij is the conditional 

probability of undergoing a transition from i to j in one step (Pinsky & Karlin, 2010). The 
probability calculations are typically presented in a matrix form and converted into network 
diagrams for visualization, as illustrated in Figure 1.

For each student event log, the click sequence was transformed into a first-order probability 
transition matrix using function markovchainFit from the R package markovchain (Spedicato 
et al., 2021). This function can be used to calculate a first-order probability transition matrix 
from a sequence of states in a time series. The first-order probability matrix is a square 
adjacency matrix that contains the probability of transitioning from one LMS component to 
another. The probability transition matrix for each student was transformed into a network 
object using the network function from the R package statnet (Handcock et al., 2019). For 
each student network, we calculated the number of nodes (using the network. size function), 
the number of edges (using the network.edgecount function), the network density (using the 
gden function) and the network transitivity (using the gtrans function). The network statistics 
were then windowed into four time points spanning the semester, separating the semester 
into four equal portions (excluding final examination week). The resulting data set contained 
network statistics describing the probability transition matrix for each student (overall and at 
four time points) as well as their final course grades and measures of self-efficacy.

Statistical analysis

Descriptive statistics and bivariate correlations were examined and the evidence suggested 
that statistical assumptions were met. To answer research question 1, a multiple linear re-
gression (ie, regressing final course grade on the overall network statistics) was run using 
the psych package in R (Revelle, 2019). Further assumption checking was conducted using 
the results of the regression. To answer research questions 2 and 3, a latent growth curve 
model was analysed using the lavaan package in R, using the growth function designed 
for analysing mean structures underlying linear growth. Growth in network transitivity was 
examined across four time points over the course of the semester. The data were ana-
lysed using full information maximum likelihood (FIML) to maintain the representativeness 
of the sample (Beaujean, 2014). Goodness-of-fit indices were evaluated using criteria 

Pr
{
Xn+1= j|X0= i0, … ,Xn−1= in−1,Xn=i

}

=Pr
{
Xn+1= j|Xn=i

}
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1212  |      HILPERT et al.

recommended by Hu and Bentler (1999), including the comparative fit index (CFI > 0.95), 
the root-mean-square error of approximation (RMSEA < 0.06) and the standardized root-
mean-square residual (SRMR < 0.08). We expected the three conditions to differ in their 
final course grade such that, on average, the control group would have the lowest scores, 
the treatment group would have the next highest scores, and the not flagged group would 
have the highest scores. In our latent growth model, our intervention variable was dummy 
coded such that the control group was coded 00, the treatment group was coded 01 and 
the not flagged group was coded 10, creating two dummy variables that could be entered 
into the model to compare group differences in the intercept and slope of linear increase in 
transitivity. Self-efficacy was included in the model as a time varying covariate to account for 
individual differences in variation in click events not predicted by the intercept or the slope. 
Figure 2 contains a graphical depiction of the latent growth curve model we tested.

RESULTS

Descriptive statistics are provided in Table 1. The descriptive statistics provide basic engage-
ment information about student log events. Students navigated to an average of 14.7 out of 
the 19 LMS components in the course. There was an average of 75.9 edges connecting the 
course components, and an average of 34.7% of the possible relationships between the 
components navigated, and an average of 52% of the possible triadic relationships between 

F I G U R E  2   Graphical representation of hypothesized latent growth curve model. Dum1 = dummy variable 
with not flagged group coded as 1, Dum2 = dummy variable with treatment group coded as 1. NT = network 
transitivity as measured by transitivity (NetTrans) in Markov networks at four time points for latent growth. 
I = intercept. S = Slope. SE = self-efficacy at two time points entered as a time varying covariate. FG = final 
grade.
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the components navigated. The average final grade in the course was 74.6%. Table 1 pro-
vides a breakdown of descriptive statistics for all variables included in the statistical models.

Bivariate correlations are provided in Table 2. Analysis of statistical significance patterns 
revealed that final grade was positively correlated with network size, number of edges and 
network transitivity. There were also statistically significant and positive correlations among 
the network statistics, none with a magnitude that would suggest collinearity. Self-efficacy at 
time 2 was positively correlated with network transitivity at times 3 and 4. When interpreted 
as evidence of interaction patterns reflecting self-regulated learning activity, students who 
engage with greater proportions of the content (network size), and did so in ordered patterns 
involving multiple accesses of unique objects in sequence (edges, transitivity) were more 
likely to perform well in the course.

A multiple regression was conducted to evaluate how well the network statistics predicted 
final course grade. The predictors were the four network statistics. The linear combina-
tion of the predictors was statistically significantly related to final course grade (R2 = 19.00, 
F(4, 226) = 11.308, p < 0.001). Approximately 19% of the variation in final course grade in 
the sample was accounted for by the predictors. See Table 3 for a summary of estimates. 
Network transitivity was a statistically significant and positive predictor of final grade over 
and above the other network measures.

A latent growth curve model was calculated to examine the effects of the intervention, as 
mediated by Unit Exam Achievement. The model included measures of network transitivity 
at four time points (ie, NT1-NT4, see Figure 2). Latent growth curve modelling uses these 
measures as indicators of both a latent intercept factor (ie, an estimate of the mean network 
transitivity score at time 1, after disaggregating error) and a latent slope factor (ie, an es-
timate of linear change in network transitivity scores over the four time points). These two 
latent factors were regressed on dummy-coded group variables, to investigate potential dif-
ferences in the intercept and/or slope across the three groups. Self-efficacy scores, at two 
time points, were used as control variables. Finally, final grade scores were regressed on 
self-efficacy, as a control, and the intercept and slope latent factors, to investigate whether 
network transitivity scores predicted academic performance.

The chi-squared test for the model was not statistically significant χ2(15, 226) = 24.27, 
p = 0.061, indicating the model was consistent with the covariance structure of the vari-
ables. Examination of fit indices suggested the model demonstrated evidence of good 
fit: CFI = 0.92, RMSEA = 0.06, SRMR = 0.05. Table  4 provides a summary of the coeffi-
cients from the model. Results suggested that variation in the intercept of transitivity was 

TA B L E  1   Summary of descriptive statistics for model variables.

Variable N Missing M SD Min Max

NetSize 226 0 14.74 1.63 3.00 19.00

NetEdge 226 0 75.85 18.48 4.00 141.00

Netden 226 0 0.35 0.06 0.20 0.52

NetTrans 226 0 0.53 0.09 0.00 0.70

NetTrans.1 226 0 0.31 0.14 0.00 1.00

NetTrans.2 225 1 0.35 0.11 0.00 0.57

NetTrans.3 221 5 0.34 0.12 0.00 1.00

NetTrans.4 213 13 0.37 0.13 0.00 0.66

T1SelfEff 195 31 5.11 0.79 1.00 6.00

T2SelfEff 203 23 4.86 0.80 1.00 6.00

FinalGrade 198 28 74.67 16.17 0.90 96.10

 14678535, 2023, 5, D
ow

nloaded from
 https://bera-journals.onlinelibrary.w

iley.com
/doi/10.1111/bjet.13340 by U

niversity O
f N

evada Las V
egas Libraries, W

iley O
nline Library on [26/01/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



1214  |      HILPERT et al.

T
A

B
L

E
 2

 
Bi

va
ria

te
 c

or
re

la
tio

ns
 a

m
on

g 
al

l v
ar

ia
bl

es
 in

cl
ud

ed
 in

 s
ta

tis
tic

al
 m

od
el

s.

Va
ria

bl
e

1.
2.

3.
4.

5.
6.

7.
8.

9.
10

.
11

.

N
et

Si
ze

–

N
et

Ed
ge

0.
71

3*
**

–

N
et

D
en

−0
.1

63
*

0.
55

7*
**

–

N
et

Tr
an

s
0.

40
0*

**
0.

74
7*

**
0.

65
8*

**
–

N
et

Tr
an

s.
1

0.
23

3*
**

0.
34

1*
**

0.
20

5*
*

0.
34

7*
**

–

N
et

Tr
an

s.
2

0.
30

4*
**

0.
45

5*
**

0.
33

5*
**

0.
56

7*
**

0.
13

3*
–

N
et

Tr
an

s.
3

0.
08

6
0.

23
5*

**
0.

22
4*

**
0.

29
6*

**
−0

.0
33

0.
23

4*
**

–

N
et

Tr
an

s.
4

0.
19

2*
*

0.
35

6*
**

0.
30

8*
**

0.
47

2*
**

0.
12

7
0.

39
3*

**
0.

36
2*

**
–

T1
Se

lfE
ff

0.
10

5
0.

05
8

−0
.0

2
0.

02
6

0.
10

5
0.

07
1

−0
.1

2
0.

05
4

–

T2
Se

lfE
ff

−0
.0

05
0.

08
9

0.
13

9*
0.

10
3

0.
05

5
−0

.0
07

0.
17

8*
0.

16
6*

0.
32

5*
**

–

Fi
n a

lG
ra

de
0.

28
8*

**
0.

29
6*

**
0.

12
0.

38
6*

**
0.

22
5*

**
0.

07
4

0.
22

9*
*

0.
41

3*
**

0.
07

5
0.

23
3*

*
–

*p
 <

 0
.0

5;
 *

*p
 <

 0
.0

1;
 *

**
p <

 0
.0

01
.

 14678535, 2023, 5, D
ow

nloaded from
 https://bera-journals.onlinelibrary.w

iley.com
/doi/10.1111/bjet.13340 by U

niversity O
f N

evada Las V
egas Libraries, W

iley O
nline Library on [26/01/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



       |  1215LEVERAGING COMPLEXITY

statistically significant and positively related to both dummy variables, suggesting that (most 
notably) the treatment group had higher initial regularized click events than the control group 
immediately after intervention. Results also suggested that dummy variable 1 was statisti-
cally significant and negatively related to the slope of transitivity, indicating that the regularity 
of clicks increased at a lower rate in the not flagged group, compared with the control group. 
The intercept and slope of transitivity were statistically significant and positively related to 
final grade, as was self-efficacy at time 2.

DISCUSSION

In this study, we responded to members of the learning analytics and SRL community's 
challenge to adopt more complex learning analytics approaches to move beyond the 
component-dominant modelling that relies on single accesses of digital tools to reflect 
traces of the self-regulated learning process, for example Winne (2017a, 2017b, 2020). 
Rather than rely on the single learning events using digital objects that might be inferred 
to afford information appropriate to planning, strategy use or monitoring judgements, we 

TA B L E  3   Summary of linear regression results for final grade.

Model Unstandardized
Standard 
error Standardized t p

H₀ (Intercept) 74.671 1.149 64.964 <0.001

H₁ (Intercept) −64.644 61.171 −1.057 0.292

NetSize 7.749 4.252 0.767 1.823 0.07

NetEdge −0.672 0.408 −0.727 −1.648 0.101

NetDen 127.284 105.317 0.453 1.209 0.228

NetTrans 59.892 23.385 0.336 2.561 0.011

TA B L E  4   Summary of latent growth curve parameter estimates.

Predictor Outcome Estimate
Std. 
error z-value p

95% confidence 
interval Standardized

Lower Upper All LV Endo

DUM1NF i 0.187 0.059 3.173 0.002 0.072 0.303 4.861 9.84 9.84

DUM2T i 0.13 0.057 2.29 0.022 0.019 0.241 3.324 6.82 6.82

i FinalGrade 132.363 35.259 3.754 <0.001 63.256 201.47 0.2 2.521 0.2

s FinalGrade 161.939 42.527 3.808 <0.001 78.587 245.291 0.861 10.869 0.861

T2SelfEff FinalGrade 3.782 1.048 3.61 <0.001 1.728 5.835 0.239 3.782 0.3

T1SelfEff NetTrans.1 0.019 0.014 1.39 0.165 −0.008 0.046 0.125 0.019 0.158

NetTrans.2 0.013 0.008 1.673 0.094 −0.002 0.029 0.106 0.013 0.133

NetTrans.3 −0.021 0.009 −2.18 0.029 −0.039 −0.002 −0.144 −0.021 −0.181

T2SelfEff NetTrans.3 0.031 0.01 3.2 0.001 0.012 0.05 0.218 0.031 0.274

T1SelfEff NetTrans.4 0.003 0.015 0.228 0.819 −0.026 0.032 0.023 0.003 0.029

T2SelfEff NetTrans.4 0.022 0.011 1.92 0.055 −4.48E- 04 0.044 0.149 0.022 0.187

DUM1NF s −0.093 0.043 −2.194 0.028 −0.177 −0.01 −0.686 −1.39 −1.39

DUM2T s −0.063 0.042 −1.482 0.138 −0.146 0.02 −0.455 −0.934 −0.934
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adopted a more global, interaction-dominant view of learners' interactions across com-
ponents and relied on complexity approaches and network statistics to reflect students' 
patterned behaviours that might reflect their ability to self-regulate over a longer period 
where the digital objects that are relevant to the immediate task shift over the many 
weeks of a university course.

Network statistics including the edges that indicate use of ordered pairs of content and 
the transitivity statistic that demonstrates an organized access of three unique objects pro-
vide traces of increasingly complex patterns that do not reflect specific SRL phases but 
rather engagement in the more general SRL process that affords looseness in its sequence 
and order to accommodate the task conditions and conditions that the learners' own affor-
dances and constraints impose on their task engagement.

The results of our analysis of these network statistics and their relationship to the aca-
demic achievement known to correlate to engagement in SRL (eg, Dent & Koenka, 2016) pro-
vide initial evidence that this novel approach to tracing SRL through an interaction-dominant 
paradigm supports theoretical assumptions about SRL. Network-based approaches to de-
riving features from log data were useful for predicting student outcomes. Moreover, the 
metrics associated with the networks can be interpreted from a self-regulation perspective 
that has practical implications for artificial intelligence efforts in learning analytics, as well 
as for interrogating how the digital tools designed to improve SRL and found to benefit ac-
ademic achievement might achieve such effects (eg, Bernacki et al., 2020; Cogliano et al., 
2022). Static representations of dynamic processes derived from the markov approaches 
utilized in this study (ie, transitivity calculated for probability transitions), or other statisti-
cal approaches that rely upon time intensive data to capture dynamic learning processes 
(Asparouhov et al.,  2018), are extremely useful for advancing theory, predicting student 
success and examining the outcome of interventions. There have been recent calls in the 
education literature for increased study of motivation and engagement dynamics (Pekrun & 
Marsh, 2022); however, responding to these calls requires methods for aggregating inten-
sive data into meaningful metrics that capture dynamic psychological processes with fidelity 
and in ways that are scalable.

Implications for prediction modelling: Network statistics and their 
potential for feature engineering

Network statistics predicted variance in student achievement and can serve as an addi-
tional class of engineered features that capture a unique aspect of the student learning 
experience that can explain performance. What these patterns reflect is a more abstract 
construct compared with the learning events that are the focus of most learning analytics-
driven SRL research (Bernacki,  2018). Unlike other multi-event methods that tend to be 
agnostic to learning theory and simply combine events via sequence-, pattern-, process- or 
association-mining approaches, these network statistics are agnostic to the components 
that comprise such sequences or patterns, and instead describe the act of engaging in an 
ordered pattern of behaviour. This ordering is itself a trace of something that reflects a regu-
larized order process rather than specific individual sequences. In many cases, data-driven 
solutions identify many sequences or patterns involving components that contribute to vari-
ance explained in an outcome, but they are difficult for researchers to interpret, or even 
determine whether they should be interpreted. This decision to explain the AI solution would 
require that researchers put forth the effort to collect some form of corroborating evidence 
of a learner's process, and that those efforts be brought to bear to validate assumptions 
about what such patterns of resource use might reflect vis-a-vis SRL theory (Winne, 2020). 
Such work is tremendously time intensive, and even when researchers do generate data to 
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corroborate learning events and event sequences, they are not necessarily captured in suf-
ficiently rich detail or temporal proximity to fully validate inferences about the digital event. 
Opportunities to validate sequences of events are even more uncommon, as the uniqueness 
of a 3-component pattern of events happens so infrequently that it is nearly impossible to 
collect enough concurrent corroborating data to even consider whether a valid inference 
can be drawn. Because counts of edges and transitivity are interaction-dominant methods 
and not component-dominant ones, they serve as more general traces of one's tendency to 
engage with multiple digital objects meant to afford different SRL processes. Because SRL 
frameworks acknowledge that the most appropriate pattern of SRL processes is dictated 
by a complex combination of learner and task affordances, progress towards a learning 
goal and implications of events that have preceded that exact moment, there is no specific 
SRL process that is the correct one for all learners in all moments. Thus, instead of reflect-
ing a non-existent ‘right SRL move’, network statistics reflect one's tendency to engage in 
a ‘next SRL move’ by engaging with more content, and one's tendency to do so over the 
learning task. As such, network statistics that capture use of digital objects meant to afford 
specific SRL processes are themselves theory-aligned traces that reflect a unique layer of 
the SRL process and should predict achievement over and above the specific processes 
captured by event-based predictors that typically comprise feature sets in prediction models 
(eg, Arizmendi et al., 2022). In addition to explaining unique variance over and above these 
theory-aligned event-based traces, the occurrence of these theory-aligned interaction-
based traces can also serve as phenomena that can explain how digital tools meant to sup-
port SRL obtain their effects on performance outcomes.

Implications for self-regulated learning support

Bernacki and colleagues (2020) and Cogliano and colleagues (2022) deployed digital 
science of learning to learn training programmes to students and found that students 
who completed them performed better on subsequent examinations in their respective 
biology courses. Using a component-dominant learning analytics approach, Bernacki 
and colleagues (2020) identified increases in students' use of resources for planning in 
the first week of a subsequent unit, greater initial use of tools for self-assessment in the 
same period, and greater use of resources designed to support cognitive strategies like 
retrieval practice. In this study, we re-analysed the sample observed by Cogliano and 
colleagues (2022) to benefit from a 15-minute version of the science of learning to learn 
intervention and here found that those who an algorithm classified as unlikely to re-
quire learning support and who also received and completed the learning support were 
more apt to engage in ordered patterns of learning behaviour reflecting the SRL cycle. 
Importantly, learners who initially behaved like the group who was flagged as likely to 
obtain a poor course grade based on their use of individual use of learning objects in 
the first weeks of the course eventually changed something about their learning that 
led them to outperform their peers on all subsequent examinations and to earn better 
grades in the course. Whereas the behaviours that earned them their flagged classifica-
tion were initially the same as the flagged control group, growth curve analyses exam-
ining network statistics provided evidence that the loosely sequenced, self-regulatory 
aspects of their click behaviour (ie, transitivity) were increased immediately after the 
intervention and remained higher than the control group during the four windows of 
time we identified over the course of the semester. High initial transitivity for the treat-
ment and non-flagged groups (ie, the intercept in the growth curve model) and linear 
increase in transitivity over time (ie, the slope) were both significantly and positively 
related to final grade, even when controlling for student self-efficacy, further suggesting 
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that regularized click events reflective of SRL are likely a valuable engineering feature 
of AI models meant to support student learning. However, one limitation of the study is 
that although the within-person analysis of the SRL longitudinal complex system was 
interaction-dominant, the system was in some ways taken apart to examine treatment 
effects. In this way, the study needed to balance feasibility with complete adherence to 
a complex systems point of view.

Despite this limitation, the results suggest the use of network statistics affords a new 
opportunity to not only look at the course-specific, time-bound objects that students should 
use in particular weeks and months after intervention to plan and study in a next unit of 
course content, but also provides an enduringly relevant metric that describes a pattern of 
behaviour reflecting ordered engagement in a complex learning environment. In this way, 
effects on a course performance metric might be explained by this more sophisticated learn-
ing behaviour, and the sustained engagement in such behaviour may become a critical out-
come of a digital learning skill training itself. If students can be taught to engage in ordered 
learning behaviours and to flexibly consider an evolving learning task and how they should 
engage in it, this may become an important dependent variable by which the value of a sci-
ence of learning to learn tool can be appraised. Transitive relationships can be interpreted 
as interaction-dominant forms of SRL, showcasing the ways in which a complexity approach 
can be combined with SRL theory to produce useful analytics metrics that have practical 
value for modelling and student support.
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E N D N OT E
	1	 In order to examine the effects of interventions, and the ways students engaged with them, we needed to recruit a 

sufficient number of participants into the study that they could be observed to engage in a pattern of behaviour that, 
when modelled in our algorithm, predicted they would succeed and should not be flagged, or should be flagged as 
potentially likely to benefit from intervention. There were two levels of consent included in our recruitment. Students 
could choose to share data only, or share data and receive feedback and support if their data suggested they might 
benefit. For those who chose only to share data, they were given a biology learning activity that covered biology 
topics pertinent to the first course unit and examination. This is true for both those who shared data and whose data 
indicated they should be flagged or non- flagged. This is also the same activity that those who consented to receive 
feedback and support would receive if they were not flagged, or if they were randomly assigned into the control 
condition. Because we knew that there would be individuals who would be willing to share data but were not inter-
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ested in participating in the experiment in the study, we also knew that these students' data could be considered 
as additional cases that did not differ from those flagged and randomly assigned to the control condition where 
they complete the biology activity. We thus oversampled those who consented to the second part of the study into 
the experimental condition where we offered some students a digital training focused on improving their learning 
skills and intervention. Those eligible for such modelling include all who consented to share their data. This larger 
sample size could power not only main effects when compared to the control group (comprising flagged+randomly 
assigned Level 2 consenters and flagged+Level 1 consenters), but also within this experimental treatment group 
to examine interactions where different learner groups may benefit differently.
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