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Abstract
Aim: Understanding the distribution of marine organisms is essential for effective 
management of highly mobile marine predators that face a variety of anthropogenic 
threats. Recent work has largely focused on modelling the distribution and abundance 
of marine mammals in relation to a suite of environmental variables. However, biotic 
interactions can largely drive distributions of these predators. We aim to identify how 
biotic and abiotic variables influence the distribution and abundance of a particular 
marine predator, the bottlenose dolphin (Tursiops truncatus), using multiple modelling 
approaches and conducting an extensive literature review.
Location: Western North Atlantic continental shelf.
Methods: We combined widespread marine mammal and fish and invertebrate sur-
veys in an ensemble modelling approach to assess the relative importance and capac-
ity of the environment and other marine species to predict the distribution of both 
coastal and offshore bottlenose dolphin ecotypes. We corroborate the modelled re-
sults with a systematic literature review on the prey of dolphins throughout the region 
to help explain patterns driven by prey availability, as well as reveal new ones that may 
not necessarily be a predator–prey relationship.
Results: We find that coastal bottlenose dolphin distributions are associated with 
one family of fishes, the Sciaenidae, or drum family, and predictions slightly improve 
when using only fish versus only environmental variables. The literature review sug-
gests that this tight coupling is likely a predator–prey relationship. Comparatively, off-
shore dolphin distributions are more strongly related to environmental variables, and 
predictions are better for environmental-only models. As revealed by the literature 
review, this may be due to a mismatch between the animals caught in the fish and 
invertebrate surveys and the predominant prey of offshore dolphins, notably squid.
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1  |  INTRODUC TION

Species distributions within an environment are mediated by both 
abiotic and biotic factors. The spatial distribution of predators in ma-
rine systems is driven by environmental conditions, such as tempera-
ture (Barbieri, 2005; Mintzer & Fazioli, 2021; Yeates & Houser, 2008), 
and intra and interspecific species interactions, such as competi-
tion and predation (Hanson & Defran, 1993; Ratcliffe et al., 2014; 
Shane et al., 1986). Marine predators maintain community function 
and structure through top-down control and promoting ecosys-
tem health (Baum & Worm, 2009; Duffy, 2003; Estes et al., 2011; 
Heithaus et al., 2008; Wells et al., 2004). However, they face a variety 
of anthropogenic threats which, left unmanaged, can have detrimen-
tal cascading effects on ecosystems (Davidson et al., 2012; Dulvy 
et al., 2014; Estes et al., 2011; Richards et al., 2021). Direct threats to 
marine predators include mortality through overfishing and bycatch. 
Indirect threats include habitat alteration, reduced prey from fishing 
and climate change (Davidson et al., 2012; Dulvy et al., 2014; Myers 
& Worm, 2005; Richards et al., 2021). Understanding which abiotic 
and biotic factors influence the distribution of predator popula-
tions is, therefore, essential for effective management, and in some 
cases, population recovery (Duffy, 2003; Estes et al., 2011; Harvey 
et al., 2017; Hazen et al., 2019).

Most research on the distribution of marine predators, includ-
ing sharks (Osgood et al., 2021), seabirds (Orgeret et al., 2022) and 
toothed whales (Roberts et al., 2016), has focused on relating their 
distributions to physical aspects of their environment in the form 
of species distribution models (Palacios et al.,  2013 for review). 
These models do not fully capture ecological processes, such as 
trophic interactions, that can directly influence the distribution of 
marine predators (Barros & Wells, 1998). This historical reliance on 
correlative environmental models that ignore biotic relationships 
is likely due to the difficulty of collecting such data and the mis-
match in available data sets—with information on species within 
a system often collected at different spatial and temporal scales 
or extents (Fauchald et al., 2000; Torres et al., 2008). However, in 
the western North Atlantic continental shelf, the existence of data 
sets collected by long-term fish and invertebrate and marine mam-
mal surveys provides an excellent opportunity to understand the 
influence of both the environment and trophic interactions on the 
distribution of an ecologically important marine predator: the com-
mon bottlenose dolphin (Tursiops truncatus—hereafter referred to 
as bottlenose dolphins).

Two bottlenose dolphin ecotypes, coastal and offshore, in-
habit the western North Atlantic and differ in their genotypes 
(Costa et al.,  2022), phenotypes (e.g. morphology see (Mead & 
Potter, 1995), haematological profiles (Duffield et al., 1983; Hersh & 
Duffield, 1990) and parasite load (Mead & Potter, 1990)). The coastal 
ecotype occurs in estuarine and coastal waters from Florida north to 
the New York Bight (Hayes et al., 2021), and the offshore ecotype 
occurs from Florida to New England and occasionally as far north 
as the Scotian Shelf (Hayes et al., 2020, 2021). There is overlap be-
tween the distributions of coastal and offshore bottlenose dolphins 
from Florida to Cape Hatteras, North Carolina, but north of Cape 
Hatteras, the two ecotypes do not co-occur (Garrison et al., 2002; 
Kenney, 1990; Torres et al., 2003). Offshore bottlenose dolphins are 
distributed along the continental shelf and shelf break region and 
are exclusively found in 40 m or deeper water (Garrison et al., 2002), 
while coastal bottlenose dolphins are found inside the 25-m isobath 
(Kenney, 1990).

The range of bottlenose dolphins fluctuates on a seasonal basis 
north of North Carolina (Hayes et al., 2020, 2021). Environmental con-
ditions, especially temperature (Hare et al., 2016), and species compo-
sition of the ichthyofauna vary seasonally in these temperate regions 
(Nye et al., 2011; Sullivan et al., 2005). Some coastal bottlenose dol-
phins move north to New England in the warm water months and re-
turn south to Virginia and North Carolina in winter (Hayes et al., 2021). 
Offshore dolphins also extend northwards seasonally in the warm 
water months (Baird et al.,  1993; Gowans & Whitehead,  1995; 
Winn, 1982), but do not seem to exhibit such a drastic seasonal change 
in their distribution (Baird et al.,  1993; Kenney,  1990), although we 
know less of the movements of these animals. These seasonal changes 
in distribution are believed to be driven by temperature (Kenney, 1990) 
and movements of prey (Barco et al., 1999; Barros, 1993; Friedlaender 
et al., 2001). In this region, bottlenose dolphins have been observed 
in sea surface temperatures of 1–31°C with an average of 19.7°C 
(Kenney,  1990). They feed on a variety of prey, predominantly fish 
and squid (Barros & Odell, 1990; Gannon & Waples, 2004; Hart, 1997; 
Mead & Potter, 1995; Shane et al., 1986). To quantify and understand 
drivers of bottlenose dolphin distribution along the US east coast, pre-
vious studies have employed a variety of approaches, from localized 
studies (Barco et al., 1999) to distribution models that span the entire 
continental shelf (Roberts et al., 2016; Torres et al., 2003). However, 
these approaches have struggled to directly connect the predators 
with other species (like prey), while accounting for the influence of en-
vironmental factors.

Main Conclusions: Incorporating prey species into distribution models, especially for 
coastal bottlenose dolphins, can help inform ecological relationships and predict ma-
rine predator distributions.

K E Y W O R D S
bottlenose dolphins, ecological modeling, joint modeling, marine ecology, marine mammals, 
predator + prey, Sciaenidae, species interactions, Tursiops truncatus
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    |  3ROBERTS et al.

Understanding the relationship between marine predators and 
their prey has significant implications for their management and 
for marine spatial planning. Bottlenose dolphins in US waters are 
managed under the federal Marine Mammal Protection Act. Several 
stocks of bottlenose dolphins along the US east coast, especially 
those that utilize Mid-Atlantic waters, are considered to be strate-
gic or depleted, meaning that human-caused mortalities are above 
sustainable levels or their population levels are below optimum 
sustainability respectively (H.R.2760,  1994; Hayes et al.,  2021). 
It is, therefore, necessary to understand their distributions as 
human–wildlife interactions and human-induced changes to the en-
vironment continue to occur and new ones will likely arise in the 
future. For example, as increasing ocean temperatures cause fish 
distributions to shift (Kleisner et al.,  2017), predators may follow, 
potentially leading to new and unexpected socio-ecological rela-
tionships (Record et al., 2019). Furthermore, models assessing the 
potential effects of offshore wind development on predator dis-
tributions must also consider the impacts on other populations of 
species. For example, if wind farms act to aggregate prey (Methratta 
& Dardick,  2019), predators, such as the bottlenose dolphin, may 
aggregate around wind turbines.

The health of marine predator populations also has implications 
for their ecosystems (Moore,  2008). Depending on the system, 
bottlenose dolphins are either meso- or apex predators and there-
fore can directly or indirectly affect the dynamics of populations of 
other species through predation or competition (Kiszka et al., 2015; 
Moore, 2008; Roman & Estes, 2017; Wells et al., 2004). Impacts on 
bottlenose dolphins may in turn have serious implications for entire 
communities within an ecosystem.

Here, we incorporate potential prey into distribution models to 
better understand the drivers of the occurrence and movements 
of bottlenose dolphins along the US east coast. Specifically, we 
assess the influence of both environmental covariates and fish and 
invertebrate species and families on the distribution and abun-
dance of bottlenose dolphins using a multifaceted approach. First, 
we infer which fish and invertebrate species, families and envi-
ronmental variables influence bottlenose dolphin density through 
modelling, then we evaluate the strength of these relationships 
through prediction. Finally, we corroborate the ecological signifi-
cance of these modelled relationships with a systematic literature 
review of diet studies.

2  |  METHODS

2.1  |  Modelling data sets

The study area for this analysis includes the Mid-Atlantic Bight 
and Northeast from Cape Hatteras, North Carolina to Cape Cod, 
Massachusetts extending to the edge of the continental shelf break. 
This ecosystem is characterized by a productive and shallow con-
tinental shelf that supports a diversity of marine species including 
commercially important marine fish (Love & Chase,  2007), marine 

mammals (LaBrecque et al., 2015) and sea turtles (Hodge et al., 2022). 
The shallow continental shelf and adjacent metropolitan areas make 
the Mid-Atlantic bight and Northeast an economically robust region 
which supports a diversity of ocean uses including fishing, shipping, 
recreation, tourism and emerging wind farm development (Lathrop 
et al., 2017).

Our research approach combined fish and invertebrate bio-
mass (kg/20-min tow) from the National Oceanic and Atmospheric 
Administration (NOAA) Northeast Fisheries Science Center (NEFSC) 
bottom trawl surveys with detection-corrected bottlenose dolphin 
density (abundance/km2) from line-transect surveys (Figure 1a) by 
matching monthly overlap within 0.25° × 0.25° grid cells (Figure 1b). 
We selected this spatial grain as it captured enough overlap between 
the two data sets to conduct analyses (1535 total overlapping points). 
For example, at a coarser grain of 0.5° × 0.5° grid cells, there were 
only 1160 overlapping points, and at a finer grain (0.025° × 0.025°), 
there were only 1230. Environmental data (sea surface temperature 
(SST), sea surface salinity (SSAL) and depth) were measured in situ 
during the fish and invertebrate surveys and averaged across grid 
cells and months as well.

Fish and invertebrate data were acquired from the NEFSC 
bottom trawl survey, which has been conducted since 1963 in the 
spring, fall and winter, and collects biomass and distribution data 
for over 250 fish and invertebrate species. Trawl surveys are con-
ducted within predefined strata based on depth (Figure  1a). The 
survey employs a stratified random sampling design, with stations 
allocated proportionally to stratum area (number of trawls = 42,702). 
The trawls utilize a 12-mm mesh codend liner to retain smaller 
bodied and juvenile fishes and invertebrates. All fish and inverte-
brates were weighed and counted and identified to the species level 
(Azarovitz, 1981). We measured biomass density as species-specific 
biomass (kg/tow) per month within each grid cell (average monthly 
kg per 20-min tow/grid cell). We also summarized the data to the 
family level as family-specific biomass per month within each grid 
cell to run separate family-based models (see below).

Bottlenose dolphin density data (abundance/km2) were col-
lected from directed line-transect surveys as effective abundance 
per segment (Figure  1a). The original surveys were conducted by 
the NEFSC, New Jersey Department of Environmental Protection 
(NJDEP), Southeast Fisheries Science Center (SEFSC), University 
of North Carolina Wilmington (UNCW) and Virginia Aquarium and 
Marine Science Center (VAMSC), spanning the years 1992–2016. 
For more information on the original dolphin surveys, see Table S1. 
The original surveys were processed to account for detectability 
(plane vs. boat detectability differences accounted for by applying 
a detection function) and availability (animals that were submerged 
and unavailable for detection) and/or perception bias (animals that 
are hard to detect despite being at the surface). These detection-
corrected abundance estimates have been utilized for habitat-based 
cetacean density models for the entire U.S. Atlantic coast by NOAA 
and the U.S. Navy (Roberts et al., 2016). To minimize the influence of 
outlier values, we used the square root of both the dolphin density 
and fish and invertebrate biomass values for modelling.
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4  |    ROBERTS et al.

After combining the dolphin and fish and invertebrate data, we 
separated the overlapping grid points according to bottlenose dol-
phin ecotype. North of Cape Hatteras, the two ecotypes are sep-
arated by depth and specifically the 25-m isobath (Kenney, 1990). 
All dolphins sampled in waters of 40 m depth or greater belong to 
the offshore ecotype (Garrison et al., 2002), so we used this criteria 
for our analysis <25 m depth = coastal (n overlapping points = 143, 
21 positive dolphin abundance), >40 m depth = offshore (n overlap-
ping points = 1392, 38 positive dolphin abundance, Figure 1b). We 
excluded overlapping points that occurred in depths between 25 
and 40 m (n excluded = 296, Figure 1b). There is more overlap of the 
two ecotypes south of Cape Hatteras (Torres et al.,  2003), so we 
focused on the region north of Cape Hatteras. More of the fish and 
invertebrate trawls overlap with offshore dolphin points compared 
with the coastal dolphin points, which is likely due to the timing 
and location of the trawls—the fish and invertebrate trawls occur in 
the spring and fall months and cover more of the northeast portion 
of our study region, and coastal dolphins are likely present in the 
Mid-Atlantic, which is the northern extent of coastal dolphin ranges 
(Garrison et al., 2002; Hayes et al., 2021; Kenney, 1990) in the sum-
mer months.

2.2  |  Modelling

We had two main goals in our modelling approach (1) to infer which 
fish and invertebrate species, families and environmental variables 
are important drivers of bottlenose dolphin abundances and dis-
tributions and (2) to assess whether environment-only or fish-only 

models are better suited for predicting bottlenose dolphin distribu-
tions. We applied each approach to the fish and invertebrate data 
summarized at the family level as well as species level (Figure 2).

2.3  |  Inference: assessing the 
importance of fish and environment on dolphin 
distributions independently

For the first goal, we utilized both single-species (family) models and 
joint species (family) models to assess the influence of environmental 
variables and fish and invertebrates on the distributions of bottlenose 
dolphins. We separated the data by ecotype and inferred the relative 
importance of species (families) as well as environmental variables 
using generalized linear models (GLMs), random forests, Pearson's 
correlation and a joint modelling approach. Research has shown that 
there is variability among different modelling methods in terms of 
predicting species distributions, and, in some cases, ensemble ap-
proaches, that combine multiple models, are preferred (Grenouillet 
et al., 2011). In order to not bias results to one modelling method, we 
chose to examine four types of modelling approaches that differ in 
their underlying structures, to assess if results are similar across mod-
els. While generalized additive models (GAMs) have gained popular-
ity in species distribution modelling, we chose not to run GAMs due 
to the small sample size of our study that would lead to overfitting 
when using GAMs (Karatekin et al., 2019). We ran GLMs with coastal 
or offshore bottlenose dolphin density as the response variable and 
iterated through each environmental variable (SST, SSAL, depth) and 
each fish and invertebrate species (family) separately (starting with 

F I G U R E  1  (a) Dolphin (red) and fish and invertebrate (blue) survey extents in the Mid-Atlantic Bight and Northeast. Note the dolphin 
surveys are continuous from the shore out over the shelf break and are overlapped by the fish and invertebrate survey. (b) Overlapping 
dolphin and fish and invertebrate data north of Cape Hatteras, NC separated into coastal and offshore ecotypes (n = total number of 
overlapping monthly data points).
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    |  5ROBERTS et al.

all 214 fish and invertebrate species (75 families) that co-occur with 
at least one dolphin data point—see Tables S2 and S3 for species and 
families selected and model results). We calculated the difference 
between the deviance explained of each model from the null model. 
Because of the phenological importance of seasonality for dolphin 
migrations (Hayes et al.,  2020, 2021), we incorporated month as 
a variable for all GLM models. We also ran random forest models 
for the coastal and offshore bottlenose dolphin ecotypes using the 
party package (Strobl et al., 2009) in R (version 4.3) and calculated 
the conditional permutation importance of each variable (number of 
trees = 500, number of preselected variables per tree = 5). Random 
forests, a machine-learning algorithm similar to classification and 
regression trees (Brieman,  1984), has been extensively utilized by 
ecologists because of their high accuracy, ability to depict interac-
tions between categorical and continuous variables and greater in-
terpretability compared to methods such as neural networks (Cutler 
et al., 2007). The conditional permutation importance is a measure 
of a variable's importance given the other variables in the model—
thus accounting for the correlation between variables that tend to 
inflate variable importance estimates in the traditional permutation 
or Gini importance measures (Strobl et al., 2009). Finally, we calcu-
lated the Spearman correlation between coastal or offshore bottle-
nose dolphins (monthly density (abundance/km2) per grid cell) and 

each environmental variable as well as fish and invertebrate species 
(families; monthly density (kg/tow) per grid cell).

Single-species models capture the individual effects of a single 
fish or invertebrate species (family) on bottlenose dolphin densities, 
but joint models allow for environmental effects as well as depen-
dence between species (families). We utilized the generalized joint 
attribute model (GJAM) developed by Clark et al. (2017). GJAM is a 
multivariate Bayesian model which allows us to jointly model the ma-
rine fish, invertebrate and dolphin community and account for direct 
and indirect responses to the environment. Inference is assessed 
using Gibbs sampling, which is based on a Markov chain Monte Carlo 
(MCMC) algorithm that works by conditioning on the observed value 
of different variables in each iteration. GJAM returns all parameters 
on the observation scale, in this case, kg/tow (per grid/month) and 
abundance/km2 (per grid/month). Products of model fitting include 
a species-by-species covariance matrix (Σ), species responses to pre-
dictor variables (B) and predicted responses. The species-by-species 
covariance matrix Σ captures residual co-dependence between 
species after removing the main structure explained by the model 
(also referred to as the residual correlation matrix). We ran sepa-
rate GJAM models for the coastal and offshore bottlenose dolphins 
including commonly co-occurring species (families) as well as SST, 
SSAL, month and depth. The coastal and offshore models were each 

F I G U R E  2  Study workflow. (a) We start by iteratively assessing the importance of fish and invertebrate families and species and the 
environment on coastal and offshore dolphin densities. (b) Then, using the fish families and species identified as important for modelling in 
(a), we predict dolphin densities and presences using fish family-only, fish species-only and environment-only models to compare predictive 
capabilities of these three differing approaches. (c) Finally, we compare findings from the modelling portion of the study to results from an 
extensive literature review. When model findings agree with the literature, especially stomach content studies, we suggest the modelled 
relationships are predator–prey, when findings disagree, we suggest co-occurrence and further research is needed.
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6  |    ROBERTS et al.

run for 60,000 iterations and a burn-in of 10,000 (see Figures S1 and 
S2 for MCMC chains depicting convergence). Rare species can cause 
hierarchical Bayesian models to not converge, so we only modelled 
species that co-occurred with coastal or offshore dolphins in at least 
17 or 30 grid points respectively (coastal = 27 species, offshore = 21 
species, see supplemental GJAM figures for species (Figures S3 and 
S4)). This number of co-occurring species was the maximum num-
ber of rare species that allowed the models to converge. The model 
background and structure has been described previously (Clark 
et al., 2017; Roberts et al., 2022). We assessed potential spatial and 
temporal autocorrelation on the coastal GJAM model, and detected 
limited evidence of either (Figure S5).

2.4  |  Prediction: comparing prediction of dolphin 
presence and density using fish-only and habitat-
only models

From the inference-based models, we developed an understand-
ing of the fish species, families and environmental variables that are 
strongly related to coastal and offshore bottlenose dolphin distri-
butions. We utilize those species and families and predict in- and 
out-of-sample dolphin density using a model that considers only the 
environment and a model that randomly considers the top three as-
sociated species (families) from each modelling result plus month (to 
stay consistent with the inference-based approach above). Using a 
bootstrapping procedure (n = 100), we randomly selected three spe-
cies (families) out of the top 20 with the highest explanatory power 
(Table 1; deviance explained vs. the null model for GLMs, conditional 
permutation importance for random forests and residual correla-
tion and environmental covariance for GJAM for species-specific 
models, family-specific models can be found in Table S4). We then 
compare predictive performance for the environment-only models 
(four covariates) and the fish-only models (four covariates). Because 
a species' distribution is driven by processes that govern occurrence 
(range limitations) as well as processes that govern abundance (pop-
ulation productivity), modellers have used two-step (e.g. delta, hur-
dle) approaches to estimate species distributions (Grüss et al., 2014). 
We are interested in how environmental variables and co-occurring 
fish and invertebrate species and families influence both processes, 
so we separate out our predictive modelling into presence–absence 
models (occurrence) and density models (abundance).

For out-of-sample prediction, we used the same bootstrap-
ping procedure as above, and iteratively (n = 100) trained each 
model on a random 70% of the data set (coastal n = 100 and off-
shore n = 974) and tested prediction on 30% (coastal n = 43 and 
offshore n = 418), to minimize the influence of outlying data. In-
sample and out-of-sample predictions were evaluated using R2 and 
root mean squared error (RMSE). R2 is a measure of the average 
squared difference between the observed and predicted values 
and is unitless. R2 is calculated as (1−sum((predicted − observed)2)/
sum((observed − mean(observed))2)). RMSE is a measure of the aver-
age squared difference between the observed and predicted values, 

measured in the same units as the input data; thus, an RMSE of 0.41 
bottlenose dolphin suggests that average predicted dolphin density 
differed from observed dolphin density by 0.41 dolphins per km2. 
For the presence–absence version of each model, we calculated 
the area under the receiver operator curve (ROC) for in-sample and 
out-of-sample observed versus predicted values. The ROC curve is a 
measure of model performance which plots true-positive rate versus 
false-positive rate, and the area under the ROC curve (AUC) pro-
vides a single measure of accuracy. The value of the AUC is between 
0.5 and 1.0. A value of 0.8 for the AUC means that for 80% of the 
time, a random selection from the positive group will have a score 
greater than a random selection from the negative group (Fielding 
& Bell 1997). In general, a model with an AUC value above 0.7 is 
considered a good model.

The predictive performance for each modelling approach (GLMs, 
random forests and GJAM), ecotype (offshore and coastal) and re-
sponse variable type (density and presence/absence) are presented 
for both in- and out-of-sample prediction (Table  1 for species-
specific, Table S4 for family-specific). Out-of-sample prediction is a 
good measure of how well a model predicts on data it has not seen, 
but given the small sample size for coastal bottlenose dolphins, we 
exercise caution when interpreting out-of-sample results. Finally, 
the environment-only versus fish-only modelling approach above 
is not suitable for a joint modelling approach (where the fish and 
dolphins are on the left side of the equation and the environment 
is on the right); thus, we trained and tested the GJAM model using 
conditional prediction—whereby the predicted bottlenose dolphin 
density and presence is conditioned on the associated species (fam-
ilies) as well as the environmental variables. We present results for 
unconditional prediction that defines the mean values of bottlenose 
dolphin density or probability of presence from the environmental 
covariate values and fitted coefficients (similar to the environment-
only models above) as well as conditional prediction which adds in-
formation from the residual covariance of the associated fish and 
invertebrate species (families).

2.5  |  Literature review

To validate the fish and invertebrate species and families that were 
identified as important by modelling and determine the existence 
of predator–prey relationships, we completed a systematic literature 
review of bottlenose dolphin feeding and diet studies in the western 
North Atlantic. Coastal and offshore bottlenose dolphins within the 
modelling area are known to use waters from Florida to the Scotian 
Shelf (Hayes et al.,  2020). We therefore conducted a systematic 
Google Scholar search for each known bottlenose dolphin study 
site and inhabited geographic feature from Florida to the Scotian 
Shelf (56 search strings in total, see Table S5 and the Supplemental 
Materials for details on the literature review methods described 
throughout this section).

In total, 1182 unique references from scientific and grey litera-
ture were produced (the top 50 references were selected per each 
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search string). Articles were screened by two reviewers using the 
Colandr software package (Cheng et al., 2018), which is an online, 
multiuser platform to systematically synthesize text-based evidence. 
References that did not focus on the western North Atlantic and 
did not contain information on bottlenose dolphins and prey were 
excluded. After screening, 59 primary references were coded for 
prey by two reviewers using a preestablished protocol, and 49 were 
used in analysis (Table S9 and Figure S6). We removed references 
where prey were identified, but the dolphin ecotype was unknown, 
the data source was not attributable or the prey were at the classifi-
cation of phylum or higher.

Within a reference, we determined the dolphin ecotype (coastal 
or offshore), region (Southeast, Mid-Atlantic, Northeast or East) and 
source of data (e.g. stomach content, isotope, direct observation) for 
each reported unique prey item (e.g. species, genus, family). We con-
sidered a data point to be a unique prey item per unique combination 
of ecotype, region and data source within a reference (see Table S6 
for details on coding criteria and Table S7 for all prey values). There 
was often more than one data point per reference, because multiple 
independent sources of prey data were often reported for different 
ecotypes and/or locations within a reference.

Overall, far fewer references contained prey items for offshore 
dolphins than coastal dolphins (n = 10 vs. n = 44), and more refer-
ences had prey for the Southeast (n = 30) than the Mid-Atlantic to 
Northeast (n = 21). The majority of studies were either descriptions 
of stomach contents (n = 16) or observational (n = 15) and identified 
prey to the species level (n = 41). Most references were from scien-
tific journals (n = 26) and North Carolina had the highest representa-
tion among states (n = 16; Figure S6).

We assessed trends in prey species and families by calculating 
the prevalence of each unique prey species and family across stud-
ies for coastal and offshore dolphins in the Southeast (i.e. Florida to 
South Carolina) and Mid-Atlantic to Northeast (i.e. North Carolina 
to the Scotian Shelf) regions. Given the small number of references 
with prey items for the Northeast (3 of 49 and exclusively offshore 
bottlenose dolphins), we assessed Mid-Atlantic and Northeast data 
together as one region. If the region for a prey item was coded as 
‘East’, then the prey item counted for both the Southeast and Mid-
Atlantic to Northeast regions. For species prevalence, we tallied the 
total number of each unique prey species (one per ecotype–region–
data source combination within a reference). When calculating the 
family prevalence, we derived prey family values from the species or 
genera of reported prey when necessary. We reported each unique 
prey family once per ecotype–region–data source combination 
within a reference to avoid overcounting and inflating prevalence 
results for family data. When reporting prevalence, prey items given 
higher than the species or family level were still included as category 
NA.

Across references, there were 93 prey data points at the family 
level for coastal Mid-Atlantic to Northeast dolphins, 163 for coastal 
Southeast dolphins, 18 for offshore Mid-Atlantic to Northeast dol-
phins and 23 for offshore Southeast dolphins. There were 82 prey 
data points at the species level for coastal Mid-Atlantic to Northeast 

dolphins, 198 for coastal Southeast dolphins, 10 for offshore Mid-
Atlantic to Northeast dolphins and 14 for offshore Southeast dol-
phins. We also calculated the proportion of references that each 
unique prey species and family was reported in for coastal dolphins 
in the Mid-Atlantic to Northeast (n = 17) and Southeast (n = 28), as 
well as offshore dolphins in the Mid-Atlantic to Northeast (n = 7) and 
Southeast (n = 5). Again, more prey data points and references ex-
isted for the Southeast region and for coastal dolphins.

Stomach content data provide insight into the relative impor-
tance of prey species, genera and families; thus, we further extracted 
information from references reporting stomach content composi-
tion, specifically % frequency and % number of prey species (7 refer-
ences, see Tables S8 and S9). Percent frequency (also referred to as 
% occurrence) is the number of stomachs in which a unique prey item 
is documented divided by the total number of stomachs. Percent 
number is the total count of specimens of a unique prey divided by 
the total number of all prey specimens documented in stomachs. We 
calculated the average % frequency and average % number for each 
unique prey species across studies for coastal dolphins in the Mid-
Atlantic (three studies, the Northeast is not represented because 
coastal dolphins do not inhabit the Northeast region, see Table S6) 
and coastal dolphins in the Southeast (four studies). Only one study 
had % frequency and % number data at the species level for offshore 
dolphins, and it was in the Southeast.

3  |  RESULTS

3.1  |  Inference

From our modelling approach, we can infer that the distribution 
of coastal bottlenose dolphins is more driven by drum fish (family 
Sciaenidae) than environmental conditions (Figure  3a–e, Figure  S7). 
Although our models differed in their underlying structure (Table 1), 
there was strong agreement among models in terms of the importance 
of explanatory families and species, especially for coastal bottlenose 
dolphins. In both the family-based models and species-based models, 
Sciaenids had the strongest relationship with coastal bottlenose dol-
phin abundance. For example, when examining at the species level, 
spot (Leiostomus xanthurus) or silver perch (Bairdiella chrysoura) had the 
strongest associations with coastal dolphins measured as conditional 
importance (Figure 3a), deviance explained (Figure 3b) and Spearman 
correlation (Figure 3c), as well as in the joint model. In the joint model, 
environmental covariance measures how species covary with environ-
mental conditions—with coastal bottlenose dolphins strongly covary-
ing with spot and Atlantic croaker (Micropogonias undulatus; Figure 3d). 
Finally, the residual covariance captures residual co-dependence be-
tween species after removing the main structure explained by the 
model. Thus, spot and weakfish (Cynoscion regalis) have a strong posi-
tive residual covariance with coastal bottlenose dolphins (Figure 3e), 
which could suggest an unmeasured environmental variable or de-
pendence between these species and coastal bottlenose dolphin 
abundance (see Figures S3 and S4 for the complete GJAM results).
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The offshore bottlenose dolphin ecotype was largely associated 
with SST, Phycidae and Triakidae (top family for conditional impor-
tance, Spearman correlation, environmental covariance and residual 
covariance; Figure S8), but when explored at the species levels, no spe-
cies clearly stands out, and relationships depend on the model consid-
ered. However, spotted hake, smooth dogfish and rosette skate were 
consistently strongly associated with offshore bottlenose dolphin 
abundance in the random forest model (Figure 4a), Spearman correla-
tion (Figure 4c) and the environmental covariance from the joint model 
(Figure 4d). SST was strongly associated with offshore bottlenose dol-
phin density in the random forest and GLM models (Figures 4a and 3b).

3.2  |  Prediction

Predictions from the family-based models performed worse than the 
species-based models for both coastal and offshore bottlenose dolphins 
in- and out-of-sample, except for the fish-only in-sample random for-
est model (both coastal and offshore)—thus, we present species-specific 
models in the main text (Table 1) and family-specific results can be found 
in Table S4. Overall, random forests performed best in terms of in- and 
out-of-sample prediction out of all of the modelling techniques.

Coastal in-sample predictive performance improved slightly in 
GLM models that only include fish species (R2 = .26, RMSE = .38) versus 
models that only incorporate the environment (R2 = .16, RMSE = .41; 
Table 1), but not for presence–absence versions of the model (GLM 
AUC = 0.86 vs. 0.88, RF AUC = 0.91 vs. 0.94). GLM out-of-sample pre-
dictive performance is worse for models that only consider fish spe-
cies versus models that just consider the environment, but random 
forest out-of-sample performance is better for the fish-only models. 

Conditional prediction was better in-sample, while both conditional 
and unconditional were virtually identical out-of-sample for density, 
and conditional prediction was slightly better for presence–absence.

Predictive performance was weaker in the in-sample and out-of-
sample predictions for the density of the offshore bottlenose dol-
phins compared to the coastal bottlenose dolphin models, but better 
for presence–absence offshore models. GLM predictions are slightly 
better in the fish species only in-sample abundance models versus 
the environment-only models (Table 1), and predictions are better for 
the environment-only models out-of-sample. In-sample presence–
absence models performed better than the models for coastal bot-
tlenose dolphins and performed best for models that just consider 
the environment (AUC = 0.94 vs. 0.88). Predictions from the random 
forest and GJAM models demonstrated similar results (Table 1).

3.3  |  Literature review

From the literature review, we identified the top 10 prey (family and 
species), separated by region and ecotype (prevalence and percent-
age of references; Figure  5). The Sciaenidae family (drums) ranked 
first in prevalence and percentage of references for the Mid-Atlantic 
coastal dolphins with spot, Atlantic croaker and weakfish ranking 
highest among species (prevalence and percentage of studies) for 
this region and ecotype. The Triglidae family (sea robins) ranked 
first in prevalence and percentage of studies for the Mid-Atlantic 
to Northeast offshore dolphins and northern shortfin squid (Illex il-
lecebrosus) was the only prey identified at the species level for these 
studies. The Mugilidae family (mullet) ranked first in prevalence and 
percentage of studies for the Southeast coastal dolphins and flathead 

F I G U R E  3  Importance of environmental covariates and other overlapping species for coastal dolphin distributions. Conditional 
importance from random forest models (a), deviance explained compared to the null model for GLMs (b), Spearman correlation in the data 
set (c), environmental covariance from joint modelling (d) and residual covariance from joint modelling (e). Species colour coded based on 
family with environmental variables noted in green.
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grey mullet (Mugil cephalus), spot and spotted seatrout (Cynoscion 
nebulosus) ranked highest among species (prevalence and percentage 
of studies) for this region and ecotype. The Ommastrephidae family 
(squid) ranked first in prevalence and percentage of studies for the 
Southeast offshore dolphins and Atlantic bird squid (Ornithoteuthis 
antillarum), pinfish and ladyfish (Elops saurus) ranked highest among 
species (prevalence and percentage of studies) for this region and 
ecotype.

We further examined the literature on stomach content to as-
sess relative prevalence of each of the prey species for Mid-Atlantic 
to Northeast (Figure 6a) and Southeast (Figure 6b) stomach content 
studies. Again, weakfish, Atlantic croaker and spot ranked highest 
in terms of average percent frequency and average percent num-
ber within Mid-Atlantic to Northeast coastal dolphin stomachs 
(Figure 6a). All three of these species belong to the Sciaenidae fam-
ily. American stardrum (Stellifer lanceolatus), spot and Atlantic brief 
squid ranked highest for average percent frequency, and American 
stardrum, Atlantic croaker and American silver perch ranked high-
est for average percent number within Southeast coastal dolphin 
stomachs (Figure  6b). There were more stomachs (136 ± 68.4) in 
Mid-Atlantic to Northeast coastal studies versus Southeast coastal 
studies (40.2 ± 36.0). Only one prey was reported at the species 
level for offshore dolphins (Atlantic bird squid – Figure 6b) from one 
stomach in one study.

4  |  DISCUSSION

Our model-based approach had two main goals: (1) to determine 
whether we could infer relationships between the density of 

bottlenose dolphins and environmental variables or co-occurring 
fish species and families and (2) to use this information to test 
predictive performance of models that consider only fish versus 
models that consider only the environment. Using various model-
ling techniques, we were able to infer a strong relationship be-
tween coastal bottlenose dolphins and Sciaenid fishes (drums), 
and in-sample predictions of their density improve slightly when 
considering these fish instead of just the environmental variables. 
This tight relationship between coastal bottlenose dolphins and 
drums aligns with our findings from the literature review on diet. 
Specifically, four of the top six species that helped explain coastal 
dolphin distributions are known prey of dolphins (silver perch, 
weakfish, spot, banded drum), suggesting that the strong relation-
ship found in modelling is a predator–prey interaction. This result 
corroborates other research indicating that bottlenose dolphins 
hunt by listening for soniferous prey, referred to as the ‘passive 
listening hypothesis’ (Gannon et al., 2005) and suggests that noise 
pollution from coastal development, shipping activity and other 
human uses could be detrimental to dolphin foraging.

The strong relationship between coastal bottlenose dolphin 
distributions and their soniferous prey may inform how coastal bot-
tlenose dolphins will react to future anthropogenic factors. For ex-
ample, anthropogenic climate change is influencing the distribution 
and abundance of several of the fish species that we found to be 
strongly associated with coastal bottlenose dolphins. For instance, 
warming ocean temperatures have led to a northward expansion 
of the range of Atlantic croaker along the east coast of the United 
States (Hare & Able, 2007). Warmer winters allow croaker and other 
cold-sensitive juveniles to overwinter and persist north of their his-
torical ranges, so their predators may also shift their distributions. 

F I G U R E  4  Importance of environmental covariates and other overlapping species for offshore dolphin distributions. Conditional 
importance from random forest models (a), deviance explained compared to the null model for GLMs (b), Spearman correlation in the data 
set (c), environmental covariance from joint modelling (d) and residual covariance from joint modelling (e). Species colour coded based on 
family.
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Consequently, shifts in bottlenose dolphins would likely have cas-
cading effects throughout the ecosystem if their prey shifted at 
different rates, given their estimated rate of consumption (Smith 
et al., 2015). Research has begun to examine shifts in marine mam-
mal distributions with climate change. Thorne and Nye (2021) found 
that pilot whale populations are shifting faster than their prey, and 
Thorne et al.  (2022) and Chavez-Rosales et al.  (2022) found ev-
idence of poleward shifts in their distributions. A closer examina-
tion of the potential shifts of bottlenose dolphins driven by changes 
in the distribution of their prey species is warranted, and accurate 
estimates of the distribution of these prey species under ocean 

warming will further help elucidate potential future changes in dol-
phin distributions.

The development of offshore wind farms in the northwest 
Atlantic may change the distribution of key prey species, either 
through disrupting their migration routes or acting as fish aggre-
gating devices, as has been documented in Europe (Methratta & 
Dardick, 2019). Wirth and Warren (2019) found that artificial reefs 
off of the New York Bight increased the abundance of weakfish 
and oyster toadfish, which resulted in bottlenose dolphins aggre-
gating in the area (Wirth & Warren, 2019). Along the Block Island 
Wind Farm, the first wind farm constructed in North America, 

F I G U R E  5  Literature review results. Frequency (percentage of studies documenting each prey family) and prevalence (total number of 
unique occurrences of each prey family) for the Mid-Atlantic to Northeast and Southeast for coastal (a) and offshore (b) ecotypes. Species-
level frequency and prevalence of prey for coastal (c) and offshore (d) ecotypes. We show the top 10 prey (species and family) from the 
literature review for each ecotype across the regions. N represents the total number of studies (frequency) and the number of total prey 
identified for each ecotype within each region (prevalence). NA indicates prey were not identified to the family (a, b) or species (c, d) level. 
Asterisk (*) represents species that were top inferential species or families in the modelling portion of this study (top three for any modelling 
type, see Table 1).
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recreational fishers are drawn to the area due to increased fish 
biomass (ten Brink & Dalton,  2018). In general, when evaluating 
the impacts of wind infrastructure on bottlenose dolphin distribu-
tions, our results suggest that management must consider the po-
tential indirect effects of wind farms on dolphins and other marine 
mammals and protected species that result from changes to prey 
distributions in addition to the more commonly studied effects of 
acoustic disturbance.

The tight coupling of coastal bottlenose dolphins and several 
commercially important fish species has implications for bycatch 
potential and fisheries interactions. Many of the prey identified 
as important in the literature review and strongly associated with 
coastal dolphins in the modelling portion of this study support im-
portant commercial and recreational fisheries (e.g. Atlantic croaker 
and weakfish), some of which utilize gear (gillnets) that result in by-
catches of coastal bottlenose dolphins (Friedlaender et al.,  2001; 
Mercer, 1989). We have shown that models incorporating fish can 
predict the presence of coastal dolphins better than those relying 
only on environmental factors, so management approaches could 
use the presence of these species to minimize harmful human–
wildlife interactions; however, the cost of collecting prey data may 
hinder this approach. This may be particularly relevant for the stocks 
of bottlenose dolphins in the Mid-Atlantic that are experiencing 
human-caused mortality at unsustainable rates (i.e. strategic, Hayes 
et al., 2021).

Our modelling results also identified several important fish spe-
cies that we did not identify as important prey species from our 
literature review. For example, coastal bottlenose dolphins were 
strongly associated with spiny dogfish, another commercially im-
portant species on the east coast of the United States (Dell'Apa 
et al., 2015). Spiny dogfish are also harvested with gillnets known to 
take bottlenose dolphins as bycatch (Friedlaender et al., 2001). We 
postulate that this close relationship is a result of co-occurrence (tar-
geting similar prey in similar environmental conditions) rather than a 
predator–prey interaction. Similarly, our models also highlighted the 
importance of the Dasyatidae (rays) and Squalidae (dogfish) families 
as predictors of dolphin distributions.

Overall, our findings agree with several empirical studies that 
link the distribution of bottlenose dolphins to their prey (Hanson & 
Defran, 1993; Hart, 1997; Shane et al., 1986) and stomach-content 
studies which provide strong evidence of diet specificity at the fam-
ily and species level (Gannon & Waples, 2004; Volker, 2020). Few 
previous models have been able to account for prey when modelling 
dolphin distributions with some previous research finding no strong 
statistical association between the presence of bottlenose dolphins 
and their prey (Browning et al., 2014; Torres et al., 2008). This work 
was, however, conducted at small spatial scales on dolphins with lim-
ited ranges. In comparison, we examined relationships between dol-
phins and prey at a regional scale encompassing entire populations. 
At this broader scale (both spatial and ecological), we were able to 

F I G U R E  6  Stomach content studies. Mean percent frequency (circle) and number (triangle) of prey for Mid-Atlantic to Northeast (a) and 
southeast (b) stomach content studies that identify at the species level. Data represents prey for coastal dolphins, with the one offshore 
prey species boxed. The number of studies and average number of stomachs for studies in each region (±1 standard deviation) is displayed 
above the x-axis of each graph. Asterisk (*) represents species that were top inferential species in the modelling portion of this study (top 
three for any modelling type, see Table 1).
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identify strong ties between the distributions of predators and prey. 
Indeed, research suggests that at a local scale (on the individual-
animal level), prey move away from predators, and thus, their den-
sities are negatively correlated (Lambert et al.,  2019; Walker & 
Macko, 1999), but at larger scales (such as the regional focus of our 
study), prey and predator densities are more likely to be correlated 
(Fauchald et al., 2000; Pascual & Levin, 1999; Rose & Leggett, 1990). 
By encompassing the entire Mid-Atlantic to Northeast region, we 
were able to make broad conclusions about the associations be-
tween bottlenose dolphins and fish.

Unlike coastal bottlenose dolphins, the distribution of the 
offshore ecotype of bottlenose dolphins was more strongly re-
lated to the environment. We suggest that the offshore ecotype 
is tightly linked to specific features of their environment, such 
as the warm water of the Gulf Stream and the productive shelf 
break. Importantly, trawl surveys may not capture pelagic or mid-
water prey consumed by offshore bottlenose dolphins. For ex-
ample, trawl studies mostly target bottom-dwelling species, and 
offshore bottlenose dolphins feed higher in the water column 
(Williams et al., 1999), on epipelagic fish and cephalopods (Walker 
& Macko, 1999). Indeed, our literature review confirmed that off-
shore dolphins are more associated with squid (northern shortfin 
squid and Atlantic bird squid). In general, abundance predictions 
were weak for offshore bottlenose dolphins both when consider-
ing the environment or co-occurring fish and invertebrates. This 
weak model performance reflects how little we know about these 
offshore dolphins, which is also evident in the literature review. In 
general, the stronger model performance when using presence–
absence models suggests that we may be able to accurately pre-
dict where offshore bottlenose dolphins occur, but not necessarily 
their density.

Finally, although our study is a good first step at examining the 
underlying mechanisms driving the distributions of large marine 
predators, we were limited by the overlap of the data sets. Both the 
fish and invertebrate and marine mammal surveys included thou-
sands of data points, but their spatial and temporal overlap was com-
paratively small. Still, we were able to use an ensemble modelling 
approach to identify ties between certain fish species and families 
and the distribution of coastal dolphins. Our out-of-sample predic-
tion was limited by sample size, but we showed that models using 
prey species can sometimes outperform environment-only models. 
We demonstrate this using models that are better suited for infer-
ence (GLMs) as well as prediction (random forests).

5  |  CONCLUSION

Models that incorporate the combined effects of environmental 
variables and species associations on predator distributions offer 
insights that cannot be obtained from species–environment mod-
els alone. These predator–prey biotic dependencies as well as co-
occurrences with other non-prey species should be considered when 
drafting ecosystem-based management plans and marine spatial 

planning efforts. A focus solely on environmental models may miss 
important dependencies that may be impacted by other activities. 
For example, species distribution models considering the impacts of 
wind infrastructure development should consider both direct and 
indirect effects on ecosystems through joint modelling frameworks. 
In addition, future forecasts of climatic impacts on marine species 
distributions should also consider joint modelling approaches to bet-
ter account for potential differences in predator and prey species 
responses. In general, we have shown here that the distribution of a 
common marine mammal predator is closely tied to fish in addition to 
environmental variables. Our work could be extended to further ex-
amine predator–prey interactions including other marine mammals, 
seabirds and sharks. The continental shelf off of the east coast of the 
United States is a biologically rich and interconnected ecosystem, 
and ecological models should reflect this reality.
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