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ARTICLE INFO ABSTRACT

Dataset link: https://doi.org/10.18739/A2DJ5 The rise in Arctic temperatures has caused sea ice to melt, making the region more navigable through a new,
8J37 shorter shipping route. Navigating the Arctic poses high risks due to extreme environmental conditions. This
Keywords: study proposes scalable data-driven predictive models to assess the risk of Arctic navigation under uncertain
Risk analysis weather and sea ice conditions. Machine learning is applied to predict the type of Arctic incidents and identify
Machine learning their risk factors. Several models are investigated, and the most accurate model for the two Arctic routes, the
Arctic North West Passage (NWP) and the Northern Sea Route (NSR), is determined based on several validation
Maritime navigation metrics. Random forest and Naive Bayes models provide the best accuracy and Fl-score for NWP and NSR,

respectively. The wind speed, vessel type, length, and age are important risk factors for NWP while temperature
at 2 m above the surface, vessel length, and age are important for NSR. Partial dependence plots are used to
investigate the effect of each feature on predicting each incident type. Equipment failures are more common
among newer and longer vessels. Collision related incidents are more likely to be predicted for longer vessels,
while grounding related incidents are more frequent at higher air temperature.

1. Introduction of Arctic shipping relies on the understanding and assessment of the
risk of Arctic navigation and incidents. Specifically, there is a major

Arctic temperatures have increased immensely in recent years, lead- impetus to determine the risk factors (e.g., climate, lack of infrastruc-
ing to a reduction in sea ice [1]. As a result, accessibility for Arctic ture, vessel traffic, ship design) and to predict the economic, social,
maritime navigation has increased. Between 2013 and 2019, the num- and environmental consequences of the increase in Arctic shipping
ber of ships entering the Arctic increased by 25 percent [2]. The activity. This study focuses on the prediction of Arctic incident types
maritime shipping routes through the Arctic region present a unique and their corresponding risk factors. Research advances in this area
opportunity to connect Europe, Asia, and North America. Currently, have developed approaches that primarily use probabilistic methods

most of the trade between these regions takes place through Southern
passages like the Suez Canal and Malacca Channel. Shipping through
the Arctic reduces the transit distance between Northeast Asia and
Europe by 24% compared to the route along Suez canal [3]. Thus, the
Arctic shipping connection not only provides an alternative shipping
route for trade between these global trade centers, it can also drastically
reduce the transit time and fuel cost given the shorter route. An
important consideration of Arctic maritime navigation lies in the risk
of operating vessels in remote areas and harsh weather conditions.
While the Arctic maritime activity represents a small fraction of
the global maritime traffic and incidents are rare, the impact of such
incidents is significant and can pose substantial risk to the environment
and Arctic communities. Ships stranded in the Arctic may need to be
towed for days to safety, like the cruise ship Ortelius in 2016 with 146
people on board [4]. In addition, these incidents pose risks to coastal
communities and ecosystems in the event of oil spills [5]. The future two routes; the North West Passage (NWP) along the north Canadian

(e.g., Bayesian networks) to quantify the risk of Arctic incidents [6-9].
While these approaches are helpful to assess the causes for incidents,
they are prone to biases in their prior assumption and present limita-
tions that challenge their generalization for future scenario analysis.
Data-driven methods can help overcome these gaps by leveraging data
on historical incidents and weather conditions to predict incidents
and identify risk factors. Specifically, machine learning models are
proposed in this study because their structure can be generalized to
explore the risk of incidents across the entire Arctic region and under
various environmental conditions. For example, the proposed approach
can be adapted to unlock future iterations of data-driven risk prediction
for Arctic incidents by incorporating projected climate scenarios and
future Arctic infrastructure development in the input variables space.
The potential for increased Arctic maritime navigation exists along

* Corresponding author.
E-mail address: hiba.baroud@vanderbilt.edu (H. Baroud).

https://doi.org/10.1016/j.ress.2023.109779

Received 16 January 2023; Received in revised form 28 September 2023; Accepted 2 November 2023
Available online 20 November 2023

0951-8320/© 2023 Elsevier Ltd. All rights reserved.


https://www.elsevier.com/locate/ress
http://www.elsevier.com/locate/ress
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
https://doi.org/10.18739/A2DJ58J37
mailto:hiba.baroud@vanderbilt.edu
https://doi.org/10.1016/j.ress.2023.109779
https://doi.org/10.1016/j.ress.2023.109779
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2023.109779&domain=pdf

R. Kandel and H. Baroud

and Alaskan waters, and the Northern Sea Route (NSR) along northern
Russian waters. A study comparing Arctic shipping routes with more
traditional routes like the Suez Canal found that NSR has the potential
to save as much as 10 days for a single transit activity due to the
reduction in sailing distance [10]. As a result, there has been a marked
increase in maritime traffic in the region, the majority of which are
supply, research, and survey vessels, followed by fishing, cargo, tanker,
and passenger vessels [11]. However, the region’s remoteness can
lead to limited access to navigation tools and potential shortages of
emergency response equipment. As a result, the Arctic shipping routes
are still relatively unexplored and historical data on Arctic incidents
are limited. Prior studies in the risk assessment of Arctic maritime
incidents rely heavily on expert opinion [7,12,13] due to the lack of
a comprehensive database. To overcome this limitation, a database is
developed in this study that merges historical Arctic maritime incidents
with environmental conditions to identify specific patterns in incidents
and their corresponding risk factors.

The research objectives of this study are to (1) develop and validate
classification techniques to predict the likelihood of different types of
Arctic incidents, and (2) identify significant risk factors that contribute
to different types of incidents. The proposed approach starts with an
exploratory data analysis to identify patterns in historical incident
and environmental conditions data. The results of the exploratory
analysis are used to inform the input features selection, clustering of
incident records by routes, and merging of incident classes during
the data preparation for machine learning. Then, multiple machine
learning models for multi-class classification are investigated based on
validation metrics like accuracy, precision, recall, and F-1 score. The
best performing model is identified through a comparison of these
metrics. Finally, the machine learning output is analyzed using feature
importance and partial dependence plots to investigate the relationship
between the features and the type of incidents and identify risk factors
that influence the occurrence of different types of incidents. The pro-
posed data-driven risk assessment can inform strategic decisions that
help improve Arctic navigation safety through risk-informed resource
allocation and voyage planning to prevent incidents and reduce the
consequences of different incident scenarios.

2. Background

Arctic navigation has been a subject of considerable interest to
researchers recently. As there are more databases keeping track of
and publishing the voyage records in the Arctic, there have also been
more studies on the analysis of shipping patterns in the Arctic. Studies
on spatial and temporal variations in Arctic shipping [11,14] have
sought to analyze the changes in shipping patterns in the Arctic Region,
closely examining the trends in the Northeast (NSR) and Northwest
(NWP) passages. In particular, the NSR has been the focus of such trend
studies [15-17] owing to surges in dry cargo as well as oil transport
between Europe and Kara Sea driven by the development and marine
transportation of Russian Arctic natural resources. On the NWP, Pizzo-
lato et al. [18] have explored the spatial relationship between shipping
activity and sea ice concentration between 1990 and 2015 to study the
influence of sea ice changes on shipping activity in the Canadian Arctic.
These studies have helped understand the trends in Arctic navigation by
breaking down the traffic information spatially and temporally based
on different characteristics like vessel types, vessel tonnage, and flag
state of vessels, among others. However, the risk of Arctic navigation
(e.g., likelihood and impact of incidents) has been less studied.

In the analysis of Arctic navigation risk, the lack of data on historical
incidents in the Arctic has led researchers to focus on qualitative
approaches and expert elicitation to conduct risk assessments. For
instance, Marchenko et al. [4] have used a risk matrix that incorporates
qualitative data collected from industry specialists and researchers to
categorize the risks to vessels in different parts of the Atlantic Arctic.
More recently, probabilistic risk analysis models for global and Arctic
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maritime navigation have been developed using Bayesian networks [8,
9,12,13,19]. A study analyzing the causes of grounding incidents in
the Arctic using a Bayesian network (BN) [8] looked at global incident
records that only include 5 incidents in the Arctic waters. Li et al. [7]
use Arctic vessel traffic and environmental data to develop a decision
support model for Arctic ship navigation using a dynamic BN where
the risk factors are identified by experts and not based on historical
incident records. Li et al. [9] use global incident records from the
International Maritime Organization (IMO) to develop a BN analysis
of the risk factors where the human risk factors are extracted from
the accident reports of a portion of the records in conjunction with
expert opinions. Similarly, a BN model for ship besetting in ice along
the NSR [6] leverages expert opinions to develop a list of the risk
factors, and tests the model for a single voyage through the NSR. These
studies have advanced probabilistic risk analysis of Arctic maritime
navigation. However, the incident reports used to inform the BN models
in these studies lack homogeneity in terms of the vessel characteristics
or weather observations.

While Bayesian networks have proven to be valuable for assessing
failure scenarios of a particular ship at a micro level by considering the
different events that might lead to an incident, they have poor scala-
bility and cannot be applied simultaneously between different voyages,
geographic regions, and storm systems. These models are often used as
a first step to envisage incidents and make decisions to mitigate the
consequences [13]. Probabilistic methods using fault tree analysis [20]
and fuzzy fault tree analysis [21,22] have also been used in Arctic
navigation risk analysis. The use of Bayesian networks or qualitative
risk models have significant uncertainties in deriving the priors and
may be subject to bias by the contributing experts [23]. As a result,
exploratory studies using machine learning approaches have been con-
ducted to identify conditions associated with navigation incidents that
could be used as risk indicators [24]. For example, a study on the global
incident data obtained from the International Maritime Organization
(IMO) uses machine learning techniques for classification of vessel
traffic instances as incidents and non-incidents [25]. Similarly, Wang
et al. [26] use logistic regression to analyze the risk factors affecting
the severity of global maritime incidents. The use of machine learning
can overcome the issue of scalability and adaptability of the models to
different voyages and future climate scenarios. However, prior studies
have either focused on a small geographic region within the Arctic and
limited incident types [24,27] or have used global incident records to
analyze the risk of maritime incidents globally and not specifically in
the Arctic [25,26,28].

To better understand potential risk factors of maritime navigation
across the Arctic, there is a need to develop models that can handle
comprehensive data sets of historical Arctic incidents, vessel charac-
teristics, and weather and sea ice conditions to examine relationships
between all variables and draw insights on the drivers of different types
of incidents. As more records on Arctic maritime incidents become
available, risk analysis of Arctic navigation should incorporate ma-
chine learning approaches and in-depth exploratory analysis. As such,
this study addresses the lack of data-driven methods in risk analysis
approaches of Arctic maritime navigation. Specifically, the novel con-
tribution lies in (1) the methodological approach for risk analysis which
is founded in machine learning models and employs a comprehensive
database covering incidents across the entire Arctic and corresponding
weather and sea ice observations, and (2) the identification of Arctic
maritime risk factors.

3. Method

The main purpose of this study is to develop machine learning
models that leverage historical Arctic maritime incident records to
better understand the risks of Arctic maritime navigation. The first
step of the process is to gather sufficient information that is repre-
sentative of spatial and temporal variations as well as environmental
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conditions in the Arctic. For this study, the incidents dataset from
the Protection of Arctic Marine Environment (PAME) [29] is used and
merged with historical weather records that correspond to the incident
date and location. The final dataset contains incident records with the
date and location, vessel characteristics, weather variables (e.g., wind,
temperature) and sea ice variables. The response variable considers that
an incident has occurred and evaluates the likelihood of a particular
incident type.

First, an exploratory data analysis is performed to investigate de-
veloping trends in the Arctic incidents (rates by year and month) and
help confirm intuitions about those incidents (e.g. number of incidents
during different seasons and incidents of different vessel types). Second,
different classification techniques are explored and applied to predict
the likelihood of incident types. Four supervised machine learning
techniques, namely Logistic Regression (LR), Naive Bayes (NB) method,
Support Vector Machine (SVM), and Random Forest (RF) classifier are
used to predict the type of Arctic incidents. These specific methods
are chosen based on the size of the database used in this research
and to reflect varying levels of complexity that consider both linear
and non-linear relationships between the variables in the data set.
Logistic regression is a simple, fast, and easily interpretable method
that uses linear relationships between features. Naive Bayes is another
simple method that requires relatively less training data. Support vector
classifier is comparatively more complex with a large number of hyper-
parameters and uses non-linear kernels to model the relationships be-
tween features. Random forest classifier is an ensemble method that can
handle non-linearity and can deal with complex datasets. These models
are chosen to cover a wide range of possible model structure and as-
sumption. This allows an investigation of different classes of techniques
to determine the best approach for this classification problem.

The performance of the models is evaluated using different pre-
dictive accuracy metrics. The outcomes of the best performing model
are then further analyzed to evaluate the influence of different model
features on the likelihood that an incident type occurs.

3.1. Models

The machine learning methods used in this study are briefly de-
scribed in this section.

Logistic Regression (LR) Logistic regression utilizes a logistic
function (also called logit function, shown in Eq. (1)) to model
the probability (P) of a certain class or event [30]. In the
most basic form, it is used to model dependent variables with
two possible outcomes. Logistic regression is widely used in
classification problems in various fields of study.

P

logit(P) =1
0git(P) = log(;—

)=Po+ B X+ BXy+ -+ 5, X, (€Y

Naive Bayes (NB) Classifier

Naive Bayes classifier is a probabilistic classifier based on Bayes’
Theorem [31] and assumes independence among the input fea-
tures given the output class. Eq. (2) gives the class y with
maximum probability, given the input values. This classifica-
tion technique is preferred for datasets with limited number of
training data points.

v = argmax,P() [ [ P(x;1») @

i=1

Support Vector Machine (SVM)

Support vector machine classification uses a hyperplane or set
of hyperplanes, linear or non-linear, constructed in the feature
space to categorize the datapoints based on input features [32].
The best hyperplane is chosen with the largest separation be-
tween the classes of data and minimum error in the classifica-
tion. Fig. 1 shows a linear hyperplane separating observations
in a two-feature space.
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Fig. 1. Representation of a linear hyperplane in Support Vector Machine.

Random Forest (RF)

Random forest classification [33] involves constructing multiple
decision trees using the training data and classifying based on
the class selected by the most trees. The forest of decision trees is
generated using techniques like bagging and bootstrapping. Ran-
dom forest is one of the newer and most popular classification
techniques in machine learning.

The SVM and RF classifiers have hyperparameters that can be
chosen to optimize the model performance. Grid search is implemented
for these models to determine the hyperparameters to be used. For
SVM, multiple values of C (regularization parameter), Gamma, and
kernel type are tested. Similarly, a number of options for the maximum
depth of tree and number of trees are tested to determine the best
RF model. The incident types (classes) have a considerable imbalance
in the number of observations with one type of incidents, equipment
failure, accounting for approximately half of the records. Therefore,
Synthetic Minority Oversampling Technique (SMOTE) [34] is used to
synthesize observations for minority classes in the training data to
improve prediction.

3.2. Model performance

To evaluate the performance of each model in predicting the type
of Arctic incident, we use a validation approach. First, the complete
incidents dataset is divided into training and test sets using an 80/20
split and the confusion matrix for classification (general representation
in Table A.1 in the appendix) of the test set is obtained. The training
data is normalized before it is used to train the models. Oversam-
pling is used on the training data to account for the imbalance in
the number of observations in each class. Separately normalized test
input data is used to obtain classification results from the trained
models. The models are tuned with different sets of input variables
and hyper-parameters (where applicable) to optimize performance for
each modeling technique. A backward selection strategy is used to
determine the best performing set of features for each model starting
with the model with the full set of input features. The feature with
the lowest permutation feature importance is selected at each step and
the model performance is compared between models with and without
that feature. If removing the feature improves the model performance,
it is removed from the set of input features and the step is repeated for
the next feature with the least importance. Additionally, a 5-fold cross-
validation is performed on the entire normalized dataset and average
values of several performance metrics are obtained for each model. The
performance metrics are summarized in Table 1. Finally, the feature
importance is calculated for each variable in the models to evaluate
their significance in predicting the type of incidents.

The models are analyzed for the importance of the input features
using permutation feature importance and partial dependence plots.
Permutation feature importance gives a measure of how much a model
depends on a certain feature by measuring the decrease in model
evaluation score from randomly shuffling a feature value. The partial
dependence plots give the probability of predicting a particular target
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Table 1
Description and formula for the evaluation metrics of classification models.
Metric Definition Formula
. . TP+TN
Accurac Fraction of all data that are classified ——
y TP+TN + FP+ FN
correctly
.. . is o s TP
Precision / Fraction of positive classifications that —_—
s I . TP+ FP
Positive Predictive Value are classified correctly
(PPV)
e . is . TP
Recall/ Sensitivity Fraction of positive observations that —_—
TP+ FN

are classified correctly

F-1 score

Harmonic mean of precision and recall

2 X Precision X Recall
Precision + Recall

class at different values of the individual predictors. This gives an idea
of how the predictions might change when the values of particular
features in the model change, and thus provides insights on the effects
of different features for particular outcomes.

Performing the proposed data-driven risk assessment of Arctic mar-
itime incidents requires an integrated data that combines incident types
with features that describe the potential risk factors (e.g., ship design,
weather, and sea ice). The following section describes the data sources
and processing to develop the comprehensive database.

4. Data
4.1. Data sources

Data from two sources are used to develop a new database and ad-
dress the gap in data-driven risk analysis of Arctic maritime incidents.
The first data set contains incident records with information on the
date, location, vessel type, incident type, and vessel length between the
years 2005 and 2017. The second data set contains weather variables
extracted for the same period of analysis (2005-2017) and filtered
corresponding to the location and the date of the incidents. The final
data set used in the analysis [35] integrates information on incidents
records, vessel characteristics, and environmental conditions. Data is
collected from different sources and merged across common variables.
Each data source is briefly described in this section.

Protection of Arctic Marine Environment (PAME) incident data

The Collection of Arctic Ship Accidents (CASA) dataset obtained
from PAME (referred to hereon as PAME incident dataset) is chosen
for this analysis because of the coherence of the data and its focus
on the Arctic region. The PAME incident dataset contains records on
Arctic incidents for a 13-year period in a standard format collected
from six arctic states: Canada, Russia, Iceland, Denmark, Norway, and
the United States. The PAME incident dataset [29] contains 5004 data
points for incidents between January 2005 and December 2017. The
original dataset has 24 features describing the incidents. The descrip-
tions of relevant features are provided in Table 2. The data points are
classified by PAME based on the location of occurrence as either above
or below 58-degree latitude. This distinction helps differentiate Arctic
incidents from the other events. There are 2638 incident data points
above 58-degree latitude on which exploratory analysis is performed
in this study.

Climate data

Data describing the environmental conditions is obtained from the
ERAS5 global reanalysis data and referred to as climate data in the
literature [36]. The climate data contains weather variables describing
wind, temperature, and sea ice, among others. Daily observations for
six weather variables are extracted for the corresponding locations and
dates of the incidents. Since the time of incident is not available in the
incident data, the first observation of the weather variables on the day
and location of the incidents are considered. These variables are listed
in Table 3.

4.2. Exploratory data analysis

4.2.1. Incident data

The PAME incident data contains records of vessel traffic attributes
for the incidents. The dataset is filtered for incidents at or above
58 degree latitude to only include incidents in Arctic conditions. An
exploratory analysis is performed on the incident data to investigate the
emerging patterns in Arctic incidents based on the location, vessel type,
incident type, year, and month of incidents. The incident records are
broken down into incident counts corresponding to different categories
within these features and the findings are presented in this section.

Location

The 56 zones of the incidents classified in the original dataset are
classified into seven general regions: Atlantic Area, Central Region,
Inland Russia, North Atlantic Ocean, Norwegian Sea, Pacific Area, and
Russian Arctic. The Pacific Area has the highest share of the incidents
with 1872 data points. Russian Arctic region has 170 incidents and the
Central Region that includes the Canadian Arctic has 86 incidents. The
Atlantic and North Atlantic areas have a total of 58 incidents in the
report.

Vessel Types

The vessels involved in the incidents are classified into 94 types
in the original dataset. These classifications are condensed into seven
general vessel types. Fishing vessels are the most common type of
vessels involved in Arctic incidents, with 1049 occurrences. Passenger
ships are involved in 601 incidents, Service vessels in 275, Cargo ships
in 218, Recreational crafts in 151, Tankers in 127 and Icebreakers
in further 23 incidents. Fig. 2(b) shows the number of incidents for
different vessel types.

Incident Type

The dataset contains 81 different incident types which are reclas-
sified into 10 general incident types. Equipment failure is the most
prevalent type with 620 instances, followed by Loss of control with
334, Grounding/Stranding with 300, Collision with 115, Contact with
110, and Fire/Explosion with 97 occurrences. Other incident types
are Damage to ship/equipment, Capsizing/Listing, and Non-incidental
event. Fig. 2(c) shows the number of incidents by the type of incident.

Year and Month of Incidents

To understand the trend of incidents over time, we evaluate the rate
of incidents for each month over four years between 2013 and 2017.
The incident rates are only obtained for these years as the traffic records
corresponding to the study period are only available for the years 2013-
2017. The incident rates are calculated using the monthly vessel counts
in the Arctic obtained from the PAME Automatic Identification System
(AIS) database and the corresponding incident records. The AIS data
provides a unique ID to each ship traveling each month. To calculate
the incident rate, the number of unique ship IDs is considered to be
the monthly vessel count. The number of incidents in a given month
divided by this number gives the monthly incident rate. For yearly
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Table 2
PAME data features.

Reliability Engineering and System Safety 243 (2024) 109779

Feature

Description

Data Source

Incident Date

Flag State

Incident Country/ Jurisdiction
General Incident Location
Lat58plus

Latitude

Longitude

Vessel Type

Vessel name

Vessel Tonnage

Vessel Length

Vessel Age

Consequence of Incident
Incident Type

Country that provided the data

Date of the incident

State of the vessel involved in the incident
Country that controls the incident location
General area of the incident location

Whether or not the latitude is above 58 degrees
The latitude of the incident location

The longitude of the incident location

Type of the ship involved based on its use
Name of the vessel involved

The cargo carrying capacity of the vessel involved
Length (in ft) of the vessel involved

Age (in years) of the vessel involved

General consequence of the incident
Description of the nature of incident

Number of incidents by Vessel type

Number of incidents by incident type

500

Number of incidents by Vessel Length (ft)

600
400

500

=]
s

400

300

I
=]
s

No. of Incidents
No. of Incidents

200

=
151
3

100

|

(0, 100]
(100, 200]
(200, 300]
(300, 400]
(400, 500]
(500, 600]
(600, 700]
(700, 800]
(800, 900]

Passenger

Fishing
Service

Vessel Length

(a) Number of incidents by Vessel Length (b)

F

Cargo

Number of incidents by Vessel type

400

300

No. of Incidents

200

100

ol N mw LT B e BN |
t E g 2 5 5 § g
g ] g 5 i 3
8§ = & 2
Vessel type Incident type
(c) Number of incidents by Incident Type

Fig. 2. Number of incidents broken down by vessel length, vessel type, and incident type.

Table 3
Climate data features.
Feature Unit
Wind speed m/s
Surface pressure Pa
Air temperature at 2 meters above surface K
Sea surface temperature K
Column water vapor amount kg m-2
Sea ice cover 0-1 (value)

rates, the number of incidents in a year is divided by the sum of all
monthly vessel counts over that year.

Over the entire Arctic, the summer months have the highest average
rate of incident by month (Fig. 3(a)), peaking in June (0.41%) and
declining through December (0.10%). This rate remains between 0.1%
and 0.2% during the winter months and picks up from May (0.27%).
When broken down by the two shipping routes, NSR and NWP, two
different trends are observed. The NWP data follows a similar trend to
the overall Arctic data with highest rate in June (1.26%) and lowest in
December (0.31%). The rates for NSR are much lower and consistent
around 0.20%, with the highest rate also observed in June (0.31%) and
lowest in December (0.12%). As the number of vessels are marginally
higher in the NSR compared to NWP, the NSR rate tempers the overall
trend which agrees with the NWP rates. Even after accounting for the
exposure in the rate of incidents by considering the ratio of incidents
to the number of unique voyages, the average incident rates are lower
for the winter months.

From 2013 to 2017, there is a steady increase (from 0.16% to
0.26%) in the yearly rate of incidents overall (Fig. 3(b)). This trend
is also observed for the NSR (from 0.04% to 0.23%) but the rates for
the NWP are steady at around the 0.25%. As a result, the overall yearly

rates follow the dominant trend of NSR but are tempered by the NWP
values. The total yearly vessel counts are obtained by aggregating the
number of vessels for each month. The limitation in calculating the
yearly rates this way is that there is a possibility of double counting
the vessels navigating over multiple months as the ship IDs reset every
month and unique vessel IDs are not available.

4.2.2. Comparison between NWP and NSR incidents

The two existing routes in the Arcticc NWP and NSR, present dif-
ferent trends and patterns of incidents. The NWP has 86% of the total
incidents in the period of study between 2005 and 2017 while NSR
has just 14% of the recorded incidents over the same period. This is
in contrast with the number of voyages in these regions with NSR
accounting for 56% of the voyages between 2013 and 2017.

For the NWP, passenger vessel incidents are the most frequent,
accounting for 38% of the records. Incidents involving fishing vessels
are common for both NWP and NSR at approximately 35% and 28%
of recorded incidents respectively. Incidents with service, cargo, and
tanker vessels follow for the NWP. For the NSR incidents, additional
frequent vessel types include service, cargo, and passenger vessels.

The most common type of incident in the NWP is Equipment failure,
followed by Grounding, Loss of control, and Foundering. In comparison,
Loss of control is the most frequent incident type in the NSR. Grounding
is also the second most common type for NSR, followed by contact,
collision and fire. While grounding incidents are common in both the
Arctic routes, the order of other incident type frequencies are different.

This comparative analysis examines the difference between the
trends in incidents in each of the Arctic routes and provides insights to
explain the findings from the classification models. Figs. A.1 through A.5
in the Appendix provide a detailed illustration of how incidents are dis-
tributed between NWP and NSR. Based on this analysis, the modeling
approach is applied to each route separately.
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Fig. 3. Average incident rates broken down by month and year of incidents.

4.3. Data preparation for machine learning

First, the incident dataset is filtered to only include incidents in
Arctic conditions. Following this, records that indicate an incident type
named ’Consequences’ are excluded from the analysis. This is done be-
cause that incident type does not provide information on the actual type
of incident and cannot be appropriately predicted using the models.
The resulting incident data is combined with the climate data to create
a dataset that contains both traffic and weather variables. Pearson
correlation coefficients and covariance matrix for the combined dataset
are used to filter the variables to be included in the machine learning
models. These variables are used as input features to train and evaluate
the classification models. The traffic features in the PAME data include
vessel location (Latitude and Longitude), vessel type, vessel length,
vessel age, and month of incident. The weather features are wind
speed (m/s), surface pressure (Pa), Air temperature at 2 meters above
surface, Sea surface temperature, Column water vapor amount, and Sea
ice concentration. The models are developed separately for NWP and
NSR given the varying conditions, vessel activities, and incident types
along each route. As such, the data is split based on the geographical
location of the incident. The six most frequent incident types on record
are included in the final data: Collision, Contact, Equipment failure,
Flooding, Grounding, and Loss of control. However, there is imbalance
in the number of observations between classes which can hamper the
model performances. To address this issue, some classes are merged
resulting in a total of three classes for the response variable. Equip-
ment failure is kept as a separate class because of its high number of
observations. The remaining classes are merged so that incident types
that are similar in nature are grouped together and the number of
incidents within each new class is fairly balanced. Collision and contact
between ships are similar in nature and are often accompanied by fire,
as reported in multiple cases of maritime collisions [37-39], and [40].
Therefore, they constitute the second class. Similarly, loss of control,
grounding, and flooding are also known to occur in a sequence [41].
Loss of vessel control causes numerous accidental grounding [42,43].
Groundings may lead to hull breaches and result in flooding and listing
of vessels [44,45]. Therefore, these three types are merged into a third
class. Finally, the models are also applied to a subset of the data
that includes incidents that have occurred in the open-sea (i.e., far
from a port) to investigate the influence of weather conditions on the
likelihood of different incident types.

5. Results

This section presents the performance metrics of the machine learn-
ing classification models and the subsequent analysis for feature im-
portance and partial dependence of the models. The complete dataset
used in the machine learning models contains 1249 incident records

after data preparation considering all the features of interest. Given the
differences in the patterns between the two routes that were observed
in the exploratory analysis, the models are developed separately for
the two regions using the NWP and NSR subsets of the complete
dataset. The selected list of features for each model’s best performance
is provided in the Appendix (Tables A.2, A.3, and A.4).

The NWP dataset used in the machine learning models has 1075
incident records. The model performances for the NWP data (Table 4)
also show that the random forest model is best suited to predict the
incident types with an average accuracy and F-1 score of 0.58 and
0.450, respectively. The next best model is naive Bayes which utilizes
three input features: Length of the vessel, age of the vessel and the
latitude of the incident. The SVM model has a better accuracy but a
lower F-1 score compared to the logistic regression model.

There are 174 incident records in the NSR dataset used for machine
learning. The naive Bayes model performs the best for this dataset
with average accuracy and F-1 score of 0.581 and 0.512, respectively
(Table 5). The random forest model is the next best method, followed
by the logistic regression and SVM models. The F-1 score of the random
forest model is the lowest of all methods.

To better understand the influence of environmental conditions (i.e.,
weather and sea ice) on the occurrence of different incident types, we
conduct the analysis for a subset of the data containing only incidents
that have occurred in the open sea (i.e., far from a port). This subset
contains 452 records for the entire Arctic. Further, we exclude features
that are indicative of the location and time of the incident to investigate
weather and sea ice features and their impact on the predictive accu-
racy. As such, this subset of the data is not divided between NSR and
NWP as the incident location is excluded from the list of model input
features. The random forest model is the best performing method with
an accuracy of 0.488 and an F-1 score of 0.362, both of which are lower
than models that include location-based features (Table 6). However,
these models help examine the importance of the features describing
environmental conditions.

Permutation feature importance is obtained for the models to assess
the importance of the input features in the model predictions, as shown
in Figs. 4, 5, and 6. For the random forest models using the NWP
dataset, the most important features are the vessel type, age, month,
longitude of incident location, wind speed, and vessel length. Among
the weather variables, the wind speed is observed to be twice as
important as the temperature at 2 m above surface. For the same model
using NSR data, the importance of the temperature variable is much
higher than that of wind speed. For the open sea data (which is a
smaller subset of the data including incidents from both NSR and NWP),
the best performing models are random forest and naive Bayes. Both
these models have wind speed as the most important feature, followed
by vessel length and temperature at 2 m above surface. Note that these
results match closely those of NWP because a higher number of open
sea incidents occur in the NWP region.
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Model performance based on cross-validation of all classification methods for the NWP incidents.

Classification model Accuracy Precision (macro) Recall (macro) F-1 score (macro)
Logistic Regression 0.511 0.405 0.419 0.398
Naive Bayes 0.574 0.372 0.426 0.395
Support Vector Machine 0.516 0.390 0.414 0.364
Random Forest 0.580 0.476 0.457 0.450

Table 5

Model performance based on cross-validation of all classification methods for the NSR incidents.

Classification model Accuracy Precision (macro) Recall (macro) F-1 score (macro)
Logistic Regression 0.477 0.466 0.505 0.436
Naive Bayes 0.598 0.559 0.517 0.514
Support Vector Machine 0.442 0.445 0.494 0.412
Random Forest 0.505 0.376 0.398 0.366

Table 6
Model performance based on cross-validation of all classification methods for the open-sea incidents for features excluding latitude, longitude,
and month.
Classification model Accuracy Precision (macro) Recall (macro) F-1 score (macro)
Logistic Regression 0.385 0.377 0.417 0.331
Naive Bayes 0.406 0.431 0.340 0.267
Support Vector Machine 0.347 0.352 0.403 0.308
Random Forest 0.488 0.395 0.374 0.362
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Fig. 4. Feature importance for all models using NWP data.

Finally, partial dependence plots (Figs. 7 and 8) are obtained from
the models for each class of the target variable. It is observed that
for the random forest model using the NWP data, the probability of
predicting equipment failure is higher for longer vessels and higher
degree of longitude, newer vessels, lower degree of latitude, and lower
temperature at 2 m above surface. The probability of predicting the

collision related incidents is greater for higher degree of latitude. The
probability for predicting grounding related incidents is greater for
older vessels, higher degree of latitude, later months, higher temper-
ature at 2 m above surface, shorter vessel length and lower degree
of longitude. For the random forest model with the NSR data, the
probability of predicting equipment failure is greater for higher degree
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Fig. 7. Partial dependence plots for Random Forest model using NWP data.
of longitude, shorter vessels, newer vessels, and lower wind speed. 6. Discussion

The probability of predicting collision related incidents is higher for
longer vessels, lower degree of latitude, longitude, earlier months of
the year, and lower wind speed. There is a higher probability of

The results from the machine learning models provide insights on
model predictive performance, feature importance, and partial depen-
dence for the input features. This section discusses some of the steps

predicting grounding related incidents for later months in the year, taken in the modeling process to arrive at the final models and their
higher temperature at the surface, wind speed, older vessels, lower impacts on model performance, insights gained from the results section,
degree of longitude and shorter vessels. and limitations associated with this study.
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Fig. 8. Partial dependence plots for Random Forest model using NSR data.

Models were initially setup to predict six target classes of incident
types. The number of output classes was reduced to three for reasons
discussed earlier in the data section. An improvement in predictive
accuracy is observed in all model performances as a result of reducing
the number of target classes from six to three. Following the reduction
in the number of classes, the naive Bayes model emerges as a suitable
method to predict incident types in the NSR region with the best
accuracy and F-1 scores from cross-validation. The NSR portion of the
data has a smaller sample size with 174 data points compared to the

10

NWP with 1075 incidents and the Naive Bayes technique is known
to perform relatively better than other methods when there are lesser
number of observations. The random forest model still has the best
performance on the classification of the test data for all three datasets
(Tables A.5, A.6, and A.7).

While the incident types are grouped into three classes to address
the sample size in each class, the incident classes still remain im-
balanced under the new classification, especially in the NSR data.
This issue is further addressed using an oversampling technique called
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Table 7

Performance of null models for different subsets of the incident data.
Null model Accuracy Precision (macro) Recall (macro) F-1 score (macro)
NWP 0.325 0.108 0.333 0.156
NSR 0.420 0.140 0.333 0.196

Synthetic Minority Oversampling TEchnique (SMOTE). The equipment
failure class has notably higher number of observations compared to the
other classes and thus oversampling generates synthetic observations
to increase the number of minority observations up to the level of
equipment failures. The use of this technique does not improve the
model accuracy as expected but increases the recall and F-1 score.
Therefore, it is still implemented to ensure training of models using
a balanced dataset and better model performance overall.

Although the accuracy and F-1 scores of the best models are not
very high, the best models for NSR and NWP provide a significant
improvement in comparison to the accuracy of base (null) model,
despite there being a majority class in the response variable that
accounts for approximately 45% of the observations. The null model
yields an accuracy of 32.5% and 42% for the NWP and NSR data,
respectively, with a poor precision. The evaluation metrics obtained
for a null model used to predict incident classes (Table 7) reflects this
observation. On average, the proposed models in this study improve
the accuracy and the precision by 68% and 280% respectively for the
NWP, and 21% and 230% respectively for the NSR. Furthermore, the
evaluation metrics are consistent with the precision (0.4-0.6) and recall
(0.4-0.5) values reported in prior work that uses three-class prediction
model for maritime accident warning system [28]. The improvement in
the prediction of incident types using these data-driven models exhibits
their value in improving Arctic navigation preparedness, especially
with further improvements in the model accuracy and precision.

The latitude and longitude are both important predictors that
present a high value for the feature importance in each of the ma-
chine learning models predicting the incident types. The locations
of the observed incidents, therefore, are observed to be important
in determining the type of risks the vessels are most prone to at a
given point in the voyage. Although, there are many other factors
(e.g., weather conditions, vessel properties, sea ice concentration) that
may collectively explain the risks to the vessels at a certain location. To
explore the effects of these factors on model performances, an analysis
is performed on a subset of the dataset with instances that occurred in
open ocean where there is a higher influence of the weather conditions.
The model performances without features describing location (latitude
and longitude) and time of year (month), while not as good as with
these features, are still valuable in terms of the accuracy and F-1 scores.
Fig. 6 shows the feature importance for the models using open-sea
data. This suggests that the vessel properties and weather conditions
by themselves are as important in the prediction of the Arctic incident
types. Among the weather variables, the wind speed is more important
than the temperature at 2 m for the two best performing open-sea
models. This observation is consistent with the NWP models as a high
number of open-sea incidents have occurred in the NWP region.

The relative feature importance of some input features for the same
modeling technique are seen to be different from each other for differ-
ent datasets. Comparing the feature importance for random forest mod-

els reveals this tendency with the weather variables (Figs. 4(d), 5(d), 6(d)).

The wind speed is almost twice as important as the temperature
variable for the NWP data while the importance of temperature is
higher for the NSR data. An explanation for this observation might lie
in the difference in the change in sea ice cover between the two regions
in recent years. The sea surface is rougher when there is a higher ice
cover. As a result, the ice-free areas in the Arctic are more exposed to
the direct effect of strong winds [46]. The change in the ice cover over
the last decade is lower for the NSR as compared to NWP. This points
to a faster increase in ice-free water surface in the NWP and therefore a
higher variation in wind speeds in the region , making the wind speed a
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more important feature. The temperature ranges for the NSR region are
also more spread out compared to the NWP, making it more important
to the models. A covariance analysis between the input variables shows
that the covariance between the wind speed and the temperature at 2 m
from surface is —0.07. Since this value is close to 0, it suggests that the
wind speed does not change positively or too negatively when there is
a change in the temperature and vice-versa. Therefore, the relationship
between the observations of these two variables is not strong.

The observations from the partial dependence plots reveal the rela-
tionship between the predicted class of incidents and the input features
for the random forest model. Collision based incidents are more likely
to be predicted for longer vessels in both the NWP and NSR. This is
intuitive as a longer vessel might be less responsive to its rudder [47]
and thus could have difficulties avoiding obstacles. Another intriguing
relationship observed is that there is a higher probability of predicting
grounding related incidents in higher latitude and higher temperatures
at 2 m above surface. Higher temperatures generally mean lesser sea-ice
and more navigable conditions. However, for the Arctic, it also means
the ships could be navigating in newly open regions that were unex-
plored before [48]. This can lead to more grounding incidents if shallow
conditions are not detected on time. Similarly, the higher latitudes are
less explored/ mapped compared to the lower latitudes which could
also lead to conditions that aid grounding related incidents.

There are some limitations in assessing the incidents in the Arctic
based on a single dataset aggregated from numerous data sources,
as is the case with the PAME incident dataset. Roughly a third of
the recorded incidents in the dataset are originally labeled as type
‘Consequences’ which gives no information about the actual incident
type. These records are omitted from this analysis because of the
incompleteness of the information provided. Similarly, it is observed
that the type ‘Equipment failure’ is mainly clustered in the NWP re-
gion and the type ‘Loss of control’ in the NSR region. This is either
because these incident types are typical to the corresponding regions
or because there are different record keeping norms in the two regions
of the Arctic. In addition, the Arctic incident records do not contain
detailed information on human and organizational factors pertaining to
these incidents. The inclusion of human risk factors would require the
elicitation of expert opinion from a diverse group of stakeholders [49]
and the use of probabilistic and simulation approaches to examine the
influence of different behavioral factors [9].

7. Conclusion

This study analyzes a comprehensive dataset of Arctic maritime
navigation incidents and applies machine learning techniques to predict
the incident type based on historical data. The study uses the Arctic
incident records between the years 2005 and 2017 with the correspond-
ing weather conditions to perform an exploratory analysis and develop
prediction models.

The exploratory data analysis of Arctic maritime shipping incidents
data provides a breakdown of the incidents by vessel type, incident
type and temporal trends (month, year) of incidents. Fishing vessels and
passenger ships are the most frequent vessel types involved in incidents
with service and cargo vessels also accounting for high number of
incidents. The most frequent incident types are Equipment failure, Loss
of control, Grounding, Foundering, Contact, and Collision. The rate
of Arctic incidents every year is observed to be on the rise over the
period of record. Additionally, the summer months are found to have
greater rates of incidents compared to the winter months, particularly
in the NWP. Incidents in areas in the Arctic along the NSR and the



R. Kandel and H. Baroud

NWP notably differ in their characteristics based on the features of their
incident records.

Machine learning classification methods are used to classify incident
types using the recorded features of the incidents and corresponding
weather variables. The machine learning techniques predict the poten-
tial incident types with up to 60% accuracy and 57% precision based
on these input features. A comparison between the performance of
the models shows that the random forest model is best suited for this
classification. The observations from the partial dependence analysis
of the models can be utilized to improve preparedness towards Arctic
maritime incidents. For instance, service stations to handle equipment
failures could be stationed strategically to support longer vessels and
in areas with lower longitudes (western Arctic) and lower temperature
along the NWP. Similarly, precautions against collisions and fire could
be taken for longer vessels in the western part of the NSR. Grounding,
flooding, and loss of control are predicted more in warmer tempera-
tures and for shorter vessels in general. Rescue ships can be assigned
in greater numbers for fishing areas for those high-risk conditions.

This study complements probabilistic models in identifying the risk
factors and predicting the type of Arctic incident. The probabilistic
models using Bayesian networks for risk analysis of Arctic shipping
assume the probability associated with the risk factors from prior
knowledge based on expert opinion in cases where historical records
are scarce. Through the use of machine learning methods, this research
utilizes the recent increase in the availability of Arctic incident records
and seeks to overcome issues of scalability and uncertainties in deriving
priors for probabilistic methods. The paper expands on this contribution
by incorporating the weather observations corresponding to the Arctic
incidents and analyzing their importance in the prediction models.

However, expansions need to be made in the modeling process to
obtain a comprehensive risk analysis framework for Arctic maritime
navigation. As the models are trained on just the incident records,
they predict the most likely incident class given there is an incident.
Analyzing the incident records and the incident type predictions is
an important step towards understanding the circumstances in which
the incidents occur. Still, it is equally important to assess the general
maritime ship traffic conditions as the basis of the analysis for a more
complete picture. To achieve this, further analysis should be performed
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using the Arctic ship traffic to identify the likelihood of incidents based
on the common attributes of the traffic and incident data. Additionally,
machine learning models that predict the likelihood of incidents could
be combined with the model outputs in this paper to provide real-time
risk updates for the trajectories of the vessels navigating the Arctic.
As more climate data is obtained from various climate models, the
uncertainty in the model predictions stemming from the climate input
variables could be evaluated to develop a comprehensive risk analysis
framework for Arctic maritime navigation.
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Appendix
See Figs. A.1-A.5 and Tables A.1-A.7.
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Fig. A.1. Number of incidents broken down by wind speed and temperature.

Table A.1
Standard confusion matrix.

Actual Class

Positive (P) Negative (N)

Predicted Class Positive (P)

True Positive (TP) False Positive (FP)

Negative (N)

False Negative (FN) True Negative (TN)
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Table A.2
List of input features for the best performing model for each technique for the entire Arctic data.
Classification model Features
Logistic Regression Length, Age, Latitude, Longitude, Month, Temperature at 2 m, Wind, Vessel Type
Naive Bayes Length, Age, Latitude, Longitude, Temperature at 2 m, Wind, Vessel Type
Support Vector Machine Length, Age, Latitude, Longitude, Temperature at 2 m, Vessel Type
Random Forest Length, Age, Latitude, Longitude, Month, Temperature at 2 m, Wind, Vessel Type
Table A.3
List of input features for the best performing model for each technique for the NWP data.
Classification model Features
Logistic Regression Length, Age, Latitude, Longitude, Month, Temperature at 2 m, Wind
Naive Bayes Length, Age, Latitude
Support Vector Machine Length, Age, Latitude, Longitude, Month, Temperature at 2 m, Vessel Type
Random Forest Length, Age, Latitude, Longitude, Month, Temperature at 2 m, Wind, Vessel Type
Table A.4
List of input features for the best performing model for each technique for the NSR data.
Classification model Features
Logistic Regression Length, Latitude, Longitude, Month
Naive Bayes Length, Age, Latitude, Longitude, Vessel Type
Support Vector Machine Length, Age, Latitude, Longitude, Temperature at 2 m, Vessel Type
Random Forest Length, Age, Latitude, Longitude, Month, Temperature at 2 m, Wind, Vessel Type
Table A.5
Evaluation metric values obtained from test data of all classification methods for the entire dataset.
Classification model Accuracy Precision (macro) Recall (macro) F-1 score (macro)
Logistic Regression 0.496 0.475 0.464 0.468
Naive Bayes 0.532 0.529 0.494 0.502
Support Vector Machine 0.548 0.509 0.502 0.494
Random Forest 0.580 0.560 0.536 0.543
Table A.6
Evaluation metric values obtained from test data of all classification methods for the NWP incidents.
Classification model Accuracy Precision (macro) Recall (macro) F-1 score (macro)
Logistic Regression 0.502 0.381 0.386 0.382
Naive Bayes 0.530 0.346 0.384 0.358
Support Vector Machine 0.507 0.412 0.406 0.389
Random Forest 0.544 0.426 0.416 0.410
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Table A.7
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Evaluation metric values obtained from test data of all classification methods for the NSR incidents.

Classification model Accuracy Precision (macro) Recall (macro) F-1 score (macro)
Logistic Regression 0.457 0.352 0.321 0.333
Naive Bayes 0.486 0.433 0.488 0.429
Support Vector Machine 0.514 0.458 0.507 0.458
Random Forest 0.600 0.401 0.424 0.412
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