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ABSTRACT 

In a demand response scenario, coordinating multiple data centers with an electricity load aggregator provides opportunities to minimize electricity 
cost and absorb the volatility in the grid that is caused by renewable generation. To enable optimal coordination, this paper introduces a joint data 
center and aggregator optimization framework that minimizes the cost of data centers while they participate in demand response programs regulated 
by a load aggregator. The proposed framework, DCAopt, solves three integrated optimization problems: optimizing the quality-of-service of jobs in 
each data center, coordinating workload sharing among multiple data centers, and assigning (electricity) prices that incentivize demand response. 
Instead of relying on simplified relations between a data center’s overall utilization rate and the average job delay, DCAopt applies queueing theory 
and job scheduling simulation techniques to model data centers with heterogeneous workloads, where different workload properties can be measured 
using data from actual servers. DCAopt solves the aforementioned joint optimization problems via gradient descent. Through evaluation using fine-
grained simulations, we demonstrate that our framework finds better solutions to the data-center-aggregator optimization problems. With DCAopt, the 
energy costs of data centers can be reduced by 5% on average, with a corresponding reduction of a social cost assessed by the aggregator amounting 
to more than 30% in most cases. In addition, power usage reduction at the data centers is 6% higher compared to data-center-centric power use 
optimization. 

1. Introduction 

Generation of renewable energy supply is expected to grow 
substantially in the coming decades to help battle climate change. 
However, the intermittency of renewable generation caused by the 
volatility of weather conditions poses a serious challenge on the 
matching of supply and demand in the electricity grid, mainly 
necessitated by the lack of large-scale energy storage. To address this 
challenge in the era of renewable energy, power consumers are 
encouraged to participate in demand response programs, which 
motivate the demand side (i.e., the power consumers) to regulate their 
power consumption following market requirements. 

Data centers are essential parts of our societal and economic fabric as 
they offer computing resources to support businesses, government 
operations, consumer applications, and scientific research. While data 
centers provide computing capabilities as large as hundreds of peta 
floating-point operations per second (petaflops), they are also 
tremendous power consumers. In 2014, data centers in the United 
States consumed 70 TWh, representing about 1.8% of total US 
electricity consumption [1]. In 2018, the global data center energy 
usage was estimated to be 205 TWh, corresponding to around 1% of 
global electricity consumption [2], with that share expected to increase 
as more data centers are currently under construction. Large power 
consumption inevitably leads to large electricity costs, and large 
companies, such as Google, spend hundreds of millions of dollars on 
electricity costs every year. On the other side, data centers are capable 
of regulating their power consumption in large ranges through control 
“knobs” including job scheduling and dynamic voltage-frequency 
scaling [3]. As a result, data centers are potentially important 
candidates for participation in demand response programs. 

In a demand response scenario, when handling a supply deficit or a 
demand surplus event, a load aggregator can regulate electricity prices 
and use them as incentives to motivate data centers to meet a total load 
reduction target. In addition, coordinating the workload and power 

consumption of multiple data centers together offers an opportunity to 
further reduce the total electricity cost. For example, when multiple 
data centers are in different locations and face different electricity 
prices, they have an incentive to share workload from one location to 
another. Assuming there are two data centers at two locations, when 
the electricity price at the location of data center 1 is lower than that of 
data center 2, data center 1 could allocate some of its servers to run 
jobs submitted to data center 2, and the total electricity cost of the two 
data centers can be correspondingly reduced. Essentially, the 
communication infrastructure used to exchange jobs can also be used 
to balance the electric grid. 

Recent research has evaluated the benefits of employing data centers 
to participate in demand response programs as well as coordinating 
multiple data centers in a smart grid [4] [5] [6] [7] [8] [9] [10] [11] [12] 
[13] [14] [15] [16] [17] [18] [19] [20]. However, the relevant smart-
grid literature does not focus on the special aspects of data centers but 
instead views them as loads [11] [14] [16] [18] [20], which leads to 
data center models that are based on lumped parameters, such as the 
total workload arrival rate, the average server utilization, etc. These 
lumped parameters ignore the heterogeneity of workloads and the 
complexity of the job scheduling process in data centers, which hinders 
the applicability of such approaches to practical data center scenarios. 
Meanwhile, other data center-related literature considering 
heterogeneous workloads or a concrete job scheduling process, mostly 
focuses on optimization problems from the data center side given 
demand response signals from the smart grid [10] [12] [17] [19]; these 
works do not consider the bidirectional interactions between the 
electricity grid and data centers in a joint optimization as we do in this 
paper. 

To fill this gap, in this work we introduce a joint Data Center and 
Aggregator optimization framework, DCAopt, that captures sufficient 
details of both systems and considers their interactions. DCAopt finds 
the optimal strategy for data centers to participate in demand response 
and for the aggregator to achieve power reduction. On the one side, 



DCAopt enables the aggregator to handle supply deficit events, and on 
the other side, DCAopt enables data centers to minimize their costs by 
coordinating workload and power consumption through workload 
sharing. Our work employs a data center model implemented in a 
simulation environment, accepting a heterogenous workload 
composed of jobs with different properties (job arrival rate, typical 
execution time, waiting time constraint) to fill multiple queues, and 
capturing job events (submit / start / finish) on the timescale of seconds. 
Our work also takes the quality-of-service (QoS) of data center jobs 
into consideration while performing the optimization. Through 
evaluation using fine-grained simulations, we demonstrate that our 
framework finds better solutions to the data-center-aggregator 
optimization problems. With DCAopt, the energy costs of data centers 
can be reduced by 5% on average, with a corresponding reduction of a 
social cost assessed by the aggregator amounting to more than 30% in 
most cases. In addition, power usage reduction at the data centers is 6% 
higher compared to data-center-centric power use optimization. 

In summary, this work makes the following contributions: 

 We propose a joint data center and aggregator optimization 
framework, DCAopt, which provides an optimal strategy for 
data centers to participate in demand response programs, while 
also maximizing benefits for the load aggregator on the 
electricity grid side. 

 DCAopt applies both queueing theory and job scheduling 
simulation techniques to optimize the Quality-of-Service of data 
centers, which accept heterogeneous workloads composed of 
jobs with different properties (job arrival rate, job execution time, 
time constraint) to fill multiple queues. 

 We conduct simulations with workload properties measured 
from actual operational servers and compare the benefits of 
DCAopt under several different scenarios. We show that 
DCAopt can reduce the energy costs of data centers by 5% on 
average and can also reduce the social cost by more than 30% in 
most cases. 

2. Related work 

Resource allocation in data centers is a challenging topic due to the 
heterogeneity of systems/workloads and various operational 
constraints (including QoS and resource availability) that add 
significant complexity to the resource allocation problem. Many 
strategies to improve data center resource allocation have been 
proposed recently [21] [22] [23]. One of the central goals of optimizing 
data center’s resource allocation is to reduce the power consumption 
and electricity bill while still being able to finish computing tasks on 
time. Many software methods to improve the power efficiency of data 
centers have been proposed in recent years [24], including processor 
dynamic frequency-voltage scaling (DVFS) [3], thread packing [25], 
uncore frequency adaptation [26], server power-saving states [27], 
hardware over-provisioning [28], and on/off network links [29]. 

Based on those methods, especially the processor DVFS and the server 
power-saving states, data centers are able to participate in demand 
response and reduce their electricity consumption costs [10] [12] [17] 
[19]. For example, by considering the dynamic electricity price and the 
fluctuation of renewable energy supply, Lei et al. proposed an energy-
efficient job scheduling strategy to modulate a data center’s total power, 
and they showed that the electricity bill of the data center can be 
reduced significantly [8]. Jahanshahi et al. used a detailed data center 
model considering the different power states of CPUs and proposed a 
power management approach for data centers to participate in the 
frequency response regulation service of the smart grid [19]. However, 
these works discussed above only focus on how a data center reacts to 
the requirements from the market, and they do not consider the 
bidirectional interactions between the electricity grid and the data 
centers.  

To utilize the regional difference in the electricity prices, resource 
availability, and workload characteristics of data centers, the potential 
of multi-data-center coordination through workload migration has 
been investigated in a number of works [5] [6] [7] [30] [10] [11] [18]. 
For example, Lin et al. proposed the use of a receding horizon control 
algorithm to optimize the load balancing of data centers at different 
locations [6]. Their works also developed algorithms for coordinating 
local electricity generation with workload shifting among data centers 
[5] [7]. Niu et al. applied the model of stochastic economic dispatch to 
solve the spatial coordination between data centers and the power 
system [18]. Some of these works also discussed the mutual interaction 

Figure 1. The interactions between data centers, the aggregator, and the ISO in our DCAopt framework. DCAopt simultaneously solves three 
optimization problems: (1) Each data center solves a QoS optimization problem to maximize the QoS of jobs being processed in that data 
center. (2) All data centers together solve a multi-data-center coordination optimization problem to minimize the total electricity cost by 
applying workload sharing and optimizing server arrangement. (3) The aggregator solves a social cost minimization problem to achieve the 
load reduction target from the ISO by assigning optimized electricity prices to the data centers. 



between the grid and data centers [11] [14] [16]. For example, Zhou et 
al. proposed an auction mechanism between smart grids and geo-
distributed data centers for maximizing social welfare [11]. 

However, although these works have considered the bidirectional 
interactions between the electricity grid and the data centers, they 
usually model the performance and power of data centers using lumped 
parameters such as the total workload arrival rate and the average 
server utilization. For example, Niu et al. assumed that the workload 
assigned to a data center at a given time is parameterized by a single 
scalar value [18], and their approach adjusts the data center utilization 
rate 𝑙 to meet a QoS constraint in terms of average delay 𝑑 = 1/(𝑛𝜇 −

𝑙𝜇) < 𝐷, where 𝑛 is the number of active servers, and 𝜇 represents the 
processing ability of servers. Zhang et al. made similar assumptions 
and imposed a QoS constraint in the form 𝑡 + 1/(𝑠𝜇 − 𝐿) < 𝑡𝐷, where 
𝑡 is an additional transmission delay [16]. 

 Data center 
model with 

heterogeneous 
workload 

Data-center 
job QoS 

optimization 

Multi-data-
center joint 

optimization 

Aggregator 
social cost 

optimization 

Liu, 2013 
[7] 

  ✓  

Lei, 2015 
[8] 

✓ ✓   

Zhou, 
2015 [30] 

 ✓ ✓  

Yu,  2017 
[10] 

 ✓ ✓  

Cupelli, 
2018 [12] 

 ✓   

Zhou, 
2018 [11] 

  ✓ ✓ 

Zhang, 
2019 [13] 

✓ ✓   

Tsiligka-
ridis, 2019 
[14] 

 ✓  ✓ 

Zhang, 
2020 [16] 

  ✓ ✓ 

Niu, 2021 
[18] 

  ✓  

Zhang, 
2021 [17] 

✓ ✓   

Jahansha-
hi, 2022 
[19] 

✓ ✓   

Ours ✓ ✓ ✓ ✓ 
 

Although using these lumped parameters facilitates the formulation 
and the solution of the corresponding optimization problems, the 
models we outlined ignore the heterogeneity of workloads and the 
complexity of the job scheduling process in data centers. In a data 
center with heterogeneous workload traces like ours, where different 

types of jobs have different execution times, number of servers 
required, job arrival rates, and QoS constraints, the heterogeneity of 
workloads cannot be easily characterized by a single workload 

parameter, and the complexity of the scheduling process of 
heterogeneous workloads also cannot be captured by a single data 
center utilization value. 

In contrast, our work develops a data center model with workload 
heterogeneity, and we quantify job performance by both queueing-
theoretic results and precisely modeled event-based job scheduling 
simulations where key parameters of our model (including server 
power and workload properties) are collected from a real data center. 

Table 1 summarizes the comparison between our work and other 
related works. As discussed above, our work not only solves a joint 
optimization problem considering all three aspects, i.e., the data-
center-side job QoS optimization, the multi-data-center workload 
sharing optimization, and the aggregator-side social cost optimization, 
but also models data centers with heterogeneous workloads which is 
closer to the job scheduling of data centers in practice. 

3. Data-Center-Aggregator optimization 
framework (DCAopt) 

DCAopt considers interactions among an aggregator and a set of 𝑆 data 
centers. The aggregator intends to utilize the data centers’ flexibility in 
power consumption via the broadcasting of a price incentive 𝑝𝑖 to each 
data center 𝑖. This price represents a cost per unit of power used and is 
obtained via the minimization of a social cost metric, which quantifies 
the cost associated with not achieving the needed power reduction or 
the QoS target. This social cost metric has been used in the literature 
(such as Ref. [4]) to assess how well a desired load reduction could be 
achieved in a demand response scenario involving an aggregator and a 
set of active data centers. To minimize social cost, the aggregator needs 
to incentivize the data centers to reduce their power consumption by 
an amount 𝑇, which is decided upon a priori by an Independent System 
Operator (ISO). With this price incentive broadcast, the data centers 
collectively solve a global optimization problem to determine the 
number of active servers in each data center, as well as the arrangement 
of workload sharing. In addition, each data center also solves a local 
optimization problem to determine the optimal scheduling choice with 
constraints on QoS degradation. Figure 1 displays the interactions 
between the aggregator and a set of data centers (DCs). In the 
following, we first introduce our data center model, and then, we 
discuss three integrated optimization problems. 

3.1 The data center model in DCAopt 

In this work, we consider data centers that run workloads composed of 
several different types of jobs, labelled from job type 1 to job type 𝐾. 

Figure 2. The model of a data center with separate queues serving different types of jobs. Servers switch between the idle state and the active 
state as they start or finish a job. We apply the generalized processor sharing algorithm with weights 𝑤𝑘  (𝑘 = 1,2, … ) to control the number 
of servers in each active server group. 

Table 1. Comparison with related works on data center 
participation in demand response. 



Different job types have different characteristics such as job size, 
execution time, and arrival rate. Here, “job size” refers to the number 
of nodes required to run the job in parallel, and “arrival rate” refers to 
how many jobs of this type are submitted to the data center per unit 
time. We assume a data center uses separate queues to serve each type 
of job; so, for 𝐾 job types, there are 𝐾 different queues in each data 
center. The number of job types, 𝐾, can be different from one data 
center to another. 

To serve these different types of jobs in a data center, we partition all 
servers into 𝐾 + 1  groups, including one idle group and 𝐾  active 
groups. Each active group of servers processes all the jobs in one of 
the queues. In each active group, jobs are processed following the 
First-Come-First-Serve (FCFS) policy. The partition between active 
and idle groups is done conceptually instead of physically, and servers 
switch between the idle group or active groups from time to time 
depending on whether there are jobs to be processed. When there are 
no jobs, all servers are in the idle group; when there are jobs of a certain 
type to be processed, some idle servers switch into a corresponding 
active group. This model can reflect workload dynamics in many real-
world data centers where multiple types of jobs exist and many 
instances of the same job type are frequently submitted by users. Figure 
2 shows the model of a data center following the description above. 

In order to balance the delay in all the queues in a controlled way, we 
apply the Generalized Processor Sharing (GPS) algorithm [31] to 
control how many servers are assigned to each active server group. The 
GPS algorithm was originally proposed to provide balanced 
performance in network scheduling. It provides a solution to situations 
where incoming requests from several separate queues are processed 
by a fixed amount of resource. The GPS algorithm assigns a non-
negative weight 𝑤𝑘  (𝑘 = 1,2, … )  to each queue, and the weights 
determine the portion of resource allocated to each queue. These 
weights are fixed at the beginning, and they satisfy ∑ 𝑤𝑘𝑘 = 1. When 
all the queues have waiting requests, 𝑤𝑘  is exactly the portion of 
resource allocated to each queue. When some of the queues are empty 
(i.e., when they have no waiting jobs), their weight portions are 
redistributed to other non-empty queues following the assigned 
weights. In our data center scheduling problem, the GPS algorithm 
controls the number of servers in each active server group according 
to the weights. 

3.2 Data center Quality-of-Service (QoS) 
optimization 

In a data center, a key metric in quantifying the performance of a job 
is its queueing time in the system, 𝑇𝑞𝑢𝑒𝑢𝑒 , defined as the duration from 
the job’s submission to its execution starting time. As each type of job 
has its own typical execution time, 𝑇𝑒𝑥𝑒𝑐 , a typical approach to 

quantify the performance of a job is to compare a job’s queueing time 
with its execution time [32]. To that end, we define the QoS 
degradation of a job as 𝑄 = 𝑇𝑞𝑢𝑒𝑢𝑒/𝑇𝑒𝑥𝑒𝑐. Since each queue in the data 
center contains many jobs of the same type, we are concerned with 
whether the majority of jobs of a type have their QoS degradation 
bounded. In other words, for each job type 𝑘, we want to ensure the 
ratio of jobs whose QoS degradation exceeds 𝑄𝑡ℎ𝑟𝑒𝑠

𝑘  to be less than 𝛿𝑘. 
Here, 𝑄𝑡ℎ𝑟𝑒𝑠

𝑘  is a QoS degradation threshold for job type 𝑘, and 𝛿𝑘 is a 
ratio. In the following, we set 𝛿𝑘 = 10%, which means that we require 
90% of each type of jobs’ QoS degradation to be bounded by 𝑄𝑡ℎ𝑟𝑒𝑠

𝑘 . 

To achieve the QoS constraints discussed above, we need to minimize 
the probability of QoS-degraded jobs, Prob[𝑄𝑘 > 𝑄𝑡ℎ𝑟𝑒𝑠

𝑘 ] − 𝛿𝑘 , for 
each job type 𝑘. Thus, the data center QoS optimization minimizes the 
probability of QoS-degraded jobs for all queues as follows: 

min
𝑤𝑘

𝐶(𝑤𝑘) = ∑ SoftPlus (𝜌(Prob[𝑄𝑘 > 𝑄𝑡ℎ𝑟𝑒𝑠
𝑘 ] − 𝛿𝑘))𝑘 ,    (1) 

where SoftPlus(𝑥) represents the softplus function defined as ln (1 +

𝑒𝑥), which is a smooth approximation of the ramp function max (0, 𝑥). 
With an appropriate selection of the scale parameter 𝜌, this softplus 
function is close to 0 only when the jobs of type 𝑘 meet their QoS 
constraints. We solve this optimization problem using projected 
gradient descent considering the constraints on the weights, ∑ 𝑤𝑘𝑘 =

1 and 𝑤𝑘 ≥ 0. By estimating the probability Prob[𝑄𝑘 > 𝑄𝑡ℎ𝑟𝑒𝑠
𝑘 ], we 

can obtain an optimal selection of the weights. 

To understand how Prob[𝑄𝑘 > 𝑄𝑡ℎ𝑟𝑒𝑠
𝑘 ] depends on various parameters 

including weights, number of servers, and job arriving rates, we apply 
a queueing-theoretic result proven by Paschalidis et al. [33] [34], which 
states that the probability of large delays in a queueing system 
following the GPS algorithm should decrease exponentially as the 
delay 𝑄𝑡ℎ𝑟𝑒𝑠

𝑘  increases: 

Prob[𝑄𝑘 ≥ 𝑄𝑡ℎ𝑟𝑒𝑠
𝑘 ] = 𝑟𝑘𝑒−𝑄𝑡ℎ𝑟𝑒𝑠

𝑘 ∙𝜃𝑘
∗
,         (𝑘 = 1,2, … , 𝐾),    (2) 

and most importantly, the coefficients 𝜃𝑘
∗  can be theoretically 

calculated from the distributions of job arrival times and job processing 
times by: 

𝜃𝑘
∗ = sup

𝜃≥0,Λ𝐺𝑃𝑆,𝑘(𝜃)<0
−Λ𝐵(−𝜃𝑤𝑘),    (3) 

Λ𝐺𝑃𝑆,𝑘(𝜃) = Λ𝐴𝑘
(𝜃) + Λ𝐵(−𝜃𝑤𝑘).    (4) 

Here, the functions Λ𝐴𝑘
(𝜃)  and Λ𝐵(𝜃)  are the logarithm of the 

moment-generating functions for random variables 𝐴𝑘(𝑡) and 𝐵(𝑡), 
where 𝐴𝑘(𝑡) is defined as the amount of workload (i.e., number of jobs 

Figure 3. Workload sharing enables servers from one data center to run jobs that are submitted to another data center. With workload sharing, 
electricity costs and job QoS degradation can be reduced. DC is the abbreviation for data center. 



× job execution time × job size) arriving in the 𝑘𝑡ℎ  queue per unit 
time at 𝑡, and 𝐵(𝑡) is defined as the total processing capability of the 
system at time 𝑡, i.e., the number of active servers for processing the 
jobs. The time variable 𝑡 is discrete. 

When applied to our data center model, 𝐵(𝑡) has a fixed value that is 
proportional to the number of active servers in the data center. The 
specific form of Λ𝐴𝑘

(𝜃) depends on the distribution of job arrivals, 
which can be empirically estimated from historical workload traces. In 
the following, we assume the job arrival times in the 𝑘𝑡ℎ queue (𝑘 ∈

{1,2, … }) follow a Poisson distribution with parameter 𝜆𝑘 , and our 
experiments reported later are based on this assumption. Although we 
make the Poisson distribution assumption for evaluation purposes, our 
optimization framework can be applied to other job arrival 
distributions. 

Following the Poisson distribution assumption and applying Eq. (3) 
and Eq. (4) to our data center model, for each job type 𝑘, we obtain 
𝜃𝑘

∗ = 𝑁Θ𝑘𝑤𝑘, where 𝑁 is the number of servers used by a data center, 
and Θ𝑘  is a variable satisfying the equation 𝜆𝑘𝑒Θ𝑘𝑚𝑘𝑇𝑘 = 𝑁Θ𝑘𝑤𝑘 +

𝜆𝑘. For each job type 𝑘, 𝑇𝑘 is its typical execution time, and 𝑚𝑘 is the 
job size. While 𝜃𝑘

∗ can be estimated from queueing theory as shown 
above, it is hard to theoretically estimate the 𝑟𝑘 parameter in Eq. (2), 
so we run data center simulations using our job scheduling simulator 
to empirically obtain its value. 

This queueing-theoretic derivation of Prob[𝑄𝑘 > 𝑄𝑡ℎ𝑟𝑒𝑠
𝑘 ] in Eq. (2) 

assumes that jobs are processed following the FCFS policy. In our data 
center model, each active server group processes jobs following the 
FCFS policy, so the derivation above can be adopted. If different 

scheduling policies are used, adjustments to the queueing-theoretic 
derivation may need to be considered. 

 3.3 Multi-data-center coordination in DCAopt 

While each data center solves its own QoS optimization problem, all 
data centers also collectively solve a cost minimization problem shown 
in Eqs. (5) and (6) as follows:  

min
𝑁𝑖

𝑗
 ∑ 𝑝𝑖𝛼𝑖 ∑ 𝑁𝑖

𝑗

𝑆

𝑗=1

𝑆

𝑖=1

+ 𝜅 ∑ ∑ 𝑁𝑖
𝑗

𝑗∈{1,…,𝑆}\𝑖

𝑆

𝑖=1

+ ∑ 𝛽𝑖𝑒−𝛾𝑖𝜃𝑖(𝑁𝑖)

𝑆

𝑖=1

          (5)

                       

 

                s. t.    0 ≤ ∑ 𝑁𝑖
𝑗

𝑆

𝑗=1

≤ 𝑁𝑖
𝑈 , ∀𝑖.       (6) 

In Eq. (5), the cost function represents the sum of electricity costs, the 
workload-sharing costs, and job QoS-constraint violation costs from 
all data centers considered. The responses, 𝑁𝑖

𝑗
, ∀𝑖, 𝑗 ∈ {1, … , 𝑆} , 

represent the number of active servers in data center 𝑖 that are used by 
jobs in data center 𝑗. When the superscript matches the subscript, this 
𝑁𝑖

𝑖 represents servers in data center 𝑖 that are not shared. Because the 
power usage of servers in each data center, 𝛼𝑖, can differ from each 
other, sharing workloads from one data center to another could be 
beneficial to the overall cost in Eq. (5). Workload sharing is also 
illustrated in Figure 3 where two data centers are included. Here, 
servers from one data center can be shared to run jobs that are 
submitted to another data center. For example, all jobs submitted to 
data center 1 run on 𝑁1

1 + 𝑁2
1 servers. Meanwhile, the electricity cost 

for data center 1 is charged on its 𝑁1
1 + 𝑁1

2 servers. 

In the objective function of Eq. (5), the first term represents the 
electricity costs of the servers in all data centers. In this term, 𝑝𝑖 is the 
electricity price for data center 𝑖, so this term favors a smaller number 
of active servers.  

The second term represents workload-sharing cost, with coefficient 𝜅 
quantifying the per-server sharing cost, which includes extra efforts 
needed in cross-platform workload management, as well as extra 
resource usage due to workload transfer. Note that this assumption 
neglects the difference in the amount of data being transferred, so it 
can be viewed as a first-order approximation to the actual cost. 
Especially, for the compute-intensive workloads which include most 
physics simulation workloads such as molecular dynamics and fluid 
dynamics, this assumption should work well as these workloads rely 
on solving equations numerically and are usually not data-intensive. 
Similar assumptions are also made by previous works such as Ref. [11]. 

The final term represents the cost for job QoS-constraint violation in 
each data center. Here, we assume this cost takes an exponential form 
following the large delay probability in Eq. (2). Variable 𝜃𝑖(𝑁𝑖) is 
dependent on 𝑁𝑖, and the latter is defined as the total number of servers 
that can be used by data center 𝑖’s jobs, hence 𝑁𝑖 = ∑ 𝑁𝑗

𝑖𝑆
𝑗=1 . Variable 

𝜃𝑖(𝑁𝑖) is estimated following the same method in Eq. (3), and 𝛽𝑖  and 
𝛾𝑖 are two coefficients. The constraints in Eq. (6) ensure that the total 
number of active servers in data center 𝑖  is bounded by its server 
capacity, 𝑁𝑖

𝑈. 

Solving the optimization problem in Eq. (5) returns the optimal 
arrangement of active servers that minimizes the cost. In our numerical 
evaluation, we apply projected gradient descent to find the optimal 
solution, where 𝜃𝑖  is dependent on 𝑁𝑖 and is computed as the average 
of 𝜃𝑘

∗ over all job types 𝑘 in data center 𝑖. Given 𝑁𝑖, we can calculate 
𝜃𝑖  by solving the QoS optimization problem in Eq. (1). 

Type Label Description 

DCAopt 
inputs 

𝛼𝑖 Power usage per server in data center 𝑖 
𝛽𝑖  Coefficient in QoS cost defined in Eq. (5) 
𝛾𝑖 Exponential in QoS cost defined in Eq. (5) 
𝜅 Service sharing cost per server in Eq. (5) 
𝜂 Coefficient in penalty function in Eq. (8) 
𝑆 Number of data centers 

𝑁𝑖
𝑈 Total number of servers in data center 𝑖 

𝑇 Load reduction target 

𝜆𝑖,𝑘 Job arrival rate of workload type 𝑘 in data 
center 𝑖 

𝑇𝑘 Execution time of workload type 𝑘 
𝑚𝑘 Job size (# of servers) of workload type 𝑘 
𝑄𝑡ℎ𝑟𝑒𝑠

𝑘  QoS degradation threshold of job type 𝑘 
𝛿𝑘 Bound of QoS violation ratio in Eq. (2) 
𝜌 Coefficient in QoS cost in Eq. (1) 

DCAopt 
outputs 

𝑝𝑖 Electricity price for data center 𝑖 

𝑁𝑖
𝑗 The number of active servers in data center 

𝑖 that are used by jobs in data center 𝑗 
𝐺 Social cost defined in Eq. (7) 

Inter-
mediate 
variables 

𝑤𝑘,𝑖 
The optimal weight for job type 𝑘 in data 
center 𝑖  when using the GPS algorithm 
(Index 𝑖 is omitted in Section 3.2) 

𝑟𝑘 Fitted parameter for job type 𝑘 in Eq. (2) 
𝑄𝑘 QoS degradation of job type 𝑘 

𝜃𝑖  
The exponential to quantify job QoS 
degradation in data center 𝑖 in Eq. (5) 

Algorithm 
hyper-

parameters 

𝑎 Gradient descent step size in Algorithm 1 
𝑏 Gradient descent step size in Algorithm 2 
Δ Electricity price perturbation 
𝑡𝑚𝑎𝑥 Max # of iterations in Algorithm 1 line 6 
𝑢𝑚𝑎𝑥 Max # of iterations in Algorithm 2 line 1 
𝑣𝑚𝑎𝑥 Max # of iterations in Algorithm 1 line 7 

Table 2. Definition of notations used in this work. 



3.4 Aggregator optimization 

While data centers pursue the target of reducing their cost and QoS 
degradation, the aggregator aims at achieving a load decrease amount 
𝑇 to handle a supply deficit or demand surplus event. To incentivize 
data centers to meet the load decrease target, the aggregator selects the 
optimal electricity prices that incentivize demand response, obtained 
via the minimization of a social cost metric 𝐺(𝒑) shown in Eq. (7), and 
the price 𝑝𝑖 is broadcasted to data center 𝑖: 

min𝒑≥𝟎 𝐺(𝒑) = 𝑞 (𝑇 − ∑ 𝛼𝑖 (𝑁𝑖
𝑈 − ∑ 𝑁𝑖

𝑗
(𝒑)

𝑆

𝑗=1

)

𝑆

𝑖=1

)

+ ∑ 𝛽𝑖𝑒−𝛾𝑖𝜃𝑖(𝑁𝑖(𝒑))

𝑆

𝑖=1

,              (7) 

where 

𝑞(𝑥) =
𝜂𝑥2

2
.          (8) 

The first term in 𝐺(𝒑) is a penalty for not achieving the desired target 
load reduction 𝑇 , where 𝑞(𝑥)  is defined to be a convex penalty 
function. For our experiments, we assume 𝑞 is a quadratic function 
defined in Eq. (8). The second term in 𝐺(𝒑) represents a social welfare 
cost quantified by the QoS violations in the data centers. The 
dependence of 𝑁𝑖

𝑗
(𝒑) and 𝑁𝑖(𝒑) = ∑ 𝑁𝑗

𝑖(𝒑)𝑆
𝑗=1  on the price vector 𝒑 

is emphasized in Eq. (7), and the variables 𝑁𝑖
𝑗
(𝒑) are calculated by 

solving the multi-data-center coordination problem in Eq. (5).  

 

In Eq. (7), we assume that data centers truthfully interact with the 
aggregator and provide accurate server response values obtained from 
Eq. (5). The objective of Eq. (7) contains a social welfare term that is 
the aggregate QoS cost of all data centers. Thus, the prices that the 

aggregator solves for are obtained with the data center costs in mind; 
if the data centers seek to manipulate their responses to attempt to gain 
larger price incentives, this would be difficult to achieve as the data 
centers are not aware of the aggregator penalty term in Eq. (7) that will 
directly be affected by the altered data center responses. This will result 
in the aggregator not being able to actually achieve its target reduction 
and the data centers receiving suboptimal incentives. With this in mind, 
there is incentive for data centers to provide accurate information. As 
future work, regulatory and/or compliance constraints can directly be 
imposed to ensure veracity of data centers responses. A game-theoretic 
framework, that by design can encourage truthful data center 
interactions [20], can also be explored to model the data center-
aggregator dynamic.  

For readers’ convenience, we list the variables we use in Table 2. 

3.5 Algorithms in DCAopt for solving the 
optimization problems 

We use Projected Gradient Descent (PGD) as our solution method in 
the following algorithms for solving the optimization problems. We 
choose PGD as it is a commonly used and easily implementable 
approach to solving constrained optimization problems. PGD is an 
extension of the conventional Gradient Descent approach to solving 
unconstrained optimization problems; with this approach, there is an 
additional projection step that must be done to place the obtained 
estimate in the feasible set of solutions characterized by the constraints 
of the optimization problem. For PGD to converge, the objective of the 
optimization problem at hand must be convex, the constraint set of the 
optimization problem must be convex, and an appropriate step size 
must be used for the gradient updates [35]. With these conditions, 
convergence can be attained, and no numerical instability will arise. 
The PGD conditions are met in our optimization tasks. 

Algorithm 1 shows how the aggregator and the set of 𝑆 data centers 
interact with each other via an iterative process, where the goal of the 
interaction is to obtain the optimized broadcast prices 𝒑 (i.e., 𝑝𝑖 for 𝑖 
from 1 to 𝑆) and the data center server arrangement 𝑁𝑖

𝑗, for all 𝑖, 𝑗. 

The algorithm starts with some initialized 𝒑 and 𝑁𝑖
𝑗  values, chosen 

within the feasible region. In lines 1-3, we simulate the workload 
processing of each data center to obtain the QoS-degradation 
probability Prob [𝑄𝑘 > 𝑄𝑡ℎ𝑟𝑒𝑠

𝑘 ] , and by comparing it with the 
theoretical value derived from Eq. (2), we fit the parameter 𝑟𝑘 for each 
data center. Then, in line 4, we solve the data center QoS optimization 
problem in Eq. (1) using PGD for each one of the data centers, which 
is detailed in Algorithm 2. In lines 7-8, we solve the multi-data-center 
coordination problem in Eq. (5) to get 𝑁𝑖

𝑗
(𝒑). Because minimizing Eq. 

(5) follows a similar PGD optimization process as Algorithm 2, we 
omit the detailed pseudocode. Next, in lines 9-13, we perturb the prices 
by a small amount 𝚫 to get 𝒑′ ←  𝒑 + 𝚫 and solve Eq. (5) again for 
each price component. By comparing the social cost in Eq. (7) 
calculated before and after the price perturbation, i.e., 𝐺(𝒑) and 𝐺(𝒑′), 
we can estimate the gradient 𝜕𝐺

𝜕𝒑
 using a finite difference approximation, 

which is then used in performing the PGD to solve the aggregator 
optimization problem in Eq. (7). At each iteration of PGD, we update 
prices by 𝒑 ←  [𝒑 − 𝒂 ⋅ 𝛁𝐺(𝒑)]+. When the PGD stabilizes, the prices 
𝒑  we obtain are the optimized broadcasted prices, and the 
corresponding 𝑁𝑖

𝑗 correspond to the optimized server arrangement. 

In Algorithm 1, we use parameter 𝑡𝑚𝑎𝑥 to denote the maximal number 
of iterations in performing PGD for the aggregator optimization and 
use 𝑎 to denote the step size in PGD. In line 13, [𝒑 − 𝒂 ⋅ 𝛁𝐺(𝒑)]+ 

 Algorithm 1: Data-Center-Aggregator Optimization 
  

 Input: 𝑡𝑚𝑎𝑥, 𝑣𝑚𝑎𝑥, 𝚫, 𝑎, and the parameters in Eqs. (1)-(8) 
 Output: optimized broadcast prices 𝒑, optimized server 

arrangement 𝑁𝑖
𝑗
 ∀𝑖, 𝑗  

1 For 𝑖 from 1 to 𝑆 do 
2       Perform event-based job scheduling simulation of data 

center 𝑖 with the current values of variables 
3       Use QoS-degradation probability Prob[𝑄𝑘 > 𝑄𝑡ℎ𝑟𝑒𝑠

𝑘 ] 
from simulation to fit 𝑟𝑘 and calculate 𝜃𝑘

∗ in Eq. (2) 
4       Apply Algorithm 2 to solve the QoS optimization 

problem in Eq. (1) for data center 𝑖 and obtain 𝑤𝑘,𝑖 
5 endfor 
6 For 𝑡 from 1 to 𝑡𝑚𝑎𝑥 do 
7       Apply 𝑣𝑚𝑎𝑥 iterations of PGD to solve the multi-data-

center coordination problem in Eq. (5) 
8       Calculate 𝐺(𝒑) in Eq. (7) using optimized 𝑁𝑖

𝑗 from line 7 
9       For each price component 𝑖 from 1 to 𝑆 do 
10             Perturb price component by 𝒑′ ←  𝒑 + 𝚫 and apply 

PGD to solve Eq. (5) again using 𝒑′ 
11       endfor 
12       Calculate 𝐺(𝒑′) and approximate 𝛁𝐺(𝒑) =

𝜕𝐺

𝜕𝒑
 via finite 

difference between 𝐺(𝒑′) and 𝐺(𝒑) 
13       Conduct one iteration of PGD for the aggregator 

optimization in Eq. (7) by 𝒑 ←  [𝒑 − 𝒂 ⋅ 𝛁𝐺(𝒑)]+ 
14 endfor 
15 Return the optimized broadcast prices 𝒑, and the optimized 

server arrangement 𝑁𝑖
𝑗 



means projecting (𝒑 − 𝒂 ⋅ 𝛁𝐺(𝒑)) onto the feasible region where the 
values in every dimension are non-negative. 

Algorithm 2 details the data center QoS optimization part in line 4 of 
Algorithm 1. PGD is applied here to minimize 𝐶(𝑤𝑘,𝑖)  in Eq. (1) 
through a step-by-step adjustment of weight parameters 𝑤𝑘,𝑖 . In 
Algorithm 2, 𝑏  is the step size of gradient descent. Inside the cost 
function 𝐶(𝑤𝑘,𝑖), the scale parameter 𝜌 controls the smoothness of the 
SoftPlus function. If 𝜌 is too small, the QoS degradation probability 
Prob[𝑄𝑘 > 𝑄𝑡ℎ𝑟𝑒𝑠

𝑘 ] in Eq. (1) is more likely to surpass the constraint 
𝛿𝑘. On the other hand, if 𝜌 is too large, the derivative 𝜕𝐶

𝜕𝑤𝑘,𝑖
 is steeper, 

and it will take more time for the gradient descent optimization to reach 
the optimum. For our experiments, we considered different values and 
empirically determined 𝜌 = 100  to be a good choice in terms of 
achieving both the validity of constraints and the feasibility of 
optimization. 

 Algorithm 2: Data Center QoS Optimization
  

 Input: 𝑟𝑘, 𝑏, 𝑢𝑚𝑎𝑥, and other parameters in Eqs. (1)-(8) 
 Output: optimal weights 𝑤𝑘,𝑖 for job type 𝑘 in data center 𝑖 
1 For 𝑢 from 1 to 𝑢𝑚𝑎𝑥 do 
2       Calculate the cost function 𝐶(𝑤𝑘,𝑖) in Eq. (1) using Eqs. 

(2)-(4) and the current values of variables 
3       Calculate derivatives ∇𝐶(𝑤𝑘,𝑖) =

𝜕𝐶

𝜕𝑤𝑘,𝑖
 

4       Apply gradient descent to update the weight parameters 
𝑤𝑘,𝑖 by 𝑤𝑘,𝑖 ← 𝑤𝑘,𝑖 − 𝑏 ⋅ ∇𝐶(𝑤𝑘,𝑖) 

5       Project the updated weights onto the ∑ 𝑤𝑘,𝑖𝑘 = 1 plane 
within the region 𝑤𝑘,𝑖 ≥ 0 

6 endfor 
7 Return the optimal weight parameters 𝑤𝑘,𝑖 

 

Computational complexity: Based on the algorithms discussed above, 
we analyze the computational complexity of our DCAopt framework. 
Executing lines 2-3 of Algorithm 1 runs data center job scheduling 
simulations, which takes 𝑇𝑠𝑖𝑚𝑢 ≈ 10𝑠  when simulating the job 
scheduling of the one-hour period of a data center with hundreds of 
nodes. Thus, the complexity of lines 2-3 is 𝑆 ∙ 𝑇𝑠𝑖𝑚𝑢 . Line 4 of 
Algorithm 1 corresponds to Algorithm 2. The fact that we have an 
analytical form of 𝐶(𝑤𝑘,𝑖)  based on queueing theory allows us to 
calculate 𝐶(𝑤𝑘,𝑖)  and its derivatives in constant time. Thus, the 
complexity of Algorithm 2 for each data center is proportional to the 
number of PGD iterations, which is 𝑂(𝑢𝑚𝑎𝑥). The cost function in Eq. 
(5) is also analytical, so the complexity of lines 7-8 in Algorithm 1 is 
also proportional to the number of PGD iterations at this step, which is 
𝑂(𝑣𝑚𝑎𝑥). Next, in lines 9-11 of Algorithm 1, 𝑂(𝑆 ∙ 𝑣𝑚𝑎𝑥) time is spent 
on doing the multi-data-center optimization for each component of the 
perturbed price 𝒑′. Finally, lines 6-14 is executed for 𝑡𝑚𝑎𝑥 times for 
applying PGD on the aggregator optimization. 

Therefore, from the above analysis, we see that the time complexity of 
Algorithm 1 is 𝑂(𝑆 ∙ (𝑇𝑠𝑖𝑚𝑢 + 𝑢𝑚𝑎𝑥 + 𝑣𝑚𝑎𝑥 ∙ 𝑡𝑚𝑎𝑥)) , which scales 
linearly with the number of data centers 𝑆. For our experiments to be 
discussed in the following section, the PGD optimization always 
converges in 30 iterations, so we can set 𝑢𝑚𝑎𝑥 = 𝑣𝑚𝑎𝑥 = 𝑡𝑚𝑎𝑥 = 30, 
and the entire execution of DCAopt for our setting takes less than a 
few minutes. Since the aggregator optimization depends on the power 
reduction target value, Algorithm 1 should be executed every time 
when the aggregator broadcasts a new power reduction target to data 
centers, which could be either per-hour, per-day, or per-week, based 
on the specific contract between the aggregator and the data centers. 
Therefore, as the algorithm is only executed once at the times the 

power reduction target gets updated, the temporal cost of applying our 
algorithm is acceptable. 

4. Experimental methodology 

To evaluate the performance of our DCAopt framework, we create 
some test cases where one aggregator interacts with two data centers. 
We implement Algorithms 1 and 2 in MATLAB to solve all 
optimization problems, and we build an event-based data center 
simulator to conduct simulation of the job scheduling and execution 
taking place in the data centers. The data center job scheduling 
simulation gives the job QoS degradation values for us to fit the 𝑟𝑘 
variables in Eq. (2), which are used in Algorithm 2 to conduct the data 
center QoS optimization. The latter results are further used in 
Algorithm 1 to conduct the multi-data-center coordination and the 
aggregator optimization. Note that the ability of our framework to 
optimize data center QoS is achieved by applying the approach in 
Section 3.2, which does not rely on the implementation details of the 
job scheduling simulator. In fact, this scheduling simulator can be 
replaced by any simulator that can take a heterogeneous workload trace 
and simulate multiple queues. 

Scheduling simulator: We build our event-based data center job 
scheduling simulator in Python. This simulator works as follows: given 
a workload trace together with the job properties (job size and job 
execution time), when the simulated time goes second-by-second, the 
simulator records or changes the activity state (active/idle) of servers 
based on the starting/ending event of a job. The simulator maintains a 
queue for each type of submitted jobs waiting to be executed. Every 
second, the simulator updates the number of servers running each type 
of jobs and checks the number of waiting jobs in each queue. A starting 
event of a job happens when the job is able to run following the GPS 
scheduling algorithm (Section 3.1). In other words, when there are 
waiting jobs in a queue and the ratio of active servers running this type 
of jobs is below the corresponding weight 𝑤𝑘, the simulator allows a 
job of this type to start execution as long as there are enough idle 
servers. When a job’s preset execution time is reached, the simulator 
records the ending event of the job. Finally, after a simulation run of a 
workload trace finishes, we calculate the total electricity cost of this 
run and calculate the average QoS degradation of jobs based on their 
recorded starting and ending times. 

Table 3. Properties of all types of jobs used in our experiments. 

 

Data center properties: Our simulation adopts data center properties 
and workload properties (including job size, job execution time, server  

Job 
type 
(𝒌) 

Job type 
name 

Execution 
time (𝑻𝒌) 

Job 
size 

(𝒎𝒌) 

Job 
arrival 
rate in 
DC1 
(𝝀𝟏,𝒌) 

Job 
arrival 
rate in 
DC2 
(𝝀𝟐,𝒌) 

1 MG.D.16 84 s 1 0 0.238 
2 SP.C.16 54 s 1 0 0.371 
3 IS.D.32 42 s 3 0.079 0.159 
4 BT.D.49 551 s 2 0.009 0 
5 EP.D.64 54 s 3 0 0.123 
6 CG.C.4 28 s 1 0 0.719 
7 MG.D.8 141 s 1 0.071 0 
8 IS.D.4 122 s 1 0.082 0 
9 LU.C.28 29 s 1 0 0.690 
10 EP.D.100 36 s 4 0.069 0 
11 IS.D.64 27 s 4 0.092 0.183 
12 LU.D.112 164 s 4 0.015 0 
13 MG.D.32 49 s 2 0.102 0.204 



power usage, etc.) that are measured by us at an actual operational data 
center, the Massachusetts Green High Performance Computing Center 
(MGHPCC), which is a large data center providing high-performance 
computing resources for multiple universities in Massachusetts 
(Boston University, Harvard, MIT, Northeastern, and Univ. of 
Massachusetts). Each server that we experiment with in MGHPCC 
contains two Intel Xeon Gold 6132 CPUs, and each CPU has 14 cores. 
Each CPU’s thermal design power is 140 W. In our test cases, we 
assume there are two data centers each having 𝑁1

𝑈 = 150 and 𝑁2
𝑈 =

300 servers. We assume the active power consumptions per server are 
as follows: 𝛼1 = 322 Watts for data center 1 and 𝛼2 = 334 Watts for 
data center 2, which are averaged values measured from servers in 
MGHPCC using the IPMI tool [36] when running two different sets of 
workloads discussed below. 

Experiment parameters: We assume the ISO sets the load reduction 
target as 𝑇 = 70 kW, which is an achievable amount if half of the 
servers in both data centers are turned off. We assume the following 
default price parameters are used in our experiments: 𝜅 = 0.03 $/h, 
𝛽1 = 𝛽2 = 5  $/h, and scenarios with altered price parameters are 
explored in Section 5.2. The default coefficients in the cost functions 
in Eqs. (5) and (7) are set as 𝛾1 = 𝛾2 = 10 and 𝜂 = 10−7, and altering 
the 𝜂  parameter is explored in Scenario 6. At the beginning of 
executing Algorithm 1, we initialize the electricity prices for the two 
data centers as 𝑝1 = 0.060 $/kWh and 𝑝2 = 0.150 $/kWh. The price 
perturbation is set as Δ = 0.02 $/kWh for each price component. 

Workload properties: Our data center scheduling simulation runs 13 
different types of jobs, and all the jobs are selected from the benchmark 
applications in the NAS Parallel Benchmark Suite [37]. The properties 
of the jobs and their arrival rates used in our experiments are listed in 
Table 3. In the Job Type Name column, MG, SP, IS, etc., refers to 
benchmark applications in the NAS Parallel Benchmark. The suffix in 
the name refers to the input and the number of threads used in running 
the job. For example, “MG.D.16” represents the MG benchmark 
application with input D and running with 16 threads. The execution 
times listed in the table are real values measured when we run the jobs 
on a certain number of nodes (i.e., job size 𝑚𝑘) at the MGHPCC. The 
job arrival rates in Table 3, 𝜆1,𝑘 and  𝜆2,𝑘 (number of jobs arriving per 
second), are determined by assuming the data centers’ server 
utilization rates are approximately 50%. In the table, some job types 
have a zero arrival rate, which means that these job types appear in 
only one of the two data centers. 

Given these workload properties, a workload trace is generated for 
each data center assuming the jobs’ arrival times follow a Poisson 
distribution, where the job arrival rates for each type of jobs in Table 
3 are determined by assuming the data centers’ server utilization rates 
are approximately 50%. 

 

5. Results 

In this section, we present our evaluation results for DCAopt. We 
first provide detailed analysis on a default test case in Section 5.1. 
Then, we compare the default case with six other scenarios with 
altered parameters in Section 5.2. 

5.1 Best price setting and server arrangement in the 
test case 

Applying our DCAopt framework on the test case (referred to as 
Scenario 1) with parameters discussed in the previous section, we 
obtain the best electricity price setting as 𝑝1 = 0.062 $/kWh, 𝑝2 =

0.198 $/kWh. The corresponding best server arrangement is 𝑁1
1 =

115, 𝑁1
2 = 35, 𝑁2

1 = 0, 𝑁2
2 = 119, which means keeping all the 150 

servers in data center 1 active, among which 115 servers are employed 
to run data center 1’s jobs, and 35 servers are shared for data center 2 
to run that data center’s jobs. Meanwhile, only 119 servers of data 
center 2 are kept active to run jobs, and no server from data center 2 is 
used to run data center 1’s job, which also reflects the electricity price 
difference between the two data centers. Since the electricity price for 
data center 1 is much lower than that for data center 2, prioritizing the 
use of data center 1’s servers reduces the electricity cost.  

On the aggregator side, the best electricity prices determined by 
DCAopt reduces the social cost in Eq. (7). If applying the initialized 
prices, 𝑝1 = 0.060  $/kWh and 𝑝2 = 0.150  $/kWh, the power 
reduction we can achieve is only 49 kW, and the corresponding social 
cost is 25.1. Instead, applying the best prices enables us to achieve a 
power reduction of 60.5 kW, corresponding to a 23% increase in power 
reduction, and the social cost using the best prices decreases to 9.3. 
Figure 4 shows how the social cost value and the best server 

 Inputs Outputs 

Scena
-rios 𝜅 ($/h) 𝛽2 ($/h) 𝜂 ($/W2h) 𝑁1

1 𝑁1
2 𝑁2

1 𝑁2
2 𝑝1 

($/kWh) 
𝑝2 

($/kWh) 

Power 
reduction 

(kW) 

Social cost 
before 

optimization 

Social cost 
after 

optimization 
1 0.030 5 10-7 115 35 0 119 0.062 0.198 60.5 25.1 9.3 
2 0.032 (↑) 5 10-7 121 12 0 144 0.096 0.181 57.6 25.9 12.1 
3 0.000 (↓) 5 10-7 96 54 2 107 0.061 0.158 63.8 8.3 7.2 
4 0.030 7 (↑) 10-7 110 40 0 122 0.062 0.212 59.5 32.7 10.8 
5 0.030 2.5 (↓) 10-7 130 20 0 114 0.060 0.166 62.1 11.7 7.0 
6 0.030 5 10-6 (↑) 102 48 0 97 0.095 0.238 67.8 222.9 8.7 
7 0.030 5 5×10-8 (↓) 128 22 0 137 0.060 0.169 54.4 14.1 9.9 

Figure 4. Social cost decreases and server arrangements (𝑁𝑖
𝑗) 

approach their best values as we apply our algorithms and 
optimize the cost function in Eq. (7) through iterations of 
gradient descent. 

Table 4. Understanding the impact of input parameters by comparing seven different scenarios. 



arrangement change through iterations of gradient descent when we 
optimize the cost function in Eq. (7). From Fig. 4, we see our 
algorithms quickly converge in tens of iterations. 

5.2 Comparing the best settings in different scenarios 

To understand how the best setting found by DCAopt changes with the 
input parameters, in the following, we compare the default case with 
other scenarios where each scenario alters some input parameters. 
Table 4 summarizes the input parameters we use in these scenarios as 
well as the results returned by DCAopt, which are discussed in the 
following. 

Parameter 𝜿: Since 𝜅 controls the per-server sharing cost in Eq. (5), 
we expect that a larger 𝜅 curbs workload sharing. In fact, if we increase 
𝜅 from 0.03 $/h to 0.032 $/h (referred to as Scenario 2) and apply our 
DCAopt framework, the number of shared servers, 𝑁1

2, decreases from 
35 to 12. Further increasing 𝜅 to 0.033 $/h makes the optimal number 
of shared servers to be zero, which demonstrates that a workload 
sharing cost that is too high could curb any attempts in workload 
sharing between data centers. On the other hand, reducing workload 
sharing cost promotes the sharing. For example, when we decrease 𝜅 
to 0.025 $/h, the optimal number of shared servers is 𝑁1

2 = 38. Further 
decreasing 𝜅 to zero (referred to as Scenario 3) also motivates data 
center 2 to share servers to run data center 1’s jobs, and in that case, 
the optimal server arrangement found by DCAopt is 𝑁1

1 = 96, 𝑁1
2 =

54, 𝑁2
1 = 2, 𝑁2

2 = 107. 

Parameter 𝜷𝒊 : Since 𝛽1  and 𝛽2  reflect the cost regarding the QoS 
degradation of jobs in data center 1 and data center 2, a larger penalty 
on QoS degradation motivates data centers to allocate more servers to 
run the submitted jobs. For example, if we increase 𝛽2 from 5 $/h to 7 
$/h (referred to as Scenario 4) in our test case while having all other 
parameters remaining the same (including 𝜅 = 0.03 $/h), then the 
optimal server arrangement found by DCAopt is 𝑁1

1 = 110, 𝑁1
2 =

40, 𝑁2
1 = 0, 𝑁2

2 = 122. As expected, the number of servers employed 
to run data center 2’s jobs increases to 𝑁1

2 + 𝑁2
2 = 162 to match the 

increased penalty on data center 2’s job’s QoS degradation. On the 
other hand, if we decrease 𝛽2 to 2.5 $/h (referred to as Scenario 5), the 
optimal server arrangement is 𝑁1

1 = 130, 𝑁1
2 = 20, 𝑁2

1 = 0, 𝑁2
2 =

114, and the number of servers employed to run data center 2’s jobs 
decreases to 𝑁1

2 + 𝑁2
2 = 134 . As a result, the 𝜃2  variable that 

quantifies the QoS degradation of data center 2’s jobs decreases from 
𝜃2 = 0.076 in Scenario 1 to 𝜃2 = 0.015 in this case (smaller values 
represent larger QoS degradation). Meanwhile, data center 1’s jobs’ 

QoS improves as 𝜃1  increases from 0.072 in Scenario 1 to 0.104 
because less servers from data center 1 need to be shared. Further 
decreasing 𝛽2  could lead to a point where QoS is ignored and the 
number of active servers is kept so low that the job waiting time in the 
queues diverges, which is the case when 𝛽2 < 2 $/h. 

Parameter 𝜼: In the social cost 𝐺 defined in Eq. (7), 𝜂 reflects how 
we balance the two objectives, meeting the power reduction target, or 
meeting the QoS requirement. Increasing 𝜂 will prioritize meeting the 
power reduction target. For example, if we increase 𝜂 from 10−7 to 
10−6  (referred to as Scenario 6), the power reduction we achieve 
increases from 60.5 kW to 67.8 kW, which becomes much closer to 
the preset power reduction target 𝑇 = 70 kW. In the meantime, as a 
larger power reduction is prioritized, the QoS of jobs in the data centers 
is sacrificed. With 𝜂 = 10−6, the optimal server arrangement found by 
DCAopt is 𝑁1

1 = 102, 𝑁1
2 = 48, 𝑁2

1 = 0, 𝑁2
2 = 97, where the number 

of servers used to run either of the two data centers’ jobs decreased 
compared to Scenario 1. The 𝜃𝑖  variables that quantify QoS 
degradation also decrease from 𝜃1 = 0.072, 𝜃2 = 0.076 (Scenario 1) 
to 𝜃1 = 0.045, 𝜃2 = 0.047 (Scenario 6), which represents a decrease 
in data center QoS as the cost of reaching a larger amount of power 
reduction. On the other hand, when 𝜂  is decreased to 5 × 10−8 
(referred to as Scenario 7), the achieved power reduction decreases to 

Figure 7. Comparing the social cost with or without the 
aggregator optimization in different scenarios. Applying the 
electricity prices determined by DCAopt reduces the overall 
social cost by more than 30% in most cases. 

Figure 6. Improvement on data center power reduction when 
applying DCAopt. Data centers achieve a power reduction of 
37%-46% when the aggregator applies the optimal electricity 
prices determined by DCAopt. These reductions are 6% higher 
than conducting only data-center-side optimization. 

Figure 5. Comparing data center energy costs with and without 
workload sharing. The energy costs of data centers (including 
workload sharing costs) can be reduced by 5% on average when 
applying DCAopt. 



54.4 kW. In the meantime, the 𝜃𝑖  variables increase to 𝜃1 = 0.099, 
𝜃2 = 0.093, representing an improvement on data center QoS. 

Figures 5-7 summarize the seven scenarios discussed above. Figure 5 
compares the data center energy costs with and without workload 
sharing. In the case of two data centers, the energy costs with workload 
sharing are calculated by 

𝐶𝑜𝑠𝑡𝑠ℎ𝑎𝑟𝑒 = 𝑝1𝛼1(𝑁1
1 + 𝑁1

2) + 𝑝2𝛼2(𝑁2
1 + 𝑁2

2) + 𝜅(𝑁1
2 + 𝑁2

1), 

where the term 𝜅(𝑁1
2 + 𝑁2

1) represents sharing cost. On the other hand, 
without workload sharing, the energy costs of the data centers to meet 
the same QoS become 

𝐶𝑜𝑠𝑡𝑛𝑜𝑠ℎ𝑎𝑟𝑒 = 𝑝1𝛼1(𝑁1
1 + 𝑁2

1) + 𝑝2𝛼2(𝑁1
2 + 𝑁2

2). 

Note that in this case the electricity price for the 𝑁2
1 servers is now 𝑝1 

instead of 𝑝2. By comparing the two energy costs calculated above, in 
Fig. 5, we see the energy costs of data centers can be reduced by 5% 
on average when applying workload sharing using DCAopt. 

Figure 6 quantifies the improvement on data center power reduction 
when applying DCAopt. Each bar in Fig. 6 represents the amount of 
power reduction when applying DCAopt relative to the case when 
keeping all servers active in the two data centers. In all scenarios, 
applying the aggregator optimization enables us to achieve larger 
power reduction while considering the QoS of jobs. Figure 6 shows 
that DCAopt reduces power consumption of data centers by 37-46% in 
our experiments, achieving a significant boost in power reduction 
compared to the 31-42% reduction achieved by conducting only data-
center-side optimization. On average, the power reduction can be 
boosted by 6% when applying DCAopt. 

Figure 7 quantifies the reduction on the overall social cost defined in 
Eq. (7) when applying DCAopt. In Fig. 7, the bars compare the social 
costs when applying either the initial electricity prices or the optimized 
electricity prices obtained by DCAopt. In most scenarios, applying the 
optimized prices reduces the social cost by more than 30%. There is a 
large reduction in social cost in Scenario 6, which is because the social 
cost in this scenario is much larger than the other scenarios due to the 
large 𝜂 = 10−6  (compared to 𝜂 = 10−7  in Scenarios 1-5), and this 
large 𝜂 coefficient motivates data centers to reduce more power.  

6. Conclusion and future work 

In this work, we proposed a Data-Center-Aggregator optimization 
framework, DCAopt, that provides an optimized strategy for data 
centers to participate in demand response and for aggregators to 
achieve desired power reductions. By evaluating our framework on 
multiple test cases through data center simulations using 
heterogeneous workload traces, we demonstrate that our framework 
enables the aggregator to approach its power reduction target by 
assigning the best electricity prices to the data centers. On the data 
center side, DCAopt enables the data centers to participate in demand 
response programs to minimize their electricity costs while having the 
Quality-of-Service of jobs under constraints. With DCAopt, the energy 
costs of data centers can be reduced by 5% on average, with a 
corresponding reduction of the social cost amounting to more than 30% 
in most cases. In addition, power usage reduction at the data centers is 
6% higher compared to data-center-centric power use optimization.  

In future work, a more expansive formulation involving generators, 
flexible loads (such as data centers), and inflexible loads (rigid entities 
that must use a known amount of power) can be considered. We can 
also consider a model where workload shifting over time is permitted 
to yield additional reduction benefits. Additionally, this work does not 

consider the influence of data centers’ service prices on job submission 
rates. Incorporating this interaction between data centers and their 
users requires data centers to optimize their service prices considering 
the response of job arrival rates to the prices. 
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