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ABSTRACT

In a demand response scenario, coordinating multiple data centers with an electricity load aggregator provides opportunities to minimize electricity
cost and absorb the volatility in the grid that is caused by renewable generation. To enable optimal coordination, this paper introduces a joint data
center and aggregator optimization framework that minimizes the cost of data centers while they participate in demand response programs regulated
by a load aggregator. The proposed framework, DCAopt, solves three integrated optimization problems: optimizing the quality-of-service of jobs in
each data center, coordinating workload sharing among multiple data centers, and assigning (electricity) prices that incentivize demand response.
Instead of relying on simplified relations between a data center’s overall utilization rate and the average job delay, DCAopt applies queueing theory
and job scheduling simulation techniques to model data centers with heterogeneous workloads, where different workload properties can be measured
using data from actual servers. DCAopt solves the aforementioned joint optimization problems via gradient descent. Through evaluation using fine-
grained simulations, we demonstrate that our framework finds better solutions to the data-center-aggregator optimization problems. With DCAopt, the
energy costs of data centers can be reduced by 5% on average, with a corresponding reduction of a social cost assessed by the aggregator amounting
to more than 30% in most cases. In addition, power usage reduction at the data centers is 6% higher compared to data-center-centric power use

optimization.
1. Introduction

Generation of renewable energy supply is expected to grow
substantially in the coming decades to help battle climate change.
However, the intermittency of renewable generation caused by the
volatility of weather conditions poses a serious challenge on the
matching of supply and demand in the electricity grid, mainly
necessitated by the lack of large-scale energy storage. To address this
challenge in the era of renewable energy, power consumers are
encouraged to participate in demand response programs, which
motivate the demand side (i.e., the power consumers) to regulate their
power consumption following market requirements.

Data centers are essential parts of our societal and economic fabric as
they offer computing resources to support businesses, government
operations, consumer applications, and scientific research. While data
centers provide computing capabilities as large as hundreds of peta
floating-point operations per second (petaflops), they are also
tremendous power consumers. In 2014, data centers in the United
States consumed 70 TWh, representing about 1.8% of total US
electricity consumption [1]. In 2018, the global data center energy
usage was estimated to be 205 TWh, corresponding to around 1% of
global electricity consumption [2], with that share expected to increase
as more data centers are currently under construction. Large power
consumption inevitably leads to large electricity costs, and large
companies, such as Google, spend hundreds of millions of dollars on
electricity costs every year. On the other side, data centers are capable
of regulating their power consumption in large ranges through control
“knobs” including job scheduling and dynamic voltage-frequency
scaling [3]. As a result, data centers are potentially important
candidates for participation in demand response programs.

In a demand response scenario, when handling a supply deficit or a
demand surplus event, a load aggregator can regulate electricity prices
and use them as incentives to motivate data centers to meet a total load
reduction target. In addition, coordinating the workload and power

consumption of multiple data centers together offers an opportunity to
further reduce the total electricity cost. For example, when multiple
data centers are in different locations and face different electricity
prices, they have an incentive to share workload from one location to
another. Assuming there are two data centers at two locations, when
the electricity price at the location of data center 1 is lower than that of
data center 2, data center 1 could allocate some of its servers to run
jobs submitted to data center 2, and the total electricity cost of the two
data centers can be correspondingly reduced. Essentially, the
communication infrastructure used to exchange jobs can also be used
to balance the electric grid.

Recent research has evaluated the benefits of employing data centers
to participate in demand response programs as well as coordinating
multiple data centers in a smart grid [4] [5] [6] [7] [8][9] [10] [11] [12]
[13] [14] [15] [16] [17] [18] [19] [20]. However, the relevant smart-
grid literature does not focus on the special aspects of data centers but
instead views them as loads [11] [14] [16] [18] [20], which leads to
data center models that are based on lumped parameters, such as the
total workload arrival rate, the average server utilization, etc. These
lumped parameters ignore the heterogeneity of workloads and the
complexity of the job scheduling process in data centers, which hinders
the applicability of such approaches to practical data center scenarios.
Meanwhile, other data center-related literature considering
heterogeneous workloads or a concrete job scheduling process, mostly
focuses on optimization problems from the data center side given
demand response signals from the smart grid [10] [12] [17] [19]; these
works do not consider the bidirectional interactions between the
electricity grid and data centers in a joint optimization as we do in this

paper.

To fill this gap, in this work we introduce a joint Data Center and
Aggregator optimization framework, DCAopt, that captures sufficient
details of both systems and considers their interactions. DCAopt finds
the optimal strategy for data centers to participate in demand response
and for the aggregator to achieve power reduction. On the one side,
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Figure 1. The interactions between data centers, the aggregator, and the ISO in our DCAopt framework. DCAopt simultaneously solves three
optimization problems: (1) Each data center solves a QoS optimization problem to maximize the QoS of jobs being processed in that data
center. (2) All data centers together solve a multi-data-center coordination optimization problem to minimize the total electricity cost by
applying workload sharing and optimizing server arrangement. (3) The aggregator solves a social cost minimization problem to achieve the
load reduction target from the ISO by assigning optimized electricity prices to the data centers.

DCAopt enables the aggregator to handle supply deficit events, and on
the other side, DCAopt enables data centers to minimize their costs by
coordinating workload and power consumption through workload
sharing. Our work employs a data center model implemented in a
simulation environment, accepting a heterogenous workload
composed of jobs with different properties (job arrival rate, typical
execution time, waiting time constraint) to fill multiple queues, and
capturing job events (submit / start / finish) on the timescale of seconds.
Our work also takes the quality-of-service (QoS) of data center jobs
into consideration while performing the optimization. Through
evaluation using fine-grained simulations, we demonstrate that our
framework finds better solutions to the data-center-aggregator
optimization problems. With DCAopt, the energy costs of data centers
can be reduced by 5% on average, with a corresponding reduction of a
social cost assessed by the aggregator amounting to more than 30% in
most cases. In addition, power usage reduction at the data centers is 6%
higher compared to data-center-centric power use optimization.

In summary, this work makes the following contributions:

. We propose a joint data center and aggregator optimization
framework, DCAopt, which provides an optimal strategy for
data centers to participate in demand response programs, while
also maximizing benefits for the load aggregator on the
electricity grid side.

. DCAopt applies both queueing theory and job scheduling
simulation techniques to optimize the Quality-of-Service of data
centers, which accept heterogeneous workloads composed of
jobs with different properties (job arrival rate, job execution time,
time constraint) to fill multiple queues.

. We conduct simulations with workload properties measured
from actual operational servers and compare the benefits of
DCAopt under several different scenarios. We show that
DCAopt can reduce the energy costs of data centers by 5% on
average and can also reduce the social cost by more than 30% in
most cases.

2. Related work

Resource allocation in data centers is a challenging topic due to the
heterogeneity of systems/workloads and various operational
constraints (including QoS and resource availability) that add
significant complexity to the resource allocation problem. Many
strategies to improve data center resource allocation have been
proposed recently [21] [22] [23]. One of the central goals of optimizing
data center’s resource allocation is to reduce the power consumption
and electricity bill while still being able to finish computing tasks on
time. Many software methods to improve the power efficiency of data
centers have been proposed in recent years [24], including processor
dynamic frequency-voltage scaling (DVFS) [3], thread packing [25],
uncore frequency adaptation [26], server power-saving states [27],
hardware over-provisioning [28], and on/off network links [29].

Based on those methods, especially the processor DVFS and the server
power-saving states, data centers are able to participate in demand
response and reduce their electricity consumption costs [10] [12] [17]
[19]. For example, by considering the dynamic electricity price and the
fluctuation of renewable energy supply, Lei et al. proposed an energy-
efficient job scheduling strategy to modulate a data center’s total power,
and they showed that the electricity bill of the data center can be
reduced significantly [8]. Jahanshahi et al. used a detailed data center
model considering the different power states of CPUs and proposed a
power management approach for data centers to participate in the
frequency response regulation service of the smart grid [19]. However,
these works discussed above only focus on how a data center reacts to
the requirements from the market, and they do not consider the
bidirectional interactions between the electricity grid and the data
centers.

To utilize the regional difference in the electricity prices, resource
availability, and workload characteristics of data centers, the potential
of multi-data-center coordination through workload migration has
been investigated in a number of works [5] [6] [7] [30] [10] [11] [18].
For example, Lin et al. proposed the use of a receding horizon control
algorithm to optimize the load balancing of data centers at different
locations [6]. Their works also developed algorithms for coordinating
local electricity generation with workload shifting among data centers
[51 [7]. Niu et al. applied the model of stochastic economic dispatch to
solve the spatial coordination between data centers and the power
system [18]. Some of these works also discussed the mutual interaction



between the grid and data centers [11] [14] [16]. For example, Zhou et
al. proposed an auction mechanism between smart grids and geo-
distributed data centers for maximizing social welfare [11].
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Figure 2. The model of a data center with separate queues serving different types of jobs. Servers switch between the idle state and the active
state as they start or finish a job. We apply the generalized processor sharing algorithm with weights wy (k = 1,2, ...) to control the number

of servers in each active server group.

However, although these works have considered the bidirectional
interactions between the electricity grid and the data centers, they
usually model the performance and power of data centers using lumped
parameters such as the total workload arrival rate and the average
server utilization. For example, Niu et al. assumed that the workload
assigned to a data center at a given time is parameterized by a single
scalar value [18], and their approach adjusts the data center utilization
rate [ to meet a QoS constraint in terms of average delay d = 1/(nu —
lu) < D, where n is the number of active servers, and u represents the
processing ability of servers. Zhang et al. made similar assumptions
and imposed a QoS constraint in the form t + 1/(su — L) < tp, where
t is an additional transmission delay [16].

Table 1. Comparison with related works on data center
participation in demand response.
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Although using these lumped parameters facilitates the formulation
and the solution of the corresponding optimization problems, the
models we outlined ignore the heterogeneity of workloads and the
complexity of the job scheduling process in data centers. In a data
center with heterogeneous workload traces like ours, where different

parameter, and the complexity of the scheduling process of
heterogeneous workloads also cannot be captured by a single data
center utilization value.

In contrast, our work develops a data center model with workload
heterogeneity, and we quantify job performance by both queueing-
theoretic results and precisely modeled event-based job scheduling
simulations where key parameters of our model (including server
power and workload properties) are collected from a real data center.

Table 1 summarizes the comparison between our work and other
related works. As discussed above, our work not only solves a joint
optimization problem considering all three aspects, i.e., the data-
center-side job QoS optimization, the multi-data-center workload
sharing optimization, and the aggregator-side social cost optimization,
but also models data centers with heterogeneous workloads which is
closer to the job scheduling of data centers in practice.

3. Data-Center-Aggregator optimization
framework (DCAopt)

DCAopt considers interactions among an aggregator and a set of S data
centers. The aggregator intends to utilize the data centers’ flexibility in
power consumption via the broadcasting of a price incentive p; to each
data center i. This price represents a cost per unit of power used and is
obtained via the minimization of a social cost metric, which quantifies
the cost associated with not achieving the needed power reduction or
the QoS target. This social cost metric has been used in the literature
(such as Ref. [4]) to assess how well a desired load reduction could be
achieved in a demand response scenario involving an aggregator and a
set of active data centers. To minimize social cost, the aggregator needs
to incentivize the data centers to reduce their power consumption by
an amount T, which is decided upon a priori by an Independent System
Operator (ISO). With this price incentive broadcast, the data centers
collectively solve a global optimization problem to determine the
number of active servers in each data center, as well as the arrangement
of workload sharing. In addition, each data center also solves a local
optimization problem to determine the optimal scheduling choice with
constraints on QoS degradation. Figure 1 displays the interactions
between the aggregator and a set of data centers (DCs). In the
following, we first introduce our data center model, and then, we
discuss three integrated optimization problems.

3.1 The data center model in DCAopt

In this work, we consider data centers that run workloads composed of
several different types of jobs, labelled from job type 1 to job type K.
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Figure 3. Workload sharing enables servers from one data center to run jobs that are submitted to another data center. With workload sharing,
electricity costs and job QoS degradation can be reduced. DC is the abbreviation for data center.

Different job types have different characteristics such as job size,
execution time, and arrival rate. Here, “job size” refers to the number
of nodes required to run the job in parallel, and “arrival rate” refers to
how many jobs of this type are submitted to the data center per unit
time. We assume a data center uses separate queues to serve each type
of job; so, for K job types, there are K different queues in each data
center. The number of job types, K, can be different from one data
center to another.

To serve these different types of jobs in a data center, we partition all
servers into K + 1 groups, including one idle group and K active
groups. Each active group of servers processes all the jobs in one of
the queues. In each active group, jobs are processed following the
First-Come-First-Serve (FCFS) policy. The partition between active
and idle groups is done conceptually instead of physically, and servers
switch between the idle group or active groups from time to time
depending on whether there are jobs to be processed. When there are
no jobs, all servers are in the idle group; when there are jobs of a certain
type to be processed, some idle servers switch into a corresponding
active group. This model can reflect workload dynamics in many real-
world data centers where multiple types of jobs exist and many
instances of the same job type are frequently submitted by users. Figure
2 shows the model of a data center following the description above.

In order to balance the delay in all the queues in a controlled way, we
apply the Generalized Processor Sharing (GPS) algorithm [31] to
control how many servers are assigned to each active server group. The
GPS algorithm was originally proposed to provide balanced
performance in network scheduling. It provides a solution to situations
where incoming requests from several separate queues are processed
by a fixed amount of resource. The GPS algorithm assigns a non-
negative weight wy, (k = 1,2,...) to each queue, and the weights
determine the portion of resource allocated to each queue. These
weights are fixed at the beginning, and they satisfy >}, wy,, = 1. When
all the queues have waiting requests, wy, is exactly the portion of
resource allocated to each queue. When some of the queues are empty
(i.e., when they have no waiting jobs), their weight portions are
redistributed to other non-empty queues following the assigned
weights. In our data center scheduling problem, the GPS algorithm
controls the number of servers in each active server group according
to the weights.

3.2 Data center Quality-of-Service (QoS)
optimization

In a data center, a key metric in quantifying the performance of a job
is its queueing time in the system, Ty eye, defined as the duration from
the job’s submission to its execution starting time. As each type of job
has its own typical execution time, Tgy.., a typical approach to

quantify the performance of a job is to compare a job’s queueing time
with its execution time [32]. To that end, we define the QoS
degradation of ajob as Q = Tgyeye/Texec- Since each queue in the data
center contains many jobs of the same type, we are concerned with
whether the majority of jobs of a type have their QoS degradation
bounded. In other words, for each job type k, we want to ensure the
ratio of jobs whose QoS degradation exceeds QF,, ¢ to be less than §¥.
Here, Q. is a QoS degradation threshold for job type k, and ¥ is a
ratio. In the following, we set % = 10%, which means that we require
90% of each type of jobs” QoS degradation to be bounded by QF, ..

To achieve the QoS constraints discussed above, we need to minimize
the probability of QoS-degraded jobs, Prob[Q* > QF,,..] — 6%, for
each job type k. Thus, the data center QoS optimization minimizes the
probability of QoS-degraded jobs for all queues as follows:

min C(w;) = ¥ SoftPlus (p(Prob[Q* > Qyes] — 6%)). (1)

where SoftPlus(x) represents the softplus function defined as In (1 +
e”*), which is a smooth approximation of the ramp function max (0, x).
With an appropriate selection of the scale parameter p, this softplus
function is close to 0 only when the jobs of type k meet their QoS
constraints. We solve this optimization problem using projected
gradient descent considering the constraints on the weights, >\ wy, =
1 and wy, > 0. By estimating the probability Prob[Q¥ > Qf,cs], we
can obtain an optimal selection of the weights.

To understand how Prob[Q¥* > QF,,..;| depends on various parameters
including weights, number of servers, and job arriving rates, we apply
a queueing-theoretic result proven by Paschalidis et al. [33] [34], which
states that the probability of large delays in a queueing system
following the GPS algorithm should decrease exponentially as the
delay QK. increases:

Prob[Q¥ = Qfye] = e Wwes®i,  (k =12, ...,K),

and most importantly, the coefficients 8; can be theoretically
calculated from the distributions of job arrival times and job processing
times by:

0y, sup

020,Agpsk(0)<0

Agpsi(8) = Ay, (8) + Ap(—=0wy). (4)

_AB(_awk)r (3)

Here, the functions Ay, (6) and Ag(6) are the logarithm of the
moment-generating functions for random variables A, (t) and B(t),
where Ay (t) is defined as the amount of workload (i.e., number of jobs



Table 2. Definition of notations used in this work.

Type Label | Description
a; Power usage per server in data center i
Bi Coefficient in QoS cost defined in Eq. (5)
Yi Exponential in QoS cost defined in Eq. (5)
K Service sharing cost per server in Eq. (5)
n Coefficient in penalty function in Eq. (8)
S Number of data centers
NY Total number of servers in data center i
Dlggl(t)f t T Load reduction target
1 Job arrival rate of workload type k in data
Lk center §
Ty Execution time of workload type k
my Job size (# of servers) of workload type k
QK .. | QoS degradation threshold of job type k
& Bound of QoS violation ratio in Eq. (2)
p Coefficient in QoS cost in Eq. (1)
Di Electricity price for data center i
DCAopt NI The number of active servers in data center
outputs i i that are used by jobs in data center j
G Social cost defined in Eq. (7)
The optimal weight for job type k in data
Wi, | center i when using the GPS algorithm
Inter- (Index i is omitted in Section 3.2)
mediate Tk Fitted parameter for job type k in Eq. (2)
variables Q¥ QoS degradation of job type k
0. The exponential to quantify job QoS
L degradation in data center i in Eq. (5)
a Gradient descent step size in Algorithm 1
. b Gradient descent step size in Algorithm 2
Algorithm A Electricity price perturbation
hyper- Y price per - -
parameters tmax | Max # of iterations in Algorithm 1 line 6
Unax | Max # of iterations in Algorithm 2 line 1
Vmax | Max # of iterations in Algorithm 1 line 7

X job execution time X job size) arriving in the k" queue per unit
time at t, and B(t) is defined as the total processing capability of the
system at time t, i.e., the number of active servers for processing the
jobs. The time variable t is discrete.

When applied to our data center model, B(t) has a fixed value that is
proportional to the number of active servers in the data center. The
specific form of Ay, (6) depends on the distribution of job arrivals,
which can be empirically estimated from historical workload traces. In
the following, we assume the job arrival times in the k** queue (k €
{1,2,...}) follow a Poisson distribution with parameter A;, and our
experiments reported later are based on this assumption. Although we
make the Poisson distribution assumption for evaluation purposes, our
optimization framework can be applied to other job arrival
distributions.

Following the Poisson distribution assumption and applying Eq. (3)
and Eq. (4) to our data center model, for each job type k, we obtain
0r = NOywy, where N is the number of servers used by a data center,
and Oy, is a variable satisfying the equation A, e®™Tk = NO, w; +
Ay. For each job type k, Ty, is its typical execution time, and my, is the
job size. While 8, can be estimated from queueing theory as shown
above, it is hard to theoretically estimate the 1, parameter in Eq. (2),
so we run data center simulations using our job scheduling simulator
to empirically obtain its value.

This queueing-theoretic derivation of Prob[Q¥ > Q] in Eq. (2)
assumes that jobs are processed following the FCFS policy. In our data
center model, each active server group processes jobs following the
FCFS policy, so the derivation above can be adopted. If different

scheduling policies are used, adjustments to the queueing-theoretic
derivation may need to be considered.

3.3 Multi-data-center coordination in DCAopt

While each data center solves its own QoS optimization problem, all
data centers also collectively solve a cost minimization problem shown
in Egs. (5) and (6) as follows:

N N

S S
min Z pia; Z N/ + Kz N/ + Z BieYifiN) ()
N = j=1

=1 jelLosIi =1
S
st 0< Z N/ < NU Vi, (6)
Jj=1

In Eq. (5), the cost function represents the sum of electricity costs, the
workload-sharing costs, and job QoS-constraint violation costs from
all data centers considered. The responses, Nl.],Vi,j e{1,..,5},
represent the number of active servers in data center i that are used by
jobs in data center j. When the superscript matches the subscript, this
N} represents servers in data center i that are not shared. Because the
power usage of servers in each data center, ;, can differ from each
other, sharing workloads from one data center to another could be
beneficial to the overall cost in Eq. (5). Workload sharing is also
illustrated in Figure 3 where two data centers are included. Here,
servers from one data center can be shared to run jobs that are
submitted to another data center. For example, all jobs submitted to
data center 1 run on Ni + NJ servers. Meanwhile, the electricity cost
for data center 1 is charged on its N{ + N2 servers.

In the objective function of Eq. (5), the first term represents the
electricity costs of the servers in all data centers. In this term, p; is the
electricity price for data center i, so this term favors a smaller number
of active servers.

The second term represents workload-sharing cost, with coefficient x
quantifying the per-server sharing cost, which includes extra efforts
needed in cross-platform workload management, as well as extra
resource usage due to workload transfer. Note that this assumption
neglects the difference in the amount of data being transferred, so it
can be viewed as a first-order approximation to the actual cost.
Especially, for the compute-intensive workloads which include most
physics simulation workloads such as molecular dynamics and fluid
dynamics, this assumption should work well as these workloads rely
on solving equations numerically and are usually not data-intensive.
Similar assumptions are also made by previous works such as Ref. [11].

The final term represents the cost for job QoS-constraint violation in
each data center. Here, we assume this cost takes an exponential form
following the large delay probability in Eq. (2). Variable 8;(N;) is
dependent on N;, and the latter is defined as the total number of servers
that can be used by data center i’s jobs, hence N; = Z?:l N]l Variable
0;(N;) is estimated following the same method in Eq. (3), and f8; and
y; are two coefficients. The constraints in Eq. (6) ensure that the total
number of active servers in data center i is bounded by its server
capacity, NY.

Solving the optimization problem in Eq. (5) returns the optimal
arrangement of active servers that minimizes the cost. In our numerical
evaluation, we apply projected gradient descent to find the optimal
solution, where 6; is dependent on N; and is computed as the average
of 65 over all job types k in data center i. Given N;, we can calculate
0; by solving the QoS optimization problem in Eq. (1).



3.4 Aggregator optimization

While data centers pursue the target of reducing their cost and QoS
degradation, the aggregator aims at achieving a load decrease amount
T to handle a supply deficit or demand surplus event. To incentivize
data centers to meet the load decrease target, the aggregator selects the
optimal electricity prices that incentivize demand response, obtained
via the minimization of a social cost metric G (p) shown in Eq. (7), and
the price p; is broadcasted to data center i:

S S

min,so G(p) =q| T - Z a| N — Z N (p)
: &

i=1
S

+ Z e VBWi®)), %
i=1

where

2
w=2- ®

The first term in G (p) is a penalty for not achieving the desired target
load reduction T, where q(x) is defined to be a convex penalty
function. For our experiments, we assume q is a quadratic function
defined in Eq. (8). The second term in G (p) represents a social welfare
cost quantified by the QoS violations in the data centers. The
dependence of Nij (p) and N;(p) = Zf=1 Nji (p) on the price vector p
is emphasized in Eq. (7), and the variables Nij (p) are calculated by
solving the multi-data-center coordination problem in Eq. (5).

Algorithm 1: Data-Center-Aggregator Optimization

Input: t,,0x, Vmaxs A, @, and the parameters in Egs. (1)-(8)
Output: optimized broadcast prices p, optimized server
arrangement NL.] vi,j

1 Forifroml1toSdo

2 Perform event-based job scheduling simulation of data
center { with the current values of variables

3 Use QoS-degradation probability Prob[Q* > QK]
from simulation to fit 1, and calculate 6, in Eq. (2)

4 Apply Algorithm 2 to solve the QoS optimization
problem in Eq. (1) for data center i and obtain wy;

5 endfor

6 Fort from 1 to t,,4, do

7 Apply vp,qy iterations of PGD to solve the multi-data-
center coordination problem in Eq. (5)

8 Calculate G (p) in Eq. (7) using optimized Nl.j from line 7

9 For each price component i from 1 to S do

10 Perturb price component by p’ < p + A and apply

PGD to solve Eq. (5) again using p’
11 endfor
12

Calculate G(p") and approximate VG (p) = g—i via finite

difference between G (p") and G(p)

13 Conduct one iteration of PGD for the aggregator
optimization in Eq. (7) by p « [p —a-VG(p)]*

14  endfor

15 Return the optimized broadcast prices p, and the optimized

server arrangement N/

In Eq. (7), we assume that data centers truthfully interact with the
aggregator and provide accurate server response values obtained from
Eq. (5). The objective of Eq. (7) contains a social welfare term that is
the aggregate QoS cost of all data centers. Thus, the prices that the

aggregator solves for are obtained with the data center costs in mind;
if the data centers seek to manipulate their responses to attempt to gain
larger price incentives, this would be difficult to achieve as the data
centers are not aware of the aggregator penalty term in Eq. (7) that will
directly be affected by the altered data center responses. This will result
in the aggregator not being able to actually achieve its target reduction
and the data centers receiving suboptimal incentives. With this in mind,
there is incentive for data centers to provide accurate information. As
future work, regulatory and/or compliance constraints can directly be
imposed to ensure veracity of data centers responses. A game-theoretic
framework, that by design can encourage truthful data center
interactions [20], can also be explored to model the data center-
aggregator dynamic.

For readers’ convenience, we list the variables we use in Table 2.

3.5 Algorithms in DCAopt for solving the
optimization problems

We use Projected Gradient Descent (PGD) as our solution method in
the following algorithms for solving the optimization problems. We
choose PGD as it is a commonly used and easily implementable
approach to solving constrained optimization problems. PGD is an
extension of the conventional Gradient Descent approach to solving
unconstrained optimization problems; with this approach, there is an
additional projection step that must be done to place the obtained
estimate in the feasible set of solutions characterized by the constraints
of the optimization problem. For PGD to converge, the objective of the
optimization problem at hand must be convex, the constraint set of the
optimization problem must be convex, and an appropriate step size
must be used for the gradient updates [35]. With these conditions,
convergence can be attained, and no numerical instability will arise.
The PGD conditions are met in our optimization tasks.

Algorithm 1 shows how the aggregator and the set of S data centers
interact with each other via an iterative process, where the goal of the
interaction is to obtain the optimized broadcast prices p (i.e., p; for i

from 1 to S) and the data center server arrangement Ni] , foralli,j.

The algorithm starts with some initialized p and Nij values, chosen
within the feasible region. In lines 1-3, we simulate the workload
processing of each data center to obtain the QoS-degradation
probability Prob [Q* > QK,,.s] , and by comparing it with the
theoretical value derived from Eq. (2), we fit the parameter r;, for each
data center. Then, in line 4, we solve the data center QoS optimization
problem in Eq. (1) using PGD for each one of the data centers, which
is detailed in Algorithm 2. In lines 7-8, we solve the multi-data-center
coordination problem in Eq. (5) to get Nij (p). Because minimizing Eq.
(5) follows a similar PGD optimization process as Algorithm 2, we
omit the detailed pseudocode. Next, in lines 9-13, we perturb the prices
by a small amount A to get p’ « p + A and solve Eq. (5) again for
each price component. By comparing the social cost in Eq. (7)
calculated before and after the price perturbation, i.e., G(p) and G(p"),

we can estimate the gradient z—; using a finite difference approximation,
which is then used in performing the PGD to solve the aggregator
optimization problem in Eq. (7). At each iteration of PGD, we update
pricesby p « [p —a - VG(p)]t. When the PGD stabilizes, the prices
p we obtain are the optimized broadcasted prices, and the

corresponding Nij correspond to the optimized server arrangement.

In Algorithm 1, we use parameter t,,,, to denote the maximal number
of iterations in performing PGD for the aggregator optimization and
use a to denote the step size in PGD. In line 13, [p — a- VG(p)]*



means projecting (p — a - VG(p)) onto the feasible region where the
values in every dimension are non-negative.

Algorithm 2 details the data center QoS optimization part in line 4 of
Algorithm 1. PGD is applied here to minimize C(wy ;) in Eq. (1)
through a step-by-step adjustment of weight parameters wy ;. In
Algorithm 2, b is the step size of gradient descent. Inside the cost
function C(wy,;), the scale parameter p controls the smoothness of the
SoftPlus function. If p is too small, the QoS degradation probability
Prob[Q* > QF,,..] in Eq. (1) is more likely to surpass the constraint

e .o.ac .
&%. On the other hand, if p is too large, the derivative Swo, Is steeper,
ki

and it will take more time for the gradient descent optimization to reach
the optimum. For our experiments, we considered different values and
empirically determined p = 100 to be a good choice in terms of
achieving both the validity of constraints and the feasibility of
optimization.

Algorithm 2: Data Center QoS Optimization

Input: 1y, b, U4y, and other parameters in Egs. (1)-(8)
Output: optimal weights wy,; for job type k in data center i
1 For u from 1 to U4, do
2 Calculate the cost function C(wy ;) in Eq. (1) using Eqs.
(2)-(4) and the current values of variables

3 Calculate derivatives VC (wy ;) = o

4 Apply gradient descent to update the weight parameters
Wii by Wi < Wi — b - VC ()

5 Project the updated weights onto the Y, wy,; = 1 plane
within the region wy; = 0

6 endfor

7 Return the optimal weight parameters wy ;

Computational complexity: Based on the algorithms discussed above,
we analyze the computational complexity of our DCAopt framework.
Executing lines 2-3 of Algorithm 1 runs data center job scheduling
simulations, which takes Tg;n, = 10s when simulating the job
scheduling of the one-hour period of a data center with hundreds of
nodes. Thus, the complexity of lines 2-3 is S - Tgypy - Line 4 of
Algorithm 1 corresponds to Algorithm 2. The fact that we have an
analytical form of C(wy,;) based on queueing theory allows us to
calculate C(wy;) and its derivatives in constant time. Thus, the
complexity of Algorithm 2 for each data center is proportional to the
number of PGD iterations, which is O (U4, ). The cost function in Eq.
(5) is also analytical, so the complexity of lines 7-8 in Algorithm 1 is
also proportional to the number of PGD iterations at this step, which is
O (Vpax)- Next, in lines 9-11 of Algorithm 1, O(S * vy,4,) time is spent
on doing the multi-data-center optimization for each component of the
perturbed price p'. Finally, lines 6-14 is executed for t,,,, times for
applying PGD on the aggregator optimization.

Therefore, from the above analysis, we see that the time complexity of
Algorithm 1 is O(S *(Tsimu + Umax + Vmax tmax)), which scales
linearly with the number of data centers S. For our experiments to be
discussed in the following section, the PGD optimization always
converges in 30 iterations, so we can set Upmgy = Vmax = tmax = 30,
and the entire execution of DCAopt for our setting takes less than a
few minutes. Since the aggregator optimization depends on the power
reduction target value, Algorithm 1 should be executed every time
when the aggregator broadcasts a new power reduction target to data
centers, which could be either per-hour, per-day, or per-week, based
on the specific contract between the aggregator and the data centers.
Therefore, as the algorithm is only executed once at the times the

power reduction target gets updated, the temporal cost of applying our
algorithm is acceptable.

4. Experimental methodology

To evaluate the performance of our DCAopt framework, we create
some test cases where one aggregator interacts with two data centers.
We implement Algorithms 1 and 2 in MATLAB to solve all
optimization problems, and we build an event-based data center
simulator to conduct simulation of the job scheduling and execution
taking place in the data centers. The data center job scheduling
simulation gives the job QoS degradation values for us to fit the 7y
variables in Eq. (2), which are used in Algorithm 2 to conduct the data
center QoS optimization. The latter results are further used in
Algorithm 1 to conduct the multi-data-center coordination and the
aggregator optimization. Note that the ability of our framework to
optimize data center QoS is achieved by applying the approach in
Section 3.2, which does not rely on the implementation details of the
job scheduling simulator. In fact, this scheduling simulator can be
replaced by any simulator that can take a heterogeneous workload trace
and simulate multiple queues.

Scheduling simulator: We build our event-based data center job
scheduling simulator in Python. This simulator works as follows: given
a workload trace together with the job properties (job size and job
execution time), when the simulated time goes second-by-second, the
simulator records or changes the activity state (active/idle) of servers
based on the starting/ending event of a job. The simulator maintains a
queue for each type of submitted jobs waiting to be executed. Every
second, the simulator updates the number of servers running each type
of jobs and checks the number of waiting jobs in each queue. A starting
event of a job happens when the job is able to run following the GPS
scheduling algorithm (Section 3.1). In other words, when there are
waiting jobs in a queue and the ratio of active servers running this type
of jobs is below the corresponding weight wy,, the simulator allows a
job of this type to start execution as long as there are enough idle
servers. When a job’s preset execution time is reached, the simulator
records the ending event of the job. Finally, after a simulation run of a
workload trace finishes, we calculate the total electricity cost of this
run and calculate the average QoS degradation of jobs based on their
recorded starting and ending times.

Table 3. Properties of all types of jobs used in our experiments.

Job Jobtype  Execution Job Job Job
type name time (Ty)  size arrival arrival
(k) (my) rate in rate in
DC1 DC2
(A1,1) (A21)
1 MG.D.16 84s 1 0 0.238
2 SP.C.16 54s 1 0 0.371
3 [S.D.32 42s 3 0.079 0.159
4 BT.D.49 551s 2 0.009 0
5 EP.D.64 54 s 3 0 0.123
6 CG.C4 28's 1 0 0.719
7 MG.D.8 141s 1 0.071 0
8 IS.D.4 1225 1 0.082 0
9 LU.C.28 29s 1 0 0.690
10  EP.D.100 36s 4 0.069 0
11 1S.D.64 27 s 4 0.092 0.183
12 LU.D.112 164 s 4 0.015 0
13 MG.D.32 49s 2 0.102 0.204

Data center properties: Our simulation adopts data center properties
and workload properties (including job size, job execution time, server



Table 4. Understanding the impact of input parameters by comparing seven different scenarios.

Inputs Outputs
Scena , ) , ) , Pl Py Powe.:r Social cost Social cost
tios Kk ($/h) By ($/h) 71 ($/W?h) Ny N N; N; ($KWh)  (S/kWh) reduction l.aef.ore. .af.ter .
(kW) optimization optimization
1 0.030 5 107 115 35 0 119 0.062 0.198 60.5 25.1 9.3
2 0.032 (1) 5 107 121 12 0 144 0.096 0.181 57.6 25.9 12.1
3 0.000 () 5 107 9% 54 2 107 0.061 0.158 63.8 8.3 7.2
4 0.030 7 107 110 40 0 122 0.062 0.212 59.5 32.7 10.8
5 0.030 2.5() 107 130 20 0 114 0.060 0.166 62.1 11.7 7.0
6 0.030 5 10 (1) 102 48 0 97 0.095 0.238 67.8 222.9 8.7
7 0.030 5 5%10%()) | 128 22 0 137 0.060 0.169 544 14.1 9.9
power usage, etc.) that are measured by us at an actual operational data 5. Results

center, the Massachusetts Green High Performance Computing Center
(MGHPCC), which is a large data center providing high-performance
computing resources for multiple universities in Massachusetts
(Boston University, Harvard, MIT, Northeastern, and Univ. of
Massachusetts). Each server that we experiment with in MGHPCC
contains two Intel Xeon Gold 6132 CPUs, and each CPU has 14 cores.
Each CPU’s thermal design power is 140 W. In our test cases, we
assume there are two data centers each having NV = 150 and NJ =
300 servers. We assume the active power consumptions per server are
as follows: a; = 322 Watts for data center 1 and a, = 334 Watts for
data center 2, which are averaged values measured from servers in
MGHPCC using the IPMI tool [36] when running two different sets of
workloads discussed below.

Experiment parameters: We assume the ISO sets the load reduction
target as T = 70 kW, which is an achievable amount if half of the
servers in both data centers are turned off. We assume the following
default price parameters are used in our experiments: k = 0.03 $/h,
B1 =B, =5 $/h, and scenarios with altered price parameters are
explored in Section 5.2. The default coefficients in the cost functions
in Egs. (5) and (7) are setas y; =¥, = 10 and = 1077, and altering
the 1 parameter is explored in Scenario 6. At the beginning of
executing Algorithm 1, we initialize the electricity prices for the two
data centers as p; = 0.060 $/kWh and p, = 0.150 $/kWh. The price
perturbation is set as A = 0.02 $/kWh for each price component.

Workload properties: Our data center scheduling simulation runs 13
different types of jobs, and all the jobs are selected from the benchmark
applications in the NAS Parallel Benchmark Suite [37]. The properties
of the jobs and their arrival rates used in our experiments are listed in
Table 3. In the Job Type Name column, MG, SP, IS, etc., refers to
benchmark applications in the NAS Parallel Benchmark. The suffix in
the name refers to the input and the number of threads used in running
the job. For example, “MG.D.16” represents the MG benchmark
application with input D and running with 16 threads. The execution
times listed in the table are real values measured when we run the jobs
on a certain number of nodes (i.e., job size my) at the MGHPCC. The
job arrival rates in Table 3, A; ; and A, ; (number of jobs arriving per
second), are determined by assuming the data centers’ server
utilization rates are approximately 50%. In the table, some job types
have a zero arrival rate, which means that these job types appear in
only one of the two data centers.

Given these workload properties, a workload trace is generated for
each data center assuming the jobs’ arrival times follow a Poisson
distribution, where the job arrival rates for each type of jobs in Table
3 are determined by assuming the data centers’ server utilization rates
are approximately 50%.

In this section, we present our evaluation results for DCAopt. We
first provide detailed analysis on a default test case in Section 5.1.
Then, we compare the default case with six other scenarios with
altered parameters in Section 5.2.

5.1 Best price setting and server arrangement in the
test case

Applying our DCAopt framework on the test case (referred to as
Scenario 1) with parameters discussed in the previous section, we
obtain the best electricity price setting as p; = 0.062 $/kWh, p, =
0.198 $/kWh. The corresponding best server arrangement is Ni =
115,N? = 35,N} = 0, N2 = 119, which means keeping all the 150
servers in data center 1 active, among which 115 servers are employed
to run data center 1’s jobs, and 35 servers are shared for data center 2
to run that data center’s jobs. Meanwhile, only 119 servers of data
center 2 are kept active to run jobs, and no server from data center 2 is
used to run data center 1’s job, which also reflects the electricity price
difference between the two data centers. Since the electricity price for
data center 1 is much lower than that for data center 2, prioritizing the
use of data center 1’s servers reduces the electricity cost.

On the aggregator side, the best electricity prices determined by
DCAopt reduces the social cost in Eq. (7). If applying the initialized
prices, p; = 0.060 $/kWh and p, = 0.150 $/kWh, the power
reduction we can achieve is only 49 kW, and the corresponding social
cost is 25.1. Instead, applying the best prices enables us to achieve a
power reduction of 60.5 kW, corresponding to a 23% increase in power
reduction, and the social cost using the best prices decreases to 9.3.
Figure 4 shows how the social cost value and the best server

. N N mmm N} mmm N @M Social Cost
254 T 150
~ — o
~ Y S f1250
o N e — £
w \ (2]
c20] 100 @
13 N 5
8 \'\,__ 75 <
bt “ =
© R ]
215 ~_ 50 ¢
& N 5
) ~— 0

S 25
10 B ]
0
0 5 10 15 20 25

Gradient Descent Iterations in Scenario 1

Figure 4. Social cost decreases and server arrangements (Nij )
approach their best values as we apply our algorithms and
optimize the cost function in Eq. (7) through iterations of
gradient descent.



arrangement change through iterations of gradient descent when we
optimize the cost function in Eq. (7). From Fig. 4, we see our
algorithms quickly converge in tens of iterations.

5.2 Comparing the best settings in different scenarios

To understand how the best setting found by DCAopt changes with the
input parameters, in the following, we compare the default case with
other scenarios where each scenario alters some input parameters.
Table 4 summarizes the input parameters we use in these scenarios as
well as the results returned by DCAopt, which are discussed in the
following.

Parameter k: Since k controls the per-server sharing cost in Eq. (5),
we expect that a larger k curbs workload sharing. In fact, if we increase
K from 0.03 $/h to 0.032 $/h (referred to as Scenario 2) and apply our
DCAopt framework, the number of shared servers, N2, decreases from
35 to 12. Further increasing x to 0.033 $/h makes the optimal number
of shared servers to be zero, which demonstrates that a workload
sharing cost that is too high could curb any attempts in workload
sharing between data centers. On the other hand, reducing workload
sharing cost promotes the sharing. For example, when we decrease x
to 0.025 $/h, the optimal number of shared servers is N2 = 38. Further
decreasing k to zero (referred to as Scenario 3) also motivates data
center 2 to share servers to run data center 1’s jobs, and in that case,
the optimal server arrangement found by DCAopt is Ni = 96, NZ =
54,N} = 2,NZ = 107.

B With workload sharing
16 3 Without workload sharing

6°o’_

Data Center Energy Costs

Scenarios

Figure 5. Comparing data center energy costs with and without
workload sharing. The energy costs of data centers (including
workload sharing costs) can be reduced by 5% on average when
applying DCAopt.

Parameter f;: Since 8, and B, reflect the cost regarding the QoS
degradation of jobs in data center 1 and data center 2, a larger penalty
on QoS degradation motivates data centers to allocate more servers to
run the submitted jobs. For example, if we increase 3, from 5 $/h to 7
$/h (referred to as Scenario 4) in our test case while having all other
parameters remaining the same (including k = 0.03 $/h), then the
optimal server arrangement found by DCAopt is N{ = 110,N2 =
40,N} = 0, N} = 122. As expected, the number of servers employed
to run data center 2’s jobs increases to N2 + NZ = 162 to match the
increased penalty on data center 2’s job’s QoS degradation. On the
other hand, if we decrease 3, to 2.5 $/h (referred to as Scenario 5), the
optimal server arrangement is Ni = 130,NZ = 20,N} = 0,N? =
114, and the number of servers employed to run data center 2’s jobs
decreases to NZ + N? =134 . As a result, the #, variable that
quantifies the QoS degradation of data center 2’s jobs decreases from
6, = 0.076 in Scenario 1 to 6, = 0.015 in this case (smaller values
represent larger QoS degradation). Meanwhile, data center 1’s jobs’

QoS improves as 6; increases from 0.072 in Scenario 1 to 0.104
because less servers from data center 1 need to be shared. Further
decreasing S, could lead to a point where QoS is ignored and the
number of active servers is kept so low that the job waiting time in the
queues diverges, which is the case when 5, < 2 $/h.

Parameter n: In the social cost G defined in Eq. (7), n reflects how
we balance the two objectives, meeting the power reduction target, or
meeting the QoS requirement. Increasing n will prioritize meeting the
power reduction target. For example, if we increase 1 from 1077 to
1076 (referred to as Scenario 6), the power reduction we achieve
increases from 60.5 kW to 67.8 kW, which becomes much closer to
the preset power reduction target T = 70 kW. In the meantime, as a
larger power reduction is prioritized, the QoS of jobs in the data centers
is sacrificed. With n = 107, the optimal server arrangement found by
DCAopt is N{ = 102, N2 = 48,N; = 0, NZ? = 97, where the number
of servers used to run either of the two data centers’ jobs decreased
compared to Scenario 1. The 6; variables that quantify QoS
degradation also decrease from 8; = 0.072, 8, = 0.076 (Scenario 1)
to 6; = 0.045, 8, = 0.047 (Scenario 6), which represents a decrease
in data center QoS as the cost of reaching a larger amount of power
reduction. On the other hand, when 71 is decreased to 5 x 1078
(referred to as Scenario 7), the achieved power reduction decreases to
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Figure 6. Improvement on data center power reduction when
applying DCAopt. Data centers achieve a power reduction of
37%-46% when the aggregator applies the optimal electricity
prices determined by DCAopt. These reductions are 6% higher
than conducting only data-center-side optimization.
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Figure 7. Comparing the social cost with or without the
aggregator optimization in different scenarios. Applying the
electricity prices determined by DCAopt reduces the overall
social cost by more than 30% in most cases.



54.4 kW. In the meantime, the 6; variables increase to 6; = 0.099,
6, = 0.093, representing an improvement on data center QoS.

Figures 5-7 summarize the seven scenarios discussed above. Figure 5
compares the data center energy costs with and without workload
sharing. In the case of two data centers, the energy costs with workload
sharing are calculated by

Costspare = P1a1(N11 + le) + Pzaz(Nzl + NZZ) + K(le + Nzl)'

where the term k(N7 + N2) represents sharing cost. On the other hand,
without workload sharing, the energy costs of the data centers to meet
the same QoS become

Costyoshare = P1a1(N11 + N%) + Pzaz(N12 + sz)

Note that in this case the electricity price for the NI servers is now p;
instead of p,. By comparing the two energy costs calculated above, in
Fig. 5, we see the energy costs of data centers can be reduced by 5%
on average when applying workload sharing using DCAopt.

Figure 6 quantifies the improvement on data center power reduction
when applying DCAopt. Each bar in Fig. 6 represents the amount of
power reduction when applying DCAopt relative to the case when
keeping all servers active in the two data centers. In all scenarios,
applying the aggregator optimization enables us to achieve larger
power reduction while considering the QoS of jobs. Figure 6 shows
that DCAopt reduces power consumption of data centers by 37-46% in
our experiments, achieving a significant boost in power reduction
compared to the 31-42% reduction achieved by conducting only data-
center-side optimization. On average, the power reduction can be
boosted by 6% when applying DCAopt.

Figure 7 quantifies the reduction on the overall social cost defined in
Eq. (7) when applying DCAopt. In Fig. 7, the bars compare the social
costs when applying either the initial electricity prices or the optimized
electricity prices obtained by DCAopt. In most scenarios, applying the
optimized prices reduces the social cost by more than 30%. There is a
large reduction in social cost in Scenario 6, which is because the social
cost in this scenario is much larger than the other scenarios due to the
large n = 107° (compared to n = 1077 in Scenarios 1-5), and this
large n coefficient motivates data centers to reduce more power.

6. Conclusion and future work

In this work, we proposed a Data-Center-Aggregator optimization
framework, DCAopt, that provides an optimized strategy for data
centers to participate in demand response and for aggregators to
achieve desired power reductions. By evaluating our framework on
multiple test cases through data center simulations using
heterogeneous workload traces, we demonstrate that our framework
enables the aggregator to approach its power reduction target by
assigning the best electricity prices to the data centers. On the data
center side, DCAopt enables the data centers to participate in demand
response programs to minimize their electricity costs while having the
Quality-of-Service of jobs under constraints. With DCAopt, the energy
costs of data centers can be reduced by 5% on average, with a
corresponding reduction of the social cost amounting to more than 30%
in most cases. In addition, power usage reduction at the data centers is
6% higher compared to data-center-centric power use optimization.

In future work, a more expansive formulation involving generators,
flexible loads (such as data centers), and inflexible loads (rigid entities
that must use a known amount of power) can be considered. We can
also consider a model where workload shifting over time is permitted
to yield additional reduction benefits. Additionally, this work does not

consider the influence of data centers’ service prices on job submission
rates. Incorporating this interaction between data centers and their
users requires data centers to optimize their service prices considering
the response of job arrival rates to the prices.
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