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ABSTRACT
The application of compressed sensing (CS)-enabled data reconstruction for accelerating magnetic resonance imaging (MRI) remains a chal-
lenging problem. This is due to the fact that the information lost in k-space from the acceleration mask makes it difficult to reconstruct an
image similar to the quality of a fully sampled image. Multiple deep learning-based structures have been proposed for MRI reconstruction
using CS, in both the k-space and image domains, and using unrolled optimization methods. However, the drawback of these structures is
that they are not fully utilizing the information from both domains (k-space and image). Herein, we propose a deep learning-based atten-
tion hybrid variational network that performs learning in both the k-space and image domains. We evaluate our method on a well-known
open-source MRI dataset (652 brain cases and 1172 knee cases) and a clinical MRI dataset of 243 patients diagnosed with strokes from our
institution to demonstrate the performance of our network. Our model achieves an overall peak signal-to-noise ratio/structural similarity of
40.92 ± 0.29/0.9577 ± 0.0025 (fourfold) and 37.03 ± 0.25/0.9365 ± 0.0029 (eightfold) for the brain dataset, 31.09 ± 0.25/0.6901 ± 0.0094 (four-
fold) and 29.49 ± 0.22/0.6197 ± 0.0106 (eightfold) for the knee dataset, and 36.32 ± 0.16/0.9199 ± 0.0029 (20-fold) and 33.70 ± 0.15/0.8882
± 0.0035 (30-fold) for the stroke dataset. In addition to quantitative evaluation, we undertook a blinded comparison of image quality across
networks performed by a subspecialty trained radiologist. Overall, we demonstrate that our network achieves a superior performance among
others under multiple reconstruction tasks.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0165485

I. INTRODUCTION

Magnetic resonance imaging (MRI) is a powerful tool in clin-
ical medicine and research settings, from diagnosing knee injuries
to studying brain disease. However, one major challenge in MRI is
the long data acquisition time, ultimately limiting patient access to
this diagnostic tool. Furthermore, the long image acquisition times
also lead to patient discomfort, worsening potential claustropho-
bia, an increased chance of patient motion, and degraded images
that reduce diagnostic utility. In order to reduce the scan time and
improve the efficiency, compressed sensing (CS) techniques1,2 that
enable less measurement data in k-space in order to reconstruct the
final image have been developed and successfully applied to MRI.
However, these under-sampling strategies come at a cost in image

quality with resultant image blurring and aliasing artifacts that can
significantly influence the diagnostic yield of MRI.

Recently, thanks to achievements in deep learning, especially
the successful application of deep convolutional neural networks
(DCNNs) in multiple imaging tasks,3 a new paradigm has been
realized, in which image reconstruction can be accomplished by
exploiting the latent representation within the neural network.4–7

Importantly, these deep learning-based strategies also provide an
additional benefit whereby their network structure requires no
or minimal modification before they may be applied to different
tasks. For a typical CS reconstruction task in MRI, there are two
major domains of relevance: the k-space domain and the image
domain. Data under-sampling typically occurs in k-space such that
a mask is applied and k-space is incompletely sampled. If Fourier
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transformation is then applied to these under-sampled k-space data
with all the masked portions zero-filled, this is referred to as zero-
filled MRI (ZF-MRI). The overall quality of ZF-MRI relies on the
degree of under-sampling and the pattern of the k-space mask.1,8

There are ongoing efforts focused on reconstructing a high-quality
image using the under-sampled k-space, or ZF-MRI.

To this end, multiple deep learning structures have been pro-
posed to leverage the CS reconstruction task and improve the
ultimate image quality. U-Net is a well-known structure that was
proposed to handle image segmentation tasks9 but was later reported
to be feasible for MRI reconstruction.10,11 The U-Net structure
focused on reconstruction in the image domain, employing a
ZF-MRI as input and reconstructing an unaliased image. It has also
been shown that employing a data consistency (DC) layer12 serves
to improve the performance of a deep convolutional neural network
(DCNN) in the image domain due to the reuse of the visible por-
tions of k-space. Furthermore, with an increase in interest in the
attention mechanism in DCNNs, spatial- and channel-wise atten-
tion approaches13–17 have also been reported to provide additional
benefits in reconstruction performance.

In contrast to methods focused on the image domain, auto-
mated transform by manifold approximation (Automap)18–20 is a
method focused on learning the domain transformation in order to
perform reconstruction directly from the k-space domain. The fully
connected layers encode the transformation of the complex data into
image space, followed by a convolution-deconvolution structure that
provides the reconstruction of the final image. Even though this
method provides a prototype of learning from the combination of
both the k-space and image space domains, one major disadvantage
of this method is its sensitivity to image size. In the Automap tech-
nique, the dimensions of the fully connected layers are closely related
to the image shape, making it difficult to train for a larger image.

Unrolled optimization-based structures, on the other hand,
are a type of network that divides the overall reconstruction task
into multiple steps, where each step contains one or multiple
sub-networks.21 Variational net (VarNet)22,23 is one such unrolled
optimization-based structure that utilizes not only the under-
sampled k-space data but also the mask and sensitivity maps during
intermediate states.

W-Net (Double U-Net) is a hybrid network that performs
reconstruction in both the k-space and image domains.24 The net-
work consists of two U-Net structures and an inverse Fourier
transformation layer connecting them. It has been shown that this
dual-domain learning structure provides a better reconstruction
performance compared to a single-domain learning structure. Yet
theW-Net lacks in k-space learning efficiency as the k-space domain
U-Net holds a small weight in the combined loss function, putting
more weight on image-domain learning.

In this work, we seek to leverage and further develop a CS
reconstruction method. More specifically, we build an attention
hybrid variational network (AttHybrid-VarNet) that benefits from
the superior k-space reconstruction ability and an image-domain
refinement network to further improve the image quality. Further-
more, spatial- and channel-wise attention also enables the con-
volutional module to further fine tune the weights for different
channels and regions in the feature maps according to the attention
scores. We compare our architecture with multiple CS reconstruc-
tion networks over open-source and clinical imaging datasets. We

also provide a blinded radiologist evaluation of the image quality
of our methods compared to other typical reconstruction networks.
Ultimately, we demonstrate that our network achieves a superior
performance among others under multiple reconstruction setups.

II. MATERIALS AND METHODS
A. End-to-end variational network

Variational networks have shown a superior performance
for MRI reconstruction tasks. Consider an MR image acquiring
measurement,

k = F(x) + e, (1)

where x is the underlying image, k is the k-space measurement, F
is the Fourier transform operator, and e stands for the measure-
ment noise. In an accelerated MRI acquisition case, k̃ =Mk, where
M is the binary under-sampling mask applied to the k-space, and k̃
denotes the under-sampled k-space measurement.

An estimation of the underlying image can be solved using the
following optimization,

x̂ = argminx
1
2
∣∣A(x) − k̃ ∣∣2 + λψ(x), (2)

xt+1 = xt − ηt(A∗(A(x) − k̃) + λϕ(xt)). (3)

Here, A is a linear operator that applies sensitivity maps, performs
a 2D Fourier transform, and then under-samples the k-space. A∗ is
the Hermitian of A, ψ is a regularization term, and ϕ is the gradient
of ψ with respect to x. ηt is the learning rate.

The variational network uses a small convolutional neural
network (CNN) for each gradient step in Eq. (3),

xt+1 = xt − ηt(A∗(A(x) − k̃) + CNN(xt)). (4)

The end-to-end variational network (E2E-VarNet)23 shows that the
aforementioned gradient update can be further formulated as

kt+1 = kt − ηtM(kt − k̃) +G(kt), (5)

where G(kt) = F ○ E ○ CNN(R ○ F −1(kt)). E and R are the
expand and reduce operators. The expand operator takes images
and sensitivity maps Si and outputs corresponding images, while
the reduce operator combines individual coil images. E(x)
= (x1, . . . , xN) = (S1x, . . . , SNx) and R(x1, . . . , xN) = ∑i S

∗

i xi. For a
variational network, the cascading CNN in each step can be a small
U-Net structure.9

B. Dual-domain learning
Compared to one network performing reconstruction only

in the k-space domain or image domain, dual-domain learning
has shown overall better image qualities.24 A dual-domain learn-
ing structure includes a k-space reconstruction network and an
image domain reconstruction network linked by an inverse Fourier
transform layer. In our setup, we take advantage of the superior
performance of the variational network and have a simple U-Net
for further image domain refinement. Our network has a balanced
weight in both domains so that each sub-network gets properly
trained.

APL Mach. Learn. 1, 046116 (2023); doi: 10.1063/5.0165485 1, 046116-2

© Author(s) 2023

 26 January 2024 21:27:47

https://pubs.aip.org/aip/aml


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

C. Spatial- and channel-wise attention
For U-Nets in both domains, we adopted spatial and channel

wise attention mechanisms.14 Suppose the feature map for a certain
intermediate CNN block has the shape: X ∈ RH×W×C, where H ×W
is the shape of themap andC is the number of channels of the feature
map. For k-space input, we treated the real part and the imaginary
part as two channels stacked, where each channel has real values
inside.

The feature map can be seen as a combination of all channels:
X = [x1, x2, . . . , xC], xi ∈ RH×W . Channel-wise attention is achieved
by first squeezing the spatial dimensions: taking a global average for
each feature map,

zk =
1

H ×W
H

∑
i

W

∑
j
xk(i, j). (6)

Vector zk ∈ R1×1×C contains the global spatial information of the
feature map. It is then passed to a fully connected network, followed
by a sigmoid activation function to learn the channel-wise attention,

sc = σ(Wfc(z)). (7)

Here, we used the ReLU function as the intermediate activation for
the fully connected network Wfc ∈ RC× C

2 ×C. X was element-wisely
multiplied by sc as the output,

yc = sc ⊙ X. (8)

Spatial-wise attention tries to learn a score for each pixel con-
sidering all channels. Indexing the same feature map spatially,
we have X = [x1,1, x1,2, . . . , xi, j , . . . , xH,W], xi, j ∈ R1×1×C. The spatial-
wise attention is learned by applying a pixel-wise convolution
Wconv ∈ R1×1×C×1, followed by a sigmoid function,

ss = σ(Wconv ⊛X), (9)

where ss ∈ RH×W×1. In addition, the output is the element-wise
multiplication of ss and X,

ys = ss ⊙ X. (10)

As shown above, the channel-wise attention squeezes the spatial
dimension and learns an important factor for each channel, while the

spatial-wise attention squeezes the channel dimension and learns an
important factor for each pixel. The final output is the element-wise
max-out of these two types of attention,

y = max (yc, ys). (11)

D. Attention hybrid variational network
Our attention hybrid variational network (AttHybrid-VarNet)

structure is shown in Fig. 1. It consists of an end-to-end VarNet
(E2E-VarNet) for the k-space domain learning and a refinement net-
work for the image domain learning. Similar to the E2E-VarNet,
our AttHybrid-VarNet uses k-space quantities rather than image-
space quantities as model input only and requires no pre-training,
fine-tuning, or parameter freezing process, making it an end-to-end
model. We use a weighted combination of normalized root mean
squared errors (NRMSE) for both the k-space domain and image
domain learning,

L = NRMSE(x, x̂intermediate) + αNRMSE(x, x̂), (12)

NRMSE(x, x̂) =
√
MSE(x, x̂)

max (x) −min (x) , (13)

where x̂intermediate and x̂ are the intermediate and final reconstruc-
tions of the fully sampled reconstruction image x. α is a weighting
factor for the image-domain refinement. In our setup, we set α = 1
for balanced dual-domain learning.

E. Network, training and dataset details
As shown in Fig. 1, the k-space domain network first takes

multi-channel k-space data as input and the sensitivity map esti-
mation (SME) module then gives out estimated sensitivity maps.
A series of cascading data consistency (DC) and refinement (R)
modules perform reconstruction and give out estimated multi-coil
k-space k̂i, where i indicates the i-th coil. These multi-channel k-
space data are converted to the image space and combined by
applying an inverse Fourier transformation with a root-sum-squares
(RSS) at the pixel level for an intermediate reconstruction image,

FIG. 1. Overall structure of our attention hybrid variational network (AttHybrid-VarNet). It consists of a variational network for k-space domain learning and an image domain
refinement network.
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x̂intermediate = RSS(x1, x2, . . . , xN) =
¿
ÁÁÀ N

∑
i=1
∣xi∣2, (14)

where xi = F −1(̂ki). The image domain network takes the inter-
mediate combined image from the multi-coil data as input and
performs further refinement. The image domain refinement net-
work design can be rather flexible. It can be a single CNN-based
network or even an unrolled structure cascading multiple networks
for step-by-step refinement. In our setup, we used a U-Net structure
for simplicity. We followed the structure proposed in Ref. 9 with 32
channels for the shallowest layer’s convolutional block.

In addition, we applied an attention layer at the end of each
depth’s convolution block for the U-Net in the image domain
refinement network and the k-space domain VarNet. Figure 2
illustrates the structure of the attention layer. We compared our
AttHybrid-VarNet against U-Net, W-Net,24 and E2E-VarNet. We
used PyTorch25 to implement our network. During the training pro-
cess, we used the Adam optimizer26 with a learning rate of 0.001 for
all the models mentioned.

We evaluated our model on a large-scale open-source MRI
dataset (fastMRI) and a dataset derived from patients imaged at our
tertiary care hospital and diagnosed with stroke. For the fastMRI
dataset, we used the raw k-space data during training; the coil num-
bers and heights vary case-by-case and have the same width number
of 320. During testing, each slice was center cropped to 320 × 320
for evaluation. We ran tests on both the knee and brain fourfold
and eightfold reconstruction tasks, with a center fraction of 0.08 in
the fourfold and 0.04 in the eightfold.11 Due to its large data scale,
we randomly selected 521 and 131 cases from the brain dataset for
training and testing. For the knee dataset, we used the full single-coil
training and validation set for training and testing.

In addition to the fastMRI dataset, we employed a retrospective
clinical dataset of patients diagnosed with stroke at our institution.
Our dataset includedMRI brain scans from patients performed at an
urban tertiary referral academic medical center that is a comprehen-
sive stroke center. Clinical scans were conducted between January
1, 2013 and January 1, 2021, on adult patients aged 18–89 years

old with recent (acute or subacute) strokes identified for inclusion
in this study via a search of the Philips Performance Bridge. Scans
meeting this criterion were downloaded and anonymized simultane-
ously in order to preserve patient anonymity and prevent disclosure
of protected health information as part of this IRB exempt study.
No patient demographic information was retained for the scans,
as it was considered to represent an unnecessary risk for the acci-
dental release of protected health information. Our dataset was
collected from both 1.5T and 3T MRI scanners (Philips Health-
care), including 243 patients. In all cases, the b1000 images from
a diffusion weighted sequence (DWI) were employed for analy-
sis and acquired using a 2D acquisition with a slice thickness of
5 mm. The acquisition parameters for the 1.5T scans are as follows:
TE/TR = 68.8 ms/4183 ms, FOV = 240 × 240 mm2, and pixel size
= 0.94 × 0.94 mm2. For 3T scans: TE/TR = 86.0 ms/4105 ms, FOV
= 230 × 230 mm2, and pixel size = 1.2 × 1.2 mm2. Our b1000 dataset
included 7389 slices in total, with 1650 slices containing strokes. We
randomly split it using the ratio of 80%/20%, leading to 5904 slices
for training and 1485 slices for testing. We took measurements in
the MR imaging using 2-D acquisition and slice-level normaliza-
tion to avoid the dependency among slices from the same subject
to a great extent. The b1000 dataset contains multiple image sizes,
with the MR image as the raw data. We first resized all image slices
to 256 × 256 and applied a Fourier transformation to get the cor-
responding k-space data. We performed more challenging 20-fold
and 30-fold acceleration reconstruction tasks with two-dimensional
Gaussian sampling.

To evaluate the image quality of our reconstructions, we report
peak signal-to-noise ratio (PSNR) and structural similarity (SSIM)
with respect to fully sampled ones. Furthermore, we conducted a
blinded image quality test using a single board-certified radiologist
with subspecialty certification in neuroradiology (C.W.F.) for eval-
uation of the quality of the reconstructions of four models. We had
the qualified reader review randomly selected slices from the differ-
ent models to see how qualitatively reviewed images by an expert
neuroradiologist compared in addition to our quantitative metrics,
as the visual appeal of images to the expert reader may impact the

FIG. 2. Detailed structure of the attention layer. It includes two attention paths: channel-wise attention and spatial-wise attention. The outputs yc and ys from two paths are
followed by an element-wise max-out operation to get the final output y.
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utility of the utilization of these images in a clinical setting. We ran-
domly extracted 100 slices of 79 patients with adequate brain area
from the test set. For each slice sample, the radiologist was given
four candidate reconstructions and asked to rank their preference
from 1 (most preferable) to 4 (least preferable). The priority score is
then given by

Spriority =
Ncandidates + 1 − 1

N

N
∑
i=1

pi

Ncandidates
, (15)

where Ncandidates = 4 is the number of candidates for each slice being
evaluated. N is the number of samples (slices). pi stands for the

TABLE I. Summary of results on the fastMRI dataset for different models over multiple acceleration factors and reconstruction
tasks. Boldface denotes superior performance for the corresponding index.

Brain

4× 8×

PSNR SSIM PSNR SSIM

U-Net 38.08 ± 0.26 0.9458 ± 0.0027 34.10 ± 0.28 0.9176 ± 0.0035
W-Net 39.52 ± 0.29 0.9505 ± 0.0028 34.87 ± 0.30 0.9200 ± 0.0038
E2E-VarNet 40.81 ± 0.29 0.9568 ± 0.0026 36.75 ± 0.25 0.9340 ± 0.0030
AttHybrid-VarNet 40.92 ± 0.29 0.9577 ± 0.0025 37.03 ± 0.25 0.9365 ± 0.0029

Knee

4× 8×

U-Net 30.45 ± 0.23 0.6777 ± 0.0091 28.55 ± 0.19 0.6038 ± 0.0102
W-Net 30.61 ± 0.23 0.6808 ± 0.0091 28.73 ± 0.20 0.6060 ± 0.0103
E2E-Varnet 31.07 ± 0.26 0.6899 ± 0.0095 29.48 ± 0.22 0.6187 ± 0.0107
AttHybrid-VarNet 31.09 ± 0.25 0.6901 ± 0.0094 29.49 ± 0.22 0.6197 ± 0.0106

FIG. 3. Reconstruction samples from the fastMRI dataset. Red boxes in the fully sampled reference scans highlight areas for the enlarged patches and the corresponding
error maps. The numbers on the upper left of each image indicate PSNR and SSIM, respectively.
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priority rank. Higher priority score Spriority means it is more
preferred in the blind test.

III. RESULTS
A. Performance on fastMRI dataset

The fastMRI brain dataset contains 8336 slices for training
and 2096 slices for testing. Table I demonstrates the evaluation

TABLE II. Summary of results on the b1000 dataset for different models over multiple
acceleration factors and reconstruction tasks. Boldface denotes superior performance
for the corresponding index.

PSNR SSIM

20×

U-Net 29.67 ± 0.13 0.8230 ± 0.0034
W-Net 31.73 ± 0.13 0.8434 ± 0.0037
E2E-VarNet 36.25 ± 0.16 0.9039 ± 0.0030
AttHybrid-VarNet 36.32 ± 0.16 0.9199 ± 0.0029

30×

U-Net 28.45 ± 0.12 0.7920 ± 0.0040
W-Net 30.50 ± 0.13 0.8193 ± 0.0040
E2E-VarNet 33.37 ± 0.15 0.8642 ± 0.0034
AttHybrid-VarNet 33.70 ± 0.15 0.8882 ± 0.0035

metrics. For the fourfold acceleration task in brain reconstruction,
our model achieved an overall PSNR = 40.92 and an SSIM = 0.9577.
In the eightfold brain reconstruction task, our model achieved an
overall PSNR = 37.03 and an SSIM = 0.9365. As for the knee recon-
struction tasks, for fourfold acceleration, our model had an overall
PSNR = 31.09 and an SSIM = 0.6901. Moreover, PSNR = 29.49 and
SSIM = 0.6197 for the eightfold acceleration test. Reconstruction
samples for the fastMRI dataset are shown in Fig. 3. The size of the

TABLE III. Raw summed priority rank and priority score for b1000 reconstruc-
tions over multiple models evaluated by radiologists. Boldface denotes superior
performance for the corresponding index.

Raw priority rank

20× 30×

U-Net 396 396
W-Net 296 301
E2E-VarNet 164 161
AttHybrid-VarNet 144 142

Priority score

U-Net 0.26 0.26
W-Net 0.51 0.50
E2E-VarNet 0.84 0.85
AttHybrid-VarNet 0.89 0.90

FIG. 4. Reconstruction samples from the b1000 dataset. Red boxes in the fully sampled reference scans highlight areas for the enlarged patches and the corresponding error
maps. The numbers on the upper left of each image indicate PSNR and SSIM, respectively.
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image is 320 × 320 pixels. Red boxes depict windows with a size of
90 × 90 pixels, with their enlarged details shown on the upper-right
side and their corresponding error maps on the lower-right side.
All the error maps are unit normalized and enhanced three times
for better demonstration. All models performed well in the four-
fold test, as the acceleration factor was small. For the eightfold test,
our model yielded cleaner error maps for both the brain and knee
reconstruction. Interestingly, although E2E-VarNet achieved better
evaluation metrics than W-Net in the eightfold tasks, their enlarged
area depicted a similar level of error.

B. Performance on b1000 dataset
Table II illustrates the evaluation metrics of the b1000 dataset.

Our dataset included 5904 slices for training and 1485 slices for test-
ing. To demonstrate the effectiveness of our model, we ran 20- and
30-fold acceleration reconstructions for the b1000 dataset. For the
20-fold acceleration, our model achieved an overall PSNR = 36.32
and an SSIM = 0.9199. For 30-fold tasks, our model achieved an
overall PSNR = 33.70 and an SSIM = 0.8882.

Table III shows the blinded image quality test results for image
quality preference over 100 sample slices from the b1000 dataset.
The raw priority rank was calculated by summing up 100 priority
ranks for each candidate model as determined by the radiologist.
Then, the priority score was calculated according to Eq. (15). Higher
priority scores represent the more preferred reconstruction from
the corresponding candidate model choices. Our model achieved
an overall score of 0.89 and 0.90 for the 20- and 30-fold tests,
respectively.

Figure 4 depicts sample reconstructions for the b1000 dataset.
The size of the image is 256 × 256 pixels, with red boxes highlight-
ing a window of size 70 × 70 pixels. Enlarged image details and their
corresponding error maps are shown on the right side of the image.
All the error maps are unit normalized and enhanced three times for
better demonstration. The improvement fromU-Net to E2E-VarNet
is even more noticeable under higher acceleration factors thanks to
the unrolled optimization structure. The comparison between the
W-Net andU-Net illustrates the benefits of performing dual-domain
learning. Ourmodel benefits from both and gives cleaner error maps
in samples with or without stroke.

IV. CONCLUSION
Prior studies on accelerated MRI reconstruction have typically

focused on single-domain learning. Previous dual-domain learn-
ing structures, such as W-Net, have a similar structure modality
in both domains. In contradistinction, in this study, we focused
on building a dual-domain learning structure with different modal-
ities in each domain. Unrolled optimization structures, such as
variational networks, have been reported to be more suitable for
k-space reconstruction,22,23 which inspired our use of an atten-
tion hybrid variational network. Notably, the choice for the image
domain refinement network can be flexible, and with larger and finer
structures, one can anticipate further improvements in performance.
Furthermore, one also needs to consider the training process accord-
ing to the structure design. Larger refinement networks in the image
domain can lead to a longer and more challenging training pro-
cess. This can be mitigated, however, by using fine-tuning with an
out-of-box pre-trained model checkpoint. Nevertheless, we kept the

structure in the image-domain as simple as possible such that our
model can be trained in an end-to-end manner.

Apart from the widely used fastMRI dataset, we tested our
model on our stroke dataset and performed an evaluation by a
single subspecialty trained radiologist. Rather than using the small
acceleration factors recommended by the fastMRI dataset, we tested
our model with more challenging cases to demonstrate its effective-
ness. When compared to the results from the fastMRI dataset, the
difference among models is even more noticeable. In fact, the prior-
ity score of the E2E-VarNet when compared to U-Net and W-Net
further validates the effectiveness of a variational net for k-space
learning. Ultimately, our model demonstrated an overall superior
performance in numerical metrics and blinded image analysis.

Several limitations of our study are of note. First, as an image
regression model, smoothness in the reconstructed images was an
expected effect, which is inherited in the loss function and training
procedure. In fact, loss functions such as mean squared error, abso-
lute value error, or structural similarity error all lead to smoothness.
This can be mitigated by dithering the image with a small amount of
Gaussian noise in order to preserve the sharpness. More delicate loss
functions and training processes would be an interesting topic for
future consideration. Second, similar to previous models, our model
is task specific. One large topic for future consideration would be
designing and training a universal reconstruction network. Recent
developments in generative AI have shown promising results in the
common image contents field. One challenge in developing a uni-
versal reconstruction model would be the requirement for an even
larger dataset. Another related question would relate to the fashion
by which to properly encode the reconstruction task for a universal
model. Nevertheless, this avenue of inquiry would be an interesting
topic for future development efforts.

In summary, we report the development of an attention
hybrid variational network for accelerated MRI reconstruction. Our
model benefits from an unrolled optimization structure and dual-
domain learning. We tested our model on a large-scale dataset and
then validated our model on a clinically relevant stroke database
from our own institution. We performed numerical evaluation and
blinded image quality analyses to demonstrate the effectiveness
of our model. In future studies, we hope this work can serve as
a reference for cross-domain multi-modality networks for image
reconstruction.
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