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Summary

� Accounting for water limitation is key to determining vegetation sensitivity to drought.

Quantifying water limitation effects on evapotranspiration (ET) is challenged by the heteroge-

neity of vegetation types, climate zones and vertically along the rooting zone.
� Here, we train deep neural networks using flux measurements to study ET responses to pro-

gressing drought conditions. We determine a water stress factor (fET) that isolates ET reduc-

tions from effects of atmospheric aridity and other covarying drivers. We regress fET against

the cumulative water deficit, which reveals the control of whole-column moisture availability.
� We find a variety of ET responses to water stress. Responses range from rapid declines of

fET to 10% of its water-unlimited rate at several savannah and grassland sites, to mild fET

reductions in most forests, despite substantial water deficits. Most sensitive responses are

found at the most arid and warm sites.
� A combination of regulation of stomatal and hydraulic conductance and access to below-

ground water reservoirs, whether in groundwater or deep soil moisture, could explain the dif-

ferent behaviors observed across sites. This variety of responses is not captured by a standard

land surface model, likely reflecting simplifications in its representation of belowground water

storage.

Introduction

Water availability controls evapotranspiration (ET) over most of
the vegetated land surface (Beer et al., 2010; Schwalm et al.,
2010; Seneviratne et al., 2010; Ahlström et al., 2015). As
droughts may become more severe and frequent in the future
(Seneviratne et al., 2021), it is crucial to understand how plant
function links ecosystem ET and water limitation. Quantifying
water limitation effects on ET is challenged by the heterogeneity
of the soil and bedrock structure, both vertically along the root-
ing zone and laterally across the landscape (Thompson et al.,
2011; Gao et al., 2014; Dralle et al., 2020). Understanding ET
responses to drought will become increasingly important in the
future, given the extensive transition from energy-limited to
water-limited regimes that is occurring with climate change
(Seneviratne et al., 2006, 2010; Denissen et al., 2022).
The root zone water storage capacity (S0) defines the maxi-

mum amount of soil moisture that plants can access for transpira-
tion (and thus, the amount of soil moisture that affects ET). A
large S0 has been linked to a higher plant resistance to drought,

sustained ET, deeper roots and persistent vegetation cover during
rain-free periods (Teuling et al., 2006; Gao et al., 2014; Stocker
et al., 2023). Recent studies have identified locally important
contributions to S0 by water reservoirs below the soil layer, such
as in fractured bedrock (Rempe & Dietrich, 2018; Dawson
et al., 2020; McCormick et al., 2021) or groundwater (Thomp-
son et al., 2011; Hain et al., 2015; Fan et al., 2017). In settings
with pronounced topographical gradients or groundwater conver-
gence, water-saturated zones can be within the reach of roots
(Fan et al., 2013, 2017). This implies large variations in plant
available water at small spatial scales, as also suggested by inverse
modelling (Hain et al., 2015; Fan et al., 2017). However, direct
observations of these effects are sparse and limited to a small
number of individual field sites (Thompson et al., 2011; Rempe
& Dietrich, 2018).

Another mechanism put in place by plants to reduce water loss
during drought is to rely on a very resistant xylem (Plaut
et al., 2012; Mackay et al., 2015). Some species are able to with-
stand water stress conditions thanks to xylem structural features
that allow them to avoid embolism and to sustain ET during
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drought (Meinzer et al., 2009). These plants have larger hydraulic
safety margins and are thus more drought-tolerant (McDowell
et al., 2008). This is in contrast with other plant species that rely
on the release of stored water to maintain hydraulic safety (Mein-
zer et al., 2009).

The role of water limitation on ET and its importance for eco-
system fluxes across vegetation types and climate zones have
remained poorly understood. This is partly due to challenges in
separating partial effects of water stress on ecosystem fluxes from
multiple covarying drivers. In particular, soil moisture and vapor
pressure deficit (VPD) jointly affect ET, but tend to covary
(Novick et al., 2016; Giardina et al., 2018; Zhou et al., 2019;
L. Liu et al., 2020; Y. Liu et al., 2020). The soil moisture-VPD
coupling is generally observed as a result of land–atmosphere
feedbacks under relatively dry conditions (Seneviratne et al.,
2010; L. Liu et al., 2020), but this correlation can fade under very
dry or humid conditions (Ruddell & Kumar, 2009). This limits
what can be inferred from flux measurements and whether gener-
alizations can be found to inform models across a wide range of
conditions.

The complexity of plant responses to water deficit contrasts
with its representation in land surface models (LSMs; Fan
et al., 2019). With a few exceptions (Fan et al., 2007; Miguez-
Macho et al., 2007; Swenson et al., 2019), LSMs represent the
land surface as a flat surface (Prentice et al., 2015; Fan et al.,
2019), assume free drainage from the bottom soil layer, which
prevents the formation of water-saturated zones (Liang et al.,
1994; Schlemmer et al., 2018), and do not account for the variety
of bedrock lithology and its role as a moisture storage component
(McCormick et al., 2021). Some LSMs do not accurately con-
sider the effects of drought on phenology and the seasonal varia-
tion in leaf area index (LAI), especially in drought-deciduous
regions of the world (Dahlin et al., 2015). Spatial variations of S0
are typically represented in models based on variations in soil
type and in plant rooting depth that are assumed to be fixed and
assigned to plant functional types (PFTs; Drewniak, 2019;
Tumber-Dávila et al., 2022). These simplifications ignore spatial
heterogeneity in plant hydraulics and water stress effects on vege-
tation, which affects the accuracy at predicting water limitation
effects on ET, particularly under drought conditions (Zhang
et al., 2016; Green et al., 2017; Kennedy et al., 2019; Stocker
et al., 2019). This highlights the need to develop observational
benchmarks focusing on the role of water limitation, separated
from atmospheric aridity and other covarying drivers (Novick
et al., 2016; Giardina et al., 2018; Zhou et al., 2019), for reliable
ET modelling.

Here, using site-specific deep neural network (DNN) models,
we estimate the fractional reduction in evapotranspiration (fET)
at eddy-covariance sites compared with its potential rate. We use
88 000 site days of ecosystem-scale ET measurements, comple-
mented by meteorological measurements, multiple soil moisture
datasets and a remotely sensed greenness index. Our method iso-
lates the control of water availability on ET, factoring out effects
of VPD and other drivers, that is, vegetation greenness, air tem-
perature and net radiation (Rn). We then evaluate fET reductions
during drought by regressing it against the cumulative water

deficit (CWD, the cumulative difference between observed ET
and precipitation). In contrast to evaluating fET against surface
soil moisture, assessment against CWD reveals patterns of water
stress effects resulting from whole-column water depletion. We
used these analyses to test the following hypotheses: an increasing
CWD generally reduces fET across sites; deep moisture storage is
important in sustaining ET during prolonged dry periods at
some sites, and its signal can be detected in flux-tower
measurements, using the fET index; and LSMs underestimate the
diversity of fET-CWD relations across sites due to neglected
small-scale heterogeneity in plant available water.

Materials and Methods

Overview

We started by estimating potential and actual evapotranspiration
(PET and ET, respectively) across a large set of sites. PET is
defined here as equal to ET in the absence of water limitations,
that is, ET at its water-unlimited rate (see the Estimating poten-
tial ET section). For each site, we defined two separate DNN
models: DNNPET and DNNET, respectively. Section 3 of Sup-
porting Information Methods S1 contains a detailed description
of the tuning of the hyperparameters of the DNNs. The key dif-
ference between DNNPET and DNNET is that DNNPET was
trained using data from days with high soil moisture only,
whereas DNNET was trained using all available data (see the Esti-
mating potential ET section). We used either observational soil
moisture from FLUXNET2015 or modelled soil moisture from a
bucket-type soil water balance model (Davis et al., 2017). We
preferred modelled data for the many sites where the quality of
the observational data was poor, as described in the Soil moisture
data section. We defined a normalized measure of moisture lim-
itation effects on ET (referred to as ‘fET’) by dividing the neural
network estimate of ET (ETNN) by the neural network estimate
of PET (PETNN). Here, we identify ‘droughts’ by the effects of
water balance deficits on vegetation activity (Seneviratne
et al., 2021). We thus analyzed how fET evolves with increasing
water stress by regressing it against the observed CWD. We
grouped sites based on their fET–CWD relationship and ana-
lyzed how the site groups vary with soil texture, vegetation classes,
moisture index, topographical context of the site, mean annual
precipitation and mean annual temperature (MAT) within each
group.

Data

All analyses were performed using R Statistical Software (R Core
Team, 2023). We extensively made use of the ‘TIDYVERSE’ R
package to process our data (Wickham et al., 2019). To see the
entirety of the R packages used in this study, please refer to our
published repository on GitHub and Zenodo.

Eddy-covariance data Half-hourly data were downloaded from
the FLUXNET2015 website and filtered to keep only measured
values (*_QC= 0) or values gap-filled with high confidence
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(*_QC= 1; Pastorello et al., 2020). The latent heat flux was con-
verted from energy units (Wm�2) to mass units (mm d�1) by
multiplying it by the latent heat of vaporization (J kg�1) as a
function of air temperature, using the R package ‘BIGLEAF’
(Knauer et al., 2018).

To reduce biases in ET predictions, we applied additional fil-
ters to the data, as described in Section 1 of Methods S1. Half-
hourly data were aggregated into daily data to reduce noise and
to avoid the ET-VPD hysteresis effect, observed at sub-daily
timescales (Zhang et al., 2014). We only retained daily estimates
with at least eight measured half-hourly points, as in Li
et al. (2019). While aggregating to the daily level, the daily mean
was calculated for all variables, except for VPD (for which we cal-
culated the daily maximum), and for ET and precipitation (for
which we used the daily sum).

The evaporative fraction (EF), which was used as a consistency
check on fET values in our analysis, was calculated using daily
aggregates as EF ¼ latent heat flux

Rn
.

Soil moisture data When possible, we used observational soil
moisture data from the FLUXNET2015 dataset. To be consis-
tent across all sites, we only used soil moisture data from the
uppermost layer (typically measured within 0–15 cm below-
ground), as multiple depths were available only for a very limited
number of sites (Pastorello et al., 2020). For many FLUX-
NET2015 sites, we found that observational soil moisture data
were unavailable, incomplete or inconsistent with ET observa-
tions, as described in Section 1 of Methods S1. For these sites, we
simulated soil moisture with SPLASH, a bucket-type soil water
balance model (Davis et al., 2017). This model was based on a
Priestley–Taylor formulation for ET estimation. We set the
water-holding capacity (‘bucket depth’) to 220 mm (Orth
et al., 2013; Davis et al., 2017). Given that we used both mod-
elled soil moisture and observational soil moisture across sites,
the variable was normalized between 0 and 1 on a site-by-site
basis for better comparison across sites. Using a modelled soil
moisture represented a potential source of circularity in our ana-
lysis, since we were assuming a water-holding capacity specific to
a rooting depth. However, we mostly used soil moisture to sepa-
rate the training data into ‘moist’ and ‘dry’ days (see the Estimat-
ing potential ET section), so that the exact modelled values
should have only a minimal influence on our results. Using mod-
elled soil moisture at sites with good-quality observational data
yielded similar results (Fig. S1).

Greenness data We downloaded MODIS EVI (MOD13Q1,
Collection 5) with the ‘MODISTOOLS’ R package (Tuck
et al., 2014). Images with clouds, snow, ice or shadows were
excluded. To get daily values and remove noise, we applied a
Savitzky–Golay smoothing filter (‘SIGNAL’ R package) with a
third-order polynomial and a frame length of 31 d.

GLDAS data We downloaded precipitation, ET and PET esti-
mates of the GLDAS_NOAH025_3H_2.1 product from the
NASA Global Land Data Assimilation System v.2 (GLDAS-2;
Rodell et al., 2004; Beaudoing et al., 2020). This product

provides global land surface fluxes computed based on current
satellite- and ground-based observational forcing (Ek et al., 2003;
Rodell et al., 2004). GLDAS_NOAH025_3H_2.1 is run with
Noah land surface model v.3.6, which can be regarded as a stan-
dard LSM due to its extensive utilization within the field and its
integration as the land component of the operational Global
Forecast System model of the National Centers for Environmen-
tal Prediction (NCEP; Rodell et al., 2004; Beaudoing
et al., 2020). In our analysis, we compared the outputs of our
deep-learning models to GLDAS-NOAH to understand how
LSM simulations may agree with observations-driven ET
responses to water deficit. We provide a more detailed overview
of this product in Section 5 of Methods S1, focusing on how it
quantifies soil moisture limitation effects on ET.

We referred to ET and PET from this data product as
ETGLDAS and PETGLDAS. We defined fETGLDAS= ETGLDAS/
PETGLDAS to compare it with our deep-learning estimate of fET.
The data were originally available at a 3 h time resolution and
at a grid resolution of 0.25° × 0.25°. For two sites (IT-Noe and
IT-Cpz), it was not possible to extract GLDAS values, as they
were too close to the coastline. After extracting the variables at
the site level, we calculated daily means. PETGLDAS displays good
correlation with in-situ measurements, although it was found to
be biased high relative to some satellite products (Zhan et al.,
2019). For comparison with PETNN, PETGLDAS was therefore
scaled by dividing it by its median value in the lower CWD bin
(CWD< 20 mm). This way, fETGLDAS was roughly comprised
between 0 and 1.

Soil texture, climate and topography data We extracted soil
texture distribution data at FLUXNET2015 locations from the
Regridded Harmonized World Soil Database v.1.2 (Wieder
et al., 2014). We used all soil fractions from the topsoil.

To study the role of climate across sites, we downloaded MAT
and mean annual precipitation (MAP) from WorldClim v.2.1,
available at a 30 arc-second spatial resolution. We extracted MAT
and MAP at FLUXNET2015 sites (Fick & Hijmans, 2017).

The moisture index was calculated with FLUXNET2015 data
as the ratio of annual precipitation (P) over potential evapotran-
spiration (PET), for all years in which data were available for the
respective sites. Precipitation data are from the FLUXNET 2015
Tier 1 dataset; PET was calculated following the Priestley–Taylor
equation (PETPT), as implemented in the SPLASH model (Davis
et al., 2017).

To investigate the role of topography across sites, global topo-
graphic index (GTI) values were downloaded from a high-
resolution dataset (Marthews et al., 2015a,b) and extracted at
FLUXNET2015 locations. Compared with other metrics, the
GTI calculates the water balance at the landscape scale, taking
into account the local slope and the upstream draining area
(Marthews et al., 2015a).

Estimating potential ET

Our approach was based on a published method that separates soil
moisture effects on light-use efficiency using FLUXNET2015 data
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(Stocker et al., 2018). Here, ETNN was estimated using observa-
tional ET (ETobs) as target variable and soil moisture, Rn, VPD,
air temperature (T ) and the enhanced vegetation index (EVI) as
predictors:

ETNN ¼ DNNET Rn, VPD,T , EVI, soil moistureð Þ Eqn 1

PETNN was estimated using ETobs as target variable and again
Rn, VPD, T and EVI as predictors, but no longer considering soil
moisture:

PETNN ¼ DNNPET Rn, VPD,T , EVIð Þ Eqn 2

For this ecological application, the choice of predictors was
limited to a small number representing known environmental
controls on ET and PET (Maes et al., 2019; Miralles
et al., 2019). A larger number of predictors could increase the
possibility of having correlated variables that would have a con-
founding effect, thus negatively affecting the predictive ability of
the model outside of the training set. Adding more predictors
improved the performance of the model only marginally
(Fig. S2), at the cost of a more computational-intensive model.

PETNN was derived by training the model with data from days
when soil moisture was relatively high (i.e. above a site-specific
threshold) at the specific site (‘moist days’). We thus defined
PETNN as a soil-moisture-unlimited ET. By contrast, the model
for predicting ETNN was trained using all data and with soil
moisture as an additional predictor. The threshold to divide data
into ‘moist’ and ‘dry’ days was determined for each site based on
ETobs and PETNN, as described in Section 2 of Methods S1. By
training PETNN using data with relatively high soil moisture
(‘moist’ days), we might preferentially exploit a region of the data-
set with high LAI (e.g. high EVI). However, we found consistent
results when plotting the range and distribution of EVI for ‘moist’
vs ‘dry’ days separately (Fig. S3). Moreover, even when the season-
ality of EVI and ETobs has relatively low values, PETNN remains
unaffected (Fig. S4). This indicates that our estimation of PET is
not influenced by the dependence of EVI on soil moisture.

We derived the water stress factor (fET) as:

fET ¼ ETNN

PETNN
Eqn 3

Using this index, we quantified the control of water limitation
on ET, separated from other predictors (net radiation, VPD,
vegetation greenness and air temperature). Even though VPD
and soil moisture can be correlated under specific conditions and
timescales (Seneviratne et al., 2010; Novick et al., 2016; Sulman
et al., 2016), our deep-learning models were trained with a
diverse dataset that includes instances where VPD and soil moist-
ure are decoupled, based on a previous publication which served
as the foundational basis for the methodology employed in this
paper (Stocker et al., 2018). This approach ensures that the mod-
els capture the impact of VPD and soil moisture separately at
different locations.

Note that although surface soil moisture data is used as input
for the deep-learning model, its information is mainly used for
discriminating ‘moist’ (days when ET= PET) from ‘dry’ condi-
tions. fET can thus be interpreted as reflecting water stress in gen-
eral, potentially also including moisture stored at deeper levels.
This relies on the fact that surface soil moisture values are corre-
lated with deeper soil moisture (Salvucci & Entekhabi, 1994;
Qiu et al., 2016).

The use of this neural-network-based approach avoided the
necessity to determine PET a priori based on theoretical estima-
tions that are difficult to parameterize (Maes et al., 2019).
Using ETNN instead of ETobs in Eqn 3 resulted in less noisy
fET estimates, as ETNN and PETNN were affected by similar
prediction errors, such as a varying flux measurement footprint
and incorrect instantaneous energy balance closure. By defini-
tion, PETNN should agree with ETobs during ‘moist days’. On
the contrary, PETNN was expected to overestimate ETobs during
‘dry days’, as the former was trained on ‘moist days’ data only
(Fig. S5).

We evaluated PETNN against an empirical Priestley–Taylor
estimate of PET (PETPT) obtained from the SPLASH model
(Davis et al., 2017) and against a linear model (lm) estimate
of PET (PETlm). The site-specific linear regression models
were defined as PETlm= k × λ(t) × Rn, where k is a site-
specific constant that scales Rn, calibrated against ETobs and
Rn was converted to mass units (mm d�1) by multiplying it
by the latent heat of vaporization (J kg�1) as a function of
air temperature, using the R package ‘BIGLEAF’ (Knauer et al.,
2018).

Derivation of the cumulative water deficit

To evaluate how fET evolves in progressing drought conditions,
we regressed it against the CWD. We derived the CWD as the
cumulative difference in the actual evapotranspiration (ETobs)
and precipitation (P), considered over continuous dry periods,
that is, periods where the difference P – ETobs was negative. We
defined a ‘CWD event’ as the period between the start and the
end of the summation. The summation was stopped when
the rain had compensated the water loss due to ET, that is, the
cumulative sum across days was zero (∑ndays

i¼1 P�ETð Þ ¼ 0),
where ndays refers to the number of days within a ‘CWD event’
(Fig. S6). We assumed that water stress was already mitigated
when new precipitation was re-wetting the topsoil layers, even
before the CWD was fully offset, that is, before the deficit
reached a value of zero. For this reason, we removed data after
rain had compensated the CWD to 90% of its maximum value
within the same ‘CWD event’.

To eliminate the noise caused by smaller CWD events and
focus on extreme events, we only retained the single largest
CWD event each year. For the CWD calculation of the fET
plots, we used the observed latent heat flux and precipitation time
series from FLUXNET2015 at the daily time scale. When
employing fETGLDAS, CWD was computed with precipitation
and ET data from the GLDAS product for consistency.
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When calculating CWD, it was important to focus on high-
quality observations and use a continuous time series of ET to
avoid gaps. We therefore processed the data in a different way
compared with the DNN models, as described in Section 4 of
Methods S1.

Site selection and binning

We performed our analysis for 135 sites out of the total of 166 of
the FLUXNET Tier 1 dataset (Fig. 1), where soil moisture gave
consistent results (as defined in the Soil moisture data section).
The sites were further filtered according to the final number of
days after data cleaning (> 300 d) and to the performance of the
DNN model. Mean PETNN had to be greater than or equal to
ET during ‘dry days’ and the R2 between modelled ET and ETobs

had to be > 0.5, retaining 58 sites. Nine sites were excluded upon
visual inspection of the fET vs CWD relationship, which was not
giving physically consistent results. The remaining 49 sites were
used in this study and are listed in Table S1 and displayed in
Fig. 1. We removed fET outliers, defined as any value that fell
outside of the interval fET� 2:5� std fETð Þ. To categorize the
behavior of different sites, we calculated the median of fET in
the CWD interval comprised between 125 and 175 mm for each
site. We grouped all sites along this single dimension using a k-
means algorithm, with predefined k= 3. We conducted a sensi-
tivity analysis with k= 2 and k= 4. We retained the grouping
with k= 3, as it identified clearly the dominant fET distributions
across sites. The resulting groups were high fET (8 sites), med-
ium fET (22 sites) and low fET (11 sites), with each group show-
ing a similar pattern in the decline of fET with increasing CWD.
Sites that had a maximum CWD < 125 mm were manually
assigned to the ‘high fET’ group (8 sites), as their behavior was
visually deemed to be consistent with other sites in the same

group (Fig. S7). The CWD interval centered at 150 mm was a
trade-off between using the largest possible CWD, thus capturing
the most divergent responses across sites, and choosing a CWD
value attained and exceeded in the largest number of sites. The
three fET groups, thus defined, were intended as a measure of
the sensitivity of fET to increasing CWD, targeting the different
fET vs CWD shapes observed at different sites.

Results

Reliability of the deep neural network

Across all sites and days, ETNN achieved consistent results against
ETobs (R

2= 0.78; Fig. 2a). To evaluate the accuracy of PETNN,
we compared it against ETobs during moist days only (R2= 0.77;
Fig. 2b). This method matched observations more closely com-
pared with PETPT (R2= 0.45; Fig. 2c) or PETlm (R2= 0.40;
Fig. 2d), both evaluated for moist days only. We thus retained
PETNN for further analyses.

To understand the timing and magnitude of water limitation
on ETobs, we evaluated its seasonality compared with ETNN and
PETNN (Figs 3, S8). We chose two sample sites with contrasting
behavior: DK-Sor, a humid deciduous broadleaf forest, and US-
Ton, a dry woody savannah site. At DK-Sor, PETNN and ETobs

almost perfectly overlap, suggesting that belowground moisture
limitation has little effect on ET at this site, allowing it to be
almost always at its potential rate, that is, energy-limited and with-
out belowground moisture limitations (Fig. 3a, red and black
lines). At US-Ton, PETNN departs substantially from ETobs dur-
ing the dry season, indicating significant impacts of water stress on
ET at this site (Fig. 3b, red and black lines). In both cases, ETNN

is consistent with ETobs (black and blue lines) and the ET season-
ality follows the seasonality of Rn (Fig. 3, dashed green line).

Fig. 1 Location of sites considered in this study, colored by their respective group of fractional reduction in evapotranspiration (fET group, see the Site
selection and binning section). Blue dots: ‘high fET’ group. Yellow dots: ‘medium fET’ group. Red dots: ‘low fET’ group. Black crosses: sites that were
excluded from the initial list of 135 sites considered in this study. Coastlines were downloaded using R package ‘RNATURALEARTH’ (Massicotte & South, 2023).
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Binning of fET vs CWD responses

When the density of fET is plotted against CWD across all sites,
we observe a variety of responses (Fig. 4a). For CWD values up
to c. 100 mm, there is an accumulation of points centered at fET
equal to c. 1. At higher CWD values, fET declines gradually. We
can distinguish two other smaller clouds of points, one centered
at fET equal to c. 0.4 and another one at 0.2. The response of
fET vs CWD seems to be the most variable at CWD equal to
c. 150 mm (red dotted lines in Fig. 4a). To further investigate
commonalities of the fET-CWD relationship across sites, we
divided them into three groups based on the fET median in this
interval (Fig. 4b; see the Derivation of the cumulative water deficit
section). Sites were thus grouped into low, medium and high fET.
Each group exhibits a different fET vs CWD behavior (Fig. 5).

Patterns of fET vs CWD responses across sites

At ‘high fET’ sites, there is almost no effect of water stress on
plants, as fET is almost always near one, in spite of substantial
water deficits (Figs 5a, S7). By contrast, when predicted by a stan-
dard LSM, after a CWD threshold of c. 150mm, fETGLDAS

decreases linearly with progressing drought at these sites (Fig. 5b).

At ‘medium fET’ sites (Fig. 5c), the bulk of fET values is equal to
one up to a CWD of c. 100mm. At a CWD > 100mm, fET
slowly decreases with progressing CWD, reaching an fET of c. 0.5
at a corresponding CWD of 250mm. By contrast, fETGLDAS dis-
plays several tails, which decrease linearly with progressing CWD,
down to zero (Fig. 5d). The observed fETGLDAS behavior reflects
different responses at different sites (not shown). At ‘low fET’ sites,
fET stays equal to one until a CWD of 50mm. After that, fET
values drop off abruptly with increasing CWD, followed by a rela-
tionship that largely levels-off, slowly approaching but never reach-
ing fET= 0 (Fig. 5e). In the same fET group, fETGLDAS decreases
almost linearly with progressing drought, reaching values of c. 0
(Fig. 5f). This drop in fET with CWD followed by a levelling-off
is also seen for each of the individual sites in this group (Fig. 6).
This confirms that the trend observed in Fig. 5e is not simply due
to plotting several sites pooled together and adds further support
to the site grouping used here. Across the three fET groups,
fETGLDAS reduces more quickly with increasing CWD than fET
does, suggesting GLDAS overestimates water stress. Plotting EF vs
CWD confirmed the results found when using fET (Fig. S9).
Using transpiration from a published data set (Li et al., 2019) as
target variable instead of ET resulted in lower model performance,
but did not change our main conclusions (Fig. S10).

Fig. 2 Performance of the deep-learning
model at predicting evapotranspiration (ET).
ETNN and potential evapotranspiration
(PET)NN are respectively ET and PET
predicted with our deep-learning model.
ETobs corresponds to observational ET from
FLUXNET2015. (a) ETNN vs ETobs, evaluated
on all days. (b) PETNN vs ETobs, evaluated on
moist days only. (c) PETPT is from the
SPLASH model, based on a Priestley–Taylor
formulation of evapotranspiration, vs ETobs.
To align its magnitude with that of ETobs,
PETPT was multiplied by a scaling constant.
This does not impact the R2 between the two
variables. (d) PETlm is based on a linear model
(lm), defined as PET= k × λ(t) × Rn, where k
is a site-specific constant that scales Rn,
calibrated to ETobs and Rn was converted to
mass units (mm d�1) by multiplying it by the
latent heat of vaporization (J kg�1). Red line:
regression line between modelled and
observed data. Dashed black line: y= x line.
RMSE, root-mean-square error. R package
‘LSD’ was used to plot the point density
(Schwalb et al., 2020).
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Relationship to soil and climate variables

To gain insight into what factors drive the different fET beha-
viors, we investigated how soil and climate variables vary within
site groups (Fig. 7). Soil texture did not vary significantly among
fET groups (Fig. 7a). Sites in the ‘high fET’ group were usually
found in humid climates (Fig. 7c). They consisted mostly of for-
ests, and in particular evergreen needleleaf forest (ENF, 7 sites

out of 16, Fig. 7b). We found that sites with intermediate fET
reductions were found in mesic regions (Fig. 7c). They were
mostly characterized by forests (14 sites out of 22) and croplands
(four sites, Fig. 7b). The ‘low fET’ sites were found in the driest
climates (Fig. 7c). These sites were composed mostly of savan-
nahs (five sites over 11) and grasslands (four sites over 11;
Fig. 7b). The GTI and mean annual precipitation did not vary
significantly across fET groups (Fig. 7d,e). This is consistent with
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Fig. 3 Seasonality of evapotranspiration (ET)
and potential evapotranspiration (PET) at
sample sites. (a) DK-Sor. (b) US-Ton. ETNN
and PETNN are ET and PET predicted with our
deep-learning model, respectively. ETobs
corresponds to observational ET from
FLUXNET2015. Blue line: ETNN. Red line:
PETNN. Black line: ETobs. Dashed green line:
net radiation converted to mass units (mm
d�1). We derived the seasonality by
calculating the mean across all years for
every day of the year.
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Fig. 4 Partition of sites in three groups according to the median of the fractional reduction in evapotranspiration (fET) at a cumulative water deficit (CWD)
equal to 150mm. (a) fET for all sites plotted against the CWD. Dashed lines at CWD= 125mm and CWD= 175mm delimit the interval (fET150) in which
the median of fET was calculated for each site to define the three fET groups (‘low fET’, ‘medium fET’ and ‘high fET’). R package ‘LSD’ was used to plot the
point density (Schwalb et al., 2020). (b) Number of sites per each fET group: ‘low fET’ sites (red), ‘medium fET’ sites (green) and ‘high fET’ sites (blue).
Dashed lines represent the average fET inside each group. The width of the bins was determined with the Freedman–Diaconis rule, which considers not
only sample size but also the spread of each sample.
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the fact that most flux towers are located in flat areas and valleys
so that most sites cluster into similar topographic index values
(Thompson et al., 2011). By contrast, the MAT increases from
high to low fET groups (Fig. 7f).

Discussion

Physical interpretation of CWD

Since the CWD is the integration of the observed water balance
over time (see the Site selection and binning section), it constitu-
tes a proxy for the depletion of plant available water. By

definition, the CWD is independent from assumptions regarding
soil depth or total water storage capacity, thereby encompassing
contributions from both soil and nonsoil water reservoirs, regard-
less of their depths (see the Derivation of the cumulative water
deficit section). The connection between CWD and plant-
accessible moisture reservoirs is implicit, as the presence of a defi-
cit (resulting from plant water uptake and transpiration) necessi-
tates the existence of a reservoir that stores the respective water.

Contrary to our expectations, we found that at most sites,
vegetation activity is never completely shut off, even at high
CWD values (Fig. 5a,c,e). This is also confirmed by EF, a
model-independent indicator of ET stress, plotted as a function

Fig. 5 Evolution of the fractional reduction in
evapotranspiration (fET) with the cumulative
water deficit (CWD) for sites grouped
according to their median fET. (a) ‘High fET’,
fET predicted from our observations-driven
model. (b) ‘High fET’, fET extracted from the
GLDAS-NOAH data product (fETGLDAS). (c)
‘Mediun fET’, fET predicted from our
observations-driven model. (d) ‘Medium
fET’, fET extracted from the GLDAS-NOAH
data product. (e) ‘Low fET’, fET predicted
from our observations-driven model. (f) ‘Low
fET’, fET extracted from the GLDAS-NOAH
data product. fETGLDAS calculated as
evapotranspiration (ET) divided by potential
evapotranspiration (PET) from the GLDAS-
NOAH data product, where PET was scaled
by dividing it by its median in the lower CWD
bin (CWD< 20mm). When plotted against
fETGLDAS, CWD was calculated using
GLDAS-NOAH data for consistency. R
package ‘LSD’ was used to plot the point
density (Schwalb et al., 2020).
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of CWD (Fig. S9). As CWD increases and fET decreases
(Fig. 5a,c,e), the fET vs CWD pattern suggests that a mechanism
must be put in place by plants to maintain a base ET level with-
out further reductions in plant access to moisture, a pattern not
reflected by a standard LSM (Fig. 5b,d,f).

Drivers of the fET response to CWD

Under prolonged rain-free periods, plants have been shown to
depend on water stored relatively deep below the surface
(Milly, 1994; Hahm et al., 2019; McCormick et al., 2021) or to
rely on very resistant xylems (Plaut et al., 2012; Mackay
et al., 2015) to sustain function and growth. When water avail-
ability decreases in such a way that the root water potential
decreases, one would also expect the xylem potential to decrease,
and in turn the leaf water potential and the stomatal conductance,
and thus ET. The relatively flat fET curve suggests that either (1)
plants resist water stress, whereby conductance along the SPAC is
relatively insensitive to the range of water potentials experienced
by plants under the conditions investigated here, or (2) plants
limit water stress, whereby plants access further, possibly deeper,
water reservoirs and maintain relatively high water potentials
along the SPAC while water is continuously consumed (thus con-
tinuously increasing the CWD). In the following paragraphs, we
discuss the two abovementioned cases in more detail, including
the specific conditions in which they could apply. Discerning with

a high level of confidence on a site-by-site basis between these two
alternative explanations is beyond the scope of this study. Never-
theless, in the Rooting strategies and plant conductance at arid
sites section we provide a more in-depth discussion from the lit-
erature focusing on field studies at some dry sites.

In case (1), the insensitivity would correspond to a specific
range in the curve of the stomatal conductance as a function of leaf
water potential, where the water potential varies without dramati-
cally affecting the conductance (Wolf et al., 2016). In this frame-
work, plants would also have more resistant xylem, allowing them
to pull water at lower water potentials. This could account for the
sustained fET observed at some humid sites as well as the plateau-
ing of the fET–CWD relationship observed at certain arid sites.

Our results indicate that plant sensitivity to CWD differs
based on the moisture index of the site (Fig. 7c), which may
reflect different adaptive plant strategies to water stress along a
gradient of site mean aridity. The most resistant responses of ET
to water deficits (‘high fET’ group) are observed – perhaps coun-
terintuitively – in relatively moist climates. This seemingly con-
tradicts existing knowledge of stomatal behavior and xylem
vulnerability, which would typically suggest the opposite
(Medlyn et al., 2011; Lin et al., 2015). However, in humid cli-
mates, mostly woody vegetation maintains activity during seaso-
nal water deficits, possibly thanks to roots that access saturated
layers, which are generally closer to the surface compared with
arid regions (Fan et al., 2017; Miguez-Macho & Fan, 2021). In

Fig. 6 Evolution of the fractional reduction in
evapotranspiration (fET) with the cumulative
water deficit (CWD) for sites classified in the
‘low fET’ group. Colored dots: fET. Green
line: MODIS Enhanced Vegetation Index
(EVI). EVI was binned by CWD intervals of
50 points. Shading represents the lower and
upper quartiles, and the solid line the median
in every bin. R package ‘LSD’ was used to
plot the point density (Schwalb et al., 2020).
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more arid environments, carbon uptake is limited and invest-
ments into structures for maintaining activity and access to water
during dry spells (e.g. evergreen foliage and deep roots) are not
competitively advantageous (Christiansen et al., 1987;
Stamp, 2003). Deep water tables and shallow water infiltration
depths in arid sites (except along narrow riparian zones; Fan
et al., 2019) likely pose limitations to plant adaptation strategies
for maintaining activity during dry seasons. Instead, plants have
more resistant to xylem and follow drought-deciduous phenolo-
gical strategies to reduce transpiration rates and water consump-
tion (McDowell et al., 2008). This is consistent with the xylem
cavitation resistance found in arid plant communities (Jacobsen
et al., 2007). Nevertheless, the sustained evapotranspiration
(fET) often observed at high water deficits (CWD) across differ-
ent climates implies that water continues to be accessed and con-
sumed without compromising transpiration efficiency. This

points to mechanisms that enable water stress avoidance rather
than resistance.

Our findings generally align with the notion that forests (pre-
valent in ‘high fET’ sites) tend to have deeper roots that can
access deeper water stores and therefore are more resilient to high
CWD, which correspond to case 2) above (Fan et al., 2017;
Tumber-Dávila et al., 2022). Instead, grasslands tend to have
shallower roots (Tumber-Dávila et al., 2022) and are thus more
likely to experience water stress when the topsoil dries out. There-
fore, forests tend to be less sensitive to drought than grasslands
and can sustain vegetation activity over longer dry periods (Teul-
ing et al., 2010; Konings & Gentine, 2017; Martı́nez-Vilalta &
Garcia-Forner, 2017). However, we found several cropland and
grassland sites within the ‘high fET’ group, suggesting that sus-
tained water availability during dry periods is not limited to for-
ests. This occurrence may be attributed to the interplay of

Fig. 7 Analysis of soil and climate variables
per group of fractional reduction in
evapotranspiration (fET group, see the Site
selection and binning section). (a) Triangular
plot of soil texture, colored by site, plotted
with R package ‘PLOTRIX’ (Lemon, 2006).
Note that some sites are overlapping. (b)
IGBP vegetation classes (CRO, cropland;
CSH, closed shrubland; DBF, deciduous
broadleaf forest; EBF, evergreen broadleaf
forest; ENF, evergreen needleleaf forest;
GRA, grasslands; MF, mixed forest; SAV,
savannah; WET, wetland; WSA, woody
savannah). (c) Moisture index, defined as the
ratio of annual precipitation (P) over
potential evapotranspiration (PET),
calculated for all available years on a site-by-
site basis. Precipitation data was taken from
the FLUXNET2015 dataset, whereas PET was
calculated with the SPLASH model, based on
a Priestley–Taylor formulation of
evapotranspiration. (d) Global topographic
index (GTI), defining the tendency of the soil
to become saturated with water because of
its topographic position. Higher GTI values
are typical in valleys, whereas lower values
are most common at ridgetops. (e) Mean
annual precipitation (MAP). (f) Mean annual
temperature (MAT). The bold black lines in
the boxplots represent the median. The
lower and upper hinges correspond to the
first and third quartiles. Data beyond the
hinges are plotted individually.
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rooting depth and the depth of moisture stores, which can be
relatively shallow in grassland and cropland areas (Fan et al.,
2019).

The different behavior observed in grasslands and forests may
explain the drop in fET after an intermediate CWD threshold at
some ‘low fET’ sites (Fig. 5e). In this group, the most common
PFT is woody savannah (Fig. 7b), a tree–grass ecosystem charac-
terized by a herbaceous understory (grassland) scattered with suf-
ficiently spaced trees, so that the canopy is never continuous (Luo
et al., 2018; El-Madany et al., 2020). After a certain CWD value
(c. 50 mm), the herbaceous layer loses access to water and thus
stops contributing to ecosystem ET. In turn, trees can rely on
deep roots to access deeper water reservoirs. These strategies allow
trees to keep transpiring even at higher CWD. This could explain
why we observe an abrupt change in fET, followed by a levelling-
off which never reaches zero (Fig. 5e). In this framework, the
levelling-off corresponds to a period where activity of the unders-
tory ceases and trees are the primary contributors to the
remaining ET.

Rooting strategies and plant conductance at arid sites

Semi-arid regions are a key driver of the interannual variability of
the terrestrial carbon cycle (Poulter et al., 2014; Ahlström
et al., 2015). The diversity of seasonal reductions in ET found at
arid and semi-arid sites suggest that a more accurate modelling of
drought impacts in these areas could improve the prediction
of the variability of the carbon cycle (Van der Molen et al., 2011;
Biederman et al., 2017). This section presents some site-specific
analyses from the literature that provide insight into our findings,
focusing on dry sites with relevant field evidence.

US-Ton and US-Var, located in the lower foothills of the
Sierra Nevada range in California, serve as an ideal case study due
to their shared Mediterranean climate (Koeppen: Csa) and
close proximity of 2.8 km (Baldocchi et al., 2004). US-Var, an
annual grassland, ceases activity (fET = 0) when CWD reaches
c. 100 mm (Fig. 6), corresponding to the seasonal dry-down of
grasses. US-Ton, an oak savanna woodland, continues transpir-
ing even at CWD values exceeding 200 mm (Fig. 6). Field stu-
dies suggest that trees at US-Ton regulate their stomatal and
hydraulic conductance to maintain transpiration at low water
potentials, while also accessing deeper water reservoirs beyond
the reach of grasses (< 0.6 m; Baldocchi et al., 2004; Baldocchi
& Xu, 2007). The availability of groundwater in the woodland
site explains the interannual variation in ET with the grassland
site, which lacks groundwater access (Baldocchi et al., 2021).

A comparative analysis of Mediterranean oak woodlands at
FR-Pue, IT-Cpz, IT-Ro2 and US-Ton reveals that down-
regulation of photosynthesis and extensive root systems able to
tap groundwater enable sustained transpiration during the dry
season (Baldocchi et al., 2010). Roots at FR-Pue extend to depths
of 4.5 m (Allard et al., 2008), while at IT-Cpz the shallow water
table mitigates the effect of the dry season (Manes et al., 1997).
Our study categorizes FR-Pue and US-Ton as ‘low fET’ sites,
and IT-Cpz and IT-Ro2 as ‘medium fET’ sites. In all four loca-
tions, a distinct levelling-off in the fET vs CWD relationship is

observed (Figs 6, S11), although the drop in fET is less pro-
nounced in the ‘medium fET’ sites.

At AU-How, a North Australian eucalypt woody savannah
classified as ‘medium fET’, the fET vs CWD curve levels off after
an initial decline, maintaining c. 0.4 fET up to a CWD of
300 mm (Fig. S11). Groundwater availability sustains ET during
drought in this region (O’Grady et al., 1999). Finally, at AU-
Cum, a native Eucalyptus woodland, trees access water stored in
the soil at depths exceeding 4 m, enabling continued transpira-
tion even under extremely dry conditions (Duursma et al., 2011;
Gimeno et al., 2018). This is reflected in our findings, as AU-
Cum is classified as a ‘medium fET’ site and sustains transpira-
tion up to CWD values of 300 mm (Fig. S11).

In general, both groundwater and water stored deep in the
unsaturated zone may be responsible for the observed fET vs
CWD patterns at different sites. Further field studies could be
devised to gain insight at other sites, using measurements that are
linked to ET and can directly sample water in the soil–plant–
atmosphere continuum (SPAC), that is, sap flow and leaf water
potential measurements (Novick et al., 2022). Water isotopes
could also be employed to investigate the origin of water con-
sumed by the plants at the site level (Brinkmann et al., 2018).

Possible explanations of the discrepancy between model
and observations-driven estimates

The hypothesis that trees access deeper water reservoirs is consis-
tent with recent findings, which highlight the often-neglected
importance of deep water stores for root water uptake (Dawson
et al., 2020). These water reservoirs are often accessible to plants
(McCormick et al., 2021), but are essentially not represented by
models, and are especially important during drought, after soil
moisture is depleted (Rempe & Dietrich, 2018). This could
explain why the lower tail of the fET vs CWD relationship in the
‘low fET’ group almost never reaches zero, even at very high
CWD (i.e. under ongoing drought, Fig. 5e). The same behavior
is not captured by the considered GLDAS model, which – like
other land models – cannot quantify deep moisture (Fig. 5f).

Groundwater contributions to ET may explain the discrepancy
between the considered GLDAS model data and the
observation-driven estimates. Groundwater is generally not taken
into account by global models (Hain et al., 2015; Condon
et al., 2021), but it has been shown to have a pivotal effect on
transpiration during drought (Mu et al., 2021). The neglect of
groundwater in many LSMs could explain why GLDAS-NOAH
appears to overestimate water stress effects compared with our
deep-learning estimates (Fig. 5b,d,f). This is consistent with a
previous study finding that the quantification of plant access to
groundwater in models can improve ET prediction (Thompson
et al., 2011).

We should highlight that the current comparison is only with
one LSM. Comparisons with other LSMs would be necessary to
confirm this hypothesis. Furthermore, while the observations-
driven estimates used are strongly based on observations, they are
also derived from an empirical model. A limitation of our deep-
learning models is that they use EVI (vegetation greenness index)
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as predictor, thus factoring out effects by reduced foliage
area. When ET is essentially zero and the vegetation is brown
(i.e. there are strong EVI reductions), PETNN values may also be
decreasing along with EVI. The decline in PETNN would thus
cancel at least a part of the decline in ETNN, and we may have
fET (defined as ETNN/PETNN) values higher than expected. In
these circumstances, we should be cautious when interpreting
fET values (Figs 6, S7, S11). Nevertheless, situations with strong
EVI reductions, matched with still high fET values, were only
identified in sites US-Ne2 and DE-Geb (‘medium fET’ group;
Fig. S11) and US-Ne1 (‘high fET’ group; Fig. S7).

GLDAS-NOAH uses vegetation tiling to represent sub-grid
heterogeneity of vegetation types. NOAH assigns a rooting depth
to each vegetation type (Rodell et al., 2004; Beaudoing
et al., 2020) and does not account for heterogeneity in stomatal
or xylem traits within the same vegetation type (Liu et al., 2021).
This could explain why GLDAS data does not capture some of
the water stress responses highlighted by our approach, as the
rooting depth has been shown to vary strongly even within
the same species and climate (Fan et al., 2017). The almost linear
signal found in ‘high fET’ sites when using GLDAS data (Fig. 5f)
could also be linked to missing spatial heterogeneity in the model
simulations. There is an intrinsic challenge in ET prediction
related to the fact that soil moisture, and by extension below-
ground water availability, varies in nature at scales in the order of
1–10 m, while models have grid cell sizes at scales as big as one to
several hundred kilometers. The upscaling would naturally
smooth out the stress response (Baker et al., 2017) and produce
an ecosystem response more linear than what it really is. In other
words, large-scale averaging could lead to a less abrupt regulation
of fET (Baker et al., 2017). In general, models have less uncer-
tainty than observations, which are by their nature more scat-
tered. This could also explain the observed ‘cleaner’ relationships
between fETGLDAS and CWD.

Although the overestimation of water stress by LSMs is well-
known in the literature, our findings underscore the lack of an
accurate representation of water stored in the deep subsurface in
models. More research could address the apparent model-
observation bias in light of the role of belowground water avail-
ability.

Conclusions

An observation-driven empirical approach was used to evaluate
the effects of water stress on ET, separated from the contribution
of other drivers, including radiation, VPD and vegetation green-
ness. We highlighted substantial differences in plant responses to
water stress across vegetation types, mean site climate and soil
texture. Most forests tend to show little sensitivity to water stress,
whereas most savannahs, shrublands and grasslands sites show an
abrupt drop in ET after an initial stress-free phase. In both cases
and in contrast with a representative LSM, ET is almost never
completely shut off, even during progressing drought conditions.
Field studies confirmed that ET can be sustained during drought
thanks to a combination of access to groundwater or deep soil
moisture and down-regulation of stomatal closure with

progressive water deficits. The fact that most models do not
account for sub-grid heterogeneity in plant available water and
ignore moisture supplied by the saturated zone and weathered
bedrock leads to a biased quantification of water stress effects on
plants. Future research should address this bias by focusing on
the role of deep unquantified water stores, the quantification of
sub-grid heterogeneity, and the representation of rooting strate-
gies and plant conductance across aridity gradients.
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modelled fET output is also made available as a separate dataset:
https://doi.org/10.5281/zenodo.6885163.
All original datasets used in this study are freely available from
the following sources:
• Ecosystem fluxes and meteorological data: https://fluxnet.org/
data/fluxnet2015-dataset/

• MODIS EVI (from MOD13Q1, 16 d, 250 m): https://
lpdaac.usgs.gov/products/mod13q1v006/

• Precipitation, ET and PET estimates from the GLDAS_
NOAH025_3H_2.1 product: https://disc.gsfc.nasa.gov/
datasets/GLDAS_NOAH025_3H_2.1/summary

• Soil texture distribution data: https://daac.ornl.gov/SOILS/
guides/HWSD.html

• Mean annual temperature (MAT) and mean annual precipita-
tion (MAP): https://www.worldclim.org/data/worldclim21.html

• Global topographic index (GTI): https://data-search.nerc.ac.
uk/geonetwork/srv/api/records/6b0c4358-2bf3-4924-aa8f-
793d468b92be
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