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Abstract

We develop a framework to learn bio-inspired foraging policies using human data. We conduct an experiment where
humans are virtually immersed in an open field foraging environment and are trained to collect the highest amount of
rewards. A Markov Decision Process (MDP) framework is introduced to model the human decision dynamics. Then,
Imitation Learning (IL) based on maximum likelihood estimation is used to train Neural Networks (NN) that map human
decisions to observed states. The results show that passive imitation substantially underperforms humans. We further
refine the human-inspired policies via Reinforcement Learning (RL) using the on-policy Proximal Policy Optimization
(PPO) algorithm which shows better stability than other algorithms and can steadily improve the policies pre-trained
with IL. We show that the combination of IL and RL match human performance and that the artificial agents trained with
our approach can quickly adapt to reward distribution shift. We finally show that good performance and robustness to
reward distribution shift strongly depend on combining allocentric information with an egocentric representation of the

environment.
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Introduction

Human beings are exceptional learners: capable of conceiving
solutions for individual problems, generalizing acquired
skills to new tasks, exploring new strategies, and inferring
causal relationships (Walker et al. 2012; Gopnik et al. 2015;
Goddu et al. 2020; Ruggeri et al. 2021). Since the earliest
stage of Machine Learning (ML), the research community
has sought to emulate humans’ learning capacities; and
only recently, works which combine Deep Learning (DL)
with Reinforcement Learning (RL), have accomplished
outstanding results in this regard (Silver et al. 2017). DL and
RL have shown to be indispensable ingredients to accomplish
human-like intelligence in artificial systems; however, they
still require a massive amount of computational resources and
do not show the same level of efficiency compared to human
beings (Botvinick et al. 2019). A viable option to tackle the
efficiency issue, again inspired by human learning (Offerman
and Sonnemans 1998; Jones 2009) is to leverage human
demonstrations by combining DL and RL with imitation in

a procedure known as imitation learning (IL) (Pomerleau
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1991). It is worth noting that a great number of tasks, such as
navigating or exploring unknown environments, are relatively
straightforward for humans and can be successfully learned
in a limited number of trials. On the other hand, this is often
not the case for artificial agents, where the amount and the
quality of the information retrieved, in addition to a sound

design of the reward function and/or a good exploration
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strategy of the environment, are crucial for successfully
learning from scratch. Hence, artificial agents might benefit
from directly imitating human behavior or, alternatively, from
reconstructing human-inspired reward functions (Abbeel et al.
2010).

In this study, we investigate the potential of learning
from humans taking into account not only performance but
also data-efficiency, i.e. the amount of interactions with the
environment an agent needs in order to master the task. We
start by collecting movement data from a series of human
participants while they are performing a virtual foraging task
in which the rewards, in the form of coins, are condensed in
clusters throughout the environment. The participants, subject
to time constraints, have to collect the highest number of
coins, effectively trading-off between foraging within a single
cluster (exploitation) and exploration. Humans are initially
unaware of the number of clusters and of their locations but
are able to learn the reward distribution throughout the course
of the experiment.

Note that, time-constrained foraging problems occur in
several realistic scenarios, including scientific exploration;
where a rover might want to sample chemical or geological
features as fast as possible; search and rescue operations,
where a vessel needs to rescue as many people as
possible (Scone and Phillips 2010; Otte et al. 2013), wildlife
tracking, agriculture pollination, agriculture harvesting and
so on. Moreover, these missions can be dangerous and
time demanding, and the use of aerial, marine or ground
unmanned vehicles would significantly mitigate risks and save
time. However, without assumptions about the distribution of
targets, classical control techniques are not applicable. Tele-
operation is also a feasible option, but it may be hindered
due to unreliable communications, and this approach does
not scale as well as completely autonomous options. For
these reasons, ML techniques supporting full autonomy
represent an interesting alternative solution. Therefore, our
main objective is to develop a method which effectively
combines IL with DL and RL and allows for efficient human-
level learning in a foraging task with sparse rewards.

From our experiment, we collect 50 human trajectories
and further process them to include both allocentric and
egocentric information in our model. Where allocentric means
the coordinates with respect to the environment frame and
egocentric means the perception of the surrounding. We
then run IL on each of the trajectories, yielding 50 policies
with different performance. None of these policies succeed
in matching human results. Finally, we use the imitated
policies as initial solutions and further refine them with RL.

By combining the two methods, we outperform the average
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human performance and the respective participant from which
the agent imitates with a success rate of 78% and 62%,
respectively, while using a reasonable amount of training
steps (< 107). We also compare our method with a pure
RL alternative, and show that such an approach remarkably
underperforms humans.

In the final part of the work, we test the learned
policies for generalization and robustness in a new scenario
with an unknown reward distribution. We are able to
show that the artificial agents quickly adapt to this new
scenario and conjecture that, when combined with allocentric
information, the egocentric representation of the environment
plays a key role in enabling learning as also observed
in neurophysiological recordings from rodents (Alexander
et al. 2020). To empirically test this hypothesis, we rerun
the entire set of experiments only considering allocentric
coordinates. We show that in the absence of an egocentric
representation of the environment, RL is unable to further
improve IL and the final performance does not reach the
level of human subjects. For the sake of completeness, we
rerun the experiments also considering only the egocentric
representation of the environment. This setup, however,
violates the MDP assumption and, since our agents are
not equipped with explicit memory, the learnt policies
underperform those of the other experiments. A figure
illustrating all these experiments for the full set of 50 human
trajectories is included in the supplementary materials. We
conclude that proper modeling is as crucial as the right
algorithmic choices in order to enhance general and robust

learning in artificial agents.

Related Work and Contribution

We focus on combining IL with RL in order to address the
shortcomings of these two approaches when used individually.
IL was initially proposed as a supervised learning method
for faster policy learning (Pomerleau 1991; Schaal 1999).
Recent works have studied the limitation of IL including the
covariate shift problem and its dependency on the quality
of the demonstrations (Syed and Schapire 2010; Ross and
Bagnell 2010). RL instead was proposed to enable learning
through direct interaction with the environment (Sutton and
Barto 2018). RL combined with DL has achieved outstanding
results in policy learning (Silver et al. 2017), however,
sample inefficiency and safety remains an obstacle for its
deployment in real world scenarios (Dulac-Arnold et al. 2019;
Serrano-Cuevas et al. 2020). Recent works have endeavored
to combine IL with RL either to address the limitations of
IL (Ross et al. 2011; Ross and Bagnell 2014; Sun et al. 2018;
Cheng et al. 2019) or to improve efficiency in RL (Kober et al.
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2010; Subramanian et al. 2016; Vecerik et al. 2017; Nair et al.
2018; Libardi et al. 2021; Uchendu et al. 2021).

Another line of research, known as Inverse Reinforcement
Learning (IRL), leverages demonstrations in order to infer a
reward function which is then used for RL in order to recover
the demonstrator policy (Abbeel and Ng 2004; Ratliff et al.
2006; Ziebart et al. 2008; Finn et al. 2016). IRL has the pros
of being immune to the covariate shift problem but the cons
of being as sample inefficient as the used RL algorithm. A
unified view of IRL and IL as an f-divergence minimization
problem has been recently proposed (Ho and Ermon 2016;
Ghasemipour et al. 2020) and addressed using Generative
Adversarial Networks (Goodfellow et al. 2020) (GAN) for
either IL (Ho and Ermon 2016) or reward shaping (Kang et al.
2018).

We place our work in the Reinforcement Learning with
Expert Demonstrations (RLED) framework, where the RL
agent learns in the same environment of the demonstrator
and using the same reward function (Hester et al. 2018).
Our main contribution is leveraging a non trivial case study
to show how modeling, imitation and reinforcement, when
effectively combined, can lead to human-like performance
in navigation tasks with sparse rewards without requiring a
massive amount of training steps. Note that, this does not
mean that RL-only algorithms cannot achieve human-level
performance in this type of tasks, rather that they need a
significantly larger number of steps to do so. Furthermore,
dense reward signals would have most likely improved RL-
only performance but also assumed prior knowledge of the
environment invalidating therefore the comparison with the
human agents. Finally, we analyze our results for robustness
and empirically show a strong correlation between egocentric
representation of the environment and performance. We
reemphasize the importance of the right algorithmic choices
as well as the right model in order to enhance effective
learning in artificial agents.

Other works which likewise combine IL with RL are Hester
et al. (2018); Rajeswaran et al. (2017); Uchendu et al. (2022)
and Silver et al. (2017). However, AlphaGo in Silver et al.
(2017) lies in the model-based spectrum, whereas, our work
considers a pure model-free RL setting. Deep Q-Learning
from Demonstrations (DQfD) in Hester et al. (2018), on the
other hand, explores pre-training a deep Q network (Mnih et al.
2013) using demonstrations before performing RL. In order
to do so, the agent needs access not only to the demonstrator
state-action pairs but also to the rewards collected along the
trajectories. In other words, DQfD assumes access to the
full MDP transition (states, actions and rewards) and as a

result, its pretrain step can be seen as a first form of offline
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RL (Levine et al. 2020). In our study, we assume access
only to demonstrator state-action pairs (without rewards)
and therefore DQfD is not directly applicable. Furthermore,
none of the aforementioned works investigate the effects of
modeling on algorithmic performance. Closer to our approach
are the algorithms presented in Rajeswaran et al. (2017) and
Uchendu et al. (2022). However, our study is focused on
a unique foraging domain that poses particular challenges.
In addition, we explore the resilience and adaptability of
our artificial agents and draw comparisons with human

performance.

Outline and Notation

The remainder of the paper is organized as follows. The
Materials and Methods section presents the experimental
setup used to collect the human foraging data, introduces the
MDP model used for representing human behavior, discusses
the IL for learning policies from data, and outlines the RL
algorithms used to refine the imitated policies. In the Results
section we compare our method with human and RL-only
performance on the original setup; then, we test all the
artificial agents for robustness to reward distribution shift
and demonstrate the importance of egocentric information.
We discuss the results in the Discussion section.

Unless otherwise indicated, we use uppercase letters (e.g.,
S;) for random variables, lowercase letters (e.g., s;) for values
of random variables, script letters (e.g., S) for sets, and bold
lowercase letters (e.g., 0) for vectors. Let [t1 : t2] be the set
of integers t such that t; <t < ty; we write Sy such that
t1 <t <ty as Sy, .,. We denote by N (u,0?) the normal
distribution, where 1 is the mean and o the standard deviation.
I denotes the identity matrix. We denote the multivariate
normal distribution with N (u, o) where p is the mean
vector and the covariance matrix is diagonal with only o2 as
elements on the diagonal. Finally, E[-] represents expectation
and P(-) probability.

Materials and Methods

Experimental Setup

In the following section, we provide a description of how the
human foraging datasets were collected. In the supplementary
materials we include the full dataset of 50 search trajectories.
We focus on five participants in the context of a larger study
investigating human foraging (Moore et al. 2021). An example
of two foraging search trajectories is given in Fig. 2. All
the experiments have been carried out in accordance with
the relevant guidelines and regulations and approved by the

Boston University’s Institutional Review Board.
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(c)

Figure 1. Fig. 1a and 1b are two snapshots of the foraging game in which the forager is about to collect coins. Fig. 1c shows a top
view of the environment where the coins are indicated by crosses and the coin clusters are indicated by circles.

Participants consisted of male and female, neurologically
healthy, English-speaking volunteers between the ages of 18-
35 with normal or corrected-to-normal vision. Participants
were recruited from Boston University and the surrounding
community. Individuals with a history of drug abuse, use
of psychoactive medication, neurological or psychiatric
disorders, or learning disabilities were excluded. Additionally,
participants with a history of motion sickness when watching
or playing video games were also excluded. All participants
were compensated and gave written informed consent in
accordance with Boston University’s Institutional Review
Board.

The task consisted of a 160m x 160m virtual “open-field”,
i.e. obstacle free, paradigm surrounded by four differently
colored and textured walls created using Vizard 6.0, a
Python-based virtual reality development platform (Fig. 1a).
325 coins were distributed throughout the environment, of
which 100 were uniformly randomly distributed and 225
were distributed according to four different multivariate
Gaussian distributions of varying sizes: 75 according to
N((60,75),5%I), 40 according to N((—15,—50), 11°T),
60 according to N'((—50,30), 18%I) and 50 according to
N((49,—40),13%T) (Fig. lc). Each participant’s starting
location was randomized at the beginning of each run.
Participants could move forward and turn left or right. They
could not move backwards. They were instructed to freely
explore the environment and collect as many coins as possible
but were not told anything about the distribution or total
number of coins. They were also able to see a running count
of the coins they had collected for each run. After being
collected each coin disappears for the remaining duration of
the run. Participants performed the foraging task over two
consecutive days. On the first day, naive participants were
presented with the task on a desktop computer in a behavioral
testing room. On the second day, they performed the same task
in an MRI scanner. Subjects performed 10 eight-minute runs
on Day 1 and 10 eight-minute runs on Day 2. In the desktop
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condition (Day 1), participants moved using keyboard arrow
keys, and in the scanner (Day 2), they moved using a diamond-
shaped button box. For our purposes here, we utilize the 80
minutes of behavioral data from Day 2 of the experiment for
5 participants which collected an average of 243.98 coins
each. Selecting behavioral data from Day 2 rather than Day 1
is motivated by the fact that, during Day 2, the participants
were already familiar with the task and achieved improved

performance compared to Day 1.

Modeling the Human Decision Process

In this section we describe the human modeling step and how
the data are processed to make them suitable for IL. and RL.

We consider an infinite-horizon discounted Markov Deci-
sion Process (MDP) defined by the tuple (S, A, P,r, D, )
where S is the finite set of states and A is the finite set
of actions. P:S x A — Ag is the transition probability
function and A s denotes the space of probability distributions
over S. The function r : § x A — R maps rewards to state-
action pairs. D € Ag is the initial state distribution and
v € [0,1) the discount factor. The decision agent is modeled
as a stationary policy 7 :S — A4, where 7(als) is the
probability of taking action « in state s. When a deterministic
policy is required we simply take a = arg max, 7(a’|s). For
simplicity, we will always write a ~ 7(-|s) and according to
which algorithm we are referring to it will be clear whether
m is stochastic or deterministic. We parameterize 7 using a
neural network with parameters & € © C R* and we write
Te.

Given an MDP, we consider the human participants taking
into account both egocentric and allocentric strategies when
navigating (Alexander et al. 2020; Feigenbaum and Morris
2004). We define the state vector as s = {z, y, 1, x}, where
x,y are coordinates with respect to a frame fixed to the
environment and represent the allocentric capacities of the
agent. Instead, ¢ and x are two categorical variables that

describe the human egocentric behavior: the first tells the
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Figure 2. Two sample trajectories collected during the second day of tests. The bar on the right shows the time in seconds. The full
set of the 50 trajectories is available in the supplementary materials.

agent whether it can see a coin or not in its vicinity, ¢ € { see
coin, no coins }, the second describes the “greedy” direction,
i.e., the direction of the closest coin the agent has in its view,
X € {east, northeast, north, northwest, west, southwest, south,

southeast, no coins}.

The artificial agent perceives the state and takes an action
to interact with the environment. For computational reasons
we discretize the x, y coordinates on a fine grid of 1m x 1m
and define the action space as a € {east, northeast, north,
northwest, west, southwest, south, southeast}. The transition
to the next state always occurs deterministically in the
direction of the action a taken by the agent. As convention
in Fig. 2, north means going from bottom to top, south from
top to bottom, east is left to right and west vice versa. The
categorical state 1) stays 0 all the time unless there is a coin
in a radius of 8m distance, when v turns 1 then also x turns
from "no coins” to one of the other directions. This is aligned
with the original experiment where each coin pops-up when
the human is at 8m from it. Finally, the rewards are simply
represented by the coins in the environment where r(s,a) = 1
for each coin collected. As in the original experiment, the
agents automatically collect the reward once at 3m and D is

a uniform distribution over S.

Imitation Learning

Given a task and an agent performing the task, IL infers
the underlying agent distribution via a set of an agent’s
demonstrations (state-action samples). Assuming the agent’s
behavior is parameterized by a NN with optimal parameters
0%, we refer to the process of estimating 8* through a finite
sequence of agent’s demonstrations 7 = (8g.1, ag.7) with
2 <T < oo as IL. One way to formulate this problem is

through maximum likelihood estimation:

max £(6), (1)
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where £(0) denotes the log-likelihood and is equivalent to
the logarithm of the joint probability of generating the expert

demonstrations 7 = {sq, ao, 81, a1, ..., 8T,ar}, i.e.,

L£(8) = logP% (). )

P (7) in (2) is defined as

T-1

H P(St+1|3taa/t):|-
t=0

P (r) = Dlso)| ﬁ)mms»} [ [
3)

Computing the logarithm of (3) and neglecting the elements
not parameterized by € we obtain the following maximization

problem
T

max Z log (me(ar|st)). 4)

t=0
Solving the maximization problem in Eq. (4) is the main

objective of our IL step.

Reinforcement Learning

After defining a model, collecting the data and performing
the imitation step, our final goal is to further refine the
imitated policies using RL. In RL, the artificial agents are
allowed to experience the task themselves and receive a
reinforcement according to the reward function r(s;,a;).
Mathematically, the goal is to find the policy parameters
6 which maximize the expected total discounted reward
J(0) =E[> ;2 o7'r(ss,a.)], where, as previously, T =
(80,a0, 81,0a1,...) is sampled according to so ~ D, a; ~
mo(:|st) and Sty1 ~ P(:|s¢,a¢). Our focus is on model-
free RL methods in which the artificial agent does not
know the transition probability function P(:|s;,a;), and it
can only explore the environment and experience rewards.
Among these types of algorithms, we can distinguish two

main groups: () algorithms that update the current policy
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following the agent’s generated trajectories according to
this policy, also known as on-policy algorithms, and (%)
algorithms that update the current policy using experience
from multiple policies used previously, known as off-policy.
We provide a more thorough introduction on this difference
in the supplementary materials.

State-of-the-art on-policy algorithms include Trust Region
Policy Optimization (TRPO) (Schulman et al. 2015), and
some robust variants such as Uncertainty Aware TRPO
(UATRPO) (Queeney et al. 2021), and Proximal Policy
Optimization (PPO) (Schulman et al. 2015). Whereas, off-
policy methods include the Soft-Actor Critic (SAC) and Twin
Delayed Deep Deterministic Policy Gradient (TD3) (Haarnoja
et al. 2018; Fujimoto et al. 2018). All the mentioned
algorithms are tested in our experiments and more details
about the NNs design are available in the supplementary
materials. It is worth noting that these algorithms are actor
critic-based approaches, comprising both a policy network
(the actor) and a critic network. In this context, we exclude
value function-based approaches that rely solely on critic
networks. This decision is motivated by the fact that the IL
step returns only pre-trained policy networks, since the pre-
training of critic networks is prevented by the absence of

expert rewards (Levine et al. 2020).

Results

In this section, we present our results and describe all the steps
that lead to our design. All the code and data to replicate the
experiments are freely accessible at our GitHub repository®.
An overview of the NNs used to parameterize g and all the
hyperparameters used for each of the IL and RL algorithms

are in the supplementary materials.

Pre-processing

Our first step is to collect and process the 50 trajectories,
of 8 minutes each, recorded on the second day of tests.
Each 8-minute trajectory consists of 28973 data points, on
average, which means we collect a data point every 0.017s,
where the data points are the human agent’s coordinates with
respect to the fixed environment frame. Note that it is possible
that a human agent does not move for a few seconds, for
example, and then makes many rapid decisions about where
to explore in the next milliseconds following this stationary
period. Therefore, the first ’few seconds” could be aggregated
in a single data point while the next milliseconds” would
require more than a single point. As a result, we aggregate
the data points considering the discretization of the (z,y)

coordinates. After that, we go over each of the trajectories
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and determine the human decisions (i.e., for each aggregated
state, the direction of the human’s next movement). We cast
each human decision for each trajectory in the pre-determined
action space .4 and construct in this way our state-action
pairs (i.e., actions a taken at state s). This process allows
us to reduce the average length of human trajectories from
28973 to 3464 data points without losing key information.
Note that this processing is an expensive but necessary step
for reducing the computational burden and enabling learning.
Future research will focus on how to automate this step and

developing methods which can handle learning from raw data.

Imitation Learning

We perform IL on each human trajectory individually rather
than considering a single data set with all the trajectories.
There are two main factors contributing to this choice.
Firstly, as demonstrated in Figure 2, each human trajectory
extensively covers the environment, rendering each trajectory
inherently informative about the task at hand. Secondly,
the policies generating these trajectories exhibit different
distributions, leading to high variance in a single aggregated
dataset. This variance ultimately undermines the effectiveness
of the IL step as the distribution which better fits the
aggregated data is close to the uniform distribution. The
results of the IL step and all the details on the evaluation are
illustrated, for 5 humans’ trajectories, in Fig 3. In summary,
we achieve good learning performance for several trajectories
but not enough to match the human participants. A figure
showing the IL performance for all the 50 trajectories is

available in the supplementary materials.

Reinforcement Learning

We consider the 50 policies learnt from the 50 human
trajectories during the IL step. We refine these policies using

RL. We design the experiment as follows:

1. First, in order to determine which RL algorithm is more
suitable for our goal, we take the same single policy
learnt during the IL step and use it as initialization of
each of the RL algorithms.

2. Given the cardinality of the state-space (160 x 160 x
2 x 9), we consider 107 steps for performing RL. This
means that the learning agent can leverage interactions
that are on the order of 20 times the number of states.

3. As in the IL step, for each RL algorithm we run the
learning process for 8 random seeds.

*https://github.com/VittorioGiammarino/Learning-from-humans-
combining-imitation-and-deep-on-policy-reinforcement-learning-to-
accomplish-su
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Figure 3. The results from the IL step for 5 different human trajectories are illustrated. For each human trajectory we solve the IL
problem for 8 different seeds. For each seed, after every epoch we evaluate the performance of the learnt policy for 10 trials, each
consisting of 3464 steps. The reported results for the "Imitation Learning Agent” show the reward averaged over 10 trials and 8 seeds;
the shaded area shows the standard deviation over the seeds. The performance of the human trajectory used as data set for the
imitation is labelled as "Imitated Human”. "Humans average” is the average performance of the 50 human trajectories.

4. During the learning process, we evaluate the policy
learnt every 30,000 steps on 10 trials of 3464 steps
each. We report averaged results over the 10 trials and
8 seeds. The shaded area in Fig. 4 and 5 shows the
standard deviation over seeds.

5. After determining the most suitable RL algorithm, we
rerun the whole experiment for 50 times in which each
of the 50 policies learnt during the IL step is used as

initialization of the selected RL algorithm.

Fig. 4 compares the various RL algorithms. PPO
outperforms all other methods. Broadly speaking, on-policy
algorithms, i.e., PPO, TRPO, and UATRPO, learn more
effectively from a pre-initialized policy with respect to the off-
policy algorithms TD3 and SAC. Refer to the supplementary

materials for more details.

Consequently, we proceed by combining IL together with
PPO and compare it with the PPO-only alternative. Fig. 5
illustrates the final results for the same trajectories of Fig. 3
and a figure showing this final result for all the 50 trajectories
is available in the supplementary materials. In summary, IL
followed by PPO (IL+PPO) outperforms the average human
performance and its imitated expert, 39 (78%) and 31 (62%)
times, respectively, over the 50 human trajectories. On the
other hand, the PPO-only alternative cannot get close to these
results in 107 steps. Table 1 summarizes the comparison
between humans and IL+PPO policies with respect to the
total amount of collectable rewards.

Note that, Fig. 5 provides interesting insights on why pre-
training with IL makes sense in foraging tasks with sparse
rewards. We observe that, in addition to a different initial
performance, the IL+PPO and the PPO-only agents show
really different exploration strategies which lead to a different
reward convergence rate (the difference in rates is clearly
visible in Fig. 5). The exploration strategy used in PPO-only
follows the original approach presented in Schulman et al.
(2017), where an entropy regularization term is incorporated
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in the policy gradient step in order to encourage stochasticity
in the decision policy. In this setup, the human-inspired
exploration strategy of IL+PPO represents the main strength
of the method and the main source of difference with the

PPO-only agents.

Robustness to reward distribution shift and the
importance of egocentric representations

In this section, we test the learnt policies for robustness to a
reward distribution shift. The motivation is to explore how
quickly the artificial agents grasp changes in the environment
and adapt to these changes. As in the original experiment,
325 coins are placed across the environment; however,
this time according to the new distribution in Fig. 6a, we
include the original coins distribution in Fig. 6b to facilitate
the comparison with Fig. 6a. Specifically, 50 coins are
distributed according to N'((—70, 30), 52I), 75 according to
N((60,—20),112T), 100 according to N ((—40,45), 15%I)
and 100 according to N((0, 60), 13%1).

We design the experiment similarly to the RL study and
the IL+PPO experiments in Fig. 4 and Fig. 5. Overall, we
run, for 8 different random seeds, 100 learning experiments
of 2 x 108 steps each, where in the first 50 we initialize using
the policies learnt with only IL (Fig. 3), while, in the second
50, we initialize using the policies learnt by IL+PPO (Fig. 5).
The results are summarized in Table 2 and show that the
policies learnt using both IL+PPO generalize well to novel
reward distributions. The figures showing the detailed 100
experiments are available in the supplementary materials.

In order to produce these results, we conclude that, given
the state vector representation as s = {x,y, v, x}, the RL
agents and their exploration strategies must heavily rely on
egocentric information, i.e., the variables ¢ and x. This
would explain the algorithm performance in the novel reward
environment in Fig. 6a, where the previously learnt allocentric

representation is no longer informative. On the other hand, a
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Figure 4. The results for the RL algorithms initialized with the same policy are illustrated. For each algorithm we run the learning
process for 107 steps and 8 different random seeds. For each seed, after every 30, 000 steps we evaluate the performance of the
learnt policy for 10 trials each of 3464 steps. The reported results show the reward averaged over 10 trials and 8 seeds, the shaded
area shows the standard deviation over seeds.

Traj 10 Traj 11 Traj 14 Traj 41 Traj 44

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Steps eps 7 steps Steps 167 Steps 7

IL + PPO PPO Imitated Human Humans average

Figure 5. The results of the IL+PPO method compared with the PPO-only alternative, the average human performance and the
performance of the imitated expert are illustrated for the trajectories of Fig. 3. The experiment design and the reported results follow
the same criterion as in Fig. 4.

Table 1. A summary of the comparison between IL+PPO and human performance in the original experiment. The table shows the
percentage out of 50 learnt policies, for both the IL+PPO and the human agents, where the agent collected at least a certain
percentage of rewards. As an example, the table is showing that, for the IL+PPO method, 19 policies (38%) can collect at least 260
coins (> 80%). We compare these results with the human performance where each trajectory is considered as a single human policy.
Note that, the IL+PPO policies perform better than humans on average but cannot do better than the best participants.

Performance Lower Bound
>70% >80% >8% >90%

IL+PPO 88% 38% 0% 0%
Humans 80% 22% 10% 0%

(a) New rewards distribution. (b) Old rewards distribution.

Figure 6. Fig. 6a shows the new reward distribution that was not previously seen by any of the artificial agents. We include the
previous reward distribution in Fig. 6b to facilitate the comparison.

Table 2. A summary of the results for the rewards distribution shift experiment. The table shows the fraction out of 50 policies, for
each initialization method, where after learning for 2 x 10° steps, the agent is able to collect at least a certain percentage of rewards.
As an example, the table is showing that, for the IL+PPO initialization, 46 policies (92%) can collect at least 270 coins (> 80%) in this
new scenario after learning for only 2 x 10° steps.

Performance Lower Bound
>70% >80% >90% > 95%

IL-only initialization ~ 28% 18% 0% 0%
IL+PPO initialization ~ 98% 92% 18% 0%
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strategy based on egocentric exploration which facilitates
the generation of a new allocentric representation of the
environment would explain the results in Table 2. In other
words, we suggest that our IL+PPO algorithms exhibit coding
of behavioral variables analogous to the observation in
animals (Alexander et al. 2020), where electrophysiological
recording during foraging strategies indicate neural coding in
both egocentric and allocentric coordinate frames.

To demonstrate the veracity of this claim we rerun the
entire set of experiments, which includes IL as in Fig. 3 and
IL+PPO as in Fig. 5, but this time only providing allocentric
information to the artificial agents. In other words, we reduce
the state vector from s = {z,y,v, x} to s = {x,y}. The
results for a selected number of human trajectories are
summarized in Fig 7. For the entire set of trajectories refer
to the supplementary materials. The final results show that
agents trained with the full state s = {z, y, ¢, x} outperform
agents trained with the allocentric only state s = {x, y} 74%
of the times for IL (37 out of 50) and 100% of the times for
IL+PPO. We conclude that our learnt policies heavily rely
on egocentric data and that the absence of such information
compromises to a large extent the learning performance as

illustrated in Fig. 7.

Discussion

In this paper, 50 human navigation trajectories were
collected in a virtual open-field environment. We extracted
a navigation control policy from each of these trajectories
and introduced an MDP setting to capture the navigational
human decision making. We learned policies consistent with
the experimental data using imitation learning based on log-
likelihood maximization for each of the trajectories.

After obtaining a control policy for each trajectory, we
used all of them as a starting point for RL, seeking to find
policies that can efficiently outperform the human participants
in the same experimental setting. We tested state-of-art on-
policy (PPO, TRPO, UATRPO) and off-policy (TD3, SAC)
algorithms. We explained more extensively how these two
categories differ in the supplementary materials. Briefly,
the main element of difference lies in the data used to
update the policy network mg and in how we compute and
approximate the critic network. Off-policy algorithms are
usually faster to converge but introduce a large bias in the
critic estimate, which results in more oscillatory learning
which often jeopardizes the IL initialization. On the other
hand, the tested on-policy algorithms are more conservative,
and the optimization step is constrained so not to diverge too

much from the current policy 7g. This results in a slower but
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more steady improvement of performance. Our preference
towards PPO with respect to the other on-policy algorithms is
the result of empirical experiments which corroborates other
well-known empirical studies on the matter (Andrychowicz
et al. 2020; Engstrom et al. 2020).

Finally, we examined the sensitivity of the IL+PPO and IL-
only policies to a different reward distribution and investigated
to what extent our artificial agents rely on egocentric
information. The final results showed that learning only from
data is not enough to match human performance and does
not lead to robustness over the reward distribution (Fig. 3 and
Table 1). On the other hand, IL followed by PPO (IL+PPO)
showed impressive results in the original experiment and it
led to good generalization of the task (Fig. 5 and Table 2).
Further, we showed that such results are associated with the
use of egocentric information, which are crucial in enhancing
learning performance both in the IL and the IL+RL setting
when compared with the use of allocentric information alone.

In summary, we have developed a method to learn bio-
inspired policies from human navigation data, which can
be further refined to achieve human-level performance. This
approach to modeling human navigational policies can be
of great utility for aerial and ground unmanned navigation
tasks including scientific exploration and search and rescue

operations.
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