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A B S T R A C T

Early development of Drosophila melanogaster (fruit fly) facilitated by the gap gene network has been shown to
be incredibly robust, and the same patterns emerge even when the process is seriously disrupted. We investigate
this robustness using a previously developed computational framework called DSGRN (Dynamic Signatures
Generated by Regulatory Networks). Our mathematical innovations include the conceptual extension of this
established modeling technique to enable modeling of spatially monotone environmental effects, as well as the
development of a collection of graph theoretic robustness scores for network models. This allows us to rank
order the robustness of network models of cellular systems where each cell contains the same genetic network
topology but operates under a parameter regime that changes continuously from cell to cell. We demonstrate
the power of this method by comparing the robustness of two previously introduced network models of gap
gene expression along the anterior–posterior axis of the fruit fly embryo, both to each other and to a random
sample of networks with same number of nodes and edges. We observe that there is a substantial difference
in robustness scores between the two models. Our biological insight is that random network topologies are
in general capable of reproducing complex patterns of expression, but that using measures of robustness
to rank order networks permits a large reduction in hypothesis space for highly conserved systems such as
developmental networks.
1. Introduction

Molecular processes in cells are subject to substantial levels of
noise caused by variability in the number of enzymes and other cel-
lular machinery, as well as thermal noise that may affect enzymatic
rates. In spite of facing this high inherent level of uncertainty, certain
macroscopic phenotypes of the cell are very predictable and robust.
This is particularly true for developmental programs, where the final
phenotype is very robust to even severe perturbations. Understanding
the principles of genetic network structure and a set of controls that
are responsible for this robustness have been at the center of interest
for many years.

One of the best-studied systems is the segmentation of the Drosophila
melanogaster (fruit fly) body plan during development. The segmenta-
tion is determined through gap, pair-rule and segment-polarity genes.
In this study, we focus on the regulation of the gap genes hunchback
(hb), giant (gt), Krüppel (Kr) and knirps (kni) which comprise the
gap gene network and are responsible for establishing segmentation
along the anterior–posterior (A–P) axis of the embryo. Initial condi-
tions for gap gene expression are given by maternal gradients Bicoid
(Bcd) and Caudal (Cad) which are inherited by the embryo from the
mother and present in decreasing and increasing amounts along the
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anterior–posterior (A–P) axis, respectively (Jaeger et al., 2004; Jaeger,
2011).

This system has been modeled by several research groups (Verd
et al., 2019; Manu et al., 2009; Perkins et al., 2006; Jaeger et al.,
2004). To explain the experimental data, Verd et al. (2019) assume that
there are different subnetworks, called ACDC dynamic modules, active
in different regions along the A–P axis. They showed that each module
could reproduce the data observed in each particular region at the end
of the late stages of gap gene expression.

In this paper, we propose that a single network functioning at
different parameter values across spatial locations can explain the
observed data at the end of late-stage gap gene expression, in contrast
to a sequence of distinct networks. In particular, we hypothesize that
the levels of maternal gradients Bcd and Cad provide different param-
eterizations for the gap gene network, and that such a parameterized
collection of copies of the same network is responsible for the formation
of the segmentation pattern. Apart from establishing if such a model is
capable of reproducing experimental data, we are also interested in the
question of robustness. How robust is such a fit?

To answer these questions we set up an ambitious goal of construct-
ing several robustness scores that we use to quantify the robustness
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of a parameterized network fit to spatial experimental data that is
computationally efficient enough to be evaluated over hundreds of
networks. In order to accomplish this, we use the DSGRN (Dynamic
Signatures Generated by Regulatory Networks) (Cummins et al., 2016;
Gameiro, 2018) approach previously used for assessing network model
fit with time series data and use it to model spatial data. For a
regulatory network RN, DSGRN constructs a parameter graph 𝑃𝐺(𝐑𝐍)
which represents a finite decomposition of the parameter space for an
ODE model of RN, where paths in 𝑃𝐺 represent a continuous change
of parameters in this ODE. For each parameter node 𝑝 ∈ 𝑃𝐺(𝐑𝐍),
DSGRN computes the summary of network dynamics from which one
can extract a qualitative description of the stable equilibria of the
system. To match a network model RN to spatial data, we seek paths
in 𝑃𝐺(𝐑𝐍) along which the qualitative description of stable equilibria
matches experimentally observed expression levels of gene products. If
such a path exists, we say the network RN is capable of reproducing
the data.

To address the robustness question, for each network RN we study
the shape of the subgraph 𝑃 of all such matching paths. We evaluate
to what extent this subgraph has bottlenecks (indicating the fragility of
development at some spatial position), we score how many paths can
leave the subgraph 𝑃 without completing the developmental program,
we score how many paths can skip a segment, and we evaluate the
overall size of 𝑃 as a subgraph of the graph of all paths. We evaluate
these scores on a class of nearly 1000 networks that have the same
number of nodes (4) and edges (8) as two ‘‘canonical’’ network models.
One of them is the network that is the union of the three ACDC
submodules proposed by Verd et al. (2019). The second network is a
subnetwork consisting of stronger regulatory interactions from the gap
gene network derived by Verd et al. (2017) using work by Ashyraliyev
et al. (2009).

The DSGRN approach to modeling network dynamics is an essential
tool without which evaluating the global dynamics of hundreds of
networks with 4 nodes and 8 edges would not be possible. However,
even with this approach, the number of paths in 𝑃𝐺(𝐑𝐍) that has to be
examined is astronomical. We develop graph constructions based on
condensation graphs that allow the computation and handling of these
large sets.

Our analysis produces evidence suggesting that previously explored
network models and motifs tend to have higher robustness scores when
compared to randomly generated networks, indicating consistency of
our results with previous work (Verd et al., 2019). On the other hand,
more local features such as the number of positive loops, number of
negative loops, or number of negative edges does not seem to have a
significant effect on robustness scores. Importantly, our work implies
that particular features of network structure are capable of imparting
robustness independent of the specific genes involved, which suggests
that network structure itself may be subject to evolutionary pressure.

The organization of the paper is as follows. In Section 2, we provide
enough background on D. melanogaster and DSGRN for the reader
to obtain a solid understanding of modeling choices and the DSGRN
parameter graph 𝑃𝐺, respectively. The interpretation of certain paths
in 𝑃𝐺 as spatial expression patterns is presented in Section 3. The back-
ground section on DSGRN also introduces Morse graphs, which are the
‘‘dynamic signatures’’ of DSGRN describing network behavior. These
are used in Section 4 to provide a mechanism for matching DSGRN
predictions to experimental data in D. melanogaster development. In
Section 5, we introduce carefully constructed subgraphs of 𝑃𝐺 that
incorporate information about spatial gradients of proteins important
for proper segmentation of the D. melanogaster embryo. Particularly
important is a subgraph called the path graph. In Section 6, we quantify
features of the path graph that permit us to assess the robustness of D.
melanogaster development in terms of the breadth and quality of the
match between DSGRN predictions and experimental observations. In
Section 7, we apply these scores to nearly 1000 networks to compare
robustness across network topology. We conclude with a discussion in
2

Section 8.
2. Background

2.1. Drosophila melanogaster

In this section, we first introduce gap genes, maternal gradients, and
anterior–posterior patterning determined by these genes and gradients.
Next, we describe the gap gene regulatory network. The exact topology
of this regulatory network is still under debate. A major goal of this
paper is to compare different models of the gap gene network and
evaluate their robustness. We note one element common to all models is
that gap gene activity is partially determined by the presence of spatial
protein gradients extending along the developmental axis.

2.1.1. Anterior–posterior (A–P) patterning in Drosophila melanogaster
During D. melanogaster development, the embryo undergoes seg-

mentation from the head (anterior region) to the tail (posterior region)
of the embryo. We will refer to the linear array of segments as the
A–P axis. The genes responsible for this segmentation were found
experimentally by inducing genetic mutations and describing the re-
sulting phenotypes (Nüsslein-Volhard and Wieschaus, 1980; Gilbert and
Barresi, 2018). These experiments resulted in the discovery of a class
of so-called gap genes whose knockouts cause entire regions of the A–P
axis to be missing. We focus on the trunk gap genes (Jaeger, 2011)
hunchback (hb), giant (gt), Krüpple (Kr) and Knirps (kni), which play
a central role in the formation of the middling part of the A–P axis,
namely between 35% and 75% egg length (Manu et al., 2009).

The trunk gap genes are, in part, regulated by maternal protein gra-
dients, Bicoid (Bcd) and Caudal (Cad) in addition to Nanos (Nos) and
existing maternal Hb, the gene product of hb. However, Nos and ma-
ternal Hb are less important to development than Bcd and Cad (Wang
et al., 1994; Irish et al., 1989; Jaeger, 2011; Gilbert and Barresi, 2018),
therefore we will limit our discussion of maternal gradients to Bcd and
Cad.

The interaction of Bcd and Cad creates opposing gradients from
anterior to posterior; Bcd has high concentration at the anterior region
and smoothly decreases to a low concentration at the posterior, while
Cad smoothly increases from anterior to posterior (Nüsslein-Volhard
et al., 1987; Spirov et al., 2009; Gilbert and Barresi, 2018). These
gradients give rise to protein expression patterns of the trunk gap
gene proteins, which are regions along the A–P axis where each protein
has high or low concentration (Nüsslein-Volhard et al., 1987; Nüsslein-
Volhard and Wieschaus, 1980; Gilbert and Barresi, 2018). Domain
boundaries for a particular protein are where the protein expression
pattern is transitioning from high concentration to low or vice versa.
Domain boundaries sharpen during late-stage development of the em-
bryo, a process controlled by trunk gap genes rather than maternal
gradients (Jaeger, 2011). Trunk gap gene regulation associated with
the late-stage segmentation process can be described by four main
regulatory mechanisms, as articulated by Jaeger (2011):

1. Activation by maternal gradients: Bcd and Cad maintain gap gene
expression (Nüsslein-Volhard et al., 1987) as domain boundaries
sharpen.

2. Auto-activation: Many early models of the gap gene network
showed that auto-activation of each gene was essential (Mein-
hardt, 1986), though more recently it has been shown that
auto-activation is not strictly essential as models have been able
to reproduce the data without auto-regulation (Jaeger et al.,
2004; Perkins et al., 2006). Experimentally, hb has the strongest
evidence for auto-activation (Simpson-Brose et al., 1994; Jaeger
et al., 2004; Perkins et al., 2006).

3. Strong repressive feedback between complementary genes: The
strongest experimental evidence for late-stage trunk gap gene
regulation is between the pair hb and kni, and the pair kr
and gt (Jaeger et al., 2004). Both pairs exhibit mutual strong

repression with each other, called repressive feedback.
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Fig. 1. Gap gene network. (left) The gap gene network used in Verd et al. (2019). The edge widths depict the strength of the interaction; dotted edges are the weakest interactions
and the bold edges are the strongest. (right) Simplified spatial representation of gene regulation from anterior–posterior (A–P) position 35% to 75% for the gap gene network. The
violet gradient indicates the concentration of Bcd, and the cyan gradient indicates the concentration of Cad. The horizontal extent of the boxes represents spatial positions with
high late-stage protein expression levels.
Source: Figure adapted from (Verd et al., 2019).
4. Regulation between non-complementary genes: There is also exper-
imental evidence that there are interactions between the other
genes that are not complementary (Jaeger et al., 2004), though
the exact type, strength, and potential effect of these interac-
tions have only been examined by mathematical models (Jaeger,
2011).

2.1.2. The gap gene regulatory network
Though many models have been shown to faithfully replicate the

protein expression of the trunk gap genes (Jaeger et al., 2004; Verd
et al., 2019; Manu et al., 2009; Perkins et al., 2006), we will focus
our study on the gap gene network as described in Verd et al. (2019)
and shown in Fig. 1. Edges are color-coded according to their source
protein. Dotted lines indicate weak regulatory interaction while bold
lines indicate stronger regulatory interaction (Verd et al., 2019, 2017).
We call these weak edges and strong edges, respectively. We will
make the reasonable assumption that strong edges are more likely to
be the dominating regulatory factors in the protein expression levels.
The left panel in Fig. 1 is a regulatory network representation of the
gap gene network while on the right is a spatial representation, which
shows the extent of protein expression along the A–P axis.

We hypothesize that a sequence of parameter changes representing
the impact of Bcd and Cad within a single network is capable of
recapitulating the protein expression level data (see sections 5 and 3.2).
There is a solid biological argument for choosing to model maternal
gradients as a change in network parameters. In late-stage gap gene
regulation, at any point along the A–P axis, the maternal gradients are
relatively constant. That is, within a single cell there is not a significant
change in the level of Bcd and Cad. Therefore Bcd and Cad can be
viewed as part of the environmental conditions of the cell that help
determine network parameters and not as active participants of the
network.

2.1.3. ACDC dynamic modules of the gap gene network
During their study of the gap gene regulatory network in Fig. 1(left),

Verd et al. (2019) partitioned a slightly reduced version of the spatial
representation of the gap gene network shown in Fig. 1(right) into three
subnetworks they described as dynamic modules. According to their
definition, a dynamic module of the gap gene regulatory network is a
subgroup of the genes that control protein expression in a region of
the A–P axis. They postulate that the A–P axis can be split into three
regions, each of which has a single gene that does not participate in
network dynamics (i.e. is inactive) in that region. They assume that
between A–P positions 35%–47% (region 1) kni is inactive, between
49%–59% (region 2) gt is inactive and between 61%–75% (region
3) hb is inactive. Thus, they create three dynamic modules (Fig. 2),
all isomorphic to the ACDC signaling motif (Panovska-Griffiths et al.,
3

2013), that are active in regions 1, 2 and 3, respectively. Verd et al.
(2019) showed that these subnetworks were capable of reproducing the
protein expression levels between 35%–75% egg length.

One of the purposes of our study is to show that the decomposition
into dynamic modules is unnecessary to reproduce the data. To do
so, consider the network constructed as the union of nodes and edges
from the three ACDC dynamical modules without the self-loops. We call
this network the fully connected network (FullConn), see Fig. 2. We
will evaluate this network using our methods to see if it can faithfully
capture the protein expression data, which we describe in Section 4.2.

2.2. DSGRN

In this section, we discuss a modeling approach called DSGRN
(Dynamic Signatures Generated by Regulatory Networks) (Cummins
et al., 2016) that captures network dynamics across global parameter
space. The structures that will be especially important are the pa-
rameter graph constructed from factor graphs (Section 2.2.2) and
the Morse graph capturing the dynamics at each DSGRN parameter
(Section 2.2.3).

2.2.1. Regulatory networks and switching systems
A Regulatory Network is a directed graph, denoted RN = (𝑉 ,𝐸),

where 𝑉 is the set of nodes and the edges 𝐸 ⊂ 𝑉 × 𝑉 × {1,−1}
denote interactions between the network nodes: the edge (𝑣𝑖, 𝑣𝑗 , 1) ∈ 𝐸
indicates that 𝑣𝑖 is an activator of 𝑣𝑗 (denoted by 𝑣𝑖 → 𝑣𝑗), while the
edge (𝑣𝑖, 𝑣𝑗 ,−1) ∈ 𝐸 (denoted 𝑣𝑖 ⊣ 𝑣𝑗), indicates that 𝑣𝑖 is an inhibitor
of 𝑣𝑗 . An ordered pair (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸 represents either 𝑣𝑖 → 𝑣𝑗 or 𝑣𝑖 ⊣ 𝑣𝑗 .

Definition 2.2.1. Given a regulatory network RN = (𝑉 ,𝐸), a source
of a node 𝑣𝑗 is a node 𝑣𝑖 such that (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸. A target of 𝑣𝑗 is a node
𝑣𝑘 such that (𝑣𝑗 , 𝑣𝑘) ∈ 𝐸. The set of sources and targets of a node 𝑣𝑗 are
given by

𝑆(𝑣𝑗 ) ∶= {𝑣𝑖 | (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸} and 𝑇 (𝑣𝑗 ) ∶= {𝑣𝑘 | (𝑣𝑗 , 𝑣𝑘) ∈ 𝐸}.

We associate to a regulatory network RN = (𝑉 ,𝐸) with |𝑉 | = 𝑀
a system of 𝑀 ordinary differential equations (ODEs) with piecewise
constant nonlinearities called a switching system (Glass and Kauff-
man, 1972, 1973; Thomas, 1973, 1991; Thieffry and Thomas, 1998;
de Jong et al., 2004; Snoussi, 1989). With a slight abuse of notation in
the interest of clarity, we use 𝑣𝑗 to denote either a node in 𝑉 or the
corresponding variable in a dynamical system that evolves according
to

𝑣̇ = −𝛾 𝑣 + 𝛬 (𝑣), 𝑗 = 1,… ,𝑀 (1)
𝑗 𝑗 𝑗 𝑗
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Fig. 2. ACDC modules of the gap gene network and the FullConn network. (top) Identification of active nodes along spatial domains 35%–47% (region 1), 49%–59% (region 2)
and 61%–75% (region 3) identified in Verd et al. (2019). (bottom) The ACDC modules 1, 2, and 3, assumed by Verd et al. (2019) to be active in region 1, 2, and 3 respectively.
The fully connected (FullConn) network is a union of nodes and edges from the ACDC modules (without the self-loops). Figure adapted from (Verd et al., 2019).
where 𝛾𝑗 > 0 is the decay rate of 𝑣𝑗 and 𝛬𝑗 (𝑣) is a product of sums of
step functions 𝜎±𝑗,𝑖(𝑣𝑖) for each 𝑣𝑖 ∈ 𝑆(𝑣𝑗 ) given by

𝜎+𝑗,𝑖(𝑣𝑖) =

{

𝑙𝑗,𝑖 if 𝑣𝑖 < 𝜃𝑗,𝑖
𝑢𝑗,𝑖 if 𝑣𝑖 > 𝜃𝑗,𝑖

(2)

if 𝑣𝑖 → 𝑣𝑗 and

𝜎−𝑗,𝑖(𝑣𝑖) =

{

𝑙𝑗,𝑖 if 𝑣𝑖 > 𝜃𝑗,𝑖
𝑢𝑗,𝑖 if 𝑣𝑖 < 𝜃𝑗,𝑖

(3)

if 𝑣𝑖 ⊣ 𝑣𝑗 . Here 𝑙𝑗,𝑖 and 𝑢𝑗,𝑖 and are called the lower (low) and upper
(high) level of effect of node 𝑣𝑖 on node 𝑣𝑗 , where 0 < 𝑙𝑗,𝑖 < 𝑢𝑗,𝑖. The
threshold 0 < 𝜃𝑗,𝑖 for node 𝑣𝑖 is where the effect on target 𝑣𝑗 of the
regulator node 𝑣𝑖 changes. We assume that the values of 𝜃𝑗,𝑖 for any
node 𝑣𝑖 are distinct. Suppose |𝑆(𝑣𝑗 )| = 𝐾, where the nodes 𝑣𝑖1 ,… , 𝑣𝑖𝓁
are activators of 𝑣𝑗 and the nodes 𝑣𝑖𝓁+1 ,… , 𝑣𝑖𝐾 are inhibitors of 𝑣𝑗 , then
for the computations in this paper we choose the expression

𝛬𝑗 (𝑣) = (𝜎+(𝑣𝑖1 ) +⋯ + 𝜎+(𝑣𝑖𝓁 ))𝜎
−(𝑣𝑖𝓁+1 )⋯ 𝜎−(𝑣𝑖𝐾 ). (4)

This form, often used in switching systems (Glass and Kauffman, 1972;
Thomas, 1973; Thieffry and Thomas, 1998), was motivated by the
fact that transcriptional activators often act additively, and that the
transcriptional repressors physically block transcription initiation. This
choice is not conceptually necessary, but is currently implemented in
the DSGRN software (Gameiro, 2018). See Fig. 3(a, b) for an example
of an RN and its associated switching system.

2.2.2. Factor graph and DSGRN parameter graph
The values {𝜃𝑗,𝑖, 𝑙𝑗,𝑖, 𝑢𝑗,𝑖} are non-negative parameters of system (1),

where we assume decay rates of 1 for simplicity. Traditionally, to
characterize the behavior of the ODE system over parameter space, a
(necessarily sparse) parameter sampling would be performed. DSGRN
takes a different approach and divides parameter space into a finite
number of regions defined by inequalities, and evaluates coarse but
informative signatures of dynamic behaviors of the network that are
invariant within each region (Cummins et al., 2016). Since the number
of regions is finite, it is in principle possible to compute these coarse
signatures over all of parameter space for a switching system associated
to RN, although the number of regions grows combinatorially and
exhaustive computations become rapidly intractable. In this section, we
4

introduce the inequalities that define DSGRN parameter regions and
arrange them into a parameter graph that reflects region adjacency in
the parameter space.

To do so, we define order parameters and logic parameters. For a node
𝑣 with |𝑇 (𝑣)| thresholds, one for each 𝑣𝑘 ∈ 𝑇 (𝑣), an order parameter
defines an ordering of these thresholds. A logic parameter defines how
a finite collection of possible inputs to node 𝑣 is related to the |𝑇 (𝑣)|
thresholds of 𝑣.

Definition 2.2.2. Let 𝑣𝑗 ∈ 𝑉 be a node in RN with source nodes
𝑆(𝑣𝑗 ) = {𝑣𝑠1 ,… , 𝑣𝑠𝐾 } and target nodes 𝑇 (𝑣𝑗 ) = {𝑣𝑖1 ,… , 𝑣𝑖𝑇 }. The thresh-
olds associated with 𝑣𝑗 are 𝛩𝑗 = {𝜃𝑖1 ,𝑗 ,… 𝜃𝑖𝑇 ,𝑗}. An order parameter for
𝑣𝑗 is a bijective map 𝛼𝑗 ∶ 𝛩𝑗 → {0, 1,… , |𝑇 (𝑣𝑗 )|−1} that induces a total
ordering of the thresholds associated to 𝑣𝑗 . We call 𝑂𝑗 the set of all
order parameters for vertex 𝑣𝑗 .

Let

𝑅𝑗 = {𝑙𝑗,𝑠1 , 𝑢𝑗,𝑠1} ×⋯ × {𝑙𝑗,𝑠𝐾 , 𝑢𝑗,𝑠𝐾 }

be a lattice of inputs to the node 𝑣𝑗 under the product order induced
by

𝑙𝑗,𝑠𝑘 < 𝑢𝑗,𝑠𝑘 for all 𝑠𝑘 ∈ 𝑆(𝑣𝑗 ). (5)

That is, we will write 𝑤 < 𝑤̄ ∈ 𝑅𝑗 whenever, for 𝑤 = (𝑎1,… , 𝑎𝐾 )
and 𝑤̄ = (𝑎̄1,… , 𝑎̄𝐾 ), we have 𝑎𝑘 ≤ 𝑎̄𝑘 for all 𝑘 = 1,… , 𝐾 and at
least one of the inequalities is strict. Let 𝑋𝑗 = {0, 1,… , |𝑇 (𝑣𝑗 )|} be the
set of |𝑇 (𝑣𝑗 )| + 1 integers that enumerates the intervals between the
thresholds. A logic parameter 𝜉𝑗 for 𝑣𝑗 is a map 𝜉𝑗 ∶ 𝑅𝑗 → 𝑋𝑗 , which
satisfies

𝑤 < 𝑤̄ ⇒ 𝜉𝑗 (𝑤) ≤ 𝜉𝑗 (𝑤̄);

i.e. it is monotone. We call 𝐿𝑗 the set of all logic parameters for vertex
𝑣𝑗 . A factor parameter for a node 𝑣𝑗 ∈ 𝑉 is a pair 𝑝𝑗 ∶= (𝜉𝑗 , 𝛼𝑗 ) ∈
𝐿𝑗 × 𝑂𝑗 .

The set 𝑅𝑗 contains all the possible input values into a node 𝑣𝑗 and
the map 𝜉𝑗 inserts the inputs between the thresholds. If 𝜉𝑗 (𝑤) = 𝑚 then
we say 𝑤 is above 𝑚 thresholds. We chose to reuse the relation symbol
< on 𝑅𝑗 to facilitate the following simplification of notation: we will
write 𝑤 < 𝜃𝑖,𝑗 when 𝜉𝑗 (𝑤) < 𝛼𝑗 (𝜃𝑖,𝑗 ), although the spaces 𝑅𝑗 and 𝛩𝑗 are
not strictly comparable.
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Fig. 3. Example of a DSGRN computation. (a) The RN and the (b) associated ordinary differential equations with decay rates 𝛾1 = 𝛾2 = 1. (c) A choice of DSGRN parameter where
𝑤𝑖

1 = (𝑙𝑖,1 , 𝑙𝑖,2), 𝑤𝑖
2 = (𝑙𝑖,1 , 𝑢𝑖,2), 𝑤𝑖

3 = (𝑢𝑖,1 , 𝑙𝑖,2), and 𝑤𝑖
4 = (𝑢𝑖,1 , 𝑢𝑖,2) for 𝑖 = 1, 2, see Section 2.2.2 for more details. (d) The list of target points for each domain 𝑘𝓁 of the phase space in

(e). Note the colors of the TP(𝑘𝓁) match the color of the vertex of the domain where that target point falls (for example, TP(𝑘1), TP(𝑘2), and TP(𝑘6) all have target points in the
omain 𝑘2). See Appendix A for details. (e) Phase space decomposition into the nine domains by thresholds 𝜃1,1 , 𝜃1,2 , 𝜃2,2 and 𝜃2,1. Each domain is represented by a circular vertex

inside the domain. Arrows are the depiction of the direction of trajectories of a switching ODE system model in (b). The choice of DSGRN parameter is depicted above and to the
right of phase space. For example, we have 𝑤1

4 > 𝜃2,1, since domains 𝑘7, 𝑘8 and 𝑘9 are all above 𝜃2,1 we write 𝑤1
4 above these. The vertices and arrows form the state transition

raph. See Appendix A for details. (f) The Morse graph (below) associated with the state transition graph in (e) and the strongly path connected components, or Morse nodes,
ssociated with each node of the Morse graph (above), where the strongly connected path components are associated to domains 𝑘2 , 𝑘3 , 𝑘5 , 𝑘6 , 𝑘7 and 𝑘8 in phase space and the
dges are reachability conditions.
Table 1
Logic parameter examples (right) and corresponding inequality descriptions (left) for
a network node with two in-edges and two out-edges and order parameter 𝛼1(𝜃1,1) =
, 𝛼1(𝜃1,2) = 1.

Logic Parameter Inequality Description

𝜉1(𝑤1
1) = 0, 𝜉1(𝑤1

2) = 0, 𝜉1(𝑤1
3) = 0, 𝜉1(𝑤1

4) = 0 𝑤1
1 < {𝑤1

2 , 𝑤
1
3} < 𝑤1

4 < 𝜃1,1 < 𝜃1,2
𝜉1(𝑤1

1) = 0, 𝜉1(𝑤1
2) = 0, 𝜉1(𝑤1

3) = 1, 𝜉1(𝑤1
4) = 2 𝑤1

1 < 𝑤1
2 < 𝜃1,1 < 𝑤1

3 < 𝜃1,2 < 𝑤1
4

𝜉1(𝑤1
1) = 0, 𝜉1(𝑤1

2) = 2, 𝜉1(𝑤1
3) = 1, 𝜉1(𝑤1

4) = 2 𝑤1
1 < 𝜃1,1 ≺ 𝑤1

3 < 𝜃1,2 < 𝑤1
2 < 𝑤1

4

See Table 1 for example parameters for node 𝑣1 in Fig. 3, which has
two in-edges and two out-edges. The lattice of inputs

𝑅1 = {𝑙1,1, 𝑢1,1} × {𝑙1,2, 𝑢1,2} = {(𝑙1,1, 𝑙1,2), (𝑙1,1, 𝑢1,2), (𝑢1,1, 𝑙1,2), (𝑢1,1, 𝑢1,2)}

is partially ordered (𝑙1,1, 𝑙1,2) < {(𝑙1,1, 𝑢1,2), (𝑢1,1, 𝑙1,2)} < (𝑢1,1, 𝑢1,2) with
respect to the product order. The out-edges have thresholds 𝜃1,1 and
𝜃1,2 with the set of order parameters 𝑂1 consisting of two functions

𝑂1 = {(𝛼11 (𝜃1,1) = 0, 𝛼11 (𝜃1,2) = 1), (𝛼21 (𝜃1,2) = 0, 𝛼21 (𝜃1,1) = 1)},

while the set of logic parameters is the set of functions 𝜉1 ∶ 𝑅1 →
{0, 1, 2}. Select without loss one of the two order parameters 𝛼1 ∶= 𝛼11
which we interpret as 𝜃 < 𝜃 . Using the notation 𝑤1 = (𝑙 , 𝑙 ), 𝑤1 =
5

1,1 1,2 1 1,1 1,2 2
(𝑙1,1, 𝑢1,2), 𝑤1
3 = (𝑢1,1, 𝑙1,2), and 𝑤1

4 = (𝑢1,1, 𝑢1,2), we list in Table 1
three logic parameters with the corresponding description in terms
of inequalities. While Table 1 only shows 3 logic parameters for our
example, there are 20 in total. Hence, |𝐿1 × 𝑂1| = 40, showing 𝑣1 has
40 factor parameters.

Remark 2.2.1. In the special case where |𝑇 (𝑣𝑗 )| = 0, i.e. node 𝑣𝑗
has no out-edges, DSGRN assumes that 𝑣𝑗 still can attain high and low
levels of expression. To implement this, a ‘‘ghost’’ threshold is assigned,
and the parameters for 𝑣𝑗 are taken to be the same as if |𝑇 (𝑣𝑗 )| = 1.

The set of factor parameters for a network node can be represented
as a graph.

Definition 2.2.3. Given a RN = (𝑉 ,𝐸), the factor graph 𝐹𝑗 = (𝑉𝑗 , 𝐸𝑗 )
for a regulatory node 𝑣𝑗 ∈ 𝑉 is an undirected graph with a node 𝑝𝑗 ∈ 𝑉𝑗
for each factor parameter of 𝑣𝑗 and edges between nodes whenever
there is a single inequality change between two factor parameters;
i.e., there is an edge between (𝜉𝑖𝑗 , 𝛼

𝑖
𝑗 ) and (𝜉𝑘𝑗 , 𝛼

𝑘
𝑗 ) if exactly one of the

following is satisfied:
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Fig. 4. Factor graph for a node 𝑣1 from Fig. 3. Each node label 𝑎𝑏𝑐𝑑 represents a logic parameter, with 𝑎 = 𝜉1(𝑤1), 𝑏 = 𝜉1(𝑤2), 𝑐 = 𝜉1(𝑤3) and 𝑑 = 𝜉1(𝑤4). The left-hand side of the
graph has factor parameters associated with the order parameter 𝜃1,1 < 𝜃1,2 while the right-hand side is associated with 𝜃1,2 < 𝜃1,1. Black edges show logical adjacencies and red
dges show order adjacencies.
1. (Logical adjacency) 𝜉𝑖𝑗 (𝜔) = 𝜉𝑘𝑗 (𝜔) for 𝜔 ∈ 𝑅𝑗 except for exactly
one 𝜔̄ ∈ 𝑅𝑗 , in which case

𝜉𝑖𝑗 (𝜔̄) = 𝜉𝑘𝑗 (𝜔̄) + 1,

and 𝛼𝑖𝑗 (𝜃𝑖𝑚 ,𝑗 ) = 𝛼𝑘𝑗 (𝜃𝑖𝑚 ,𝑗 ) for all 𝜃𝑖𝑚 ,𝑗 ∈ 𝛩𝑗 , or
2. (Order adjacency) 𝜉𝑖𝑗 = 𝜉𝑘𝑗 and there exists exactly one set of

integers 𝑠, 𝑚, 𝑛 such that 𝛼𝑖𝑗 (𝜃𝑖𝓁 ,𝑗 ) = 𝛼𝑘𝑗 (𝜃𝑖𝓁 ,𝑗 ) for 𝓁 ≠ 𝑚, 𝑛 and

𝛼𝑖𝑗 (𝜃𝑖𝑚 ,𝑗 ) = 𝑠, 𝛼𝑖𝑗 (𝜃𝑖𝑛 ,𝑗 ) = 𝑠 + 1

𝛼𝑘𝑗 (𝜃𝑖𝑚 ,𝑗 ) = 𝑠 + 1, 𝛼𝑘𝑗 (𝜃𝑖𝑛 ,𝑗 ) = 𝑠.

The factor graph of node 𝑣1 from Fig. 3 can be seen in Fig. 4. Note
hat this graph has all 40 factor parameters, where the order parameter
s depicted above the nodes and the logic parameter is encoded in
he labels, where a label 𝑎𝑏𝑐𝑑 corresponds to the logic parameter with
1(𝑤1) = 𝑎, 𝜉1(𝑤2) = 𝑏, 𝜉1(𝑤3) = 𝑐, and 𝜉1(𝑤4) = 𝑑. Logical adjacencies
re shown as black edges and order adjacencies are shown as red edges.

Order adjacencies exist only between subfactor graphs, or isomor-
hic subgraphs of a factor graph that contain only logical adjacencies.
or a regulatory node 𝑣𝑗 ∈ 𝑉 , the order parameters 𝛼𝑖𝑗 ∈ 𝑂𝑗 are related
y a group of permutations 𝜋

|𝑇 (𝑣𝑗 )|, that permute threshold labels. As a
onsequence, for each factor parameter 𝑝𝑗 ∈ 𝑉𝑗 with a threshold order
𝛼𝑖𝑗 there are |𝑇 (𝑣𝑗 )|! parameters 𝑝𝜂 , 𝜂 ∈ 𝜋

|𝑇 (𝑣𝑗 )|, where threshold labels
are permuted by 𝜂. Therefore, each factor graph contains a collection
of |𝑇 (𝑣𝑗 )|! subfactor graphs. An example of this can be seen in Fig. 4
factor graph, which has two subfactor graphs.

A DSGRN parameter is the choice of one factor parameter for each
𝑣 ∈ 𝑉 . Fig. 3(c) shows an example of a DSGRN parameter for the RN
shown in (a).

Definition 2.2.4. Let RN = (𝑉 ,𝐸) be a regulatory network with
|𝑉 | = 𝑀 and let 𝐹 = (𝑉 ,𝐸 ) denote the factor graphs of each 𝑣 ∈ 𝑉 .
6

𝑗 𝑗 𝑗 𝑗
Then the DSGRN parameter graph PG has a vertex set  given by

 =
𝑀
∏

𝑗=1
𝑉𝑗 .

The nodes (𝑝1, 𝑝2,… , 𝑝𝑀 ) and (𝑞1, 𝑞2,… , 𝑞𝑀 ) in  are connected by
an edge if and only if there exists exactly one 𝑗 = 1, 2,… ,𝑀 where
(𝑝𝑗 , 𝑞𝑗 ) ∈ 𝐸𝑗 and 𝑝𝑖 = 𝑞𝑖 otherwise. In other words, there exists an
adjacent change in inequalities in exactly one factor parameter graph.

Consider the RN from Fig. 3(a) and the factor graph in Fig. 4 for
node 𝑣1. Since 𝑣2 also has two in-edges and two-edges, then it has a
factor graph that is isomorphic to the factor graph for 𝑣1. The parameter
graph for this RN is constructed by taking the product of the factor
graph for 𝑣1 with the factor graph of 𝑣2. Then this parameter graph has
a total of 1600 nodes (a fully constructed parameter graph for a two-
node and two-edge network can be seen in Gedeon et al. (2018)). While
1600 appears to be a large number of parameter nodes, it represents a
finite decomposition of R3|𝐸| = R12 and therefore is a great reduction
in number of parameters that need to be examined.

2.2.3. Morse graphs
A Morse graph is a compact description of the global dynamics of

a regulatory network RN at a specific parameter node in 𝑃𝐺. That is,
for every node in 𝑃𝐺, there is a Morse graph that captures both stable
and unstable dynamics. The Morse graph is computed from a state
transition graph (STG), an example of which is shown in Fig. 3(e).
The partition of phase space shown is due to the thresholds associated
with RN. The set of thresholds 𝛩𝑗 for 𝑣𝑗 ∈ 𝑉 divide the interval [0,∞)
into |𝑇 (𝑣𝑗 )| + 1 intervals, namely (0, 𝜃𝑖1 ,𝑗 ), (𝜃𝑖1 ,𝑗 , 𝜃𝑖2 ,𝑗 ),… , (𝜃𝑖

|𝑇 (𝑣𝑗 )| ,𝑗
,∞),

described by the previously introduced set 𝑋𝑗 = {0, 1,… , |𝑇 (𝑣𝑗 )|}. The
collection of thresholds 𝛩 = (𝛩1,… , 𝛩𝑀 ) ref:Theta divides [0,∞)𝑀 into
a finite number of 𝑀-dimensional rectangles called domains. Let 
enote the collection of all such domains. This collection is represented



Journal of Theoretical Biology 580 (2024) 111720E. Andreas et al.
by the 𝑀-tuples of integers 𝑋 =
∏𝑀

𝑗=1 𝑋𝑗 via a bijection 𝜙 ∶  →
𝑋. For example, domain 𝑘1 in the lower left of Fig. 3(e) has label
𝜙(𝑘1) = (0, 0), since both 𝑣1 and 𝑣2 exceed 0 thresholds each. The
arrows between the domains represent the direction of trajectories of a
switching ODE system model that is consistent with network structure.
The details of the construction of the arrows are not needed for an
understanding of this work and are summarized in Appendix A based
on the introduction in Cummins et al. (2016). Once the division of
phase space and the flow across domains is calculated, the resulting
information can be simplified to the STG, shown by the nodes and edges
superposed over phase space in Fig. 3(e). The most important features
to notice are that (1) there can be single cells that are attracting,
corresponding to the presence of a stable equilibrium, and (2) stable or
unstable cyclic behavior can be identified. A Morse graph is a summary
of this recurrent behavior in the STG, as described by the arrangement
of strongly connected path components, see Fig. 3(f).

Definition 2.2.5. A directed graph 𝐺 = (𝑉 ,𝐸) is strongly connected
if every pair of nodes 𝑢, 𝑣 ∈ 𝑉 has a directed path from 𝑢 to 𝑣 and from
𝑣 to 𝑢. A strongly connected subgraph 𝐻 of 𝐺 is said to be maximal if
there is no strongly connected subgraph 𝐻 ′ ⊊ 𝐺 with 𝐻 ⊊ 𝐻 ′ ⊊ 𝐺. A
maximal strongly connected subgraph is called a strongly connected
component. A strongly connected path component is a strongly
connected component that has at least one edge (Mischaikow, 2002).

We summarize the following definition from (Cummins et al., 2016).
The Morse decomposition MD(𝑝) of a STG for 𝑝 ∈  is the set of
all strongly connected path components of the STG. Consider any two
strongly connected path components 𝑠1, 𝑠2 ∈ MD(𝑝). If there is a path
in the STG from 𝑠2 to 𝑠1 then we say 𝑠1 ≤ 𝑠2, defining a partial order ≤
on MD(𝑝). The Morse graph of the STG, denoted MG(𝑝), is the Hasse
diagram of (MD(𝑝),≤ ), and the vertices of MG(𝑝) are called Morse
nodes.

In order for the Morse graph to provide interpretable information,
we label each Morse node in a way that suggests the dynamics asso-
ciated with the underlying strongly connected path component of the
STG. The notation FP(𝑤) is used to label a Morse node where the
corresponding strongly connected path component consists of a single
attracting domain 𝑘 ∈  with label 𝑤 = 𝜙(𝑘) ∈ 𝑋. For example, in
Fig. 3(e) we see that the domain 𝑘3 is an attracting region with label
(0, 2), and thus the corresponding Morse node will be labeled FP(0, 2).

The full cycle label (FC) annotates Morse nodes where there is a
closed path {𝑘0, 𝑘2,… , 𝑘𝑚, 𝑘0} in  where each edge 𝑘𝑖 → 𝑘𝑖+1 (mod
𝑚+1) follows the directed edge in STG and crosses a threshold for each
node 𝑣𝑗 . For example, the STG in Fig. 3(e) gives rise to a Morse graph
with two Morse nodes labeled FP, as well as a full cycle FC that has a
path to one of the fixed points (Fig. 3(f)). The full cycle represents the
path in phase space 𝑘6 → 𝑘5 → 𝑘8 → 𝑘7 → 𝑘6.

Definition 2.2.6. The leaves of the Morse graph, i.e. the Morse
nodes with no out-edges, are called stable Morse nodes. All others are
unstable Morse nodes. A monostable Morse graph is a Morse graph
containing a single stable Morse node. A monostable fixed point is
the unique stable Morse node in a monostable Morse graph that has an
FP annotation.

3. Spatial modeling using DSGRN

DSGRN is inherently suited to systems of ordinary differential
equations and not to partial differential equations. However, we can
approximate the effect of temporally constant yet spatially varying
external variables on a dynamical system via a directed sequence of
parameter changes in the system. The goal of this section is to intro-
duce the necessary rigor for this modeling framework. This procedure
necessitates a re-imagining of a factor graph as a graded poset (see
Theorem 2). The ranks of the graded poset are used to define factor
graph layers that impose an unambiguous direction of flow through the
factor graph, allowing for external variables to the dynamical system
to be modeled as monotone changes in the factor graph.
7

3.1. Factor graph layers

In this section, we define a partial order on the factor graph by first
defining it on every subfactor graph. Recall 𝛩𝑗 = {𝜃𝑖1 ,𝑗 , 𝜃𝑖2 ,𝑗 ,… 𝜃𝑖

|𝑇 (𝑣𝑗 )| ,𝑗
}

is the collection of thresholds of node 𝑣𝑗 ∈ 𝑉 , and 𝑂𝑗 is the set of
all order parameters for 𝑣𝑗 . Given a factor graph 𝐹𝑗 = (𝑉𝑗 , 𝐸𝑗 ), let
𝐺𝑖
𝑗 = (𝑉 𝑖

𝑗 , 𝐸
𝑖
𝑗 ) be a subfactor graph of 𝐹𝑗 that is associated with a

particular order parameter 𝛼𝑖𝑗 .
Note 𝐹𝑗 has a set of lowest parameter nodes 𝐿𝑝𝑗

𝐿𝑝𝑗 ∶= {𝑝𝑗 = (𝜉𝑗 , ⋅) ∈ 𝑉𝑗 ∣ 𝜉𝑗 (𝑤) = 0 for all 𝑤 ∈ 𝑅𝑗}

and a set of highest parameter nodes 𝐻𝑝𝑗

𝐻𝑝𝑗 ∶= {𝑝𝑗 = (𝜉𝑗 , ⋅) ∈ 𝑉𝑗 ∣ 𝜉𝑗 (𝑤) = |𝑇 (𝑣𝑗 )| for all 𝑤 ∈ 𝑅𝑗}

with (𝜉𝑗 , ⋅) and 𝑅𝑗 as defined in Definition 2.2.2. For example, in
the factor graph in Fig. 4, both nodes labeled 2222 are the set of
highest parameters and both nodes labeled 0000 are the set of lowest
parameters. Each subfactor graph 𝐺𝑖

𝑗 has a unique node 𝓁𝑗,𝑖 ∈ 𝐿𝑝𝑗 and
unique node ℎ𝑗,𝑖 ∈ 𝐻𝑝𝑗 . We will call these nodes the root and leaf of
a subfactor graph 𝐺𝑖

𝑗 , respectively.

Definition 3.1.1. Let 𝐺𝑖
𝑗 = (𝑉 𝑖

𝑗 , 𝐸
𝑖
𝑗 ) be a subfactor graph. We define a

strict partial order ≺ on 𝑉 𝑖
𝑗 by 𝑝𝑠𝑗 ≺ 𝑝𝑡𝑗 when 𝜉𝑠𝑗 (𝜔) ≤ 𝜉𝑡𝑗 (𝜔) for all 𝜔 ∈ 𝑅𝑗 ,

with strict inequality for at least one 𝜔 ∈ 𝑅𝑗 .

Theorem 1. Let 𝐺𝑖
𝑗 = (𝑉 𝑖

𝑗 , 𝐸
𝑖
𝑗 ) be a subfactor graph. Then

(a) for any 𝑝𝑠𝑗 , 𝑝
𝑡
𝑗 ∈ 𝑉 𝑖

𝑗 with 𝑝𝑠𝑗 ≺ 𝑝𝑡𝑗 , there is a path from 𝑝𝑠𝑗 to 𝑝𝑡𝑗 in 𝐺𝑖
𝑗 .

In other words, there is a sequence of vertices 𝑝𝑠𝑗 = 𝑝0𝑗 , 𝑝
1
𝑗 ,… , 𝑝𝑛𝑗 = 𝑝𝑡𝑗

such that (𝑝𝑘𝑗 , 𝑝
𝑘+1
𝑗 ) ∈ 𝐸𝑖

𝑗 for all 𝑘 = 0,… , 𝑛 − 1.
(b) if (𝑝𝑠𝑗 , 𝑝

𝑡
𝑗 ) ∈ 𝐸𝑖

𝑗 , then either 𝑝𝑠𝑗 ≺ 𝑝𝑡𝑗 or 𝑝𝑠𝑗 ≻ 𝑝𝑡𝑗 .

Proof of Theorem 1. (a) We prove the statement in two steps. Assume
first that 𝜉𝑠𝑗 (𝜔) ≤ 𝜉𝑡𝑗 (𝜔) for all 𝜔 ∈ 𝑅𝑗 , with strict inequality for exactly
one 𝜔̄ ∈ 𝑅𝑗 and that 𝜉𝑡𝑗 (𝜔̄) = 𝜉𝑠𝑗 (𝜔̄) + 𝑛. If 𝑛 = 1 then (𝑝𝑠𝑗 , 𝑝

𝑡
𝑗 ) ∈ 𝐸𝑖

𝑗
by Definition 2.2.3. Assume now that 𝑛 > 1. Since 𝑉 𝑖

𝑗 contains all logic
parameters then there exists (𝑝𝑠𝑗 , 𝑝

1
𝑗 ) ∈ 𝐸𝑖

𝑗 such that 𝜉1𝑗 (𝜔̄) = 𝜉𝑠𝑗 (𝜔̄)+1 and
𝜉1𝑗 (𝜔) = 𝜉𝑠𝑗 (𝜔) otherwise. Similarly, there exists (𝑝1𝑗 , 𝑝

2
𝑗 ) ∈ 𝐸𝑖

𝑗 such that
𝜉2𝑗 (𝜔̄) = 𝜉1𝑗 (𝜔̄) + 1 and 𝜉2𝑗 (𝜔) = 𝜉1𝑗 (𝜔) otherwise. Repeating this process 𝑛
times, we construct a path

𝑝𝑠𝑗 → 𝑝1𝑗 → 𝑝2𝑗 →⋯→ 𝑝𝑛𝑗

in 𝐺𝑖
𝑗 . Notice that 𝑝𝑛𝑗 = 𝑝𝑡𝑗 since 𝜉𝑛𝑗 (𝜔) = 𝜉𝑡𝑗 (𝜔) for all 𝜔 ∈ 𝑅𝑗 , proving

that this is a path from 𝑝𝑠𝑗 to 𝑝𝑡𝑗 .

Assume now that there are 𝜔1,… , 𝜔𝑞 ∈ 𝑅𝑗 such that 𝑝𝑠𝑗 ≺ 𝑝𝑡𝑗 satisfies
𝜉𝑡𝑗 (𝜔𝑢) = 𝜉𝑠𝑗 (𝜔𝑢) + 𝑛𝑢 for 𝑢 = 1,… , 𝑞, but 𝜉𝑡𝑗 (𝜔) = 𝜉𝑠𝑗 (𝜔) for all other
𝜔 ∈ 𝑅𝑗 . We now sequentially apply the construction in step one by
adjusting the values of 𝜉𝑘𝑗 one 𝜔𝑢 at a time. The important restriction
on this construction is that the 𝜉𝑘𝑗 functions need to remain monotone
functions throughout this process; i.e. 𝜔𝛼 < 𝜔𝛽 implies 𝜉𝑘𝑗 (𝜔𝛼) ≤ 𝜉𝑘𝑗 (𝜔𝛽 )
as in Definition 2.2.2. It is easy to see that if 𝜔𝛼 < 𝜔𝛽 then increasing
the values of 𝜉𝑠𝑗 (𝜔𝛽 ) before adjusting values of 𝜉𝑠𝑗 (𝜔𝛼) will preserve the
monotonicity of 𝜉𝑠𝑗 at all stages of the construction. Therefore, we adjust
the values of 𝜉𝑠𝑗 (𝜔𝑢) starting from the highest 𝜔𝑢 and then proceed down
the partial order. The concatenation of these paths gives a path in 𝐺𝑖

𝑗
between 𝑝𝑠𝑗 and 𝑝𝑡𝑗 . This proves (a).

To prove (b), suppose (𝑝𝑠𝑗 , 𝑝
𝑡
𝑗 ) ∈ 𝐸𝑖

𝑗 . Then by Definition 2.2.3 there
exists exactly one 𝜔̄ ∈ 𝑅𝑗 such that 𝜉𝑠𝑗 (𝜔̄) = 𝜉𝑡𝑗 (𝜔̄) ± 1, with equality for
all other 𝜔 ∈ 𝑅𝑗 . If 𝜉𝑠𝑗 (𝜔̄) = 𝜉𝑡𝑗 (𝜔̄)+1 then 𝑝𝑠𝑗 ≻ 𝑝𝑡𝑗 and if 𝜉𝑡𝑗 (𝜔̄) = 𝜉𝑠𝑗 (𝜔̄)+1
then 𝑝𝑠𝑗 ≺ 𝑝𝑡𝑗 .

The following Corollary is an immediate consequence of Theorem 1.

𝑖
Corollary 3.1.1. Each subfactor graph 𝐺𝑗 is connected.
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Fig. 5. Factor graph layers and modeling external variables. (a) The factor graph and factor graph layers for a RN node with one in-edge and two out-edges with thresholds 𝜃1 and
𝜃2 and input values 𝑙 < 𝑢. The red dashed lines are depicting which nodes in the factor graph belong to each factor graph layer. (b) The factor graph from (a) with an activating
external variable imposed, with directed edges depicting the direction of motion when 𝑐′(𝑦) = −1 (violet). Notice that the external variable is inducing decreasing monotonicity
through the factor graph.
We will now prove that a subfactor graph is a graded poset, with
the immediate consequence that its rank function can be applied to the
factor graph as a whole. This procedure will allow us to divide the
factor graph into a linearly ordered sequence of layers. A monotone
function imposed on these layers can then provide a direction to
parameter changes within the factor graph.

A rank function (Klarner, 1969)  is a map on a poset 𝑃𝑂 such
that given 𝑥, 𝑦 ∈ 𝑃𝑂

(i) 𝑥 < 𝑦 implies (𝑥) < (𝑦) and
(ii) (𝑦) = (𝑥) + 1 if 𝑦 covers 𝑥.

A poset 𝑃𝑂 is graded if it admits a rank function , and is denoted as
(𝑃𝑂,) (Klarner, 1969). A chain is a totally ordered subset of 𝑃𝑂 and
a maximal chain is a chain that is not contained in a larger chain in
𝑃𝑂 (Stanley, 2012).

Recall that the subfactor graph 𝐺𝑖
𝑗 = (𝑉 𝑖

𝑗 , 𝐸
𝑖
𝑗 ) has unique root 𝓁𝑗,𝑖 ∈

𝐿𝑝𝑗 and unique leaf ℎ𝑗,𝑖 ∈ 𝐻𝑝𝑗 .

Theorem 2. Let 𝑗 ∶ 𝑉 𝑖
𝑗 → N ∪ {0} be a function on the vertex set of a

subfactor graph 𝐺𝑖
𝑗 = (𝑉 𝑖

𝑗 , 𝐸
𝑖
𝑗 ) defined as follows

𝑗 (𝑝
𝑞
𝑗 ) =

∑

𝜔∈𝑅𝑗

𝜉𝑞𝑗 (𝜔).

Then

(a) (𝑉 𝑖
𝑗 , ≺ ) is a graded poset with rank function 𝑗 , and

(b) 𝑗 (𝓁𝑗,𝑖) = 0 and 𝑗 (ℎ𝑗,𝑖) = |𝑅𝑗 | ⋅ |𝑇 (𝑣𝑗 )|.

Proof. Since the subfactor graph 𝐺𝑖
𝑗 = (𝑉 𝑖

𝑗 , 𝐸
𝑖
𝑗 ) has unique root 𝓁𝑗,𝑖 ∈

𝐿𝑝𝑗 and unique leaf ℎ𝑗,𝑖 ∈ 𝐻𝑝𝑗 , to show (a) it is sufficient to prove that
all maximal chains in (𝑉 𝑖

𝑗 , ≺) have the same length (Stanley, 2012). We
will show that this length is |𝑅𝑗 | ⋅ |𝑇 (𝑣𝑗 )|.

Consider a maximal chain in (𝑉 𝑖
𝑗 , ≺)

𝑝1𝑗 ≺ 𝑝2𝑗 ≺ ⋯ ≺ 𝑝𝑛𝑗 .

By Theorem 1(a) if 𝑝1𝑗 ≠ 𝓁𝑗,𝑖 the chain can be extended by an element
smaller than 𝑝1𝑗 and therefore the chain is not maximal. A similar
argument applies to 𝑝𝑛𝑗 and therefore 𝑝1𝑗 = 𝓁𝑗,𝑖 and 𝑝𝑛𝑗 = ℎ𝑗,𝑖. Similarly,
by Theorem 1, 𝑝𝑞𝑗 ≺ 𝑝𝑞+1𝑗 must satisfy (𝑝𝑞𝑗 , 𝑝

𝑞+1
𝑗 ) ∈ 𝐸𝑗 , otherwise a path

in 𝐺𝑖
𝑗 could be inserted between 𝑝𝑞𝑗 and 𝑝𝑞+1𝑗 , contradicting maximality.

Thus, for each 𝑞 = 1,… , 𝑛 − 1, we have

𝜉𝑞+1𝑗 (𝜔) = 𝜉𝑞𝑗 (𝜔) + 1

for exactly one 𝜔 ∈ 𝑅𝑗 . Note that for any 𝜔 ∈ 𝑅𝑗 , since

𝜉1(𝜔) = 0 and 𝜉𝑛(𝜔) = |𝑇 (𝑣 )|,
8

𝑗 𝑗 𝑗
then there must be exactly |𝑇 (𝑣𝑗 )| inequalities 𝑝𝑞𝑗 ≺ 𝑝𝑞+1𝑗 such that

𝜉𝑞𝑗 (𝜔) = 𝜉𝑞+1𝑗 (𝜔) + 1.

Thus, each 𝜔 ∈ 𝑅𝑗 requires |𝑇 (𝑣𝑗 )| distinct inequalities in the maximal
chain showing that the length must be |𝑅𝑗 | ⋅ |𝑇 (𝑣𝑗 )|. Since we chose
an arbitrary maximal chain, we have shown that all maximal chains in
(𝑉 𝑖

𝑗 , ≺) have the same length, proving it is a graded poset.
Now we show that 𝑗 is a rank function on (𝑉 𝑖

𝑗 , ≺). Let 𝑝𝑠𝑗 , 𝑝
𝑡
𝑗 ∈ (𝑉 𝑖

𝑗 , ≺
) and suppose that 𝑝𝑠𝑗 ≺ 𝑝𝑡𝑗 , then by Definition 3.1.1,

∑

𝜔∈𝑅𝑗

𝜉𝑠𝑗 (𝜔) <
∑

𝜔∈𝑅𝑗

𝜉𝑡𝑗 (𝜔).

Additionally, when (𝑝𝑠𝑗 , 𝑝
𝑡
𝑗 ) ∈ 𝐸𝑖

𝑗 then 𝑝𝑡𝑗 covers 𝑝𝑠𝑗 which by
Definition 2.2.3 implies 𝑗 (𝑝

𝑞
𝑗 ) = 𝑗 (𝑝

𝑞+1
𝑗 ) + 1. This proves part (a).

The proof of (b) follows directly from the definition of 𝑗 . ■

Since the subfactor graphs of a factor graph 𝐹𝑗 are isomorphic, the
rank function 𝑗 is the same for all 𝐺𝑖

𝑗 . We will use this rank function
to define layers of 𝐹𝑗 .

Remark 3.1.1. There is a subtle difference between our definition of
the parameter graph as the set of all pairs of order and logic parameters,
and our definition of the function 𝛬𝑗 in the switching ODE model in
(4). Not every logic parameter can be realized by a function 𝛬 and
differences start for functions with 3 inputs (Crawford-Kahrl et al.,
2022). The realizable parameters 𝑝 are subset of all parameters 
and these are encoded in the software DSGRN. We refer readers to
Appendix B for the proof of Theorem 2 for realizable parameters.

Definition 3.1.2. Let 𝐹𝑗 = (𝑉𝑗 , 𝐸𝑗 ) be the factor graph for node
𝑣𝑗 , with decomposition into subfactor graphs 𝐺𝑖

𝑗 = (𝑉 𝑖
𝑗 , 𝐸

𝑖
𝑗 ) for 𝑖 ∈

{1,… , |𝑇 (𝑣𝑗 )|!}. The factor graph layer of 𝒑𝒋 ∈ 𝑉 𝑖
𝑗 is 𝑗 (𝑝𝑗 ). The k-th

factor graph layer of 𝐹𝑗 is the node set

{𝑝𝑗 ∈ 𝑉𝑗 ∣ 𝑗 (𝑝𝑗 ) = 𝑘},

for 𝑘 ∈ {0,… , |𝑅𝑗 | ⋅ |𝑇 (𝑣𝑗 )|}.

We say that the highest factor graph layer is the set 𝐻𝑝𝑗 which
is factor graph layer |𝑅𝑗 | ⋅ |𝑇 (𝑣𝑗 )|. Likewise, the lowest factor graph
layer is the set 𝐿𝑝𝑗 , which is factor graph layer 0.

To illustrate the concept of factor graph layers, consider a network
node 𝑣𝑗 with one in-edge with 0 < 𝑙 < 𝑢 and two out-edges with
thresholds 𝜃1 and 𝜃2. There are 12 factor parameters in the factor
graph, see Fig. 5(a). This factor graph has five layers. Each node label
𝑎𝑏 represents a logic parameter with 𝑎 = 𝜉𝑗 (𝑙) and 𝑏 = 𝜉𝑗 (𝑢). Since
 =

∑

𝜉 (𝑤) then the factor layer number is 𝑎 + 𝑏. Another factor
𝑗 𝑤∈𝑅𝑗 𝑗
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graph example is in Fig. 4. This factor graph has 9 layers arranged
horizontally and numbered by the sum of the labels 𝑎𝑏𝑐𝑑. The factor
graph layers allow us to define an idea of monotonicity of paths through
a factor graph.

Definition 3.1.3. Consider a path through the factor graph 𝐹𝑗 =
𝑉𝑗 , 𝐸𝑗 ), with sequence of nodes 𝑝1, 𝑝2,… , 𝑝𝑚 ∈ 𝑉𝑗 . The path is said
o be monotone increasing if for all 𝑝𝑖, 𝑝𝑘 in the path, we have
𝑗 (𝑝𝑖) ≤ 𝑗 (𝑝𝑘) if and only if 𝑖 ≤ 𝑘, i.e. factor graph layers increase
long the path. Similarly, the path is said to be monotone decreasing
f, for all 𝑝𝑖, 𝑝𝑘 in the path, we have 𝑗 (𝑝𝑖) ≤ 𝑗 (𝑝𝑘) if and only if 𝑖 ≥ 𝑘.

monotone increasing or monotone decreasing path in 𝐹𝑗 is called a
onotone path.

.2. Interpreting external variables as parameter changes

Regulatory networks do not operate in isolation; they are subject
o environmental factors that can impact their function. We choose
o model the impact of a spatially monotone but temporally constant
nvironmental variable as a directed sequence of parameter changes
nduced in a targeted subset of RN nodes.

efinition 3.2.1. A monotone external variable 𝑐 ∶ 𝑌 → R, is an
xternal variable not included in the network RN that satisfies either
′(𝑦) ≥ 0 (increasing) or 𝑐′(𝑦) ≤ 0 (decreasing) on 𝑌 .

For the purposes of this manuscript, one can imagine the domain 𝑌
o be a spatial dimension. We assume the following properties of the
xternal variable:

1. If 𝑐(𝑦) is an activator of a network node 𝑣𝑗 , then the abundance
of 𝑣𝑗 qualitatively matches the abundance of 𝑐(𝑦); i.e. high levels
of 𝑐(𝑦) induce high levels of 𝑣𝑗 and lower levels of 𝑐(𝑦) are
associated to lower levels of 𝑣𝑗 .

2. If 𝑐(𝑦) is a repressor of a network node 𝑣𝑗 , high levels of 𝑐(𝑦)
induce low levels of 𝑣𝑗 and low levels of 𝑐(𝑦) induce high levels
of 𝑣𝑗 .

3. Monotone changes in 𝑐(𝑦) induce a corresponding monotone
response in 𝑣𝑗 .

We elaborate on the last point. Let 𝜎𝑖 = ±1, where +1 means that
(𝑦) is an activator and −1 means 𝑐(𝑦) is a repressor to the target node
𝑗 . Let 𝐹𝑗 be the factor graph of 𝑣𝑗 . We model the effect of 𝑐(𝑦) on 𝑣𝑗 as a
onotone path over the layers of 𝐹𝑗 : 𝑐(𝑦) induces monotone increasing
aths in 𝐹𝑗 when 𝜎𝑗 ⋅ sign(𝑐′(𝑦)) = +1 and monotone decreasing paths

when 𝜎𝑗 ⋅ sign(𝑐′(𝑦)) = −1. This monotonicity condition on the factor
raph of 𝑣𝑗 is a model of the continuously changing abundance of 𝑣𝑗 as

a function of changing 𝑐(𝑦). In Fig. 5(b), an activating external variable
that is monotone decreasing in 𝑦 (violet) is imposed on the factor graph.

his induces decreasing monotonicity on the factor graph shown as
irected edges.

We will make use of a stricter condition on the modeling of external
orcing that requires target nodes 𝑣𝑗 ∈ 𝐑𝐍 to not only exhibit consis-

tently high and low expression but to operate at the most extreme factor
graph layers.

Definition 3.2.2. A maximal monotone path in the factor graph 𝐹𝑗
s either

1. a monotone increasing path that starts in the lowest factor graph
layer and ends in the highest factor graph layer, or

2. a monotone decreasing path that starts in the highest factor
graph layer and ends in the lowest factor graph layer.

We now show how to apply this modeling framework to match ob-
ervations along a spatial domain under external variable control using
he example of the D. melanogaster gap gene network. In the next sec-
ion, we show how biological observations may be translated into the
9

language of Morse graphs, and apply this translation to D. melanogaster
development. In the subsequent section, we construct paths in the
DSGRN parameter graph, making use of concepts developed in this
section.

4. Expressing experimental data as morse graphs

In this section, we interpret spatial data as a sequence of fixed points
of a dynamical system and translate these into DSGRN Morse graphs.
We then demonstrate this technique on gene expression data from the
gap gene network.

4.1. Descriptive pattern and phenotype pattern graph

We formally describe a methodology for interpreting any spatial
data in a DSGRN framework. For a given network model RN = (𝑉 ,𝐸),
we consider paths 𝑝1 → … → 𝑝𝑘 in the parameter graph 𝑃𝐺 and the
corresponding sequences of fixed point Morse sets FP1,… , FP𝑘 as the
output of the network model. Since the number of out-edges of 𝑣𝑗 ∈ 𝑉
determines the highest integer state of 𝑋𝑗 (see Definition 2.2.2), the
highest value of an FP annotation will vary across network topologies.
This complicates the comparison of network models to each other and
to the data. Therefore, in order to match experimental data to the
model output in 𝑋𝑗 , we first transform experimental data to qualitative
data, using the descriptors ‘‘high’’, ‘‘intermediate" and ‘‘low’’. Then for
each network under consideration, we transform this qualitative data
to integer values in 𝑋𝑗 .

Definition 4.1.1. Consider a finite setℒ of qualitative expression level
labels, for example ℒ = {𝐿,𝐻} for ‘‘low’’ and ‘‘high’’, that admits a
(not necessarily strict) total order, such as 𝐿 < 𝐻 . Further, consider a
spatial data set of 𝑀 genes and 𝑁 spatial locations. Then an 𝑁 × 𝑀
matrix 𝐷 with 𝐷𝑖,𝑗 ∈ ℒ is the descriptive pattern of the spatial data.

We desire to match a DSGRN model of a regulatory network with 𝑀
vertices 𝑉 = {𝑣1,… , 𝑣𝑀} to the descriptive pattern at spatial locations
{1,… , 𝑁}. In order to perform this matching, we map the 𝑛th row of the
descriptive pattern 𝐷 (denoted 𝐷𝑛,⋅) onto a collection of DSGRN fixed
points (FPs), whose annotations match 𝐷𝑛,⋅. We then organize this data
into a phenotype pattern graph, that is, a DSGRN representation of
the observed data. We will say that there is a match between the data
and the DSGRN model if there is a path in the phenotype pattern graph
(𝑚1,… , 𝑚𝑘) and a path in the DSGRN parameter graph (𝑝1,… , 𝑝𝑘) such
that at every position 𝑖, there is at least one Morse node FP ∈ 𝑀𝐺(𝑝𝑖)
such that FP = 𝑚𝑖.

Definition 4.1.2. A pattern label 𝜌 = (𝜌1,… , 𝜌𝑀 ), where 𝜌𝑗 ∈ 𝑋𝑗
(see Definition 2.2.2), is a collection of integer states, one for each
variable 𝑣1,… , 𝑣𝑀 . Let 𝐷 be the descriptive pattern for a spatial data
set of 𝑀 variables and 𝑁 spatial locations. We say a pattern label 𝜌 is
consistent with 𝑫𝒏,⋅ if 𝐷𝑛,𝑗 < 𝐷𝑛,𝑘 implies 𝜌𝑗 < 𝜌𝑘. The set of pattern
labels associated with spatial location 𝑛 is

𝜌(𝑛) = {𝜌 ∣ 𝜌 is consistent with 𝐷𝑛,⋅}.

The phenotype pattern of 𝐷 is

𝒫 = (𝜌(1), 𝜌(2),… , 𝜌(𝑁)).

A parameter node 𝑝 ∈ 𝑃𝐺 has a relevant phenotype if there is an
𝑛 ∈ {1,… , 𝑁} and a pattern label 𝜌 ∈ 𝜌(𝑛) such that there exists a Morse
node 𝐹𝑃 (𝜌) = 𝐹𝑃 ((𝜌1,… , 𝜌𝑀 )) ∈ 𝑀𝐺(𝑝). If 𝑀𝐺(𝑝) is monostable (see
Definition 2.2.6), then we say 𝜌 is a strict phenotype of 𝑝. Lastly, we
use the notation 𝜌(𝑀𝐺(𝑝)) to denote the pattern label of a monostable
fixed point Morse node in 𝑀𝐺(𝑝).
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Fig. 6. Data of protein concentration along the anterior–posterior position % egg length for the trunk gap gene proteins Hunchback (Hb) in yellow (peak in 𝑅3), Giant (Gt) in
blue (peak in 𝑅1, 𝑅8), Krüpple (Kr) in green (peak in 𝑅4) and Knirps (Kni) in red (peak in 𝑅6). The gap gene protein expression pattern data (S1_Data.ods) was obtained from
supplementary information in Verd et al. (2018).
.

Note that a phenotype pattern is a coarse representation of spatial

data that we want to match by a sequence of FPs along a path that
represents a continuous path in the DSGRN parameter graph 𝑃𝐺.
However, consecutive pattern labels between 𝜌(𝑛) and 𝜌(𝑛+1) may differ
at two or more elements. We make the reasonable assumption that
continuity permits the insertion of intermediate pattern labels when
seeking paths through the DSGRN parameter graph.

Definition 4.1.3. For a network RN = (𝑉 ,𝐸) with |𝑉 | = 𝑀 and two
vectors 𝑐, 𝑑 ∈ 𝑋 =

∏

𝑣𝑗∈𝑉 𝑋𝑗 a set of transition vectors between 𝑐
and 𝑑 is

𝒯𝑐,𝑑 ∶= {𝑎 ∈ 𝑋 ∣ 𝑎𝑖 ∈ 𝐼𝑖 for 𝑖 = 1,… ,𝑀}

where 𝐼𝑖 = [𝑐𝑖, 𝑑𝑖] if 𝑐𝑖 ≤ 𝑑𝑖 and 𝐼𝑖 = [𝑑𝑖, 𝑐𝑖] if 𝑐𝑖 ≥ 𝑑𝑖 is the interval of
integers between 𝑐𝑖 and 𝑑𝑖. Define

𝒯 (𝑛) =
⋃

{𝒯𝑐,𝑑 | 𝑐 ∈ 𝜌(𝑛) and 𝑑 ∈ 𝜌(𝑛 + 1)}

to be the set of transition pattern labels from position 𝑛 to position
𝑛 + 1, and let

𝛴 =
𝑁−1
⋃

𝑛=1
𝒯 (𝑛).

Definition 4.1.4. A phenotype pattern graph for 𝐷 is a directed
graph 𝑃𝑃𝐺 = (𝛴,𝐸𝛴 ), where (𝜌, 𝜌′) ∈ 𝐸𝛴 if 𝜌 = 𝜌′ or the following are
simultaneously satisfied

• 𝜌 ∈ 𝜌(𝑛) and 𝜌′ ∈ 𝒯 (𝑛); and
• the paths are strictly monotone in the descriptive pattern,

i.e., 𝜌𝑗 > 𝜌′𝑗 implies 𝐷𝑛,𝑗 > 𝐷𝑛+1,𝑗 and 𝜌𝑗 < 𝜌′𝑗 implies 𝐷𝑛,𝑗 < 𝐷𝑛+1,𝑗 .

4.2. D. melanogaster example

As an example, we describe the construction of a descriptive pattern
for the D. melanogaster data. Fig. 6 shows the protein concentration data
of the trunk gap genes along the A–P axis of the embryo. These data
are taken late in the segmentation process when protein concentrations
have equilibrated to a fixed distribution across the A–P axis. We there-
fore assume that these concentrations correspond to steady state values
of the segmentation dynamics.

At most positions along the A–P axis, the protein expression levels
of the four genes are ordered, with the expression of two genes having
very low protein concentration. Furthermore, there are sections where
this ordering does not change. For example, at every point between
positions 40% and 45% egg length the protein expression levels are
10
Table 2
Descriptive pattern for the D. melanogaster protein expression pattern data seen in Fig. 6

Region A–P Hb Gt Kr Kni

𝑅1 35–37 ∗ H L L
𝑅2 37–40 H ∗ L L
𝑅3 40–45 H L ∗ L
𝑅4 45–51 ∗ L H L
𝑅5 51–57 L L H ∗
𝑅6 57–63 L L ∗ H
𝑅7 63–67 L ∗ L H
𝑅8 67–75 L H L ∗

ordered, from highest to lowest, Hb, Kr, Gt, Kni. Using these observa-
tions we divide the A–P axis into eight regions 𝑅𝑛 (see the dashed lines
in Fig. 6), where the protein expression levels are consistently ordered.
Region boundaries are at crossings between two protein concentrations.

We discretize the experimental values in each of the 8 regions by
one of the descriptive labels ℒ = {𝐻, ∗, 𝐿}:

1. H : Protein expression level is high,
2. L : Protein expression level is low,
3. ∗ : Protein expression level is indeterminate.

Since there are large regions where it is unclear whether protein
expression levels should be regarded as high or low, we introduce the
third character ∗. The order on the label set ℒ is L ≤∗≤ H and L < H.

Protein expression levels in Fig. 6 show that kni is inactive between
A–P positions 35%–47%, gt is inactive between 49%–59%, and hb is
inactive between 61%–75%, which is consistent with the interpretation
of Verd et al. (2019). Thus, in these regions, these protein expression
levels will be labeled L. We further assign label H to each gene whose
protein expression level is highest in a given region in Fig. 6. Therefore
in each region, we will have one gene labeled H, two genes labeled L
and the remaining gene with intermediate protein expression will be
assigned ∗. We arrive at the descriptive pattern seen in Table 2.

We now transform the descriptive pattern in Table 2 into a pheno-
type pattern graph. We use the following FP assignment for a pattern
label 𝜌 = (𝜌𝐻𝑏, 𝜌𝐺𝑡, 𝜌𝐾𝑟, 𝜌𝐾𝑛𝑖) at spatial position 𝑛 = 1,… , 8. For every
gene 𝑣𝑗 with 𝑗 ∈ {𝐻𝑏,𝐺𝑡,𝐾𝑟,𝐾𝑛𝑖}, we assign

• 𝜌𝑗 = 0 if 𝐷𝑛,𝑗 = 𝐿,
• 𝜌𝑗 = max{1, |𝑇 (𝑣𝑗 )|} if 𝐷𝑛,𝑗 = 𝐻 ,
• if |𝑇 (𝑣𝑗 )| > 0 and 𝐷𝑛,𝑗 =∗, then 𝜌𝑗 ∈ {1,… , |𝑇 (𝑣𝑗 )| − 1}, and
• if |𝑇 (𝑣 )| = 0 and 𝐷 =∗, then 𝜌 ∈ {0, 1}.
𝑗 𝑛,𝑗 𝑗

https://doi.org/10.1371/journal.pbio.2003174.s009
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Fig. 7. StrongEdges network (left) and phenotype pattern (right).
Fig. 8. StrongEdges phenotype pattern graph. (Top) StrongEdges phenotype pattern graph, where labels 𝑎𝑏𝑐𝑑 correspond to pattern label (𝑎, 𝑏, 𝑐, 𝑑). Note each node has a self-loop
which is omitted for clarity. Nodes are shaded if the pattern label is in 𝜌(𝑛) for some region 𝑅𝑛, 𝑛 = 1, 2,… , 8. Dark gray is specific for 𝑛 = 1, 3, 5, 7, light gray is specific for
𝑛 = 2, 4, 6, 8, and white indicates that the pattern label is a transition label only. The black node is a pattern label that is consistent both regions 𝑅3 and 𝑅4. (Bottom) Three
examples of associated StrongEdges relevant phenotypes for 𝜌(1). The nodes boxed in dashed red depict a bistable Morse graph, which is the only example that is not a strict
phenotype for StrongEdges.
Note that the pattern labels are consistent with 𝐷 by Defini-
tion 4.1.2. We use this assignment to construct a phenotype pattern
graph for a regulatory network with proteins Hb, Gt, Kr and Kni,
as illustrated in Fig. 7. The network, called the strong edges net-
work (StrongEdges) consists of edges with the strongest predicted
interaction between the trunk gap genes from the original gap gene
network in Fig. 1(a), except the self-loops (see Fig. 7(left)). Addition-
ally, Fig. 7(right) shows a table representing all possible pattern labels
for each region (compare to Table 2).

Consider regions 𝑅1 and 𝑅2, where 𝐷1,⋅ = ( ∗, H, L, L) and 𝐷2,⋅ = (H,
∗, L, L). The collections of pattern labels are

𝜌(1) = {(0, 3, 0, 0), (1, 3, 0, 0)} and 𝜌(2) = {(1, 1, 0, 0), (1, 2, 0, 0)}.

For pattern labels 𝑐 = (0, 3, 0, 0) and 𝑑 = (1, 1, 0, 0) we have

𝒯𝑐,𝑑 = {(0, 3, 0, 0), (0, 2, 0, 0), (0, 1, 0, 0), (1, 3, 0, 0), (1, 2, 0, 0), (1, 1, 0, 0)}.

Doing this for each 𝑐′ ∈ 𝜌(1) and 𝑑′ ∈ 𝜌(2) we find that 𝒯𝑐′ ,𝑑′ ⊂ 𝒯𝑐,𝑑 .
(Note that in general this need not be true.) The entire phenotype graph
for StrongEdges can be seen in Fig. 8.

The phenotype pattern describes the annotations of the DSGRN
fixed points that we say match the data in each of the eight regions
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along the A–P axis. We are interested in finding a sequence of parame-
ter graph nodes with Morse graphs that exhibit fixed points determined
by the phenotype pattern. In our example, the associated StrongEdges
fixed points for 𝜌(1) are in the set

{FP(0, 3, 0, 0), FP(1, 3, 0, 0)}.

Any Morse graph containing one of these fixed points is consistent
with the data in 𝑅1. For example, a Morse graph having a full cycle
connected to FP(1, 3, 0, 0) as shown in Fig. 8, a bistable Morse graph
shown boxed in red, and the monostable Morse graph FP(1, 3, 0, 0) all
exhibit relevant phenotypes for 𝑅1. Additionally, the two monostable
Morse graphs are strict phenotypes of 𝑅1.

5. Modeling spatial gradients and matching observations with
DSGRN

We now describe how spatial data can be compared to DSGRN net-
work model predictions while respecting external variables. The basic
construction is a chemical gradient graph, whose name is inspired
by the spatial distributions of the D. melanogaster maternal gradients
Bcd and Cad. It is constructed as a subgraph of the DSGRN parameter
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graph with directed edges imposed by external variables on the factor
graphs of network nodes affected by these external variables. Within
the chemical gradient graph, we identify developmental paths, with
this name again motivated by our example, that are consistent with
both the external variables and the phenotype patterns derived from
the spatial data.

The collection of developmental paths is the subgraph of the chem-
ical gradient graph composed of all matches between the DSGRN
model and the data. The shape and other features of this subgraph
represent the DSGRN prediction of the robustness of the developmental
program. However, the chemical gradient graph is prohibitively large,
and therefore computing and investigating all paths is prohibitive as
well. Therefore we compress the chemical gradient graph into smaller
graphs that retain the information about the developmental paths. We
first create a condensed chemical gradient graph, and then from that
a path graph whose structure contains information about the quality
and quantity of matching between the model and the data. There is one
path graph per network model and comparisons of robustness between
path graphs permit a ranking of network models, a subject that is
discussed in Section 6.

5.1. Chemical gradient graph

The translation of an experimental spatial dataset into a phenotype
pattern graph allows us to study the collection of paths in the DSGRN
parameter graph that (1) are consistent with the action of external
variables, and (2) match the phenotype pattern by the sequence of
annotated Morse nodes. To facilitate this investigation we construct a
subgraph of parameter graph 𝑃𝐺 where we add orientation to the edges
that match the effect of external variables. We call this directed graph
the chemical gradient graph.

Let 𝑃𝐺 = ( ,) be the DSGRN parameter graph of RN = (𝑉 ,𝐸),
where |𝑉 | = 𝑀 . Let {𝑣1,… , 𝑣𝑚} ⊆ 𝑉 be the maximal subset of network
nodes where each 𝑣𝑗 , 𝑗 = 1,… , 𝑚, is affected by an external variable
𝑐𝑗 (𝑦) for 𝑦 ∈ 𝑌 , see Definition 3.2.1. We allow one external variable to
affect multiple nodes, but do not consider the case when one node is
controlled by multiple external variables. Let 𝜎𝑗 = ±1, where +1 (−1)
denotes that 𝑐𝑗 (𝑦) is an activator (repressor) of 𝑣𝑗 . Additionally, recall
that 𝑗 (𝑝) is the factor graph layer of 𝑣𝑗 for a parameter node 𝑝 ∈  .
Lastly, recall that 𝐷𝑁,𝑀 is the descriptive pattern for a spatial data set
with 𝑁 regions and 𝑀 genes.

Definition 5.1.1. The chemical gradient graph,  = ( , ), is a
directed graph constructed from 𝑃𝐺 and descriptive pattern 𝐷𝑁,𝑀 in
two steps. First, for 𝑝 ∈  we have 𝑝 ∈  if 𝜌(𝑀𝐺(𝑝)) ∈ 𝛴, where 𝛴
is the set of nodes in the phenotype pattern graph (𝑃𝑃𝐺) as defined in
Definition 4.1.4. Then for each 𝑝, 𝑞 ∈  , we have (𝑝, 𝑞) ∈  (directed) if
(𝑝, 𝑞) ∈  and one of the following is satisfied

1. 𝑗 (𝑝) = 𝑗 (𝑞) for all 𝑗 = 1,… , 𝑚, or
2. 𝑘(𝑝) + sign(𝑐′𝑘)𝜎𝑘 = 𝑘(𝑞) for some 𝑘 ∈ {1,… , 𝑚} and 𝑗 (𝑝) =

𝑗 (𝑞) for all 𝑗 = 1,… , 𝑚 such that 𝑗 ≠ 𝑘.

Remark 5.1.1. Notice that condition (1) implies (𝑝, 𝑞), (𝑞, 𝑝) ∈  , while
condition (2) implies (𝑝, 𝑞) ∈  , but (𝑞, 𝑝) ∉  , since 𝑘(𝑞)− sign(𝑐′𝑘)𝜎𝑘 =
𝑘(𝑝) flows against the gradient. This fact will be important later.

We now again turn to our example of gap gene network in D.
melanogaster. Consider the maternal gradients Bcd and Cad, which we
model as external variables to the gap gene network. Concentration
of these proteins varies monotonically along the A–P axis; Bcd is
increasing and Cad is decreasing. Since Fig. 1(a) indicates that both BcD
and Cad may affect Gt and Kr, the spatial variance of this effect along
the A–P axis is not clear. Therefore, we chose to only model effects
of material gradient that have clear spatial differences along the A–P
axis, namely the impact of Bcd on Hb and Cad on Kni. Let 𝑌 = [0, 100]
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represent the A–P axis, where 𝑦 = 0 represents the start of the anterior
region and 𝑦 = 100 the end of the posterior region. Then using the
notation 𝑐𝑗 (𝑦) as in Definition 3.2.1 with 𝑐 = 𝐵𝑐𝑑, 𝐶𝑎𝑑 and 𝑗 = 𝐻𝑏,𝐾𝑛𝑖,
we have 𝐵𝑐𝑑𝐻𝑏(𝑦) modeling the effect of Bcd on Hb as an activating
(𝜎𝐻𝑏 = +1) decreasing (sign(𝐵𝑐𝑑′𝐻𝑏(𝑦)) = −1) external variable and
𝐶𝑎𝑑𝐾𝑛𝑖(𝑦) modeling the effect of Cad on Kni as an activating (𝜎𝐾𝑛𝑖 = +1)
increasing (sign(𝐶𝑎𝑑′𝐾𝑛𝑖(𝑦)) = 1) external variable (see the violet and
cyan gradients in Fig. 1(b)). Thus, if 𝑝 and 𝑞 are nodes in the parameter
graph 𝑃𝐺 = ( ,) that satisfy 𝜌(𝑀𝐺(𝑝)), 𝜌(𝑀𝐺(𝑞)) ∈ 𝛴 and (𝑝, 𝑞) ∈ ,
then (𝑝, 𝑞) ∈  as well if

1. 𝐻𝑏(𝑝) = 𝐻𝑏(𝑞) and 𝐾𝑛𝑖(𝑝) = 𝐾𝑛𝑖(𝑞), or
2. 𝐻𝑏(𝑝) − 1 = 𝐻𝑏(𝑞) and 𝐾𝑛𝑖(𝑝) = 𝐾𝑛𝑖(𝑞), or
3. 𝐾𝑛𝑖(𝑝) + 1 = 𝐾𝑛𝑖(𝑞) and 𝐻𝑏(𝑝) = 𝐻𝑏(𝑞).

5.2. Developmental paths

Having constructed the chemical gradient graph , we will now
describe paths in  that are consistent with the data.

Definition 5.2.1. Let  = ( , ) be the chemical gradient graph
of some RN = (𝑉 ,𝐸). Let {𝑣1,… , 𝑣𝑚} ⊂ 𝑉 be network nodes under
influence of the corresponding external variables 𝑐𝑗 and regulation
types 𝜎𝑗 . Let 𝐹𝑗 be the factor graphs of 𝑣𝑗 , with 𝐿𝑝𝑗 and 𝐻𝑝𝑗 the
sets of lowest and highest factor graph layers of 𝐹𝑗 respectively. Let
𝑛 = 1,… , 𝑁 denote the spatial regions of the dataset.

We say that 𝑠 ∈  ⊂  is a starting node if

1. 𝑠 ∈ 𝐿𝑝𝑗 for all 𝑗 such that 𝜎𝑗 = +1 and 𝑐′𝑗 (𝑦) ≥ 0 or 𝜎𝑗 = −1 and
𝑐′𝑗 (𝑦) ≤ 0,

2. 𝑠 ∈ 𝐻𝑝𝑗 for all 𝑗 such that 𝜎𝑗 = +1 and 𝑐′𝑗 (𝑦) ≤ 0 or 𝜎𝑗 = −1 and
𝑐′𝑗 (𝑦) ≥ 0, and

3. the annotation of the Morse set at 𝑠 must match the pheno-
type pattern in one of the first 𝓁 regions, i.e., 𝜌(𝑀𝐺(𝑠)) ∈
(

⋃𝓁
𝑛=1 𝒯 (𝑛)

)

⧵ 𝜌(𝓁 + 1), where 𝓁 is a modeling choice.

We say that 𝑡 ∈  ⊂  is a stopping node if

1. 𝑡 ∈ 𝐻𝑝𝑗 for all 𝑗 such that 𝜎𝑗 = +1 and 𝑐′𝑗 (𝑦) ≥ 0 or 𝜎𝑗 = −1 and
𝑐′𝑗 (𝑦) ≤ 0,

2. 𝑡 ∈ 𝐿𝑝𝑗 for all 𝑗 such that 𝜎𝑗 = +1 and 𝑐′𝑗 (𝑦) ≤ 0 or 𝜎𝑗 = −1 and
𝑐′𝑗 (𝑦) ≥ 0, and

3. the annotation of the Morse set at 𝑡 must match the pheno-
type pattern in one of the last 𝑘 regions, i.e., 𝜌(𝑀𝐺(𝑡)) ∈
⋃𝑁−1

𝑛=𝑁−𝑘 𝒯 (𝑛), where 𝑘 is a modeling choice.

From now on we will assume that the chemical gradient graph
 = ( ,  ; ,  ) comes equipped with the designated set of starting
nodes  and stopping nodes  .

Definition 5.2.2. Let  = ( ,  ; ,  ) be the chemical gradient graph.
A developmental path is a path 𝑝1 →⋯ → 𝑝𝑘 in  such that

1. 𝑝1 ∈  and 𝑝𝑘 ∈  , and
2. 𝜌(𝑀𝐺(𝑝1)) →⋯→ 𝜌(𝑀𝐺(𝑝𝑘)) is a path in the phenotype pattern

graph.

By construction, any path in the chemical gradient graph will be
a monotone path with respect to factor graph layers for each gene in
RN affected by an external variable. Our goal is to quantify features of
the set of all developmental paths to characterize the robustness of the
developmental program as predicted across network models.

Notice in Definition 5.2.1 we allow starting nodes to be in the first 𝓁
spatial regions and stopping nodes to be in the last 𝑘 regions to account
for boundary conditions that may not be included in the model. While it
would be ideal to find paths in the chemical gradient graph that follow

the entire phenotype pattern, we found in the gap gene network D.
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melanogaster example that nodes with the annotated MG for regions
1 and 𝑅8 are often disconnected from nodes with the annotated MG

or regions 𝑅2 through 𝑅7. We hypothesize that this is a consequence of
additional regulation of gene expression in these regions by genes from
the positions external to the A–P positions 35 − 70% where gap genes
are active and that are modeled in this paper, see Fig. 6. In particular,
there are gene-protein interactions in the anterior between 0%–30%
and region 𝑅1 (Jaeger et al., 2004) and in the posterior between 80%–
100% and region 𝑅8 (Jaeger, 2011; Ashyraliyev et al., 2009). The lack
of accounting for these boundary regulations may impact the ability of
network models consisting of only trunk gap genes to recapitulate the
data at the extremes of the A–P axis.

5.3. Condensed chemical gradient graph

The DSGRN parameter graph size grows rapidly with the size of
the network (Cummins et al., 2018). For example, networks with four
nodes and eight edges have millions of parameter graph nodes. Unfortu-
nately, this means that the chemical gradient graph can be quite large.
For example, the chemical gradient graph of the StrongEdges network
has over 1.4 million nodes and 12 million edges. Graph algorithms such
as path-finding rapidly reach computational limits in common chemical
gradient graph sizes. Hence, directly finding all developmental paths is
impractical. To overcome this limitation, we take two actions.

• First, we consider only strict phenotypes, i.e., monostable fixed
points, when constructing the chemical gradient graph. This is
a conservative decision because it requires the elements of the
phenotype pattern to be as dynamically stable as possible.

• Second, we contract the chemical gradient graph using strongly
connected components and annotated MGs into a condensed
chemical gradient graph. Then we construct a subgraph of the
condensed chemical gradient graph that contains all developmen-
tal paths, called the path graph, and study its structure rather
than computing all developmental paths directly.

Consider the chemical gradient graph  = ( ,  ; ,  ). We define an
equivalence relation on the set of vertices  by the requirement that
they lie in the same strongly connected component of  and that the
corresponding Morse graphs are the same.

Definition 5.3.1. Let  = ( ,  ; ,  ) be the chemical gradient graph
and let ℋ be the collection of strongly connected components of .
Define the following equivalence relation over 

𝑢 ∼ 𝑣 if and only if 𝑀𝐺(𝑣) = 𝑀𝐺(𝑢) and 𝑢, 𝑣 ∈ 𝐻 for some 𝐻 ∈ ℋ .

We say
𝑉𝑢 = {𝑣 ∈  | 𝑣 ∼ 𝑢}

is a strong MG equivalence class of  and call 𝑢 the representative
of 𝑉𝑢.

Definition 5.3.2. Let  = ( ,  ; ,  ) be the chemical gradient
graph. We construct a weighted directed graph named the condensed
chemical gradient graph 𝑐 = (𝑐 , 𝑐 ,𝑊 ) as follows. The nodes 𝑐
are the collection of all strong MG equivalence classes of  , i.e.,

𝑐 ∶= {𝑉𝑢1 , 𝑉𝑢2 ,… , 𝑉𝑢𝑘},

where  =
⨆𝑘

𝑖=1 𝑉𝑢𝑖 . Additionally, there is an edge (𝑉𝑢𝑖 , 𝑉𝑢𝑗 ) ∈ 𝑐 for
𝑖 ≠ 𝑗 if and only if there exist nodes 𝑢 ∈ 𝑉𝑢𝑖 and 𝑣 ∈ 𝑉𝑢𝑗 such that
(𝑢, 𝑣) ∈  . Let 𝑀𝑖,𝑗 be the number of edges from any node in 𝑉𝑢𝑖 to any
node in 𝑉𝑢𝑗 , i.e.,

𝑀𝑖,𝑗 = |{(𝑢, 𝑣) ∈  | 𝑢 ∈ 𝑉𝑢𝑖 and 𝑣 ∈ 𝑉𝑢𝑗 }|

and let 𝑁𝑖 be the total number of edges from nodes in 𝑉𝑢𝑖 to nodes
outside of 𝑉𝑢𝑖 , i.e.,

𝑁 = |{(𝑢, 𝑣) ∈  | 𝑢 ∈ 𝑉 and 𝑣 ∉ 𝑉 }|.
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𝑖 𝑢𝑖 𝑢𝑖
Then we assign (𝑉𝑢𝑖 , 𝑉𝑢𝑗 ) ∈ 𝑐 the weight

𝑊 (𝑉𝑢𝑖 , 𝑉𝑢𝑗 ) ∶=
𝑀𝑖,𝑗

𝑁𝑖
,

making 𝑐 a weighted directed graph with weights in the range [0, 1].
astly, we say a node 𝑉𝑢𝑖 ∈ 𝑐 is a starting or stopping node if there
xists 𝑢 ∈ 𝑉𝑢𝑖 such that 𝑢 ∈  or 𝑢 ∈  , respectively. We label the set
f starting nodes and stopping nodes in 𝑐 by 𝑐 and 𝑐 respectively.

We note that there is a slight abuse of notation in the previous
efinition, wherein 𝑉𝑢𝑖 denotes both a strong MG equivalence class and
node in 𝑐. We took a similar liberty for the nodes of the regulatory
etwork RN and do so here again for clarity.

Notice that the condensed chemical gradient graph (𝑐) is the
condensation of the chemical gradient graph (), where the strongly
connected components of  are further decomposed by Morse graphs.
The following lemma is an immediate consequence of Definition 5.1.1
and Remark 5.1.1.

Lemma 5.3.1. Let  = ( ,  ; ,  ) be the chemical gradient graph and
let 𝐻 𝑖 be a strongly connected component of  where 𝑉 𝑖 denotes the nodes
of the subgraph 𝐻 𝑖. Let 𝑣𝑗 with 𝑗 = 1,… , 𝑚 be the externally controlled
network nodes with associated 𝑗 factor graph layers. Then for all 𝑝, 𝑞 ∈ 𝑉 𝑖

we have

𝑗 (𝑝) = 𝑗 (𝑞)

for all 𝑗 = 1,… , 𝑚.

The strong MG equivalence classes partition each strongly con-
nected component 𝐻 𝑖 of  and so Lemma 5.3.1 guarantees that
each one can be unambiguously (though non-uniquely) labeled with a
collection {𝑗 (𝑝)} for 𝑗 = 1,… , 𝑚. This leads to an immediate Corollary.

Corollary 5.3.1. If 𝑉𝑢 ∈ 𝑐 is a starting node in 𝑐 and 𝑝 ∈ 𝑉𝑢, then 𝑝
is a starting node in  ⊂  . Similarly for stopping nodes.

Proof. Since all 𝑝, 𝑞 ∈ 𝑉𝑢 have matching factor graph layers by
Lemma 5.3.1 and matching Morse graphs by Definition 5.3.1, if one
node in 𝑉𝑢 satisfies the criteria of Definition 5.2.1, they all must. ■

Lemma 5.3.1 and Corollary 5.3.1 justify searching for developmen-
tal paths in the (much) smaller condensed chemical gradient graph 𝑐
instead of in , since paths in 𝑐 follow the externally imposed gradients
from starting nodes to stopping nodes.

Definition 5.3.3. Let 𝑐 = (𝑐 , 𝑐 ,𝑊 ; 𝑐 , 𝑐 ) be the condensed
chemical gradient graph. A condensed developmental path is a path
𝑉𝑢1 →⋯→ 𝑉𝑢𝑘 in 𝑐 such that

1. 𝑉𝑢1 ∈ 𝑐 and 𝑉𝑢𝑘 ∈ 𝑐 , and
2. 𝜌(𝑀𝐺(𝑢1)) →⋯→ 𝜌(𝑀𝐺(𝑢𝑘)) is a path in the phenotype pattern

graph.

In the worst case || = |𝑐| but in practice |𝑐| is much smaller
than ||. For example, while the StrongEdges chemical gradient graph
has over 1.4 million nodes, its condensed chemical gradient graph has
14,832 nodes (see Fig. C.1). Importantly, we show that every condensed
developmental path in the condensed chemical gradient graph contains
at least one developmental path in the chemical gradient graph.

Lemma 5.3.2. For every condensed developmental path 𝑉𝑢1 → 𝑉𝑢2 →

... → 𝑉𝑢𝑘 there exists at least one developmental path

𝑝11 → 𝑝12 → … → 𝑝1𝑗1 → 𝑝21 → … → 𝑝𝑛𝑗2 → … → 𝑝𝑛𝑗𝑛

with the consecutive sets of vertices {𝑝𝑖1,… , 𝑝𝑖𝑗𝑖} ∈ 𝑉𝑢𝑖 in the chemical
gradient graph.
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Proof. Let 𝑈 ∶= 𝑉𝑢1 → 𝑉𝑢2 → ... → 𝑉𝑢𝑘 be a condensed de-
elopmental path in the condensed chemical gradient graph 𝑐 =
𝑐 , 𝑐 ,𝑊 ; 𝑐 , 𝑐 ). Since there is an edge 𝑉𝑢𝑖 → 𝑉𝑢𝑖+1 , there must exist
odes 𝑝𝑖 ∈ 𝑉𝑢𝑖 and 𝑞𝑖+1 ∈ 𝑉𝑢𝑖+1 such that (𝑝𝑖, 𝑞𝑖+1) ∈  . Furthermore, by
efinition of a connected component, when |𝑉𝑢𝑖 | > 1 there exists a path
etween any two nodes in 𝑉𝑢𝑖 . Thus, if (𝑝𝑖, 𝑞𝑖+1) is an edge between 𝑉𝑢𝑖
nd 𝑉𝑢𝑖+1 , and likewise (𝑝𝑖+1, 𝑞𝑖+2) is an edge between 𝑉𝑢𝑖+1 and 𝑉𝑢𝑖+2 ,
hen for |𝑉𝑢𝑖+1 | > 1 there exists a path in 

𝑃 ∶= 𝑝𝑖 → 𝑞𝑖+1 → 𝑣𝑗1 → ... → 𝑣𝑗𝑛 → 𝑝𝑖+1 → 𝑞𝑖+2

or 𝑣𝑗1 ,… , 𝑣𝑗𝑛 ∈ 𝑉𝑢𝑖+1 . If |𝑉𝑢𝑖+1 | = 1, then 𝑞𝑖+1 = 𝑝𝑖+1 so clearly there is
path

𝑝𝑖 → 𝑞𝑖+1 = 𝑝𝑖+1 → 𝑞𝑖+2.

t follows that there exists a path in  through 𝑉𝑢1 , 𝑉𝑢2 ,… , 𝑉𝑢𝑘 , of the
orm

𝑝1 → 𝑞2 → ... → 𝑞𝑖+1 → 𝑣𝑗1 → ... → 𝑣𝑗𝑛 → 𝑝𝑖+1 → 𝑞𝑖+2 → ... → 𝑝𝑘.

By Definition 5.3.3, path 𝑈 induces a path 𝜌(𝑀𝐺(𝑢1)) →

(𝑀𝐺(𝑢2)) → ... → 𝜌(𝑀𝐺(𝑢𝑘)) in the phenotype pattern graph. Ob-
erve that since 𝑢𝑖, 𝑝𝑖 ∈ 𝑉𝑢𝑖 and 𝑢𝑖+1, 𝑞𝑖+1, 𝑣𝑗1 ,… , 𝑣𝑗𝑛 , 𝑝𝑖+1 ∈ 𝑉𝑢𝑖+1 then
𝐺(𝑢𝑖) = 𝑀𝐺(𝑝𝑖) and

𝑀𝐺(𝑢𝑖+1) = 𝑀𝐺(𝑞𝑖+1) = 𝑀𝐺(𝑣𝑗1 ) =⋯ = 𝑀𝐺(𝑣𝑗𝑛 ) = 𝑀𝐺(𝑝𝑖+1).

hus, 𝜌(𝑀𝐺(𝑢𝑖)) → 𝜌(𝑀𝐺(𝑢𝑖+1)) implies

𝜌(𝑀𝐺(𝑝𝑖)) → 𝜌(𝑀𝐺(𝑞𝑖+1)) → 𝜌(𝑀𝐺(𝑣𝑗1 )) → ... → 𝜌(𝑀𝐺(𝑣𝑗𝑛 )) → 𝜌(𝑀𝐺(𝑝𝑖+1))

s a path in the phenotype pattern graph. It follows that

𝜌(𝑀𝐺(𝑝1)) → 𝜌(𝑀𝐺(𝑞2)) → ... → 𝜌(𝑀𝐺(𝑞𝑖+1)) → 𝜌(𝑀𝐺(𝑣𝑗1 )) → ... → 𝜌(𝑀𝐺(𝑝𝑘))

s a path in the phenotype pattern graph.
Lastly, 𝑈 is a condensed developmental path so 𝑉𝑢1 is a starting node

nd 𝑉𝑢𝑘 is a stopping node in 𝑐, and therefore by Corollary 5.3.1,
1 ∈ 𝑉𝑢1 is a starting node in  ⊂  and 𝑝𝑘 ∈ 𝑉𝑢𝑘 is a stopping
ode in  ⊂  . Therefore, the path 𝑃 is a developmental path in 
y Definition 5.2.2. Since 𝑈 was arbitrary, we have shown there exists
t least one developmental path for every condensed developmental
ath. ■

emma 5.3.3. Every developmental path 𝑝1 → ⋯ → 𝑝𝑛 in the chemical
radient graph can be projected uniquely onto a condensed developmental
ath 𝑉𝑢1 → … → 𝑉𝑢𝑘 in the condensed chemical gradient graph. In
ther words, there is a partition of {𝑝1,… , 𝑝𝑛} into 𝑘 consecutive groups
f vertices, each of which belongs to one component 𝑉𝑢𝑖 .

roof. Let  = ( ,  ; ,  ) be the chemical gradient graph and let
 = (𝑐 , 𝑐 ,𝑊 ; 𝑐 , 𝑐 ) be the condensed chemical gradient graph of
.

Let 𝛾 = 𝑝1 → ⋯ → 𝑝𝑛 be a developmental path in  with induced
henotype pattern path

𝛾𝜌 = 𝜌(𝑀𝐺(𝑝1)) →⋯→ 𝜌(𝑀𝐺(𝑝𝑛)) = 𝜌1 →⋯→ 𝜌𝑛 (for brevity).

ur goal is to uniquely construct a condensed developmental path
= 𝑉𝑢1 →⋯→ 𝑉𝑢𝑘 in 𝑐 from 𝛾 and 𝛾𝜌.
We partition the parameter nodes in 𝛾 into sets 𝐴𝑖,𝑗 that are the

aximal sets of sequential elements in the path that all belong to the
ame strong MG equivalence class. Formally,

𝐴𝑖,𝑗 = {𝑝𝑖, 𝑝𝑖+1,… , 𝑝𝑖+𝑗},

here

1. 𝑝𝑖 ∼ 𝑝𝑖+1 ∼ ⋯ ∼ 𝑝𝑖+𝑗 ,
2. 𝑝𝑖 ≁ 𝑝𝑖−1 if 𝑖 > 1, and
3. 𝑝 ≁ 𝑝 if 𝑖 + 𝑗 < 𝑛.
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𝑖+𝑗 𝑖+𝑗+1
n particular, if we denote the partition in order by 𝐴𝑖1 ,𝑗1 ,… , 𝐴𝑖𝑘 ,𝑗𝑘 ,
here 𝑘 ≤ 𝑛 and 𝑖𝑠 < 𝑖𝑠+1 for 𝑠 = 1,… , 𝑘− 1, then there exists a unique

𝑉𝑢𝑠 ∈ 𝑐 for every 𝐴𝑖𝑠 ,𝑗𝑠 such that 𝐴𝑖𝑠 ,𝑗𝑠 ⊂ 𝑉𝑢𝑠 . In fact, we may take the
representative 𝑢𝑠 to be 𝑝𝑖𝑠 if desired. Since a developmental path follows
a one-way gradient flow and the 𝐴𝑖𝑠 ,𝑗𝑠 are maximal, it follows that all
𝑉𝑢𝑠 are distinct (i.e., no strong MG equivalence class can be revisited).
Moreover, since there exists a 𝑝𝓁 ∈ 𝐴𝑖𝑠 ,𝑗𝑠 such that 𝑝𝓁+1 ∈ 𝐴𝑖𝑠+1 ,𝑗𝑠+1
with (𝑝𝓁 , 𝑝𝓁+1) ∈ 𝛾, then (𝑉𝑢𝑠 , 𝑉𝑢𝑠+1 ) ∈ 𝑐 . Additionally, since 𝑝1 ∈ 𝑉𝑢1
is a starting node in  ⊂  , then 𝑉𝑢1 ∈ 𝑐 is also a starting node in
𝑐 by Definition 5.3.2. Similarly, the stopping node 𝑝𝑛 ∈ 𝑉𝑢𝑘 implies
𝑉𝑢𝑘 ∈ 𝑐 . Therefore 𝛤 = 𝑉𝑢1 →⋯→ 𝑉𝑢𝑘 is a path in 𝑐 from a starting
node to a stopping node.

The partition of the nodes in 𝛾 into {𝐴𝑖,𝑗} and the construction of ∼
induces a partition of the pattern labels in 𝛾𝜌, i.e.,

𝜌(𝑀𝐺(𝑢𝑠)) = 𝜌(𝑀𝐺(𝑝𝑖𝑠 )) =⋯ = 𝜌(𝑀𝐺(𝑝𝑖𝑠+𝑗𝑠 )) ≠ 𝜌(𝑀𝐺(𝑝𝑖𝑠+1+𝑗𝑠+1 )) = 𝜌(𝑀𝐺(𝑢𝑠+1))

for 𝑠 = 1,… , 𝑘 − 1. Given that 𝛾 is a developmental path, then it
follows that the path 𝛤 induces a path in the phenotype pattern graph.
Uniqueness follows from Definition 5.3.1, completing the proof. ■

5.4. Path graph

We now identify the minimal subgraph of the condensed chemical
gradient graph that contains all condensed developmental paths subject
to an additional constraint on near simultaneous change of external
variables along the paths.

Definition 5.4.1. Given the condensed chemical gradient graph 𝑐 =
(𝑐 , 𝑐 ,𝑊 ; 𝑐 , 𝑐 ) and the phenotype pattern graph 𝑃𝑃𝐺 = (𝛴,𝐸𝛴 ),
the tensor product graph 𝑐 × 𝑃𝑃𝐺 contains the nodes {(𝑉𝑢, 𝑠) | 𝑉𝑢 ∈
𝑐 , 𝑠 ∈ 𝛴) and edges ((𝑉𝑢, 𝑠), (𝑉 ′

𝑢 , 𝑠
′)) if (𝑉𝑢, 𝑉 ′

𝑢 ) ∈ 𝑐 and (𝑠, 𝑠′) ∈ 𝐸𝛴 .
Let 𝐻 ⊂ 𝑐×𝑃𝑃𝐺 be the subgraph induced by nodes (𝑉𝑢, 𝑠) that satisfy

𝜌(𝑀𝐺(𝑢)) = 𝑠. (6)

Finally, let 𝑐 be a projection of 𝐻 onto the first component. In other
words, 𝑐 is the subgraph of 𝑐 such that a path exists in 𝑐 if and
only if that path induces a path in 𝑃𝑃𝐺.

Given a regulatory node 𝑣 affected by some monotone external
variable 𝑐(𝑦), we have that any path in 𝑐 follows a monotone path
in the factor graph of 𝑣 (see Definition 3.1.3), i.e., the path must be
consistent with external variable effect. In the gap gene network, the
external variables Bcd and Cad impose a requirement that Hb decreases
and, at the same time, Kni increases. However, our construction of 𝑐
allows Hb to decrease entirely before Kni increases and vice-versa. This
does not capture the biological reality where the maternal gradients
change simultaneously, i.e., Hb is decreasing while Kni is increasing
along the A–P axis of the embryo. We capture this behavior in our
final graph construction, the path graph. However, we must first define
what it means for external variables to be changing simultaneously in
the context of DSGRN. In order to do that we develop the concept of a
diagonal subgraph in a product of oriented graphs.

Definition 5.4.2. Consider RN = (𝑉 ,𝐸) and regulatory nodes
{𝑣1,… , 𝑣𝑚} ⊆ 𝑉 , with each 𝑣𝑗 affected by a corresponding external
variable 𝑐𝑗 (𝑦). Let ∗

𝑗 = |𝑅𝑗 | ⋅ |𝑇 (𝑣𝑗 )|+1, i.e., ∗
𝑗 is the number of factor

graph layers for 𝑣𝑗 . We call

𝑟𝑖,𝑗 ∶=
⌈

max
{∗

𝑗

∗
𝑖
,
∗
𝑖

∗
𝑗

}⌉

the size ratio between 𝑣𝑖 and 𝑣𝑗 .

For example, in the StrongEdges network, we have ∗
𝐻𝑏 = 5 and

∗
𝐾𝑛𝑖 = 13 where ∗

𝐻𝑏 and ∗
𝐾𝑛𝑖 denote the number of factor graph layers

for Hb and Kni respectively. Then

𝑟𝐻𝑏,𝐾𝑛𝑖 =
⌈

max
{ ∗

𝐻𝑏
∗ ,

∗
𝐾𝑛𝑖
∗

}⌉

= 3.

𝐾𝑛𝑖 𝐻𝑏
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𝑖,𝑗 and 𝑆𝑎
𝑖,𝑗 while the blue lines depict the lower bound of 𝑦.
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Returning to the general case, fix two regulatory nodes 𝑣𝑖, 𝑣𝑗 ∈
𝑣1,… , 𝑣𝑚}. In order to simplify notation we set 𝑟 ∶= 𝑟𝑖,𝑗 . The number
will be used to describe a subregion 𝑆 within a rectangle 𝑅 = [0, 𝑎𝑖] ×
0, 𝑎𝑗 ] ⊂ 𝑍 × 𝑍, where 𝑎𝑖 ∶= ∗

𝑖 − 1, 𝑎𝑗 ∶= ∗
𝑗 − 1. To be explicit we

ssume 𝑎𝑖 ≥ 𝑎𝑗 .
When sign(𝑐′𝑖 ) = sign(𝑐′𝑗 ) then we define a neighborhood of a

iagonal in 𝑅, 𝑆𝑑
𝑖,𝑗 ⊂ 𝑅 by

𝑑
𝑖,𝑗 ∶= {𝑥, 𝑦 ∈ 𝑅 | 𝑥 ∈ [0, 𝑎𝑖] and 1

𝑟
𝑥− 𝑟 + 1

𝑟
≤ 𝑦 ≤ 1

𝑟
(𝑥−𝑎𝑖)+𝑎𝑗 +

𝑟 + 1
𝑟

}.

(7)
ote that the lower bound of 𝑆𝑑

𝑖,𝑗 is a line passing through point (𝑟+1, 0)
nd the upper bound through the point (𝑎𝑖−𝑟−1, 𝑎𝑗 ), both with the same

slope 1
𝑟 , see Fig. 9(left). For the case when sign(𝑐′𝑖 ) ≠ sign(𝑐′𝑗 ) we set

𝑆𝑎
𝑖,𝑗 ∶= {𝑥, 𝑦 ∈ 𝑅 | 𝑥 ∈ [0, 𝑎𝑖] and − 1

𝑟
(𝑥−𝑎𝑖)−

𝑟 + 1
𝑟

≤ 𝑦 ≤ −1
𝑟
𝑥+𝑎𝑗 +

𝑟 + 1
𝑟

},

(8)
see Fig. 9(right).

Definition 5.4.3. Consider RN = (𝑉 ,𝐸) and regulatory nodes
{𝑣1,… , 𝑣𝑚} ⊆ 𝑉 , with each 𝑣𝑗 for 𝑗 = 1,… , 𝑚 affected by a corre-
sponding external variable 𝑐𝑗 (𝑦), and let 𝑐 be the graph as constructed
in Definition 5.4.1. The diagonal subgraph  is a node-induced sub-
graph of 𝑐 where a node 𝑉𝑝 ∈ 𝑐 belongs to  if and only if the
corresponding factor graph layers satisfy

(𝑖(𝑝),𝑗 (𝑝)) ∈

{

𝑆𝑑
𝑖,𝑗 if sign(𝑐′𝑖 ) = sign(𝑐′𝑗 )

𝑆𝑎
𝑖,𝑗 if sign(𝑐′𝑖 ) ≠ sign(𝑐′𝑗 )

for all pairs 𝑣𝑖, 𝑣𝑗 ∈ {𝑣1,… , 𝑣𝑚} where ∗
𝑖 ≥ ∗

𝑗 .

We restrict our attention to paths in the diagonal subgraph to
exclude paths that are not consistent with our interpretation of a simul-
taneous change in the external variables. For our final construction, we
further enforce that nodes in  must be connected to the collection of
starting and stopping nodes.

Definition 5.4.4. Let 𝑐 = (𝑐 , 𝑐 ,𝑊 ; 𝑐 , 𝑐 ) be the condensed
chemical gradient graph, and consider the diagonal subgraph  of 𝑐.
A node 𝑉𝑢 ∈  has terminal reach if one of the following is satisfied.

1. If 𝑉𝑢 ∉ 𝑐 ∪ 𝑐 , then there is both a path in  from at least one
𝑉𝑠 ∈ 𝑐 to 𝑉𝑢 and a path in  from 𝑉𝑢 to at least one 𝑉𝑡 ∈ 𝑐 .

2. If 𝑉𝑢 ∈ 𝑐, then there is a path in  from 𝑉𝑢 to at least one
𝑉𝑡 ∈ 𝑐 .

3. If 𝑉𝑡 ∈ 𝑐 , then there is a path in  from at least one 𝑉𝑠 ∈ 𝑐
to 𝑉𝑢.

Definition 5.4.5. The path graph 𝑃 = (𝒱 ,ℰ ) is the node-induced
subgraph of  where we have removed all nodes 𝑉𝑢 (and incident
15

edges) if 𝑉𝑢 does not have terminal reach in . The edge (𝑉𝑢, 𝑉𝑤) ∈ ℰ
inherits the weight of the edge (𝑉𝑢, 𝑉𝑤) ∈ 𝑐 . A node in 𝒱 is a starting
(stopping) node for 𝑃 if it is a starting (stopping) node in 𝑐.

The next theorem summarizes our construction.

Theorem 3. Every path in the path graph 𝑃 from a starting node to
a stopping node is a condensed developmental path with simultaneous
changes in external variables. Moreover, every developmental path in 𝑐
with simultaneous changes in external variables can be projected onto a path
in 𝑃 .

We showed that every condensed developmental path in 𝑐 repre-
sents a developmental path in  and that every developmental path in 
can be projected uniquely onto a condensed developmental path in 𝑐.
Since the path graph contains all condensed developmental paths that
satisfy the biologically motivated constraint of simultaneous external
variable change, it is sufficient to analyze the path graph in order to
understand the structure of the developmental paths in . See Appendix
ig. C.1 for a visualization of 𝑐 and 𝑃 for both the example gap gene
odels Fullconn and StrongEdges.

. Robustness scores

In this section, we use the fact that every path in a path graph
= (𝒱 ,ℰ ) matches spatial data represented by the phenotype pat-

ern graph. Our quantification of robustness will rely on features of
he shape and wiring of 𝑃 , the extent of 𝑃 lifted into , and the

attractiveness of 𝑃 as a subgraph of 𝑐. For the last, we assume that
random perturbation that redirects a developmental path out into 𝑐

is undesirable. We assert that a high likelihood that such a perturbation
does not permanently divert paths out of 𝑃 is a sign of a network model
that robustly matches the data. With this in mind, we say that a network
model is robust to perturbations if each of the following properties
are satisfied.

(P1) The path graph does not contain bottlenecks. Informally, a
bottleneck in the path graph is a node, or a set of nodes,
where a significant portion of perturbations result in a path in
𝑐 ⧵ 𝑃 . This property measures the fragility of the collection of
developmental paths in the path graph.

(P2) 𝑃 is an attractor within the condensed chemical gradient graph.
This means that if a local perturbation of a node in 𝑃 leads to a
node 𝑞 outside of 𝑃 , then paths starting at 𝑞 will re-enter 𝑃 after
a few transitions. This permits the resumption of the phenotype
pattern after a local break.

(P3) A path in 𝑃 is unlikely to be perturbed in such a way as to cause
portions of the phenotype pattern to be skipped. This means that
if there is a local perturbation of a node in 𝑃 to another node in

𝑃 , then the new path will still be a proper developmental path.
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(P4) The nodes and edges of 𝑃 constitute a large portion of nodes and
edges of the chemical gradient graph  when 𝑃 is lifted back
into . This means that for any given sequence of parameter
changes that respects the external variables, the correspond-
ing sequence of phenotypes is highly likely to reproduce the
phenotype pattern.

Lets consider properties P1-4 in context of the D. melanogaster ex-
mple. A path graph having property P1 suggests that any perturbation
ill still result in the proper development of the embryo. For spatially

ocalized perturbations, property P2 would imply that the new path
s still a proper development path and property P3 would allow for
atural development of the embryo with only local flaws. Finally,
aving property P4 means that chemical gradients Bcd and Cad robustly
ive rise to the phenotype pattern. We now introduce scores to quantify
roperties P1-4.

.1. Bottlenecks scored by optimized weighted cut (𝑂𝑊 𝐶𝑢𝑡) of the path
raph

A common understanding of a bottleneck is a restriction point for
raffic. In our case, the path graph describes a set of developmental
aths that represent a sequence of parameter changes consistent with
xternal variables that recapitulate qualitative observations about vari-
ble expression across spatial regions. A bottleneck indicates a set of
arameter regions where a random perturbation will likely disrupt the
henotype pattern. Our goal is to develop a mathematical definition
f a bottleneck that captures this behavior in the setting of a directed
eighted graph. To do so, we utilize the concept of weighted graph cut

rom (Meilă and Pentney, 2007).

efinition 6.1.1. A weighted directed graph 𝐺 = (𝑉 ,𝐸,𝑊 ) is a
irected graph equipped with a non-negative weight 𝑤𝑖,𝑗 assigned to
ach directed edge (𝑣𝑖, 𝑣𝑗 ). We organize weights in a |𝑉 | × |𝑉 | weight
atrix 𝑊 = [𝑤𝑖,𝑗 ]. If (𝑣𝑖, 𝑣𝑗 ) ∉ 𝐸, then 𝑤𝑖,𝑗 = 0.

efinition 6.1.2. Let 𝑊 be the weight matrix of 𝐺. Let 𝐷 be a
iagonal matrix where

𝐷𝑖 =

{

1 if ∑

𝑣𝑗∈𝑉 𝑤𝑖,𝑗 = 0,
∑

𝑣𝑗∈𝑉 𝑤𝑖,𝑗 otherwise.

here 𝑤𝑖,𝑗 ∈ 𝑊 . Notice if all edges have weight 1, then ∑

𝑣𝑗∈𝑉 𝑤𝑖,𝑗 is
he out-degree of 𝑣𝑖. We call 𝐷 the weighted out-degree matrix of the
raph 𝐺 (Meilă and Pentney, 2007).

efinition 6.1.3. def:Clusteret {𝐶1, 𝐶2,… , 𝐶𝐾} be a collection of
isjoint subsets of 𝑉 , i.e., 𝐶𝑘 ⊂ 𝑉 for 𝑘 = 1, 2,… , 𝐾 and 𝐶𝑖 ∩ 𝐶𝑗 = ∅ for
≠ 𝑗. If

𝐶1 ∪ 𝐶2 ∪⋯ ∪ 𝐶𝑘 = 𝑉

hen  = {𝐶1, 𝐶2,… , 𝐶𝐾} is a K-clustering of 𝐺. We call

𝒟𝑘 =
∑

𝑣𝑖∈𝐶𝑘

𝐷𝑖

he degree of cluster 𝑘 (Meilă and Pentney, 2007).

We associate to each set of nodes 𝐶𝑗 ⊂ 𝑉 all the edges (𝑢, 𝑣) ∈ 𝐸 that
onnect vertices within 𝐶𝑗 . K-clustering imposes a cut on the graph 𝐺;
he cut contains the set of edges in 𝐸 that connect vertices in different
lusters.

efinition 6.1.4. Let 𝑊 and 𝐷 be the weight and weighted out-
egree matrices of weighted directed graph 𝐺 respectively and let  =
16

{𝐶1, 𝐶2,… , 𝐶𝐾} be a K-clustering of 𝐺. Then the weighted cut of  is T
given by Meilă and Pentney (2007)

𝑊𝐶𝑢𝑡() =
𝐾
∑

𝑘=1

1
𝒟𝑘

∑

𝑣𝑖∈𝐶𝑘

(𝐷𝑖 −
∑

𝑣𝑗∈𝐶𝑘

𝑤𝑖,𝑗 ).

urther, let

𝑠𝑘 ∶=
∑

𝑣𝑖∈𝐶𝑘

∑

𝑣𝑗∈𝐶𝑘

𝑤𝑖,𝑗 and 𝑑𝑘 ∶=
∑

𝑣𝑖∈𝐶𝑘

∑

𝑣𝑗∈𝑉 ⧵𝐶𝑘

𝑤𝑖,𝑗 .

Notice that 𝑠𝑘 is the sum of weights for every edge in the node-
nduced subgraph of 𝐺 with node set 𝐶𝑘, denoted 𝐺[𝐶𝑘], while 𝑑𝑘 is
he sum of weights of edges departing 𝐺[𝐶𝑘]. If each 𝑤𝑖,𝑗 represents a
robability of taking the edge from node 𝑣𝑖 to 𝑣𝑗 , then in general a path
tarting in 𝐶𝑘 has a higher probability of staying in 𝐶𝑘 whenever 𝑠𝑘 is
igher than 𝑑𝑘.

efinition 6.1.5. Let 𝐺 = (𝑉 ,𝐸,𝑊 ) be a weighted directed graph with
𝐾-cluster . Given a cluster 𝐶𝑘 ∈ , we say that 𝐺 has a bottleneck

rom 𝐺[𝐶𝑘] into 𝐺[𝑉 ⧵ 𝐶𝑘] whenever 𝑠𝑘 > 𝑑𝑘. i.e., whenever a path
tarting in 𝐺[𝐶𝑘] has a better chance of staying in 𝐺[𝐶𝑘] than it does
f departing 𝐺[𝐶𝑘].

We detect the existence of bottlenecks in a graph and score their
trength using the weighted cut.

heorem 4. Let 𝐺 = (𝑉 ,𝐸,𝑊 ) be a weighted directed graph with weights
𝑖,𝑗 ∈ 𝑊 such that 𝑤𝑖,𝑗 ∈ [0, 1] and ∑

𝑣𝑗∈𝑉 𝑤𝑖,𝑗 ≤ 1. Given some cluster 𝐶𝑘
f 𝐺, if

𝑊𝐶𝑢𝑡({𝐶𝑘, 𝑉 ⧵ 𝐶𝑘}) <
1
2

then 𝐺 has a bottleneck from 𝐺[𝐶𝑘] into 𝐺[𝑉 ⧵ 𝐶𝑘].

Proof. Let 𝐺 = (𝑉 ,𝐸,𝑊 ) be a weighted directed graph with weights
𝑖,𝑗 ∈ 𝑊 in [0, 1], let 𝐷 be the weighted out-degree matrix, and let
= {𝐶1,… , 𝐶𝐾} be a K-clustering of 𝐺. For every 𝑘 notice that

∑

𝑣𝑖∈𝐶𝑘

∑

𝑣𝑗∈𝑉
𝑤𝑖,𝑗 =

∑

𝑣𝑖∈𝐶𝑘

(

∑

𝑣𝑗∈𝐶𝑘

𝑤𝑖,𝑗 +
∑

𝑣𝑗∈𝑉 ⧵𝐶𝑘

𝑤𝑖,𝑗

)

=
∑

𝑣𝑖∈𝐶𝑘

∑

𝑣𝑗∈𝐶𝑘

𝑤𝑖,𝑗 +
∑

𝑣𝑖∈𝐶𝑘

∑

𝑣𝑗∈𝑉 ⧵𝐶𝑘

𝑤𝑖,𝑗 = 𝑠𝑘 + 𝑑𝑘,

here the first equality is because 𝐶𝑘 ⊔ 𝑉 ⧵ 𝐶𝑘 = 𝑉 . Then

𝒟𝑘 ≥
∑

𝑣𝑖∈𝐶𝑘

∑

𝑣𝑗∈𝑉
𝑤𝑖,𝑗 = 𝑠𝑘 + 𝑑𝑘

ith equality when 𝐷𝑖 ∶=
∑

𝑣𝑗∈𝑉 𝑤𝑖,𝑗 ≠ 0 ∀𝑖. We can also express
𝐶𝑢𝑡() of the clustering in terms of weights of internal edges 𝑠𝑘 and

xternal edges 𝑑𝑘.

𝑊𝐶𝑢𝑡() =
𝐾
∑

𝑘=1

1
𝒟𝑘

∑

𝑣𝑖∈𝐶𝑘

(

𝐷𝑖 −
∑

𝑣𝑗∈𝐶𝑘

𝑤𝑖,𝑗

)

=
𝐾
∑

𝑘=1

1
𝒟𝑘

(

∑

𝑣𝑖∈𝐶𝑘

𝐷𝑖 −
∑

𝑣𝑖∈𝐶𝑘

∑

𝑣𝑗∈𝐶𝑘

𝑤𝑖,𝑗

)

=
𝐾
∑

𝑘=1

1
𝒟𝑘

(

𝒟𝑘 − 𝑠𝑘
)

=
𝐾
∑

𝑘=1

(

1 −
𝑠𝑘
𝒟𝑘

)

≤
𝐾
∑

𝑘=1

(

1 −
𝑠𝑘

𝑠𝑘 + 𝑑𝑘

)

.

We note that

1 −
𝑠𝑘

𝑠𝑘 + 𝑑𝑘
< 1

2
if and only if 𝑑𝑘 < 𝑠𝑘.

Applying the 𝑊𝐶𝑢𝑡 to clustering consisting of two clusters {𝐶, 𝑉 ⧵ 𝐶},
we observe that if 𝑊𝐶𝑢𝑡({𝐶, 𝑉 ⧵𝐶}) < 1

2 , then both 𝑑1 < 𝑠1 and 𝑑2 < 𝑠2.
herefore there is a bottleneck between 𝐶 and 𝑉 ⧵ 𝐶. ■
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Notice that if the cluster 𝐶𝑘 has no edge to 𝑉 ⧵ 𝐶𝑘 then 𝑑𝑘 = 0 and
e have

1 −
𝑠𝑘

𝑠𝑘 + 𝑑𝑘
= 0.

On the other hand if there are no edges connecting nodes within 𝐶𝑘
hen 𝑠𝑘 = 0 and

1 −
𝑠𝑘

𝑠𝑘 + 𝑑𝑘
= 1.

Therefore the closer 𝑊𝐶𝑢𝑡({𝐶, 𝑉 ⧵ 𝐶}) is to zero, the stronger the
bottleneck between 𝐶 and 𝑉 ⧵ 𝐶.

Thus, to score property P1 we will find the optimal 2-clustering
f the path graph 𝑃 that minimizes the 𝑊𝐶𝑢𝑡 of 𝑃 , with the addi-
ional condition that one cluster contains all the starting nodes while
he other contains all the stopping nodes. We compute an optimal
-clustering as follows using methods inspired by the normalized Lapla-
ian from (Meilă and Pentney, 2007) and a grouping algorithm for
mage segmentation (Shi and Malik, 2000) based on spectral clustering.
et 𝑊 and 𝐷 be the weighted matrix and weighted degree matrix of
, respectively. Computing the Hermitian part of the Laplacian 𝐿 =

(𝐷 −𝑊 ) and normalizing by 𝐷 (Meilă and Pentney, 2007), we have

ℒ ∶= 𝐷− 1
2 𝐻(𝐿)𝐷− 1

2 = 1
2
𝐷− 1

2 (2𝐷 −𝑊 −𝑊 𝑇 )𝐷− 1
2 .

The key insight from spectral theory of harmonic maps is that while
the smallest eigenvalue of ℒ has the eigenvector with positive entries,
the eigenvector corresponding to the second eigenvalue has entries of
both signs, and the nodes corresponding to each sign form two clusters
which minimize 𝑊𝐶𝑢𝑡. Since the value zero does not have a privileged
position in our matrix ℒ , we follow (Shi and Malik, 2000) to find an
optimum value to define the clusters. Let 𝐱 = (𝑥1, 𝑥2,… , 𝑥

|𝑉 |

) be the
eigenvector corresponding to the second smallest eigenvalue of ℒ . We
reorder elements in 𝐱 in ascending order and let (𝑣1, 𝑣2,… , 𝑣

|𝑉 |

) be the
corresponding ordering of nodes in 𝑉 . Let 𝑗 be the index such that

|𝑥𝑗 − 𝑥𝑗+1| = max
𝑖≤|𝑉 |−1

{|𝑥𝑖 − 𝑥𝑖+1|}.

Then we define a 2-clustering of nodes by setting 𝐶1 ∶= (𝑣1,… , 𝑣𝑗 ) and
𝐶2 = (𝑣𝑗+1,… , 𝑣

|𝑉 |

) (Meilă and Pentney, 2007; Shi and Malik, 2000). If
the starting and stopping nodes are not contained in separate clusters,
we find a clustering based on the next largest consecutive distance
|𝑥𝑗 − 𝑥𝑗+1|, until this condition is satisfied. We denote the 𝑊𝐶𝑢𝑡 of the
optimum 2-clustering of 𝑃 (with starting/stopping node conditions
satisfied) by

𝑂𝑊 𝐶𝑢𝑡(𝑃 ) ∶= 𝑊𝐶𝑢𝑡({𝐶1, 𝐶2}).

We remark that the 𝑂𝑊 𝐶𝑢𝑡(𝑃 ) is not computable for some path graphs
𝑃 because it is not possible to separate the starting and stopping nodes
into separate clusters. See Appendix Fig. C.2 for a visualization of the
optimal clustering of 𝑃 for both Fullconn and StrongEdges.

6.2. Using absorbing Markov chains (AMC) to score leak (P2) and skip
(P3)

To score properties P2 and P3, we will score how likely a random
path that starts in the path graph 𝑃 = (𝒱 ,ℰ ) will veer away from
the path graph within the condensed chemical gradient graph 𝑐 =
(𝑐 , 𝑐 ,𝑊 ; 𝑐 , 𝑐 ). By construction, 𝑃 is a subgraph of 𝑐, i.e., 𝒱 ⊂ 𝑐
and ℰ ⊂ 𝑐 . We will consider two types of edges in 𝑐 ⧵ ℰ that may
lead to different disruptions of the phenotype pattern. Let

 ∶= {(𝑉𝑢, 𝑉𝑣) ∈ 𝑐 | 𝑉𝑢 ∈ 𝒱 and 𝑉𝑣 ∉ 𝒱 }

 ∶= {(𝑉𝑢, 𝑉𝑣) ∈ 𝑐 | 𝑉𝑢, 𝑉𝑣 ∈ 𝒱 and (𝑉𝑢, 𝑉𝑣) ∉ ℰ }.

The edges in  capture paths that leave the path graph 𝑃 ; this repre-
sents a leak from the set of developmental paths to those which do not
recapitulate the observed phenotype pattern. On the other hand, both
vertices of the edges in  lie in 𝒱 , but the edge is not in ℰ . Therefore
edges in  represent paths that skip a portion of the phenotype pattern.
17
We say an edge (𝑉𝑢, 𝑉𝑣) ∈ 𝑐 is a leak edge if (𝑉𝑢, 𝑉𝑣) ∈  and a skip
edge if (𝑉𝑢, 𝑉𝑣) ∈  .

We use absorbing Markov chains to quantify the amount of leak
from 𝑃 into 𝑐 and skip within 𝑃 . A Markov chain (Privault, 2018)
is a discrete stochastic process with a finite number of states {𝑠𝑖}𝑛𝑖=0
for 𝑛 ∈ N where the probability of transitioning from state 𝑠𝑖𝑘 to state
𝑠𝑖𝑘+1 depends only on the current state 𝑠𝑖𝑘 and not on previous states
𝑠𝑖𝑘−1 ,… , 𝑠𝑖0 , i.e.,

𝑝(𝑠𝑖𝑘+1 |𝑠𝑖𝑘 , 𝑠𝑖𝑘−1 ,… , 𝑠𝑖0 ) = 𝑝(𝑠𝑖𝑘+1 |𝑠𝑖𝑘 ).

This is called the Markov property. As a consequence, a Markov chain
can be represented by a transition matrix (Thompson and McNeal,
1967)  where 𝜔𝑖,𝑗 is given by 𝜔𝑖,𝑗 ∶= 𝑝(𝑠𝑗 |𝑠𝑖) and

𝑛
∑

𝑗=1
𝜔𝑖,𝑗 = 1 (9)

for each 𝑖 = 1,… , 𝑛 (Thompson and McNeal, 1967). An absorbing state
is a state 𝑠𝑖 with 𝑝(𝑠𝑖|𝑠𝑖) = 1 and a transient state is any state that is not
absorbing. An absorbing Markov chain is a Markov chain where each
state can reach an absorbing state in a finite number of steps (Ermon
et al., 2014; Thompson and McNeal, 1967). The probabilities of transi-
tioning from transition state 𝑠𝑖 to absorbing state 𝑠𝑗 in an AMC can be
calculated from its transition matrix  (Thompson and McNeal, 1967).

Definition 6.2.1. Let 𝑃 = (𝒱 ,ℰ ) be the path graph of the condensed
chemical gradient graph 𝑐 = (𝑐 , 𝑐 ,𝑊 ; 𝑐 , 𝑐 ). The absorbing
Markov chain expansion of 𝑃 , denoted by 𝐴𝑀𝐶(𝑃 , 𝑙, 𝑠) = ( ,)
with transition matrix  , is defined as follows. The nodes are  =
𝒱 ∪ {𝑙, 𝑠}, where 𝑙 and 𝑠 are nodes that represent all states that are
targets of edges in  and  , respectively. Consider the following sets
of weighted edges

ℰ∗ = {(𝑉𝑢𝑖 , 𝑉𝑢𝑗 , 𝑤𝑖,𝑗 ) | (𝑉𝑢𝑖 , 𝑉𝑢𝑗 ) ∈ ℰ},

∗ = {(𝑉𝑢𝑖 , 𝑙, 𝑤𝑖,𝑗 ) | (𝑉𝑢𝑖 , 𝑉𝑢𝑗 ) ∈ },

 ∗ = {(𝑉𝑢𝑖 , 𝑠, 𝑤𝑖,𝑗 ) | (𝑉𝑢𝑖 , 𝑉𝑢𝑗 ) ∈  },

where 𝑤𝑖,𝑗 ∈ 𝑊 . Then the set of edges of 𝐴𝑀𝐶(𝑃 , 𝑙, 𝑠) is

 = ℰ∗ ∪ ∗ ∪  ∗ ∪ {(𝑉𝑢, 𝑉𝑢, 1) | 𝑉𝑢 ∈ 𝑐 } ∪ (𝑙, 𝑙, 1) ∪ (𝑠, 𝑠, 1).

The entries 𝜔𝑖,𝑗 ∈  are given by 𝜔𝑖,𝑗 = 𝑤𝑖,𝑗 for each (𝑢, 𝑣,𝑤𝑖,𝑗 ) ∈ 
and 0 otherwise.

The interpretation of edge weights in 𝑐 as transition probabilities
allows us to view 𝐴𝑀𝐶(𝑃 , 𝑙, 𝑠) as a Markov chain. It is easy to see
that the transition matrix of 𝐴𝑀𝐶(𝑃 , 𝑙, 𝑠) satisfies the Markov property.
Observe that the stopping nodes of 𝑃 , along with the nodes 𝑙 and 𝑠, are
the absorbing nodes of 𝐴𝑀𝐶(𝑃 , 𝑙, 𝑠). Then the probabilities 𝑝(𝑙) and 𝑝(𝑠)
are the probability of a random walk in 𝐴𝑀𝐶(𝑃 , 𝑙, 𝑠) ending in nodes 𝑙
or 𝑠 from a starting node. By construction of 𝐴𝑀𝐶(𝑃 , 𝑙, 𝑠), 𝑝(𝑙) and 𝑝(𝑠)
are then the probability of a random walk beginning at a starting node
of 𝑃 and leaving 𝑃 or skipping a region respectively. The probability
𝑝(𝑙) quantifies the lack of attractiveness of 𝑃 within 𝑐 (property P2)
while the probability 𝑝(𝑠) quantifies region skipping (property P3).

6.3. Size of lifted path graph in chemical gradient graph (P4)

Recall that the nodes of the path graph 𝑃 = (𝒱 ,ℰ ) are strong MG
equivalence classes of the chemical gradient graph  = ( , ), and the
edges represent collections of edges between these components.

Let
𝑃 = {𝑣 ∈  | 𝑣 ∈ 𝑉𝑢 for some 𝑉𝑢 ∈ 𝒱 }.

Similarly, for (𝑉𝑢, 𝑉𝑣) ∈ ℰ , consider the associated collection of edges
in 

 = {(𝑥, 𝑦) ∈  | 𝑥, 𝑦 ∈ 𝑉 ∪ 𝑉 },
𝑢,𝑣 𝑢 𝑣
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and let
𝑃 =

⋃

(𝑉𝑢 ,𝑉𝑣)∈ℰ
𝑢,𝑣.

hen the size of the lifting of the path graph into the chemical gradient
raph is given by

𝑔(𝑃 ,) =
|𝑃 | + |𝑃 |
|| + ||

.

The rationale for using 𝑔(𝑃 ,) as an indicator of robustness is that if
lifts to a large subgraph of , then the collection of (non-condensed)

evelopmental paths that respect the external variables is also large.
larger collection of developmental paths means that perturbations

re more likely to cause a shift to another developmental path, thus
nsuring that the phenotype pattern is preserved despite the disruption.

.4. Scoring

Let  be a set of regulatory networks and let 𝑁 ∈  , Additionally,
let 𝐷 denote the descriptive pattern describing the spatial data. Let 𝑃𝑁

and 𝑁 be the path graph and chemical gradient graph respectively
for 𝑁 and 𝐷. We combine the bottleneck, path size, and leak and skip
scores

𝙱(𝑁) ∶= 𝑂𝑊 𝐶𝑢𝑡(𝑃𝑁 ), 𝙿𝚂(𝑁) ∶= 𝑔(𝑃𝑁 ,𝑁 ) and 𝙻𝚂(𝑁) ∶= 1−(𝑝(𝑙)+𝑝(𝑠)).

in such a way as to score the robustness of 𝑁 .
First, we normalize each score to be between 0 and 1 to equalize

their impacts. For 𝑓 ∈ {𝙱, 𝙿𝚂, 𝙻𝚂}, let

𝑓 (𝑁) ∶=
𝑓 (𝑁) − min𝑁̄∈ (𝑓 (𝑁̄))

max𝑁̄∈ (𝑓 (𝑁̄)) − min𝑁̄∈ (𝑓 (𝑁̄))

be our normalization, then we give 𝑁 the robustness score

𝚂(𝑁) =
𝙱̂(𝑁) + 𝙿𝚂(𝑁) + 𝙻𝚂(𝑁)

3
.

. Results

We consider two candidate network models for D. melanogaster
development: StrongEdges (introduced in Section 4.2) and FullConn
(introduced in Section 2.1.3). We found that both networks were
capable of capturing the protein expression data from regions 𝑅2 to 𝑅7
seen in Fig. 6. The remainder of the results are dedicated to evaluating
and comparing their robustness. While values of the robustness score
𝚂(𝑁) for some networks 𝑁 are hard to interpret in a physical sense,
we can use these values to compare network models. In particular, we
wish to compare the networks StrongEdges and FullConn with a class
of random networks. If these networks are valid representations of the
gap gene network (which is known to be robust) then they should,
in theory, have higher robustness scores than the average randomly
generated network. Additionally, we would like to know if any network
properties impact a network’s robustness score. To accomplish these
tasks, we must define a set of random networks, as well as define
network properties we wish to evaluate. Given that both StrongEdges
and FullConn have four nodes (Hb, Gt, Kr, and Kni) and eight edges,
we restrict our attention to networks with nodes Hb, Gt, Kr, and Kni
as well as eight edges. These can be any combination of edges between
the nodes, with either activating or repressing signs. There are 126,720
networks in this class, with DSGRN parameter graph sizes ranging
between 1.44 and 23.064 million nodes. For computational reasons, we
only consider networks with a DSGRN parameter graph size up to 4.32
million nodes. We note that FullConn and StrongEdges have DSGRN
parameter graph sizes of 2.56 and 3.24 million nodes respectively, so
this range allows comparison with networks that have both smaller and
larger parameter graphs. This class has 58,366 networks, which will be
our network population, denoted by  .

Calculating the score 𝚂(𝑁) for a single network 𝑁 takes between
5 and 30 min, with time heavily dependent on the chemical gradient
18
graph size. Using 3 threads in parallel, with this number limited by
memory constraints, the computation time for 100 networks takes
approximately one day. Hence we expect computing a score for all
58,366 networks would take nearly a year with our available resources.
Thus, we selected nearly 1000 networks from  and computed the
robustness score 𝚂(𝑁) (sampling details are described below). The
ability to collect comprehensive data about the dynamics of such a large
set of networks is a unique characteristic of the DSGRN approach.

We used a mixed random sampling method to generate our sample
of networks from  . We started by collecting a simple random sample,
meaning there was an equal probability of every network in  being
selected during the sampling process, from  for a baseline group
composed of 752 networks that we denote by . We then asked if the
following features of a regulatory network impact the robustness score.

1. Subnetworks of the gap gene network from Verd et al. (2019),
as seen in Fig. 1. Networks 𝑁 ∈  that satisfy this condition are
said to have the feature Verd.

2. Subnetworks of the gap gene network from Reinitz (Manu et al.,
2009), see Appendix Fig. D.1. Since the Reinitz gap gene network
is a subgraph of Verd, a 𝑁 that is a subgraph of the Reinitz gap
gene network is also a subgraph of Verd. We call this feature
Reinitz. When a 𝑁 has the Verd feature but not the Reinitz
feature, we say this 𝑁 has the strict Verd feature.

3. The ACDC 1-3 motifs from left to right in Fig. 2. We call these
the ACDC1, ACDC2 and ACDC3 features.

4. Networks that have all four repressing edges Hb to Kni, Kni to
Hb, Gt to Hb and Hb to Gt, which are the edges with the most
biological evidence. We call this the Ultra Strong feature.

5. The number of repressing edges in 𝑁 . We call this integer-valued
property the RE feature.

6. The number of negative and positive feedback loops in 𝑁 . These
are the NFL and PFL features, respectively.

We call categories (1)-(4) subgraph features and categories (5)-(6)
number features. While all networks have number features, only 2122
networks in  have at least one subgraph feature. We denote this set
of networks by  . Given that there are less than 4% of networks with a
subgraph feature, the random sample  did not produce many networks
from  in the baseline group.

In order to evaluate how subgraph features impact our score, we
used a stratified simple random sampling method to select more net-
works. Using the stratification of  into two disjoint groups,  and  ⧵
 we randomly sampled 200 additional networks from  , denoted  .
We remark that ∩ = ∅. We call  the feature group and Table 3
hows a breakdown of the number of networks in  ,, and  , the
umber of networks in  we attempted to score, and the number of
etworks we were able to score.

Of the networks we attempted to score, only 11 were unable to
eproduce the data, i.e., they did not contain a developmental path.
ne of these networks (network 21,283) was unable to reproduce the
ata due to having no stopping nodes in the chemical gradient graph.
he topology of this network can be seen in Appendix Fig. D.1. The
ther 10 had path graphs that became disconnected after imposing
he requirement that developmental paths follow maternal gradient
low simultaneously (see Definition 5.4.3). Additionally, there were 19
etworks where 𝑂𝑊 𝐶𝑢𝑡 could not be calculated with the condition
hat the starting and stopping nodes be in separate clusters. Due to not
aving a calculated score, we left these 30 networks out of our statistical
nalysis.

We would like to answer the following questions:

1. Is FullConn or StrongEdges more robust than the average
network from our population?

2. Is there evidence of a difference in robustness between our

baseline and feature groups? Specifically, we ask if networks
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Table 3
The sizes of the groups of networks in the statistical analysis. The pair of numbers for each subgraph feature under ‘‘ " is the population size of networks containing the specified
subgraph feature in  and by construction in  (first number), and the number of networks containing only the specified subgraph feature (second number). The pairs of numbers
for the number features are the population sizes of networks available in  and  respectively for the counts of edges/loops in the row. No networks with greater than 7 positive
or negative loops exist in  . In columns labeled  and  , ‘‘Scored’’ are the subsets of the ‘‘Sampled’’ sets that could be scored. Under  ∪  , ‘‘Total Scored’’ indicates the
population size of networks used in our statistical analysis. The integers beneath the number features for the sampled groups of networks indicate the counts of networks with
each number feature in the specified sample.

Subgraph feature     ∪ 

Total Disjoint Sampled Scored Sampled Scored Total scored

ACDC1 468 387 7 7 44 43 50
ACDC2 468 411 3 3 34 32 35
ACDC3 468 387 9 7 41 40 47
Ultra Strong 704 583 10 10 75 72 82
Strict Verd 170 116 0 0 18 17 17
Reinitz 85 37 1 1 14 13 14

Count of
number
feature

RE
 

PFL
 

NFL
 

RE PFL NFL RE PFL NFL RE PFL NFL RE PFL NFL RE PFL NFL

0 255 0 1680 0 2160 120 1 31 33 1 31 33 0 0 17 0 0 16 1 31 49
1 1824 0 7680 128 5952 217 13 119 82 13 113 81 0 17 21 0 16 20 13 129 101
2 6060 0 14 256 488 15 888 752 83 191 183 82 188 175 0 43 69 0 41 66 82 229 241
3 12 120 0 17 712 687 18 672 668 141 227 214 137 218 208 0 57 53 0 56 52 137 274 260
4 15 690 119 12 912 692 10 512 287 207 131 173 201 125 167 9 68 30 9 65 30 210 190 197
5 13 200 510 3168 87 4128 71 179 42 51 172 42 49 48 9 9 47 9 9 219 51 58
6 6924 850 720 36 1008 7 96 7 15 90 7 14 91 6 1 86 6 0 176 13 14
7 2040 534 240 4 48 0 29 4 1 29 4 1 42 0 0 41 0 0 70 4 1
8 255 109 0 0 0 0 3 0 0 3 0 0 10 0 0 10 0 0 13 0 0

Total 58368 752 728 200 193 914
Fig. 10. Violin plots comparing normalized robustness scores between the baseline (gray) and feature (blue) groups. White bars depict the 95% mean confidence intervals. The
red dot and black square indicate the score for FullConn and StrongEdges respectively. Note in particular when the scores for FullConn and StrongEdges lie outside the 95% mean
confidence intervals for each group.
containing at least one of our noted features will be more or less
robust than average.

3. Is there a relationship between any of the features and the net-
work robustness score? Specifically, we want to know if there is
evidence of a specific feature having an impact on the robustness
score.

Fig. 10 shows a summary of our analysis for both the baseline (gray)
 and the subgraph feature group (blue)  , together with means
and the 95% mean confidence intervals for each of the normalized
scores and the overall robustness score. The numerical values can be
seen in Appendix Table F.1, along with the results for FullConn and
19
StrongEdges. Additionally, see Appendix Fig. E.1 for a summary of
score results before applying the normalization defined in Section 6.4.
We see that both FullConn and StrongEdges have robustness scores
that lie outside of the 95% confidence intervals for the baseline group.
In particular, FullConn exceeds the 95% mean confidence intervals
for the baseline group in all robustness scores and exceeds the 95%
mean confidence interval for the feature group in all scores but 𝙿𝚂.
StrongEdges is a worse performer, with 𝙻𝚂(StrongEdges) below the 95%
mean confidence intervals in the baseline and feature groups, and the
overall score 𝚂(StrongEdges) below the 95% mean confidence interval
in the feature group. Comparing the baseline and feature distributions,
we see evidence that a network containing a subgraph feature, on
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Fig. 11. Regression coefficients for each explanatory variable in our model and model intercept, plotted with 95% confidence intervals. See Appendix Table F.2 for coefficients,
95% confidence intervals, t and p-values for each of the response variables 𝙱̂ (top left), 𝙿𝚂 (top right), 𝙻𝚂 (bottom left) and 𝚂 (bottom right).
average, is more robust than a random network, primarily due to higher
performing 𝙻𝚂 and 𝙿𝚂 scores.

To address question 3, we used multi-linear regression
(MLR) (Greenwood, 2022) on all networks scored. The subgraph
and number features were set as the explanatory (independent)
variables and the network score as the response (dependent) variable.
All assumptions to ensure the validity of this model were checked, see
Appendix F.

Our results are summarized in Fig. 11. Each explanatory variable
coefficient is depicted by a black dot, and the 95% confidence interval
is depicted by the blue line on either side of the coefficients. For
example, for 𝚂 in the lower right panel, we can see that when a network
contained ACDC2 as a subnetwork, we are 95% confident that the true
mean of the network score is increased by between 0.073 and 0.123 in
our population, after adjusting for the additional possible presence of
ACDC1, ACDC3, Ultra Strong, Strict Verd, Reinitz, NFL, PFL, and RE.
Additionally, for each repressive edge added to a regulatory network,
we are 95% confident that the true mean of the network score is
increased by between 0.0008 and 0.0086 in our population, after
adjusting for the presence of the remaining features. From this, we saw
evidence that 5 of the 9 features (ACDC2, Reinitz, Strict Verd, RE and
NFL) had an increasing or decreasing effect on our overall network
robustness score 𝚂. The impacts of feature groups on the component
scores 𝙱̂, 𝙿𝚂, and 𝙻𝚂 are also shown.

In more detail, let 𝐹 denote our set of explanatory variables. Given
an explanatory variable 𝑓 ∈ 𝐹 , let 𝐻0,𝑓 be the null hypothesis of 𝑓 ,
which states that there is no linear relationship between the network
score and 𝑓 , once we have accounted for all explanatory variables in
𝐹 ⧵ {𝑓}. To determine if we can reject the null hypothesis, we use a
t-statistic and a 𝑝-value. Since our model has 906 degrees of freedom
(number of observations minus number of variables), then a t-statistic
(denoted 𝑡906) above 1.963 or below −1.963 is considered significant at
the 95% level, along with a 𝑝-value less than 0.05 (Greenwood, 2022).
During our analysis, we found that there was evidence for a positive
linear relationship between network robustness and feature ACDC2,
once we accounted for the remaining features; i.e., there was evidence
20
against 𝐻0,ACDC2 (𝑡906 = 7.4970, 𝑝-value < 0.0001). That is, the presence
of ACDC2 on average increased the score of any network of which it is a
subnetwork. We also found evidence for positive linear relationships in
Reinitz (𝑡906 = 3.5587, 𝑝-value = 0.0004), Strict Verd (𝑡906 = 2.9821,
𝑝-value = 0.0029), and RE (𝑡906 = 2.3844, 𝑝-value = 0.0173). On
the other hand, we saw evidence for a negative relationship in NFL
(𝑡906 = −5.8644, 𝑝-value = < 0.0001). Lastly, we saw little to no
evidence against the null hypotheses for ACDC1 (𝑡906 = 1.4800, 𝑝-value
= 0.1392), ACDC3 (𝑡906 = −0.4808, 𝑝-value = 0.6308), Ultra Strong
(𝑡906 = 0.5861, 𝑝-value = 0.5580) or PFL (𝑡906 = −0.4890, 𝑝-value =
0.6250).

Fig. 11 shows the impact of the three constituent robustness scores
of 𝚂 as well. For example, we see evidence to suggest that there exists a
positive linear relationship between the path size score 𝙿𝚂 and feature
Reinitz once we account for all other features (𝑡906 = 3.7818, 𝑝-value
= 0.0002). However, we see little to no evidence that there exists a
linear relationship between Reinitz and the bottleneck score 𝙱̂ (𝑡906 =
1.0178, 𝑝-value = 0.3090), as well as the leak-skip score 𝙻𝚂 (𝑡906 =
1.2341, 𝑝-value = 0.2175), once we account for all other features. This
suggests that the Reinitz feature impacted the overall robustness score
by increasing the size of the lifted path graph in the chemical gradient
graph.

8. Discussion

In this manuscript, we reinterpreted the output of the network
modeling tool DSGRN to accommodate a linear array of identical
networks that are impacted by spatially varying external factors. We
were motivated by the developmental program of D. melanogaster,
particularly by the stabilizing influence of maternal protein gradients
on gap gene network models in late-stage segmentation. We used the
new modeling framework to quantify the robustness of various such
models.

Our main mathematical contributions are three-fold. First, we con-
ceptually reinterpreted the output of the DSGRN methodology to enable

modeling of spatially arranged cells that are impacted by monotone



Journal of Theoretical Biology 580 (2024) 111720E. Andreas et al.

w
f
w
u
t
t
g
c

g
s
a
n
c
n
r
W
i

a
t
p
o
F
e
s
a
f
s
s
t
h
o
n
t
f
n
r
i
m
t
t

w
f
s
s
o
o
e
o
e
w
i
u
t
2

n
t
t
r

a
t
m
p

t
r
t
t
p
o
p

a
E
e
s
g
t
w
w
F
d
p

C

y
o
c
S
T
M
&

D

D

i
2

A

w
S
f
E
s
F
0
i

A

w
s
S
d
d

control variables. This was done by proving that DSGRN factor param-
eter graphs can be represented as graded posets. Second, we defined
a path graph based on the graded posets that permits a DSGRN net-

ork model to match spatial experimental data subject to constraints
rom monotone control variables. The path graph summarizes all the
ays in which a network model is capable of matching the data
nder these constraints. Lastly, we developed evaluation criteria for
he robustness of the match between model and data by devising
hree robustness scores that quantify the structural fragilities of the path
raph. These structural fragilities can be interpreted as obstacles to
orrect development.

Our major biological contributions are a rank ordering of proposed
ap gene network models in D. melanogaster according to robustness
core, a quantification of their performance over random networks,
nd a characterization of the impact of various network motifs on
etwork model performance. In particular, we showed that while it is
ommon for a network model to be able to match experimental data, a
etwork model inspired by Verd et al. (2019) (FullConn) shows strong
obustness scores compared to a random sample of network models.
e also identified a motif (ACDC2) within FullConn that, on average,

mproves the robustness scores of network models that contain it.
The network FullConn is an alternative view of the dynamic module

pproach in Verd et al. (2019), with which we showed that it is possible
o model observed data using a single network functioning at different
arameter regimes across spatial locations, as opposed to modeling the
bserved data using different networks across spatial locations. The
ullConn network is a combination of the modules proposed by Verd
t al., and our analysis showed that Fullconn had a better robustness
core than both the average random network with 4 nodes and 8 edges,
s well as the average random network containing other subgraph
eatures of interest. The FullConn network even had a higher robustness
core than the StrongEdges network, which was constructed using only
trong edges from the gap gene network from Fig. 1. This suggests
hat the modules proposed by Verd et al. (2019) are a reasonable
ypothesis for dynamic control in the late-stage segmentation process
f D. melanogaster, although it is unnecessary to view them as distinct
etworks. Moreover, we found that networks that are subnetworks of
he proposed (large) gap gene network from Verd et al. (2019) and
rom Reinitz et al. (Manu et al., 2009), which is the same gap gene
etwork but without the edge Kni → Gt (see Appendix D), have higher
obustness scores, suggesting that both models contain subnetworks
mportant to the function of the gap gene network. Furthermore, the
otif ACDC2 had the most impact on our robustness score suggesting

his motif may be particularly biologically relevant for robustness in
he gap gene network.

We also found that nearly all of the randomly sampled networks
ith 4 nodes and 8 edges can reproduce the phenotype pattern derived

rom the developmental data between regions 𝑅2 and 𝑅7. While our
core allows rank-ordering these networks, it may be desirable to con-
train the potential network models further. Our framework is capable
f incorporating additional datasets that may help reduce the number
f networks that fit the phenotype pattern. In particular, measuring
xpression of the gap genes in embryos where the spatial expression
f Bcd and Cad was experimentally manipulated could lead to, for
xample, non-diagonal developmental paths that any network model
ould be required to match along with the wild-type data, resulting

n additional restrictions on network structure. A similar process of
sing additional data to reduce the space of hypotheses was used in
he context of DSGRN models of yeast cell cycle network (Fox et al.,
022).

Moreover, while the biologically and mathematically motivated
etwork models FullConn and StrongEdges scored well in comparison
o the random sample, there were plenty of networks that optimized
he robustness score even more. We hypothesize that optimizing for
21

obustness is a constrained optimization problem, where factors such t
s evolutionary and environmental constraints may cause a network
o be selected during evolution even if another network may provide
ore robustness for developmental or other highly conserved genetic
rograms.

The DSGRN approach that we present in this paper is a powerful
ool for the exploration of network models under different parameter
egimes across spatial domains. It enables the comprehensive descrip-
ion of (coarse) dynamical behavior across parameter space, enabling
he quantification of features such as robustness. Moreover, the com-
utational efficiency permits the exploration of very large samples
f network topologies, lending more credence to rank orderings of
ossible network models.

There is an immediate application of our methods to insects with
similar developmental system, such as embryonic development in

pisyrphus balteatus (Lemke et al., 2010) and Megaselia abdita (Wotton
t al., 2015). We could also apply our work to other network models,
uch as the pair-rule gene network in D. melanogaster, where the
ap gene protein concentrations determine pair-rule gene transcrip-
ion (Gilbert and Barresi, 2018). Hence, in this model, the gap genes
ould be the external variables to the pair-rule gene network, though
e would need to extend our work to non-monotone external variables.
inally, we can further extend our approach to modeling late-stage
ynamic shifts in domain boundaries along the A–P axis of gap gene
rotein concentrations.
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ppendix A. State transition graph (STG)

Given a regulatory network RN = (𝑉 ,𝐸), the set 𝑋 =
∏

|𝑉 |

𝑗=1 𝑋𝑗 ,
here 𝑋𝑗 = {0,… , |𝑇 (𝑣𝑗 )|} for 𝑣𝑗 ∈ 𝑉 , is the set of nodes of the

tate transition graph (STG). The directed edges between the nodes in
TG indicate the direction of flow between neighboring (non-diagonal)
omains. As we will now show, the edge directions are uniquely
etermined by choice of DSGRN parameter. We first define the domain

arget points.

https://github.com/Eandreas1857/2023_GGN_Robustness
https://github.com/Eandreas1857/2023_GGN_Robustness
https://github.com/Eandreas1857/2023_GGN_Robustness
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Definition A.1. Given a regulatory network RN = (𝑉 ,𝐸) with |𝑉 | =
𝑁 , let  be the associated set of DSGRN parameters. Fix a parameter
𝑝 ∈  . For each domain 𝑘 ∈  (see Section 2.2.3 of main text), the
function 𝛬𝑗 (𝑥) is constant for all 𝑥 ∈ 𝑘. Let 𝛬(𝑘) ∶= (𝛬1(𝑘),… , 𝛬𝑁 (𝑘))
denote the vector of these values. Note that the flow in each domain 𝑘
onverges to a point determined by

𝑣̇|𝑘 = −𝛤𝑣 + 𝛬(𝑘) = 0. (A.1)

ere 𝛤 is a diagonal matrix, with decay rates 𝛾𝑗 as its diagonal entries.
hen a target point for 𝑘 is

𝑇𝑃 (𝑘) = 𝛤−1𝛬(𝑘). (A.2)

When 𝑇𝑃 (𝑘) ∈ 𝑘, we call 𝑘 an attracting domain.

We now translate the map 𝑘 → 𝜙(𝑇𝑃 (𝑘)), which is the map  → 𝑋
to a map on the space 𝑋. For 𝑝 ∈  , the map 0 ∶ 𝑋 ×  → 𝑋 defined
by

0(𝑥; 𝑝) ∶= 𝑦 where 𝑦 = 𝜙(𝑇𝑃 (𝜙−1(𝑥))).

That is, 𝑦 ∈ 𝑋 is an integer signature of the domain where the target
point of domain 𝜙−1(𝑥) lies.

We are ready to define a multi-valued map  on 𝑋 that gives rise
to the STG.

Definition A.2. The multi-valued map  ∶ 𝑋 × ⇉ 𝑋 is generated by
0 and defined by

• If 0(𝑥; 𝑝) = 𝑥 then  (𝑥; 𝑝) = {𝑥}.
• For any component 𝑗 = 1,… , 𝑁 and 𝛽 ∈ {−1, 1} satisfying
𝛽0

𝑗 (𝑥; 𝑝) > 𝛽𝑥𝑗 the state

𝑥̄𝑗 = 𝑥𝑗 + 𝛽, 𝑥̄𝑖 = 𝑥𝑖 for 𝑖 ≠ 𝑗

satisfies 𝑥̄ ∈  (𝑥; 𝑝).

Note that 𝑥 ∈ 𝑋 is a fixed point of  if and only if 𝑥 is a fixed point
of 0. The multivalued map  can be represented as a state transition
graph (STG), see Fig. 3(e) in the main text.

As an example, we construct a STG for the regulatory network in
Fig. 3(a) at a particular DSGRN parameter. Suppose 𝛾1 = 𝛾2 = 1 and
consider the DSGRN parameter 𝑝 = (𝑝1, 𝑝2) with 𝑝1 = (𝜉1, 𝛼1), 𝑝2 =
(𝜉2, 𝛼2). Assume that order parameters are

𝛼1(𝜃1,1) = 0, 𝛼1(𝜃2,1) = 1

𝛼2(𝜃1,2) = 0, 𝛼2(𝜃2,2) = 1,

and logic parameters are

𝜉1 ∶ 𝑙1,1 + 𝑙1,2 < {𝑢1,1 + 𝑙1,2, 𝑙1,1 + 𝑢1,2} < 𝜃1,1 < 𝜃2,1 < 𝑢1,1 + 𝑢1,2
𝜉2 ∶ 𝑙2,2𝑙2,1 < 𝑢2,2𝑙2,1 < 𝜃1,2 < 𝑙2,2𝑢2,1 < 𝜃2,2 < 𝑢2,2𝑢2,1.

This choice of parameter 𝑝 determines STG in Fig. 3(e), which is
superimposed on phase space. For example, consider the domain 𝑘1,
which is the bottom left domain. All the regulatory nodes in domain 𝑘1
are below their thresholds, thus the ordinary differential equations in
this domain are

𝑣̇1 = −𝑣1 + (𝑙1,2 + 𝑢1,1), 𝑣̇2 = −𝑣2 + (𝑙2,2𝑢2,1)

with 𝑇𝑃 (𝑘1) = (𝑙1,2+𝑙1,1, 𝑙2,2𝑢2,1). Notice the choice of DSGRN parameter
𝑝 implies that the value 𝑙1,2 + 𝑙1,1 < 𝜃1,1, while 𝜃1,2 < 𝑙2,2𝑢2,1 < 𝜃2,2.
Therefore the target point 𝑇𝑃 (𝑘1) is in domain 𝑘2. Repeating this for
every domain 𝑘𝑗 , 𝑗 = 1,… , 9 we construct STG in 3(e).

Appendix B. Factor graph layers for DSGRN realizable parameters

Recall from Section 2.2.2 that a logic parameter for node 𝑣𝑗 in a
regulatory network is a function 𝜉𝑗 ∶ 𝑅𝑗 → 𝑋𝑗 , where

𝑅 ∶= {(𝑥 ,… , 𝑥 ) ∣ 𝑥 ∈ {𝑙 , 𝑢 }}
22

𝑗 1 𝑘 𝑚 𝑗,𝑚 𝑗,𝑚
with 𝑘 = |𝑆(𝑣𝑗 )| the number of source nodes of 𝑣𝑗 . Further recall that
an order parameter for 𝑣𝑗 is a bijective map 𝛼𝑗 ∶ 𝛩𝑗 → {0, 1,… ,𝑀 −1},
where 𝛩𝑗 = {𝜃𝑖1 ,𝑗 ,… 𝜃𝑖𝑀 ,𝑗} is the collection of thresholds for 𝑣𝑗 and
𝑀 = |𝑇 (𝑣𝑗 )| is the number of targets of 𝑣𝑗 . Lastly, recall that a factor
graph 𝐹𝑗 = (𝑉𝑗 , 𝐸𝑗 ) for 𝑣𝑗 has 𝑀! isomorphic subgraphs 𝐺𝑖

𝑗 = (𝑉 𝑖
𝑗 , 𝐸

𝑖
𝑗 )

where the 𝑉 𝑖
𝑗 partition 𝑉𝑗 , i.e., ⨆

𝑗 𝑉
𝑖
𝑗 = 𝑉𝑗 (Cummins et al., 2016).

Each of these subgraphs 𝐺𝑖
𝑗 , called subfactor graphs, is associated with

a particular threshold order 𝛼𝑖𝑗 . Each subfactor graph 𝐺𝑖
𝑗 has unique

lowest parameter node 𝓁𝑖,𝑗 given by

𝓁𝑖,𝑗 = (𝜉0𝑗 , 𝛼
𝑖
𝑗 ) where 𝜉0𝑗 (𝑥) = 0 for all 𝑥 ∈ 𝑅𝑗

unique highest parameter

ℎ𝑖,𝑗 = (𝜉𝐻𝑗 , 𝛼𝑖𝑗 ) where 𝜉𝐻𝑗 (𝑥) = 𝑀 for all 𝑥 ∈ 𝑅𝑗 .

Definition B.1. A factor parameter node 𝑝 = (𝜉𝑗 , 𝛼𝑖𝑗 ) is DSGRN
realizable if there exist sets of real, positive values {{𝑙𝑗,𝑚, 𝑢𝑗,𝑚}𝑘𝑚=1} and
𝛩𝑗 , where the elements of 𝛩𝑗 are all distinct, and a function 𝑔 ∶ R𝑘 → R
which has the form of product of sums

𝑔(𝑥1,… , 𝑥𝑘) =
∏∑

𝑥𝑚, (B.1)

such that for all 𝑥 ∈ 𝑅𝑗 and all 𝜃𝑛,𝑗

𝑔(𝑥) < 𝜃𝑛,𝑗 if and only if 𝜉(𝑥) < 𝛼𝑖𝑗 (𝜃𝑛,𝑗 ) + 1

and an equality 𝑔(𝑥) = 𝜃𝑛,𝑗 never occurs. We call the collection

𝑤 ∶= {{𝑙𝑗,𝑚, 𝑢𝑗,𝑚}}𝑘𝑚=1 ∪ 𝛩𝑗

a witness of the parameter node 𝑝 under function 𝑔.

Remark B.1. Note that the nodes 𝓁𝑖,𝑗 and ℎ𝑖,𝑗 are realizable for any
function 𝑔 of the form in (B.1). To see this, choose an arbitrary set of
real, positive values 𝑈 ∶= {{𝑙𝑗,𝑚, 𝑢𝑗,𝑚}𝑘𝑚=1} and set

𝑚̂ ∶= min{𝑔(𝑥) ∣ 𝑥 ∈ 𝑅𝑗} and 𝑀̂ ∶= max{𝑔(𝑥) ∣ 𝑥 ∈ 𝑅𝑗}.

Note that 0 < 𝑚̂ < 𝑀̂ . Then if we select a set 𝛩𝑗 (𝑤) with max𝛩𝑗 (𝑤) < 𝑚̂
then 𝑈∪𝛩𝑗 is witness for ℎ𝑗,𝑖 and if we select 𝛩𝑗 (𝑤) with min𝛩𝑗 (𝑤) > 𝑀̂
then 𝑈 ∪ 𝛩𝑗 (𝑤) is witness for 𝓁𝑖,𝑗 .

We denote the set of 2𝑘 real-valued inputs evaluated on the witness
𝑤 by 𝑅𝑗 (𝑤) and the set of threshold values in witness 𝑤 by 𝛩𝑗 (𝑤) and
let

𝑌 (𝑤) ∶= {𝑔(𝑥) ∣ 𝑥 ∈ 𝑅𝑗 (𝑤)},

where repeated elements are permitted.

Lemma B.1. Given parameter node 𝑝 and function 𝑔, for a generic choice
of 𝑤, the set 𝑌 (𝑤) is totally ordered. That is, there exists an open and dense
set 𝑈 ⊂ 𝑉 where 𝑉 is an open subset of R|𝑤| of those values that satisfy

1. 0 < 𝑙𝑗,𝑚 < 𝑢𝑗,𝑚 (i.e., (5)),
2. distinct thresholds in 𝛩𝑗 ,
3. 𝑌 (𝑤) ∩ 𝛩𝑗 = ∅, and
4. the inequality constraints of the parameter node 𝑝,

such that 𝑤 ∈ 𝑈 implies all values of 𝑌 (𝑤) are distinct.

Proof. Notice that the requirement that 0 < 𝑙𝑗,𝑚 < 𝑢𝑗,𝑚 induces the
condition 𝑔(𝑥) ≠ 𝑔(𝑥′) for 𝑥, 𝑥′ ∈ 𝑅𝑗 whenever 𝑥𝑚 ≠ 𝑥′𝑚 and 𝑥𝑠 = 𝑥′𝑠
for all 𝑠 ≠ 𝑚. The problem of potential equality, 𝑔(𝑥) = 𝑔(𝑥′), can only
occur when 𝑥𝑚1

≠ 𝑥′𝑚1
and 𝑥𝑚2

≠ 𝑥′𝑚2
for some 𝑚1 ≠ 𝑚2.

Suppose for a witness 𝑤 for parameter 𝑝, there are two values
𝑥 ≠ 𝑥′ ∈ 𝑅𝑗 (𝑤) such that 𝑔(𝑥) = 𝑔(𝑥′) ∈ 𝑌 (𝑤). Choose a position 𝑚 such
that 𝑥𝑚 ≠ 𝑥′𝑚, and assume without loss of generality that 𝑥𝑚 = 𝑙𝑗,𝑚.

Define 𝑤̄ as a witness under 𝑔 of some parameter node 𝑞 by taking
the witness 𝑤 and changing exactly one value: 𝑙𝑗,𝑚 = 𝑙𝑗,𝑚 + 𝜖 for some

𝜖 > 0. In particular, 𝜖 must be small enough to ensure 𝑙𝑗,𝑚+𝜖 < 𝑢𝑗,𝑚 and
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Fig. C.1. Condensed chemical gradient graph (all nodes) for FullConn (top) and
StrongEdges (bottom). FullConn has 12,398 and 100,179 nodes and edges respectively.
StrongEdges has 14,832 and 123,407 nodes and edges respectively. Purple, red, and
green nodes depict nodes in the path graph, starting nodes are shown in green, and
stopping nodes are shown in red. Graph visualization done using Gephi (Bastian et al.,
2009) with the OpenOrd layout algorithm (Martin et al., 2011).

𝑌 (𝑤̄)∩𝛩𝑗 (𝑤̄) = ∅. The latter can be accomplished since 𝑌 (𝑤̄)∪𝛩𝑗 (𝑤̄) has
a finite number of points. Notice then that 𝑔(𝑥̄) ≠ 𝑔(𝑥′) = 𝑔(𝑥̄′), where
̄ = 𝑥 + 𝜖𝑒𝑚, and 𝑒𝑚 is the unit vector in the 𝑚th direction. Note that
these conditions remain true for any 0 < 𝛿 < 𝜖.

We would like to ensure that 𝑤̄ is a witness for the same parameter
𝑝 as 𝑤, i.e. 𝑞 = 𝑝. It is sufficient to satisfy 𝜉𝑠𝑗 (𝑦) = 𝜉𝑠𝑗 (𝑦̄) for all 𝑦 ∈ 𝑅𝑗 (𝑤).
Clearly this holds true for any 𝑦 where 𝑦𝑚 = 𝑢𝑗,𝑚, since 𝑦 = 𝑦̄. So
consider a 𝑦 with 𝑦𝑚 = 𝑙𝑗,𝑚 and suppose 𝑔(𝑦) < 𝜃𝑛,𝑗 for some 𝜃𝑛,𝑗 . Since
𝑔 is continuous, 𝜖 can be chosen sufficiently small so that 𝑔(𝑦̄) < 𝜃𝑛,𝑗 as
well. Repeat for all 𝑦 ∈ 𝑅𝑗 (𝑤) with 𝑦𝑚 = 𝑙𝑗,𝑚 to choose an 𝜖 sufficiently
small to simultaneously satisfy all these constraints, and ensure 𝑞 = 𝑝.

We must also avoid introducing new equalities, i.e. we additionally
require 𝑔(𝑦̄) ≠ 𝑔(𝑧̄) whenever 𝑔(𝑦) ≠ 𝑔(𝑧) for 𝑦, 𝑧 ∈ 𝑅𝑗 (𝑤). Since
𝑔 is a continuous function and 𝑔(𝑦) and 𝑔(𝑧) are isolated, taking 𝜖
23
Fig. C.2. Path graph (all nodes) for FullConn (top) and StrongEdges (bottom). Colored
by optimum 2-clustering separating starting nodes (green) and stopping nodes (red).
FullConn has 1576 and 5767 nodes and edges respectively. StrongEdges has 2393 and
10,037 nodes and edges respectively. Note that visually one might say that FullConn
has a larger bottleneck than StrongEdges which we found not to be the case. This is
due to the lack of visualization of edge weights, as well as a two-dimensional graph
layout of a multi-dimensional graph. Recall any path from green to red nodes is a
matching developmental path. Graph visualization done using Gephi (Bastian et al.,
2009) with the OpenOrd layout algorithm (Martin et al., 2011).

sufficiently small ensures that for each such pair 𝑦, 𝑧, it remains true
that 𝑔(𝑦̄) ≠ 𝑔(𝑧̄).

After all the adjustments to 𝜖 have been made, the new witness 𝑤̄ for
parameter 𝑝 now ensures that 𝑔(𝑥̄) ≠ 𝑔(𝑥̄′) without introducing any new
duplicates in 𝑌 (𝑤̄). However, there may be other pairs 𝑦 ≠ 𝑦′ ∈ 𝑅𝑗 (𝑤̄)
that satisfy 𝑔(𝑦) = 𝑔(𝑦′). Since there are at most a finite number, the
procedure above may be repeated on 𝑤̄ until some final witness 𝑤̂ for
𝑝 under 𝑔 is constructed such that all elements of 𝑌 (𝑤̂) are distinct.
Since at each step, the corresponding 𝜖 may be taken arbitrarily small,
it is true that given any witness 𝑤, there is another witness 𝑤̂ arbitrarily
close to 𝑤 where 𝑌 (𝑤̂) is totally ordered. This proves that the property
of total ordering of 𝑌 (𝑤̂) is dense in 𝑈 .

Since 𝑔 is continuous, there is an open neighborhood of witness 𝑤 in
𝑅|𝑤| whenever 𝑌 (𝑤) is totally ordered, since 𝑌 (𝑤) has a finite number of
isolated values. Call the neighborhood 𝑁𝛿(𝑤). Then under the subspace
topology, 𝑉 ∩𝑁𝛿(𝑤) ⊂ 𝑈 is relatively open in 𝑉 . Since 𝑈 is covered by
⋃

𝑤 𝑉 ∩𝑁𝛿(𝑤), 𝑈 is open in 𝑉 . ■
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Fig. D.1. First 6 networks are ordered from highest to lowest score, with networks 25,338 and 2888 being the best scoring networks for the Baseline and Feature group respectively
and networks 6420 and 9391 being the worst scoring networks for the Feature and Baseline group respectively. Network 21,283 is the only network that had an empty stopping
set . Next are the gap gene networks as described in Reinitz et al. (Manu et al., 2009) and Verd et al. (2019) respectively. Lastly are the ACDC submodules derived by Verd
et al. (2019).
Definition B.2. A DSGRN realizable sub-factor graph 𝐺̂𝑖
𝑗 = (𝑉 𝑖

𝑗 , 𝐸̂
𝑖
𝑗 )

under 𝑔 is a node induced subgraph of 𝐺𝑖
𝑗 , where the collection of nodes

𝑉 𝑖
𝑗 ⊂ 𝑉 𝑖

𝑗 are those nodes that have a witnesses under 𝑔. A DSGRN
realizable factor graph 𝐹𝑗 under 𝑔 is the product

𝐹𝑗 =
∏

𝑖
𝐺̂𝑖
𝑗 .

Lemma B.2. Assume 𝑝 = (𝜉𝑗 , 𝛼𝑖𝑗 ) ∈ 𝐺̂𝑖
𝑗 , 𝑝 ≠ 𝓁𝑖,𝑗 , and let 𝑤 be a witness

of 𝑝 under function 𝑔. Then there exists a path from 𝑝 to 𝓁𝑖,𝑗 within 𝐺̂𝑖
𝑗 .

Likewise, there exists a path from 𝑝 to ℎ within 𝐺̂𝑖 .
24

𝑖,𝑗 𝑗
Proof. Assume without loss of generality that the witness 𝑤 induces a
totally ordered set 𝑌 (𝑤), see Lemma B.1. Define the sets

𝑄0 = {𝑢 ∈ 𝑅𝑗 (𝑤) ∣ 𝜉𝑗 (𝑢) = 0}

𝑄1 = {𝑢 ∈ 𝑅𝑗 (𝑤) ∣ 𝜉𝑗 (𝑢) = 1}

⋮ =⋮

𝑄𝑀 = {𝑢 ∈ 𝑅𝑗 (𝑤) ∣ 𝜉𝑗 (𝑢) = 𝑀},

where recall 𝑀 = |𝑇 (𝑣𝑗 )|. Since 𝑝 ≠ 𝓁𝑖,𝑗 , there exists at least one
nonempty 𝑄𝑛 with 𝑛 > 0. Since 𝑄𝑛 is a finite set, it has a smallest
element 𝑟0 ∶= 𝜉𝑗 (𝑢0). Let 𝑟1 ∈ 𝑄𝑛 be the smallest element in 𝑄𝑛 ⧵ {𝑟0},
if it exists, and let 𝑟 = (𝛼𝑖 )−1(𝑛), if such a smallest element does not
1 𝑗
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Fig. E.1. Score results for each network in the baseline and features group before applying the normalization detailed in Section 6.4. Notice that all but one network have
𝙱(𝑁) < 0.5 indicating a bottleneck existence per Theorem 4.
exist. Let 𝛥 = 𝑟1 − 𝑟0 and let

𝜃′𝑛−1,𝑗 ∶= 𝑟0 +
𝛥
2

We define a new witness where we replace 𝜃𝑛−1,𝑗 by the new value of
the threshold 𝜃′𝑛−1,𝑗

𝑤′ = {{𝑙𝑗,𝑚, 𝑢𝑗,𝑚}𝑘𝑚=1} ∪ 𝛩′
𝑗

with 𝛩′
𝑗 = (𝛩𝑗⧵{𝜃𝑛−1,𝑗})∪{𝜃′𝑛−1,𝑗}. Then 𝑤′ is a witness for the parameter

𝑞 where the value of 𝜉𝑗 (𝑢0) changes from 𝑛 to value 𝑛 − 1. Therefore 𝑞
is a node in 𝐺̂𝑖

𝑗 that is the immediate neighbor of node 𝑝 and therefore
there is an edge between 𝑝 and 𝑞. Repeating this argument it is easy to
see that eventually only the set 𝑄 is non-empty, which occurs only at
25

0

the node 𝓁𝑖,𝑗 . Therefore, every node 𝑝 in the subfactor graph has a path
to 𝓁𝑖,𝑗 .

The analogous argument proves the existence of a path from 𝑝 to
ℎ𝑖,𝑗 . ■

Corollary B.1. Every DSGRN realizable subfactor graph 𝐺̂𝑖
𝑗 is connected.

Proof. By Remark B.1 every realizable subfactor graph 𝐺̂𝑖
𝑗 contains

both 𝓁𝑖,𝑗 and ℎ𝑖,𝑗 . Then every node 𝑝 ≠ 𝓁𝑖,𝑗 , including ℎ𝑖,𝑗 , in the 𝐺̂𝑖
𝑗 is

connected to 𝓁 by Lemma B.2. ■
𝑖,𝑗
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Table F.1
Mean, standard deviation, and confidence intervals for the random samples  and  and the specific networks FullConn and StrongEdges.

Baseline Group () Results Feature Group ( ) Results FullConn StrongEdges

Mean Std dev Mean 95% CI Mean Std dev Mean 95% CI Results Results

𝙱̂(𝑁) 0.134 0.106 [0.127, 0.142] 0.139 0.120 [0.121, 0.156] 0.184 0.222
𝙿𝚂(𝑁) 0.352 0.162 [0.340, 0.364] 0.449 0.178 [0.424, 0.475] 0.381 0.387
𝙻𝚂(𝑁) 0.109 0.107 [0.102, 0.117] 0.155 0.116 [0.139, 0.172] 0.357 0.056
𝚂(𝑁) 0.199 0.078 [0.193, 0.204] 0.248 0.087 [0.235, 0.260] 0.307 0.222
Table F.2
The regression coefficients, standard errors, t-values, p-values lower and upper confidence intervals for our MLR model for the bottleneck score (𝙱̂(𝑁)), path size score (𝙱̂(𝑁)),
eak-skip score (𝙻𝚂(𝑁)) and the robustness score (𝚂(𝑁)).
𝙱̂(𝑁) Coef Std dev 𝑡-value 𝑝-value 95% ci 𝙿𝚂(𝑁) Coef Std dev 𝑡-value 𝑝-value 95% ci

intercept 0.1542 0.0217 7.1 < 0.0001 [0.1116, 0.1969] intercept 0.4358 0.03 14.5109 < 0.0001 [0.3768, 0.4947]
ACDC3 −0.0091 0.0167 −0.5416 0.5882 [−0.0419, 0.0238] ACDC3 −0.0469 0.0232 −2.0243 0.0432 [−0.0923, −0.0014]
ACDC2 0.0497 0.0188 2.6433 0.0084 [0.0128, 0.0866] ACDC2 0.2104 0.026 8.0959 < 0.0001 [0.1594, 0.2614]
ACDC1 −0.0115 0.0167 −0.6904 0.4901 [−0.0442, 0.0212] ACDC1 0.0306 0.023 1.3308 0.1836 [−0.0145, 0.0758]
Ultra Strong −0.0125 0.0137 −0.9152 0.3603 [−0.0393, 0.0143] Ultra Strong −0.0129 0.0189 −0.6841 0.4941 [−0.05, 0.0241]
Strict Verd 0.0923 0.0263 3.508 0.0005 [0.0407, 0.1439] Strict Verd 0.0982 0.0364 2.7011 0.007 [0.0269, 0.1696]
Reinitz 0.0298 0.0293 1.0178 0.309 [−0.0277, 0.0872] Reinitz 0.153 0.0405 3.7818 0.0002 [0.0736, 0.2325]
NFL 0.0007 0.0034 0.2073 0.8359 [−0.0061, 0.0075] NFL −0.0451 0.0048 −9.4607 < 0.0001 [−0.0544, −0.0357]
PFL −0.0089 0.0035 −2.5902 0.0097 [−0.0157, −0.0022] PFL −0.005 0.0048 −1.0543 0.292 [−0.0144, 0.0043]
RE 0.0005 0.0028 0.1609 0.8722 [−0.0051, 0.006] RE 0.014 0.0039 3.6062 0.0003 [0.0064, 0.0216]

𝙻𝚂(𝑁) Coef Std dev 𝑡-value 𝑝-value 95% ci 𝚂(𝑁) Coef Std dev 𝑡-value 𝑝-value 95% ci

intercept 0.0782 0.0219 3.5723 0.0004 [0.0352, 0.1211] intercept 0.2227 0.0152 14.616 < 0.0001 [0.1928, 0.2526]
ACDC3 0.039 0.0169 2.311 0.0211 [0.0059, 0.0721] ACDC3 −0.0056 0.0117 −0.4808 0.6308 [−0.0287, 0.0174]
ACDC2 0.0365 0.0189 1.9277 0.0542 [−0.0007, 0.0737] ACDC2 0.0989 0.0132 7.497 < 0.0001 [0.073, 0.1248]
ACDC1 0.0327 0.0168 1.9507 0.0514 [−0.0002, 0.0657] ACDC1 0.0173 0.0117 1.48 0.1392 [−0.0056, 0.0402]
Ultra Strong 0.0423 0.0138 3.0714 0.0022 [0.0153, 0.0692] Ultra Strong 0.0056 0.0096 0.5861 0.558 [−0.0132, 0.0244]
Strict Verd −0.0254 0.0265 −0.9589 0.3378 [−0.0774, 0.0266] Strict Verd 0.055 0.0185 2.9821 0.0029 [0.0188, 0.0912]
Reinitz 0.0364 0.0295 1.2341 0.2175 [−0.0215, 0.0943] Reinitz 0.0731 0.0205 3.5587 0.0004 [0.0328, 0.1134]
NFL 0.0018 0.0035 0.5261 0.5989 [−0.005, 0.0086] NFL −0.0142 0.0024 −5.8644 < 0.0001 [−0.0189, −0.0094]
PFL 0.0104 0.0035 2.9961 0.0028 [0.0036, 0.0172] PFL −0.0012 0.0024 −0.489 0.625 [−0.0059, 0.0036]
RE −0.0004 0.0028 −0.1275 0.8986 [−0.0059, 0.0052] RE 0.0047 0.002 2.3844 0.0173 [0.0008, 0.0086]
Table F.3
Each explanatory variable VIF for the MLR model.

Variable ACDC1 ACDC2 ACDC3 Ultra Strong Strict Verd Reinitz NFL PFL RE

VIF 1.105 1.050 1.074 1.182 1.049 1.086 1.615 1.566 1.417
Corollary B.2. Every DSGRN realizable factor graph 𝐹𝑗 is connected.

roof. Recall that 𝓁𝑖,𝑗 , ℎ𝑖,𝑗 ∈ 𝐺̂𝑖
𝑗 for any subfactor graph 𝐺̂𝑖

𝑗 . Consider
a subfactor graph 𝐺̂𝑘

𝑗 such that 𝛼𝑖𝑗 and 𝛼𝑘𝑗 are identical except for
two adjacent thresholds. That is, 𝛼𝑖𝑗 (𝜃𝑛,𝑗 ) = 𝛼𝑘𝑗 (𝜃𝑚,𝑗 ) + 1 and 𝛼𝑘𝑗 (𝜃𝑛,𝑗 ) =
𝛼𝑖𝑗 (𝜃𝑚,𝑗 ) + 1, but 𝛼𝑖𝑗 (𝜃𝑠,𝑗 ) = 𝛼𝑘𝑗 (𝜃𝑠,𝑗 ) otherwise. Then the nodes 𝓁𝑖,𝑗 and
𝓁𝑘,𝑗 are connected in 𝐹𝑗 , and therefore they are connected in 𝐹𝑗 .

Since there is a sequence of such adjacent swaps that connects any
two permutations of 𝛩𝑗 , the set of nodes {𝓁𝑠,𝑖}𝑚𝑠=1 is connected in 𝐹𝑗 .
Since each 𝐺̂𝑖

𝑗 is connected, 𝐹𝑗 is connected. ■

Finally, note that 𝐹𝑗 inherits the structure of graded poset from 𝐹𝑗 .

Appendix C. Graph visualization

See Figs. C.1 and C.2.

Appendix D. Network topology

See Fig. D.1.

Appendix E. Network measure results before normalization

See Fig. E.1.
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Appendix F. Model results and MLR validity

Results of the difference in means model used to assess if there is
a difference between the average network in the baseline group versus
the average network in the features group can be seen in Table F.1.

We provide the data of the multilinear regression (MLR) used in
Section 7 (see Table F.2) as well as verification of all assumptions
needed to use the MLR model.

First, checking multicollinearity between our explanatory variables,
we consider the variance inflation factors (VIFs) (Greenwood, 2022),
which are shown in Table F.3. Since none of the VIFs are greater than
5, and in fact small (close to 1), we have evidence that multicollinear-
ity between our explanatory variables is not a problem (Greenwood,
2022).

We see no clear pattern in the Residuals vs Fitted plot, showing it
is reasonable to assume linearity of relationships (Greenwood, 2022).
The Scale-Location plot shows weak to moderate evidence against equal
variance, as indicated by having higher variance for the middling fitted
values (Greenwood, 2022). In general, our normal QQ-plot is showing
a deviation from the line of normality, though only a slight right-skew.
Hence, we see no indication of a violation of the normality assumption.
Lastly, our average leverage is approximately 0.01, meaning all points
with leverage greater than 0.02 have high leverage. However, since no
points have a Cook’s distance greater than 0.5 then we can conclude
no points are overly influential to our model (Greenwood, 2022) (see
Fig. F.1).
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Fig. F.1. MLR diagnostic plots.
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