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ABSTRACT

Early development of Drosophila melanogaster (fruit fly) facilitated by the gap gene network has been shown to
be incredibly robust, and the same patterns emerge even when the process is seriously disrupted. We investigate
this robustness using a previously developed computational framework called DSGRN (Dynamic Signatures
Generated by Regulatory Networks). Our mathematical innovations include the conceptual extension of this
established modeling technique to enable modeling of spatially monotone environmental effects, as well as the
development of a collection of graph theoretic robustness scores for network models. This allows us to rank
order the robustness of network models of cellular systems where each cell contains the same genetic network
topology but operates under a parameter regime that changes continuously from cell to cell. We demonstrate
the power of this method by comparing the robustness of two previously introduced network models of gap
gene expression along the anterior—posterior axis of the fruit fly embryo, both to each other and to a random
sample of networks with same number of nodes and edges. We observe that there is a substantial difference
in robustness scores between the two models. Our biological insight is that random network topologies are
in general capable of reproducing complex patterns of expression, but that using measures of robustness
to rank order networks permits a large reduction in hypothesis space for highly conserved systems such as

developmental networks.

1. Introduction

Molecular processes in cells are subject to substantial levels of
noise caused by variability in the number of enzymes and other cel-
lular machinery, as well as thermal noise that may affect enzymatic
rates. In spite of facing this high inherent level of uncertainty, certain
macroscopic phenotypes of the cell are very predictable and robust.
This is particularly true for developmental programs, where the final
phenotype is very robust to even severe perturbations. Understanding
the principles of genetic network structure and a set of controls that
are responsible for this robustness have been at the center of interest
for many years.

One of the best-studied systems is the segmentation of the Drosophila
melanogaster (fruit fly) body plan during development. The segmenta-
tion is determined through gap, pair-rule and segment-polarity genes.
In this study, we focus on the regulation of the gap genes hunchback
(hb), giant (gt), Kriippel (Kr) and knirps (kni) which comprise the
gap gene network and are responsible for establishing segmentation
along the anterior—posterior (A-P) axis of the embryo. Initial condi-
tions for gap gene expression are given by maternal gradients Bicoid
(Bcd) and Caudal (Cad) which are inherited by the embryo from the
mother and present in decreasing and increasing amounts along the
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anterior-posterior (A-P) axis, respectively (Jaeger et al., 2004; Jaeger,
2011).

This system has been modeled by several research groups (Verd
et al,, 2019; Manu et al., 2009; Perkins et al., 2006; Jaeger et al.,
2004). To explain the experimental data, Verd et al. (2019) assume that
there are different subnetworks, called ACDC dynamic modules, active
in different regions along the A-P axis. They showed that each module
could reproduce the data observed in each particular region at the end
of the late stages of gap gene expression.

In this paper, we propose that a single network functioning at
different parameter values across spatial locations can explain the
observed data at the end of late-stage gap gene expression, in contrast
to a sequence of distinct networks. In particular, we hypothesize that
the levels of maternal gradients Bed and Cad provide different param-
eterizations for the gap gene network, and that such a parameterized
collection of copies of the same network is responsible for the formation
of the segmentation pattern. Apart from establishing if such a model is
capable of reproducing experimental data, we are also interested in the
question of robustness. How robust is such a fit?

To answer these questions we set up an ambitious goal of construct-
ing several robustness scores that we use to quantify the robustness
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of a parameterized network fit to spatial experimental data that is
computationally efficient enough to be evaluated over hundreds of
networks. In order to accomplish this, we use the DSGRN (Dynamic
Signatures Generated by Regulatory Networks) (Cummins et al., 2016;
Gameiro, 2018) approach previously used for assessing network model
fit with time series data and use it to model spatial data. For a
regulatory network RN, DSGRN constructs a parameter graph PG(RN)
which represents a finite decomposition of the parameter space for an
ODE model of RN, where paths in PG represent a continuous change
of parameters in this ODE. For each parameter node p € PG(RN),
DSGRN computes the summary of network dynamics from which one
can extract a qualitative description of the stable equilibria of the
system. To match a network model RN to spatial data, we seek paths
in PG(RN) along which the qualitative description of stable equilibria
matches experimentally observed expression levels of gene products. If
such a path exists, we say the network RN is capable of reproducing
the data.

To address the robustness question, for each network RN we study
the shape of the subgraph P of all such matching paths. We evaluate
to what extent this subgraph has bottlenecks (indicating the fragility of
development at some spatial position), we score how many paths can
leave the subgraph P without completing the developmental program,
we score how many paths can skip a segment, and we evaluate the
overall size of P as a subgraph of the graph of all paths. We evaluate
these scores on a class of nearly 1000 networks that have the same
number of nodes (4) and edges (8) as two “canonical” network models.
One of them is the network that is the union of the three ACDC
submodules proposed by Verd et al. (2019). The second network is a
subnetwork consisting of stronger regulatory interactions from the gap
gene network derived by Verd et al. (2017) using work by Ashyraliyev
et al. (2009).

The DSGRN approach to modeling network dynamics is an essential
tool without which evaluating the global dynamics of hundreds of
networks with 4 nodes and 8 edges would not be possible. However,
even with this approach, the number of paths in PG(RN) that has to be
examined is astronomical. We develop graph constructions based on
condensation graphs that allow the computation and handling of these
large sets.

Our analysis produces evidence suggesting that previously explored
network models and motifs tend to have higher robustness scores when
compared to randomly generated networks, indicating consistency of
our results with previous work (Verd et al., 2019). On the other hand,
more local features such as the number of positive loops, number of
negative loops, or number of negative edges does not seem to have a
significant effect on robustness scores. Importantly, our work implies
that particular features of network structure are capable of imparting
robustness independent of the specific genes involved, which suggests
that network structure itself may be subject to evolutionary pressure.

The organization of the paper is as follows. In Section 2, we provide
enough background on D. melanogaster and DSGRN for the reader
to obtain a solid understanding of modeling choices and the DSGRN
parameter graph PG, respectively. The interpretation of certain paths
in PG as spatial expression patterns is presented in Section 3. The back-
ground section on DSGRN also introduces Morse graphs, which are the
“dynamic signatures” of DSGRN describing network behavior. These
are used in Section 4 to provide a mechanism for matching DSGRN
predictions to experimental data in D. melanogaster development. In
Section 5, we introduce carefully constructed subgraphs of PG that
incorporate information about spatial gradients of proteins important
for proper segmentation of the D. melanogaster embryo. Particularly
important is a subgraph called the path graph. In Section 6, we quantify
features of the path graph that permit us to assess the robustness of D.
melanogaster development in terms of the breadth and quality of the
match between DSGRN predictions and experimental observations. In
Section 7, we apply these scores to nearly 1000 networks to compare
robustness across network topology. We conclude with a discussion in
Section 8.
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2. Background
2.1. Drosophila melanogaster

In this section, we first introduce gap genes, maternal gradients, and
anterior—-posterior patterning determined by these genes and gradients.
Next, we describe the gap gene regulatory network. The exact topology
of this regulatory network is still under debate. A major goal of this
paper is to compare different models of the gap gene network and
evaluate their robustness. We note one element common to all models is
that gap gene activity is partially determined by the presence of spatial
protein gradients extending along the developmental axis.

2.1.1. Anterior—posterior (A-P) patterning in Drosophila melanogaster

During D. melanogaster development, the embryo undergoes seg-
mentation from the head (anterior region) to the tail (posterior region)
of the embryo. We will refer to the linear array of segments as the
A-P axis. The genes responsible for this segmentation were found
experimentally by inducing genetic mutations and describing the re-
sulting phenotypes (Niisslein-Volhard and Wieschaus, 1980; Gilbert and
Barresi, 2018). These experiments resulted in the discovery of a class
of so-called gap genes whose knockouts cause entire regions of the A-P
axis to be missing. We focus on the trunk gap genes (Jaeger, 2011)
hunchback (hb), giant (gt), Kriipple (Kr) and Knirps (kni), which play
a central role in the formation of the middling part of the A-P axis,
namely between 35% and 75% egg length (Manu et al., 2009).

The trunk gap genes are, in part, regulated by maternal protein gra-
dients, Bicoid (Bed) and Caudal (Cad) in addition to Nanos (Nos) and
existing maternal Hb, the gene product of hb. However, Nos and ma-
ternal Hb are less important to development than Bed and Cad (Wang
et al., 1994; Irish et al., 1989; Jaeger, 2011; Gilbert and Barresi, 2018),
therefore we will limit our discussion of maternal gradients to Bed and
Cad.

The interaction of Bed and Cad creates opposing gradients from
anterior to posterior; Bed has high concentration at the anterior region
and smoothly decreases to a low concentration at the posterior, while
Cad smoothly increases from anterior to posterior (Niisslein-Volhard
et al.,, 1987; Spirov et al., 2009; Gilbert and Barresi, 2018). These
gradients give rise to protein expression patterns of the trunk gap
gene proteins, which are regions along the A-P axis where each protein
has high or low concentration (Niisslein-Volhard et al., 1987; Niisslein-
Volhard and Wieschaus, 1980; Gilbert and Barresi, 2018). Domain
boundaries for a particular protein are where the protein expression
pattern is transitioning from high concentration to low or vice versa.
Domain boundaries sharpen during late-stage development of the em-
bryo, a process controlled by trunk gap genes rather than maternal
gradients (Jaeger, 2011). Trunk gap gene regulation associated with
the late-stage segmentation process can be described by four main
regulatory mechanisms, as articulated by Jaeger (2011):

1. Activation by maternal gradients: Bed and Cad maintain gap gene
expression (Niisslein-Volhard et al., 1987) as domain boundaries
sharpen.

2. Auto-activation: Many early models of the gap gene network
showed that auto-activation of each gene was essential (Mein-
hardt, 1986), though more recently it has been shown that
auto-activation is not strictly essential as models have been able
to reproduce the data without auto-regulation (Jaeger et al.,
2004; Perkins et al., 2006). Experimentally, hb has the strongest
evidence for auto-activation (Simpson-Brose et al., 1994; Jaeger
et al., 2004; Perkins et al., 2006).

3. Strong repressive feedback between complementary genes: The
strongest experimental evidence for late-stage trunk gap gene
regulation is between the pair hb and kni, and the pair kr
and gt (Jaeger et al., 2004). Both pairs exhibit mutual strong
repression with each other, called repressive feedback.
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Fig. 1. Gap gene network. (left) The gap gene network used in Verd et al. (2019). The edge widths depict the strength of the interaction; dotted edges are the weakest interactions
and the bold edges are the strongest. (right) Simplified spatial representation of gene regulation from anterior—posterior (A-P) position 35% to 75% for the gap gene network. The
violet gradient indicates the concentration of Bed, and the cyan gradient indicates the concentration of Cad. The horizontal extent of the boxes represents spatial positions with

high late-stage protein expression levels.
Source: Figure adapted from (Verd et al., 2019).

4. Regulation between non-complementary genes: There is also exper-
imental evidence that there are interactions between the other
genes that are not complementary (Jaeger et al., 2004), though
the exact type, strength, and potential effect of these interac-
tions have only been examined by mathematical models (Jaeger,
2011).

2.1.2. The gap gene regulatory network

Though many models have been shown to faithfully replicate the
protein expression of the trunk gap genes (Jaeger et al., 2004; Verd
et al.,, 2019; Manu et al., 2009; Perkins et al., 2006), we will focus
our study on the gap gene network as described in Verd et al. (2019)
and shown in Fig. 1. Edges are color-coded according to their source
protein. Dotted lines indicate weak regulatory interaction while bold
lines indicate stronger regulatory interaction (Verd et al., 2019, 2017).
We call these weak edges and strong edges, respectively. We will
make the reasonable assumption that strong edges are more likely to
be the dominating regulatory factors in the protein expression levels.
The left panel in Fig. 1 is a regulatory network representation of the
gap gene network while on the right is a spatial representation, which
shows the extent of protein expression along the A-P axis.

We hypothesize that a sequence of parameter changes representing
the impact of Bed and Cad within a single network is capable of
recapitulating the protein expression level data (see sections 5 and 3.2).
There is a solid biological argument for choosing to model maternal
gradients as a change in network parameters. In late-stage gap gene
regulation, at any point along the A-P axis, the maternal gradients are
relatively constant. That is, within a single cell there is not a significant
change in the level of Bed and Cad. Therefore Bed and Cad can be
viewed as part of the environmental conditions of the cell that help
determine network parameters and not as active participants of the
network.

2.1.3. ACDC dynamic modules of the gap gene network

During their study of the gap gene regulatory network in Fig. 1(left),
Verd et al. (2019) partitioned a slightly reduced version of the spatial
representation of the gap gene network shown in Fig. 1(right) into three
subnetworks they described as dynamic modules. According to their
definition, a dynamic module of the gap gene regulatory network is a
subgroup of the genes that control protein expression in a region of
the A-P axis. They postulate that the A-P axis can be split into three
regions, each of which has a single gene that does not participate in
network dynamics (i.e. is inactive) in that region. They assume that
between A-P positions 35%-47% (region 1) kni is inactive, between
49%-59% (region 2) gt is inactive and between 61%-75% (region
3) hb is inactive. Thus, they create three dynamic modules (Fig. 2),
all isomorphic to the ACDC signaling motif (Panovska-Griffiths et al.,

2013), that are active in regions 1, 2 and 3, respectively. Verd et al.
(2019) showed that these subnetworks were capable of reproducing the
protein expression levels between 35%-75% egg length.

One of the purposes of our study is to show that the decomposition
into dynamic modules is unnecessary to reproduce the data. To do
so, consider the network constructed as the union of nodes and edges
from the three ACDC dynamical modules without the self-loops. We call
this network the fully connected network (FullConn), see Fig. 2. We
will evaluate this network using our methods to see if it can faithfully
capture the protein expression data, which we describe in Section 4.2.

2.2. DSGRN

In this section, we discuss a modeling approach called DSGRN
(Dynamic Signatures Generated by Regulatory Networks) (Cummins
et al., 2016) that captures network dynamics across global parameter
space. The structures that will be especially important are the pa-
rameter graph constructed from factor graphs (Section 2.2.2) and
the Morse graph capturing the dynamics at each DSGRN parameter
(Section 2.2.3).

2.2.1. Regulatory networks and switching systems

A Regulatory Network is a directed graph, denoted RN = (V, E),
where V is the set of nodes and the edges £ Cc V x V x {1,-1}
denote interactions between the network nodes: the edge (v;,v;,1) € E
indicates that v; is an activator of v; (denoted by v; — v;), while the
edge (v;,v;,—1) € E (denoted v; - v;), indicates that v; is an inhibitor
of v;. An ordered pair (v;,v;) € E represents either v; — v; or v; Hv;.

Definition 2.2.1. Given a regulatory network RN = (V, E), a source
of a node v; is a node v; such that (v;,v;) € E. A target of v; is a node
vg such that (v}, vy) € E. The set of sources and targets of a node v; are
given by

Sy ={v; | (v,v;) € E} and T(v;) :={v, | (v;,v)) € E}.

We associate to a regulatory network RN = (V, E) with |[V| = M
a system of M ordinary differential equations (ODEs) with piecewise
constant nonlinearities called a switching system (Glass and Kauft-
man, 1972, 1973; Thomas, 1973, 1991; Thieffry and Thomas, 1998;
de Jong et al., 2004; Snoussi, 1989). With a slight abuse of notation in
the interest of clarity, we use v; to denote either a node in V' or the
corresponding variable in a dynamical system that evolves according
to

Dj=_7jUj+Aj(U), j=1L...M (D



E. Andreas et al.
Region 1

Anterior

(GRS

Posterior

Anterior

Region 2

Journal of Theoretical Biology 580 (2024) 111720

Region 3

Posterior Anterior

-=s

{ v

\.

4 SR a4 s
@=H® @ -0 05®

ACDC1 ACDC2

ACDC3 FullConn

Fig. 2. ACDC modules of the gap gene network and the FullConn network. (top) Identification of active nodes along spatial domains 35%-47% (region 1), 49%-59% (region 2)
and 61%-75% (region 3) identified in Verd et al. (2019). (bottom) The ACDC modules 1, 2, and 3, assumed by Verd et al. (2019) to be active in region 1, 2, and 3 respectively.
The fully connected (FullConn) network is a union of nodes and edges from the ACDC modules (without the self-loops). Figure adapted from (Verd et al., 2019).

where y; > 0 is the decay rate of v; and A;(v) is a product of sums of
step functions ajifi(vi) for each v; € S(v;) given by

1., ifv,<0;;
otpy=4 o DS o)
- w; ifv; >0,
if v; » v; and
B 1., ifv,>0;;
o wy=9q " M (€)
u;; ifv; <0,

if v; 4 v;. Here /;; and u;; and are called the lower (low) and upper

(high) level of effect of node v; on node v;, where 0 < /;; < u;;. The
threshold 0 < 6;; for node v; is where the effect on target v; of the
regulator node v; changes. We assume that the values of ¢;; for any
node v; are distinct. Suppose |S(v;)| = K, where the nodes v; ..., v;,
are activators of v I and the nodes v; oo Uiy AIE inhibitors of v s then

for the computations in this paper we choose the expression
Aj(@) = (6+(U;1) + o+ 6+(U,-f))t77(v;m) w0 (U ) @

This form, often used in switching systems (Glass and Kauffman, 1972;
Thomas, 1973; Thieffry and Thomas, 1998), was motivated by the
fact that transcriptional activators often act additively, and that the
transcriptional repressors physically block transcription initiation. This
choice is not conceptually necessary, but is currently implemented in
the DSGRN software (Gameiro, 2018). See Fig. 3(a, b) for an example
of an RN and its associated switching system.

2.2.2. Factor graph and DSGRN parameter graph
The values {6, ;,/;;,u;,;} are non-negative parameters of system (1),
where we assume decay rates of 1 for simplicity. Traditionally, to
characterize the behavior of the ODE system over parameter space, a
(necessarily sparse) parameter sampling would be performed. DSGRN
takes a different approach and divides parameter space into a finite
number of regions defined by inequalities, and evaluates coarse but
informative signatures of dynamic behaviors of the network that are
invariant within each region (Cummins et al., 2016). Since the number
of regions is finite, it is in principle possible to compute these coarse
signatures over all of parameter space for a switching system associated
to RN, although the number of regions grows combinatorially and
exhaustive computations become rapidly intractable. In this section, we

introduce the inequalities that define DSGRN parameter regions and
arrange them into a parameter graph that reflects region adjacency in
the parameter space.

To do so, we define order parameters and logic parameters. For a node
v with |T(v)| thresholds, one for each v, € T(v), an order parameter
defines an ordering of these thresholds. A logic parameter defines how
a finite collection of possible inputs to node v is related to the |T'(v)|
thresholds of v.

Definition 2.2.2. Let v; € V be a node in RN with source nodes

J

S)) = {Us] seves Ugy } and target nodes T(v)) = {”H’ s U }. The thresh-
olds associated with v ;are @; = {0,-] e 0,-1, j1-An order parameter for
v; is a bijective map a; : ©; - {0, 1,...,|T(v;)| — 1} that induces a total

ordering of the thresholds associated to v;. We call O; the set of all
order parameters for vertex v;.
Let

LAURTLIRN RS URNLIEN
be a lattice of inputs to the node v; under the product order induced

by

lig, <ujs, forall s, € S(v)). 5)
That is, we will write w < @ € R; whenever, for w = (ay,...,ax)
and w = (a,,...,ak), we have q, < g, for all k = 1,...,K and at
least one of the inequalities is strict. Let X; = {0,1,...,|T(v;)|} be the

set of |T(v;)| + | integers that enumerates the intervals between the
thresholds. A logic parameter ¢; for v; is a map ¢; : R; — X, which
satisfies

w <w=&w) < E(w);
i.e. it is monotone. We call L; the set of all logic parameters for vertex

v;. A factor parameter for a node v; € V is a pair p; = (§;,¢;) €
L;x0,;.

The set R; contains all the possible input values into a node v; and
the map ¢&; inserts the inputs between the thresholds. If £;(w) = m then
we say w is above m thresholds. We chose to reuse the relation symbol
< on R; to facilitate the following simplification of notation: we will
write w < 6; ; when &;(w) < @;(6; ;), although the spaces R; and ©; are
not strictly comparable.
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if Vo < 91’2 " l171 if v < 91,1
if V2 > 01’2 Uu1,1 if v > (9171
if v < 9271 l272 if V2 < 9272
if v > 9271 u2,.2 if V2 > 9272

1 1.1 1
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Fig. 3. Example of a DSGRN computation. (a) The RN and the (b) associated ordinary differential equations with decay rates y, =y, = 1. (c) A choice of DSGRN parameter where
wh =y, L) wh = (U, u0), Wy = (w1, 1;5), and w) = (u;1,u;,) for i = 1,2, see Section 2.2.2 for more details. (d) The list of target points for each domain k, of the phase space in
(e). Note the colors of the TP(k,) match the color of the vertex of the domain where that target point falls (for example, TP(k,), TP(k,), and TP(k¢) all have target points in the
domain k,). See Appendix A for details. (e) Phase space decomposition into the nine domains by thresholds 6, .6, ,,6,, and 6,,. Each domain is represented by a circular vertex
inside the domain. Arrows are the depiction of the direction of trajectories of a switching ODE system model in (b). The choice of DSGRN parameter is depicted above and to the
right of phase space. For example, we have wi > 0,,, since domains k;, kg and k, are all above 6,, we write wi above these. The vertices and arrows form the state transition
graph. See Appendix A for details. (f) The Morse graph (below) associated with the state transition graph in (e) and the strongly path connected components, or Morse nodes,
associated with each node of the Morse graph (above), where the strongly connected path components are associated to domains k,, ks, ks, k¢, k; and kg in phase space and the

edges are reachability conditions.

Table 1

Logic parameter examples (right) and corresponding inequality descriptions (left) for
a network node with two in-edges and two out-edges and order parameter «;(0,,) =
0,a,(0,,) = 1.

Logic Parameter Inequality Description

f](wi)=ox 51(”1%):0, 51(141;):0- ‘fl(W},):O
L) =0, §wl) =0, &) =1, {w)=2
.’,‘](wi):O, ‘El(wé)ZZs 51(Wi):1s 51(WJ,):2

w) < {wh,wi} <w) <6, <6,
wy < wy <6 <wl <0, < w)

4
1 1 1 1
w; <0 <wy; <0, <w,<w

4

See Table 1 for example parameters for node v, in Fig. 3, which has
two in-edges and two out-edges. The lattice of inputs

Ry = {lyyup } x{l w0} = (UL 2)s (g ), uy s Ly )y (g s g 0))

is partially ordered (I, 1./1,) < {(I}1.u12).(uy1.110)} < (uy1.u;,) with
respect to the product order. The out-edges have thresholds 6, ; and
6, , with the set of order parameters O, consisting of two functions

0, ={(@l(8,)=0,a](0,,) = 1),(@(9,) = 0,026, ) = D},

while the set of logic parameters is the set of functions &,
{0,1,2}. Select without loss one of the two order parameters «;
which we interpret as 6, | < 6, ,. Using the notation w] = (I ;,1; ), w}

R, —
=a

(ppup)wy = (up,lo), and wy = (uyy,u;,), we list in Table 1
three logic parameters with the corresponding description in terms
of inequalities. While Table 1 only shows 3 logic parameters for our
example, there are 20 in total. Hence, |L; X O,| = 40, showing v, has
40 factor parameters.

Remark 2.2.1.
has no out-edges, DSGRN assumes that v; still can attain high and low

In the special case where |T(v;)| = 0, i.e. node v;

levels of expression. To implement this, a “ghost” threshold is assigned,
and the parameters for v; are taken to be the same as if |T(v;)| = 1.

The set of factor parameters for a network node can be represented
as a graph.

Definition 2.2.3. Given a RN = (V, E), the factor graph F; =V, E))
for a regulatory node v; € V is an undirected graph with a node p; € V;
for each factor parameter of v; and edges between nodes whenever
there is a single inequality change between two factor parameters;
i.e., there is an edge between (5},05;-) and (.fj’.‘,a;‘) if exactly one of the

following is satisfied:
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0001
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0000

Fig. 4. Factor graph for a node v, from Fig. 3. Each node label abcd represents a logic parameter, with a = & (w,), b = & (w,), ¢ = & (w;) and d = & (w,). The left-hand side of the
graph has factor parameters associated with the order parameter 6,, < 6,, while the right-hand side is associated with 6,, < 6,,. Black edges show logical adjacencies and red

edges show order adjacencies.

1. (Logical adjacency) 5;.(60) = ff(a)) for ® € R; except for exactly
one @ € R, in which case

i\ — gkia
(@ =@ + 1.
i — gk
and aj(e,-m)j) =af ©;,.,) for all 0;,; €0, or
2. (Order adjacency) .f;. = 5/’.‘ and there exists exactly one set of

integers s, m, n such that a;’.(e )= a;f(e,.”) for # # m,n and

ipsJ

LA
k _ k —
a/.(e,.m’j)_s+1, a/.(@imj)—s.

=y, a}(a,.mj) =s+1

The factor graph of node v; from Fig. 3 can be seen in Fig. 4. Note
that this graph has all 40 factor parameters, where the order parameter
is depicted above the nodes and the logic parameter is encoded in
the labels, where a label abcd corresponds to the logic parameter with
E(wy) = a, E(w,) = b, &(w3) = ¢, and & (w,) = d. Logical adjacencies
are shown as black edges and order adjacencies are shown as red edges.

Order adjacencies exist only between subfactor graphs, or isomor-
phic subgraphs of a factor graph that contain only logical adjacencies.
For a regulatory node v; € V, the order parameters a €0 ; are related
by a group of permutations Tirw) that permute threshold labels. As a
consequence, for each factor parameter p; € V; with a threshold order
"; there are |T(v;)|! parameters p,, n € Tl where threshold labels
are permuted by 5. Therefore, each factor graph contains a collection
of |T(v;)|! subfactor graphs. An example of this can be seen in Fig. 4
factor graph, which has two subfactor graphs.

A DSGRN parameter is the choice of one factor parameter for each
v € V. Fig. 3(c) shows an example of a DSGRN parameter for the RN
shown in (a).

Definition 2.2.4. Let RN = (V,E) be a regulatory network with
[V =M and let F; = (V}, E;) denote the factor graphs of each v; € V.

Then the DSGRN parameter graph PG has a vertex set P given by

M
P:Ilmu

ji=

The nodes (py,ps....,py) and (q;,4,,....qy) in P are connected by
an edge if and only if there exists exactly one j = 1,2,..., M where
(pj.q;) € E; and p; = g; otherwise. In other words, there exists an
adjacent change in inequalities in exactly one factor parameter graph.

Consider the RN from Fig. 3(a) and the factor graph in Fig. 4 for
node v,. Since v, also has two in-edges and two-edges, then it has a
factor graph that is isomorphic to the factor graph for v,. The parameter
graph for this RN is constructed by taking the product of the factor
graph for v; with the factor graph of v,. Then this parameter graph has
a total of 1600 nodes (a fully constructed parameter graph for a two-
node and two-edge network can be seen in Gedeon et al. (2018)). While
1600 appears to be a large number of parameter nodes, it represents a
finite decomposition of R3El = R!2 and therefore is a great reduction
in number of parameters that need to be examined.

2.2.3. Morse graphs

A Morse graph is a compact description of the global dynamics of
a regulatory network RN at a specific parameter node in PG. That is,
for every node in PG, there is a Morse graph that captures both stable
and unstable dynamics. The Morse graph is computed from a state
transition graph (STG), an example of which is shown in Fig. 3(e).
The partition of phase space shown is due to the thresholds associated
with RN. The set of thresholds ©; for v; € V divide the interval [0, o)
into |T(v;)| + 1 intervals, namely 0,6, ), (6;, 03y ) - ’(eflr(u,-n’/’oo)’
described by the previously introduced set X; = {0,1,...,|T(v;)|}. The
collection of thresholds © = (0, ..., 0,,) ref:Theta divides [0, )™ into
a finite number of M-dimensional rectangles called domains. Let K
enote the collection of all such domains. This collection is represented
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by the M-tuples of integers X = Hjj\i \X; via a bijection ¢ : K —
X. For example, domain k; in the lower left of Fig. 3(e) has label
¢(k;) = (0,0), since both v, and v, exceed O thresholds each. The
arrows between the domains represent the direction of trajectories of a
switching ODE system model that is consistent with network structure.
The details of the construction of the arrows are not needed for an
understanding of this work and are summarized in Appendix A based
on the introduction in Cummins et al. (2016). Once the division of
phase space and the flow across domains is calculated, the resulting
information can be simplified to the STG, shown by the nodes and edges
superposed over phase space in Fig. 3(e). The most important features
to notice are that (1) there can be single cells that are attracting,
corresponding to the presence of a stable equilibrium, and (2) stable or
unstable cyclic behavior can be identified. A Morse graph is a summary
of this recurrent behavior in the STG, as described by the arrangement
of strongly connected path components, see Fig. 3(f).

Definition 2.2.5. A directed graph G = (V, E) is strongly connected
if every pair of nodes u, v € V has a directed path from u to v and from
v to u. A strongly connected subgraph H of G is said to be maximal if
there is no strongly connected subgraph H' ¢ G with H ¢ H' ¢ G. A
maximal strongly connected subgraph is called a strongly connected
component. A strongly connected path component is a strongly
connected component that has at least one edge (Mischaikow, 2002).

We summarize the following definition from (Cummins et al., 2016).
The Morse decomposition MD(p) of a STG for p € P is the set of
all strongly connected path components of the STG. Consider any two
strongly connected path components s,,s, € MD(p). If there is a path
in the STG from s, to s; then we say s, < s,, defining a partial order <
on MD(p). The Morse graph of the STG, denoted MG(p), is the Hasse
diagram of (MD(p),< ), and the vertices of MG(p) are called Morse
nodes.

In order for the Morse graph to provide interpretable information,
we label each Morse node in a way that suggests the dynamics asso-
ciated with the underlying strongly connected path component of the
STG. The notation FP(w) is used to label a Morse node where the
corresponding strongly connected path component consists of a single
attracting domain k € K with label w = ¢(k) € X. For example, in
Fig. 3(e) we see that the domain k; is an attracting region with label
(0,2), and thus the corresponding Morse node will be labeled FP(0, 2).

The full cycle label (FC) annotates Morse nodes where there is a
closed path {k°,k2,...,k™ k°} in K where each edge k' — k*! (mod
m+1) follows the directed edge in STG and crosses a threshold for each
node v;. For example, the STG in Fig. 3(e) gives rise to a Morse graph
with two Morse nodes labeled FP, as well as a full cycle FC that has a
path to one of the fixed points (Fig. 3(f)). The full cycle represents the
path in phase space kg — ks — kg — k; — kg.

Definition 2.2.6. The leaves of the Morse graph, i.e. the Morse
nodes with no out-edges, are called stable Morse nodes. All others are
unstable Morse nodes. A monostable Morse graph is a Morse graph
containing a single stable Morse node. A monostable fixed point is
the unique stable Morse node in a monostable Morse graph that has an
FP annotation.

3. Spatial modeling using DSGRN

DSGRN is inherently suited to systems of ordinary differential
equations and not to partial differential equations. However, we can
approximate the effect of temporally constant yet spatially varying
external variables on a dynamical system via a directed sequence of
parameter changes in the system. The goal of this section is to intro-
duce the necessary rigor for this modeling framework. This procedure
necessitates a re-imagining of a factor graph as a graded poset (see
Theorem 2). The ranks of the graded poset are used to define factor
graph layers that impose an unambiguous direction of flow through the
factor graph, allowing for external variables to the dynamical system
to be modeled as monotone changes in the factor graph.
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3.1. Factor graph layers

In this section, we define a partial order on the factor graph by first
defining it on every subfactor graph. Recall ©; = {9, ;.0, ;. ... 9i|m,->|v it
is the collection of thresholds of node v; € V, and O; is the set of
all order parameters for v;. Given a factor graph F;, = (V}, E)), let
G;. = (Vj’,EJ’.) be a subfactqr graph of F; that is associated with a
particular order parameter o'.

Note F; has a set of lowest parameter nodes Lp;

Lp; :={p; =(;.) €V | &w) =0 for all w € R;}
and a set of highest parameter nodes Hp;
Hp; :={p;=(;,) €V, |&w) =|T))l for all w e R;}

with (IR and R; as defined in Definition 2.2.2. For example, in
the factor graph in Fig. 4, both nodes labeled 2222 are the set of
highest parameters and both nodes labeled 0000 are the set of lowest
parameters. Each subfactor graph G’ has a unique node # ;i € Lp; and
unique node #;; € Hp;. We will call these nodes the root and leaf of
a subfactor graph G, respectively.

Definition 3.1.1. Let Gj. = (I/ji , EJ",) be a subfactor graph. We define a
strict partial order < on Vj‘ by pj.' < p;. when 2;’;.' (w) £ .f;.(a)) forallw € R;,
with strict inequality for at least one w € R;.

Theorem 1. Let Gj. = (Vj", E;) be a subfactor graph. Then

(a) for any pjﬁ,p;, € Vji with p; < p;, there is a path from p; to p;. in G;
In other words, there is a sequence of vertices p} = p?, pjl., bl =0
such that (pjf,p;.‘“) € E,' forall k=0,...,n—1.

®) if v}.p) € E;, then either p} < p; or pj > p;..

Proof of Theorem 1. (a) We prove the statement in two steps. Assume
first that 5;. (w) < 5; (w) for all @ € R;, with strict inequality for exactly
one @ € R; and that &{(®) = &(@) +n. If n =1 Fhen ®.p) € EJ’
by Definition 2.2.3. Assume now that n > 1. Since V' contains all logic
parameters then there exists (p7, p/l') IS EJ". such that Zf}. (@) = &} (@)+1 and
5} (@) = &() otherwise. Similarly, there exists (p}, pjz.) 1S E; such that
5}(03) =¢(@) +1and ff(w) = ¢} (w) otherwise. Repeating this process n
times, we construct a path

s 1 2 n
pJ p/ p/ p/

in G; Notice that p;.' = p;. since .fj’.'(a)) = 5;.(a)) for all o € R, proving
that this is a path from p; to p;..

Assume now that there are w,, ... ,w, € R; such that p‘;, < p;. satisfies
5;.(a)u) = f;(wu) +n, foru = 1,...,q, but f}(a)) = §;(a)) for all other
® € R;. We now sequentially apply the construction in step one by
adjusting the values of 5/’.‘ one w, at a time. The important restriction
on this construction is that the §J’.‘ functions need to remain monotone
functions throughout this process; i.e. w, < @, implies fj.‘(a)a) < 5}’.‘ (wg)
as in Definition 2.2.2. It is easy to see that if w, < w, then increasing
the values of f; (wy) before adjusting values of éj; (w,) will preserve the
monotonicity of & at all stages of the construction. Therefore, we adjust
the values of ¢ (w,) starting from the highest w, and then proceed down
the partial order. The concatenation of these paths gives a path in G}
between p; and p}. This proves (a). _

To prove (b), suppose @ p;.) € E;. Then by Definition 2.2.3 there
exists exactly one @ € R; such that fj. (@) = f} (@) = 1, with equality for
all other w € R;. If é;(c?)) = é;,(cb)+1 then p’; > p;. and if z;‘;.(d)) = fj(a‘))+1
then p} < p;.

The following Corollary is an immediate consequence of Theorem 1.

Corollary 3.1.1. Each subfactor graph Gj. is connected.
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Fig. 5. Factor graph layers and modeling external variables. (a) The factor graph and factor graph layers for a RN node with one in-edge and two out-edges with thresholds 6, and

0, and input values / < u. The red dashed lines are depicting which nodes in the factor graph belong to each factor graph layer. (b) The factor graph from (a) with an activating
external variable imposed, with directed edges depicting the direction of motion when ¢’(y) = —1 (violet). Notice that the external variable is inducing decreasing monotonicity

through the factor graph.

We will now prove that a subfactor graph is a graded poset, with
the immediate consequence that its rank function can be applied to the
factor graph as a whole. This procedure will allow us to divide the
factor graph into a linearly ordered sequence of layers. A monotone
function imposed on these layers can then provide a direction to
parameter changes within the factor graph.

A rank function (Klarner, 1969) £ is a map on a poset PO such
that given x,y € PO

(i) x <y implies L£(x) < L(y) and
(i) L(y) = L(x)+ 1 if y covers x.

A poset PO is graded if it admits a rank function £, and is denoted as
(PO, L) (Klarner, 1969). A chain is a totally ordered subset of PO and
a maximal chain is a chain that is not contained in a larger chain in
PO (Stanley, 2012).

Recall that the subfactor graph Gj. = (Vf, E;.) has unique root ¢;, €
Lp; and unique leaf #;; € Hp;.

Theorem 2. LetL; : Vj‘ — N U {0} be a function on the vertex set of a
subfactor graph G, = (V/, E}) defined as follows
£,oH= 3, &

®ER;

Then

(a) (Vji ,<) is a graded poset with rank function £ i and
®) L£,(¢,)=0and £,(h;) = IR,| - IT@)).

Proof. Since the subfactor graph G;. = (Vj’ , Ej".) has unique root #;, €
Lp; and unique leaf h ;i € Hp;, to show (a) it is sufficient to prove that
all maximal chains in (V/, <) have the same length (Stanley, 2012). We
will show that this length is |R;| - [T(v;)].

Consider a maximal chain in (Vj’, <)

1 2 n
Py <p; < <pl.

By Theorem 1(a) if pjl. £, the chain can be extended by an element
smaller than p! and therefore the chain is not maximal. A similar
argument applies to P and therefore pjl, =¢;,; and Py =hy, Similarly,
by Theorem 1, p;? < pj“ must satisfy (p;f, "hekE ;> otherwise a path

in G’ could be inserted between p;? and p7+ , contradicting maximality.
Thus, for each g=1,...,n— 1, we have

£ (@) = El(@) + 1
for exactly one w € R;. Note that for any » € R}, since

£j(@) =0 and &) =T,

g+1

then there must be exactly |T'(v;)| inequalities p;? <P such that

HOEIANOESE

Thus, each @ € R; requires |T'(v;)| distinct inequalities in the maximal
chain showing that the length must be |R;| - |T(v;)|. Since we chose
an arbitrary maximal chain, we have shown that all maximal chains in
(ij ,<) have the same length, proving it is a graded poset.

Now we show that £ is a rank function on (Vji .<). Let p. p, € (Vji ,<
) and suppose that p; < p;., then by Definition 3.1.1,

Y E@< Y &)

WER; wER;

Additionally, when (pj.,p;) [S EJ’ then p; covers p; which by
Definition 2.2.3 implies Ej(p;?) = £j(pj+1) + 1. This proves part (a).

The proof of (b) follows directly from the definition of £ S |

Since the subfactor graphs of a factor graph F; are isomorphic, the
rank function £; is the same for all G; We will use this rank function
to define layers of F;.

Remark 3.1.1. There is a subtle difference between our definition of
the parameter graph as the set of all pairs of order and logic parameters,
and our definition of the function A; in the switching ODE model in
(4). Not every logic parameter can be realized by a function A and
differences start for functions with 3 inputs (Crawford-Kahrl et al.,
2022). The realizable parameters p are subset of all parameters P
and these are encoded in the software DSGRN. We refer readers to
Appendix B for the proof of Theorem 2 for realizable parameters.

Definition 3.1.2. Let F; = (V}, E;) be the factor graph for node
v;, with decomposition into subfactor graphs G; = V}.E) for i €
{L,....|T(vpl'}. The factor graph layer of p; € Vj’ is £;(p;). The k-th
factor graph layer of F; is the node set

{Pj € V/ | £j(pj) =k},
for k € {0,...,|Rj| . |T(Uj)|}.

We say that the highest factor graph layer is the set Hp; which
is factor graph layer |R;| - |T(v;)|. Likewise, the lowest factor graph
layer is the set Lp;, which is factor graph layer 0.

To illustrate the concept of factor graph layers, consider a network
node v; with one in-edge with 0 < / < u and two out-edges with
thresholds 6, and 6,. There are 12 factor parameters in the factor
graph, see Fig. 5(a). This factor graph has five layers. Each node label
ab represents a logic parameter with a = ¢;(/) and b = ¢&;(u). Since

L;=Ye R, ¢;(w) then the factor layer number is a + b. Another factor
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graph example is in Fig. 4. This factor graph has 9 layers arranged
horizontally and numbered by the sum of the labels abcd. The factor
graph layers allow us to define an idea of monotonicity of paths through
a factor graph.

Definition 3.1.3. Consider a path through the factor graph F;, =
(V;, E;), with sequence of nodes p;,p;,...,p, € V;. The path is said
to be monotone increasing if for all p;,, p, in the path, we have
L;(p;) < L;(py) if and only if i < k, i.e. factor graph layers increase
along the path. Similarly, the path is said to be monotone decreasing
if, for all p;, p, in the path, we have L;(p) < L;(py) if and only if i > k.
A monotone increasing or monotone decreasing path in F; is called a
monotone path.

3.2. Interpreting external variables as parameter changes

Regulatory networks do not operate in isolation; they are subject
to environmental factors that can impact their function. We choose
to model the impact of a spatially monotone but temporally constant
environmental variable as a directed sequence of parameter changes
induced in a targeted subset of RN nodes.

Definition 3.2.1. A monotone external variable ¢ : Y — R, is an
external variable not included in the network RN that satisfies either
¢’(y) 2 0 (increasing) or ¢’(y) < 0 (decreasing) on Y.

For the purposes of this manuscript, one can imagine the domain Y
to be a spatial dimension. We assume the following properties of the
external variable:

1. If ¢(y) is an activator of a network node v;, then the abundance
of v; qualitatively matches the abundance of ¢(y); i.e. high levels
of ¢(y) induce high levels of v; and lower levels of c(y) are
associated to lower levels of v;.

2. If ¢(y) is a repressor of a network node v;, high levels of c(y)
induce low levels of v ; and low levels of ¢(y) induce high levels
of v e

3. Monotone changes in c¢(y) induce a corresponding monotone
response in v;.

We elaborate on the last point. Let o; = +1, where +1 means that
c(y) is an activator and —1 means c(y) is a repressor to the target node
v;. Let F; be the factor graph of v;. We model the effect of ¢(y) on v; as a
monotone path over the layers of F;: c(y) induces monotone increasing
paths in F; when o, - sign(c’(y)) = +1 and monotone decreasing paths
when o; - sign(c’(y)) = —1. This monotonicity condition on the factor
graph of v; is a model of the continuously changing abundance of v; as
a function of changing c¢(y). In Fig. 5(b), an activating external variable
that is monotone decreasing in y (violet) is imposed on the factor graph.
This induces decreasing monotonicity on the factor graph shown as
directed edges.

We will make use of a stricter condition on the modeling of external
forcing that requires target nodes v; € RN to not only exhibit consis-
tently high and low expression but to operate at the most extreme factor
graph layers.

Definition 3.2.2. A maximal monotone path in the factor graph F;
is either

1. a monotone increasing path that starts in the lowest factor graph
layer and ends in the highest factor graph layer, or

2. a monotone decreasing path that starts in the highest factor
graph layer and ends in the lowest factor graph layer.

We now show how to apply this modeling framework to match ob-
servations along a spatial domain under external variable control using
the example of the D. melanogaster gap gene network. In the next sec-
tion, we show how biological observations may be translated into the
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language of Morse graphs, and apply this translation to D. melanogaster
development. In the subsequent section, we construct paths in the
DSGRN parameter graph, making use of concepts developed in this
section.

4. Expressing experimental data as morse graphs

In this section, we interpret spatial data as a sequence of fixed points
of a dynamical system and translate these into DSGRN Morse graphs.
We then demonstrate this technique on gene expression data from the
gap gene network.

4.1. Descriptive pattern and phenotype pattern graph

We formally describe a methodology for interpreting any spatial
data in a DSGRN framework. For a given network model RN = (V, E),
we consider paths p; - ... —» p, in the parameter graph PG and the
corresponding sequences of fixed point Morse sets FP,,...,FP, as the
output of the network model. Since the number of out-edges of v; € V
determines the highest integer state of X; (see Definition 2.2.2), the
highest value of an FP annotation will vary across network topologies.
This complicates the comparison of network models to each other and
to the data. Therefore, in order to match experimental data to the
model output in X, we first transform experimental data to qualitative
data, using the descriptors “high”, “intermediate" and “low”. Then for
each network under consideration, we transform this qualitative data
to integer values in X .

Definition 4.1.1. Consider a finite set £ of qualitative expression level
labels, for example & = {L, H} for “low” and “high”, that admits a
(not necessarily strict) total order, such as L < H. Further, consider a
spatial data set of M genes and N spatial locations. Then an N x M
matrix D with D, ; € & is the descriptive pattern of the spatial data.

We desire to match a DSGRN model of a regulatory network with M
vertices V = {v,,...,v,,} to the descriptive pattern at spatial locations
{1,..., N}. In order to perform this matching, we map the nth row of the
descriptive pattern D (denoted D,.) onto a collection of DSGRN fixed
points (FPs), whose annotations match D, . We then organize this data
into a phenotype pattern graph, that is, a DSGRN representation of
the observed data. We will say that there is a match between the data
and the DSGRN model if there is a path in the phenotype pattern graph
(my, ...,my) and a path in the DSGRN parameter graph (p,, ..., p;) such
that at every position i, there is at least one Morse node FP € M G(p;)
such that FP = m;.

Definition 4.1.2. A pattern label p = (p,,....py), where p; € X
(see Definition 2.2.2), is a collection of integer states, one for each
variable vy, ..., v,,. Let D be the descriptive pattern for a spatial data
set of M variables and N spatial locations. We say a pattern label p is
consistent with D, if D, ; < D, , implies p; < p,. The set of pattern
labels associated with spatial location # is

p(n) = {p | p is consistent with D, }.
The phenotype pattern of D is
P = (p(1),p(2), ..., p(N).

A parameter node p € PG has a relevant phenotype if there is an
n € {1,..., N} and a pattern label p € p(n) such that there exists a Morse
node FP(p) = FP((p;,...,pp)) € MG(p). If MG(p) is monostable (see
Definition 2.2.6), then we say p is a strict phenotype of p. Lastly, we
use the notation p(M G(p)) to denote the pattern label of a monostable
fixed point Morse node in M G(p).
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Fig. 6. Data of protein concentration along the anterior-posterior position % egg length for the trunk gap gene proteins Hunchback (Hb) in yellow (peak in R;), Giant (Gt) in
blue (peak in R, Ry), Kriipple (Kr) in green (peak in R,) and Knirps (Kni) in red (peak in R,). The gap gene protein expression pattern data (S1_Data.ods) was obtained from

supplementary information in Verd et al. (2018).

Note that a phenotype pattern is a coarse representation of spatial
data that we want to match by a sequence of FPs along a path that
represents a continuous path in the DSGRN parameter graph PG.
However, consecutive pattern labels between p(n) and p(n+1) may differ
at two or more elements. We make the reasonable assumption that
continuity permits the insertion of intermediate pattern labels when
seeking paths through the DSGRN parameter graph.

Definition 4.1.3. For a network RN = (V, E) with |V| = M and two

vectors ¢,d € X = [], ¢ X; a set of transition vectors between c
J

and d is

Ieg =la€X|ag el fori=1,...,M}
where I; = [¢;.d;] if ¢; < d; and I; = [d;,¢;] if ¢; > d; is the interval of
integers between c; and d,. Define

T =|J1Tq | c € p(n) and d € p(n + 1)}

to be the set of transition pattern labels from position n to position
n+ 1, and let

=

-1

T (n).

3
Il

Definition 4.1.4. A phenotype pattern graph for D is a directed
graph PPG = (X, E5), where (p,p') € E5 if p = p/ or the following are
simultaneously satisfied

* p€p(n and p' € I (n); and
» the paths are strictly monotone in the descriptive pattern,
ie,p; > p)implies D, ; > D, ; and p; < p implies D, ; < D, ;.

4.2. D. melanogaster example

As an example, we describe the construction of a descriptive pattern
for the D. melanogaster data. Fig. 6 shows the protein concentration data
of the trunk gap genes along the A-P axis of the embryo. These data
are taken late in the segmentation process when protein concentrations
have equilibrated to a fixed distribution across the A-P axis. We there-
fore assume that these concentrations correspond to steady state values
of the segmentation dynamics.

At most positions along the A-P axis, the protein expression levels
of the four genes are ordered, with the expression of two genes having
very low protein concentration. Furthermore, there are sections where
this ordering does not change. For example, at every point between
positions 40% and 45% egg length the protein expression levels are
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Table 2

Descriptive pattern for the D. melanogaster protein expression pattern data seen in Fig. 6.
Region A-P Hb Gt Kr Kni
R, 35-37 ® H L L
R, 37-40 H * L L
R, 40-45 H L * L
R, 45-51 * L H L
Rs 51-57 L L H *
Ry 57-63 L L * H
R, 63-67 L . L H
Rg 67-75 L H L *

ordered, from highest to lowest, Hb, Kr, Gt, Kni. Using these observa-
tions we divide the A-P axis into eight regions R, (see the dashed lines
in Fig. 6), where the protein expression levels are consistently ordered.
Region boundaries are at crossings between two protein concentrations.

We discretize the experimental values in each of the 8 regions by
one of the descriptive labels & = {H,*, L}:

1. H : Protein expression level is high,
2. L : Protein expression level is low,
3. * : Protein expression level is indeterminate.

Since there are large regions where it is unclear whether protein
expression levels should be regarded as high or low, we introduce the
third character +. The order on the label set & is L <#< H and L < H.

Protein expression levels in Fig. 6 show that kni is inactive between
A-P positions 35%-47%, gt is inactive between 49%-59%, and hb is
inactive between 61%-75%, which is consistent with the interpretation
of Verd et al. (2019). Thus, in these regions, these protein expression
levels will be labeled L. We further assign label H to each gene whose
protein expression level is highest in a given region in Fig. 6. Therefore
in each region, we will have one gene labeled H, two genes labeled L
and the remaining gene with intermediate protein expression will be
assigned . We arrive at the descriptive pattern seen in Table 2.

We now transform the descriptive pattern in Table 2 into a pheno-
type pattern graph. We use the following FP assignment for a pattern
label p = (pgp» PGis Pir Prni) At spatial position n = 1,...,8. For every
gene v; with j € {Hb,Gt, Kr, Kni}, we assign

*p;=0ifD,; =1L,

* py =max{L,|T(w)|}if D,; = H,

* if [T(v;)] > 0 and D, ; =+, then p; € {1,...,|T(v;)| - 1}, and
« if |T(v;)| = 0 and D, ; =+, then p; € {0,1}.


https://doi.org/10.1371/journal.pbio.2003174.s009
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Fig. 7. StrongEdges network (left) and phenotype pattern (right).
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------------------------- FP(0,3,0,0)

Fig. 8. StrongEdges phenotype pattern graph. (Top) StrongEdges phenotype pattern graph, where labels abcd correspond to pattern label (a, b, ¢, d). Note each node has a self-loop
which is omitted for clarity. Nodes are shaded if the pattern label is in p(n) for some region R,, n = 1,2,...,8. Dark gray is specific for n = 1,3,5,7, light gray is specific for
n = 2,4,6,8, and white indicates that the pattern label is a transition label only. The black node is a pattern label that is consistent both regions R; and R,. (Bottom) Three
examples of associated StrongEdges relevant phenotypes for p(1). The nodes boxed in dashed red depict a bistable Morse graph, which is the only example that is not a strict

phenotype for StrongEdges.

Note that the pattern labels are consistent with D by Defini-
tion 4.1.2. We use this assignment to construct a phenotype pattern
graph for a regulatory network with proteins Hb, Gt, Kr and Kni,
as illustrated in Fig. 7. The network, called the strong edges net-
work (StrongEdges) consists of edges with the strongest predicted
interaction between the trunk gap genes from the original gap gene
network in Fig. 1(a), except the self-loops (see Fig. 7(left)). Addition-
ally, Fig. 7(right) shows a table representing all possible pattern labels
for each region (compare to Table 2).

Consider regions R; and R,, where D,. = (%, H, L, L) and D, = (H,
%, L, L). The collections of pattern labels are

p(1) = {(0,3,0,0),(1,3,0,0)} and p(2) = {(1,1,0,0),(1,2,0,0)}.
For pattern labels ¢ = (0,3,0,0) and d = (1,1,0,0) we have
Tea = {(0,3,0,0),(0,2,0,0),(0,1,0,0),(1,3,0,0),(1,2,0,0),(1,1,0,0) }.

Doing this for each ¢’ € p(1) and d’ € p(2) we find that T, » C T 4.
(Note that in general this need not be true.) The entire phenotype graph
for StrongEdges can be seen in Fig. 8.

The phenotype pattern describes the annotations of the DSGRN
fixed points that we say match the data in each of the eight regions
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along the A-P axis. We are interested in finding a sequence of parame-
ter graph nodes with Morse graphs that exhibit fixed points determined
by the phenotype pattern. In our example, the associated StrongEdges
fixed points for p(1) are in the set

{FP(0,3,0,0), FP(1,3,0,0)}.

Any Morse graph containing one of these fixed points is consistent
with the data in R;. For example, a Morse graph having a full cycle
connected to FP(1,3,0,0) as shown in Fig. 8, a bistable Morse graph
shown boxed in red, and the monostable Morse graph FP(1,3,0,0) all
exhibit relevant phenotypes for R;. Additionally, the two monostable
Morse graphs are strict phenotypes of R;.

5. Modeling spatial gradients and matching observations with
DSGRN

We now describe how spatial data can be compared to DSGRN net-
work model predictions while respecting external variables. The basic
construction is a chemical gradient graph, whose name is inspired
by the spatial distributions of the D. melanogaster maternal gradients
Bed and Cad. It is constructed as a subgraph of the DSGRN parameter
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graph with directed edges imposed by external variables on the factor
graphs of network nodes affected by these external variables. Within
the chemical gradient graph, we identify developmental paths, with
this name again motivated by our example, that are consistent with
both the external variables and the phenotype patterns derived from
the spatial data.

The collection of developmental paths is the subgraph of the chem-
ical gradient graph composed of all matches between the DSGRN
model and the data. The shape and other features of this subgraph
represent the DSGRN prediction of the robustness of the developmental
program. However, the chemical gradient graph is prohibitively large,
and therefore computing and investigating all paths is prohibitive as
well. Therefore we compress the chemical gradient graph into smaller
graphs that retain the information about the developmental paths. We
first create a condensed chemical gradient graph, and then from that
a path graph whose structure contains information about the quality
and quantity of matching between the model and the data. There is one
path graph per network model and comparisons of robustness between
path graphs permit a ranking of network models, a subject that is
discussed in Section 6.

5.1. Chemical gradient graph

The translation of an experimental spatial dataset into a phenotype
pattern graph allows us to study the collection of paths in the DSGRN
parameter graph that (1) are consistent with the action of external
variables, and (2) match the phenotype pattern by the sequence of
annotated Morse nodes. To facilitate this investigation we construct a
subgraph of parameter graph PG where we add orientation to the edges
that match the effect of external variables. We call this directed graph
the chemical gradient graph.

Let PG = (P, A) be the DSGRN parameter graph of RN = (V, E),
where |V| = M. Let {vy,...,v,,} €V be the maximal subset of network
nodes where each v;, j = 1,...,m, is affected by an external variable
¢;(y) for y € Y, see Definition 3.2.1. We allow one external variable to
affect multiple nodes, but do not consider the case when one node is
controlled by multiple external variables. Let o; = I, where +1 (-1)
denotes that c;(y) is an activator (repressor) of v;. Additionally, recall
that £;(p) is the factor graph layer of v; for a parameter node p € P.
Lastly, recall that Dy ,, is the descriptive pattern for a spatial data set
with N regions and M genes.

Definition 5.1.1. The chemical gradient graph, ¢ = (V, &), is a
directed graph constructed from PG and descriptive pattern Dy j, in
two steps. First, for p € P we have p € V if p(MG(p)) € X, where ¥
is the set of nodes in the phenotype pattern graph (P PG) as defined in
Definition 4.1.4. Then for each p,q € V, we have (p, q) € € (directed) if
(p,q) € A and one of the following is satisfied

1. Li(p)=Ly(q) forall j=1,...,m, or
2. Ly(p) + sign(c))o, = L (q) for some k € {1,...,m} and L;(p) =
L;(g) for all j = 1,...,m such that j # k.

Remark 5.1.1. Notice that condition (1) implies (p, 9), (¢, p) € €, while
condition (2) implies (p,q) € &, but (¢, p) & &, since £k(q)—sign(c,’c)ak =
L, (p) flows against the gradient. This fact will be important later.

We now again turn to our example of gap gene network in D.
melanogaster. Consider the maternal gradients Bed and Cad, which we
model as external variables to the gap gene network. Concentration
of these proteins varies monotonically along the A-P axis; Bed is
increasing and Cad is decreasing. Since Fig. 1(a) indicates that both BcD
and Cad may affect Gt and Kr, the spatial variance of this effect along
the A-P axis is not clear. Therefore, we chose to only model effects
of material gradient that have clear spatial differences along the A-P
axis, namely the impact of Bed on Hb and Cad on Kni. Let Y = [0, 100]
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represent the A-P axis, where y = 0 represents the start of the anterior
region and y = 100 the end of the posterior region. Then using the
notation c¢;(y) as in Definition 3.2.1 with ¢ = Bed,Cad and j = Hb, Kni,
we have Bcdy,(y) modeling the effect of Bed on Hb as an activating
(o6, = +1) decreasing (sign(Bcd;i ) = =D external variable and
Cadg,;(y) modeling the effect of Cad on Kni as an activating (cg,; = +1)
increasing (sign(Cad}(m(y)) = 1) external variable (see the violet and
cyan gradients in Fig. 1(b)). Thus, if p and ¢ are nodes in the parameter
graph PG = (P, A) that satisfy p(M G(p)), (M G(q)) € X and (p,q) € A,
then (p,q) € € as well if

1. Ly =Lyy(q) and Lyni(p) = Lkui(q), OF
2. Lyp(p) = 1= Lyp(g) and L, (p) = L,(q), OF
3. L +1=Ly(q) and Lyy(p) = Lp(q)-

5.2. Developmental paths

Having constructed the chemical gradient graph G, we will now
describe paths in G that are consistent with the data.

Definition 5.2.1. Let ¢ = (V,€&) be the chemical gradient graph
of some RN = (V,E). Let {v},...,v,,} C V be network nodes under
influence of the corresponding external variables ¢; and regulation
types o;. Let F; be the factor graphs of v;, with Lp; and Hp; the
sets of lowest and highest factor graph layers of F; respectively. Let
n=1,..., N denote the spatial regions of the dataset.

We say that s € S C V is a starting node if

1. s € Lp, for all j such that o; = +1 and ¢/(y) 2 0 or o; = ~1 and
¢ <0,

2. s € Hp; for all j such that o; = +1 and c/’.(y) <0oro; =-1and
c;(y) >0, and

3. the annotation of the Morse set at s must match the pheno-
type pattern in one of the first ¢ regions, i.e., p(MG(s)) €
(Uf=l P](n)) \ p(¢ + 1), where ¢ is a modeling choice.

We say that 1 € T C V is a stopping node if

1. t € Hp, for all j such that ¢; = +1 and c;(y) 20oro; =-1and
(<0,

2. t € Lp; for all j such that o; = +1 and cj'.(y) <0oro; =~-1and
cj(» 20, and

3. the annotation of the Morse set at r must match the pheno-
type pattern in one of the last k regions, i.e., p(MG()) €
U flvz _1\}_ « 7 (n), where k is a modeling choice.

From now on we will assume that the chemical gradient graph
G = (V,&;8,7) comes equipped with the designated set of starting
nodes S and stopping nodes 7.

Definition 5.2.2. Let G=(V,&;S,T) be the chemical gradient graph.
A developmental path is a path p, - --- - p, in ¢ such that

1. ppeSand p, €7, and
2. p(MG(py)) = -+ > p(MG(py)) is a path in the phenotype pattern
graph.

By construction, any path in the chemical gradient graph will be
a monotone path with respect to factor graph layers for each gene in
RN affected by an external variable. Our goal is to quantify features of
the set of all developmental paths to characterize the robustness of the
developmental program as predicted across network models.

Notice in Definition 5.2.1 we allow starting nodes to be in the first #
spatial regions and stopping nodes to be in the last k regions to account
for boundary conditions that may not be included in the model. While it
would be ideal to find paths in the chemical gradient graph that follow
the entire phenotype pattern, we found in the gap gene network D.



E. Andreas et al.

melanogaster example that nodes with the annotated MG for regions
R, and Ry are often disconnected from nodes with the annotated MG
for regions R, through R,. We hypothesize that this is a consequence of
additional regulation of gene expression in these regions by genes from
the positions external to the A-P positions 35 — 70% where gap genes
are active and that are modeled in this paper, see Fig. 6. In particular,
there are gene-protein interactions in the anterior between 0%-30%
and region R, (Jaeger et al., 2004) and in the posterior between 80%-—
100% and region Rg (Jaeger, 2011; Ashyraliyev et al., 2009). The lack
of accounting for these boundary regulations may impact the ability of
network models consisting of only trunk gap genes to recapitulate the
data at the extremes of the A-P axis.

5.3. Condensed chemical gradient graph

The DSGRN parameter graph size grows rapidly with the size of
the network (Cummins et al., 2018). For example, networks with four
nodes and eight edges have millions of parameter graph nodes. Unfortu-
nately, this means that the chemical gradient graph can be quite large.
For example, the chemical gradient graph of the StrongEdges network
has over 1.4 million nodes and 12 million edges. Graph algorithms such
as path-finding rapidly reach computational limits in common chemical
gradient graph sizes. Hence, directly finding all developmental paths is
impractical. To overcome this limitation, we take two actions.

« First, we consider only strict phenotypes, i.e., monostable fixed
points, when constructing the chemical gradient graph. This is
a conservative decision because it requires the elements of the
phenotype pattern to be as dynamically stable as possible.
Second, we contract the chemical gradient graph using strongly
connected components and annotated MGs into a condensed
chemical gradient graph. Then we construct a subgraph of the
condensed chemical gradient graph that contains all developmen-
tal paths, called the path graph, and study its structure rather
than computing all developmental paths directly.

Consider the chemical gradient graph ¢ = (V, &;S, 7). We define an
equivalence relation on the set of vertices V by the requirement that
they lie in the same strongly connected component of G and that the
corresponding Morse graphs are the same.

Definition 5.3.1. Let G=(V,&;S,7T) be the chemical gradient graph
and let % be the collection of strongly connected components of G.
Define the following equivalence relation over V

u ~ v if and only if MG(v) = MG(u) and u,v € H for some H € # .

We say
V,={veV]|v~u}

is a strong MG equivalence class of V and call u the representative
of V,.

Definition 5.3.2. Let ¢ = (V,&;S,7) be the chemical gradient
graph. We construct a weighted directed graph named the condensed
chemical gradient graph cG = (cV,c&, W) as follows. The nodes ¢V
are the collection of all strong MG equivalence classes of V, i.e.,

cV ={V,,V,

uyr Vuyo e

v

V)

where V = |_|f.‘=1 V,,- Additionally, there is an edge Vi V) € € for
i # j if and only if there exist nodes u € ¥, and v € v, such that
(u,v) € €. Let M, ; be the number of edges from any node in V,, to any
node in Vuj, ie.,

M;;={wv)€€|ueV, andveV,}|

and let N; be the total number of edges from nodes in V, to nodes
outside of Viis ie.,

Ni=lwv)e&|ueV, andvgV,}.
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Then we assign (V,,, V) €cE the weight

ij

N.

i

W, V) = ,
making ¢G a weighted directed graph with weights in the range [0, 1].
Lastly, we say a node V,, € cV is a starting or stopping node if there
exists u € V,, such that u € S or u € 7, respectively. We label the set
of starting nodes and stopping nodes in ¢G by ¢S and ¢7 respectively.

We note that there is a slight abuse of notation in the previous
definition, wherein V, denotes both a strong MG equivalence class and
a node in ¢G. We took a similar liberty for the nodes of the regulatory
network RN and do so here again for clarity.

Notice that the condensed chemical gradient graph (cG) is the
condensation of the chemical gradient graph (¢), where the strongly
connected components of G are further decomposed by Morse graphs.
The following lemma is an immediate consequence of Definition 5.1.1
and Remark 5.1.1.

Lemma 5.3.1. Let G = (V,&;S,7T) be the chemical gradient graph and
let H' be a strongly connected component of G where V' denotes the nodes
of the subgraph H'. Let v; with j = 1,...,m be the externally controlled
network nodes with associated L ; factor graph layers. Then for all p,q € V'
we have

Li(p)=L;(q)
foralj=1,....,m.

The strong MG equivalence classes partition each strongly con-
nected component H' of G and so Lemma 5.3.1 guarantees that
each one can be unambiguously (though non-uniquely) labeled with a
collection {£;(p)} for j = L,...,m. This leads to an immediate Corollary.

Corollary 5.3.1. If V, € ¢S is a starting node in ¢V and p € V,, then p
is a starting node in S C V. Similarly for stopping nodes.

Proof. Since all p,q € V, have matching factor graph layers by
Lemma 5.3.1 and matching Morse graphs by Definition 5.3.1, if one
node in V, satisfies the criteria of Definition 5.2.1, they all must. W

Lemma 5.3.1 and Corollary 5.3.1 justify searching for developmen-
tal paths in the (much) smaller condensed chemical gradient graph cG
instead of in G, since paths in ¢G follow the externally imposed gradients
from starting nodes to stopping nodes.

Definition 5.3.3. Let ¢G = (cV,c&,W;cS,cT) be the condensed
chemical gradient graph. A condensed developmental path is a path

V, = ==V, incG such that

1.V, €cSand ¥V, €cT,and

2. p(MG(uy)) - -
graph.

— p(MG(uy)) is a path in the phenotype pattern

In the worst case |V| = |¢V| but in practice |¢V| is much smaller
than |V|. For example, while the StrongEdges chemical gradient graph
has over 1.4 million nodes, its condensed chemical gradient graph has
14,832 nodes (see Fig. C.1). Importantly, we show that every condensed
developmental path in the condensed chemical gradient graph contains
at least one developmental path in the chemical gradient graph.

Lemma 5.3.2.  For every condensed developmental path V, — V,, —
... >V, there exists at least one developmental path

n n

1 1 1 2
p1—>p2—>“,—>pj]—>pl—>,,,—>pj = ..

with the consecutive sets of vertices { p’i,
gradient graph.

, pj,i} € V, in the chemical
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Proof. Let U =V, - V, - V,, be a condensed de-
velopmental path in the condensed chemical gradient graph ¢G =
(cV,c&, WS, cT). Since there is an edge Vi = Vs there must exist
nodes p; €V, and g, €V, such that (p;,q;,,) € £. Furthermore, by
definition of a connected component, when |V, | > 1 there exists a path
between any two nodes in V, . Thus, if (p;, ¢;,,) is an edge between V,,
and V, , and likewise (p;,|,q;42) is an edge between V, ~and V, ,
then for Wi 1> 1 there exists a path in V

—

Pi=p =gy 20, 220 2P 7 i
forv,....v; €V, I |V, |=1, then gy = py, so clearly there is
a path

Pi = Giv1 = Piy1 7 diy2-
It follows that there exists a path in G through V, w2 Vg oo s Vs of the
form
Py =472 2y DU e 2 U 2 D iy 7 e 7 P

By Definition 5.3.3, path U induces a path p(MG(,))
p(MG(uy)) — ... - p(MG(u)) in the phenotype pattern graph Ob-
serve that since u;,p; € V,, and u;,,q;, v Piy1 €V, then
MG(u;) = MG(p;) and

N
1 Ujpsees

MGy)) = MG(g;yy) = MG(;)) = - = MG(v; ) = MG(p;y)-

Thus, p(MG(u;)) = p(M G(u;,)) implies

PIMG(p)) = p(MG(q;1)) = p(MG(v;)) = ... = p(MG(v;)) > p(MG(p,y,))

is a path in the phenotype pattern graph. It follows that

PMG(p)) = p(MG(qy)) = ... = p(MG(gyy,)) = pP(MG(v))) = ... = p(MG(py))

is a path in the phenotype pattern graph.

Lastly, U is a condensed developmental path so V,,, is a starting node
and V, is a stopping node in cG, and therefore by Corollary 5.3.1,
py €V, is a starting node in S C V and p, € V,, is a stopping
node in 7 C V. Therefore, the path P is a developmental path in ¢
by Definition 5.2.2. Since U was arbitrary, we have shown there exists
at least one developmental path for every condensed developmental

path. W

Lemma 5.3.3. Every developmental path p; — -+ — p, in the chemical
gradient graph can be projected uniquely onto a condensed developmental
path V, — V,, in the condensed chemical gradient graph. In
other words, there is a partition of {p,,....p,} into k consecutive groups
of vertices, each of which belongs to one component V,,..

—

Proof. Let G = (V,&;S,7) be the chemical gradient graph and let
= (cV,c&,W;cS,cT) be the condensed chemical gradient graph of
g
Let y = p; » -+ - p, be a developmental path in ¢ with induced
phenotype pattern path

v, = p(MG(p))) = -+ = p(MG(p,)) = p; = -+ = p, (for brevity).

Our goal is to uniquely construct a condensed developmental path
r=v, - -V, incGfromyandy,.

We partition the parameter nodes in y into sets 4, ; that are the
maximal sets of sequential elements in the path that all belong to the
same strong MG equivalence class. Formally,

Ai,j = {Pispi+1» sPi+j}5

where

Lo pi~ pigr ~ 0~ Py
2. p;»p;_y ifi>1, and
3. Piyj * Pipjyr i+ j <n.
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In particular, if we denote the partltlon in order by 4; ;.....4; ;.
where k <nandi; <ig fors=1,. — 1, then there exists a unique
V,, €cV for every 4, ; such that A, .j; €V, - In fact, we may take the
representatlve u, to be p;, if desired. Since a developmental path follows
a one-way gradient flow and the A;_ ;. are maximal, it follows that all
Vus are distinct (i.e., no strong MG equlvalence class can be revisited).
Moreover, since there exists a pf € A, j, such that p,,, € A; ;|
with (ps,ps4) € v, then Vo Va,,) € cé’ Addltlonally, since p; € Vi
is a starting node in S C V then V,, € ¢S is also a starting node in
¢G by Definition 5.3.2. Similarly, the stopping node p, € V,, implies
V,, € cT. Therefore I' =V, — -+ -V, is a path in cG from a starting
node to a stopping node.

The partition of the nodes in y into {4, ;} and the construction of ~

induces a partition of the pattern labels in y,, i.e.,

AMG,)) = p(MG(p,)) = - = p(MG(p; ;) # p(MG(p;_ 1; )= p(MGlug,,))

for s = 1,...,k — 1. Given that y is a developmental path, then it
follows that the path I" induces a path in the phenotype pattern graph.
Uniqueness follows from Definition 5.3.1, completing the proof.

5.4. Path graph

We now identify the minimal subgraph of the condensed chemical
gradient graph that contains all condensed developmental paths subject
to an additional constraint on near simultaneous change of external
variables along the paths.

Definition 5.4.1. Given the condensed chemical gradient graph ¢G =
(cV,c&,W;cS,cT) and the phenotype pattern graph PPG = (X, Ey),
the tensor product graph ¢G X PPG contains the nodes {(V,,s) | V, €
¢V,s € X) and edges ((V,,s),(V/.s) if (V,.V)) € c€ and (s,5") € Ey.
Let H C ¢cGX PPG be the subgraph induced by nodes (V,, s) that satisfy

©)

Finally, let ¢H be a projection of H onto the first component. In other
words, ¢H is the subgraph of ¢G such that a path exists in ¢H if and
only if that path induces a path in PPG.

PIMGw) = s.

Given a regulatory node v affected by some monotone external
variable ¢(y), we have that any path in ¢H follows a monotone path
in the factor graph of v (see Definition 3.1.3), i.e., the path must be
consistent with external variable effect. In the gap gene network, the
external variables Bcd and Cad impose a requirement that Hb decreases
and, at the same time, Kni increases. However, our construction of ¢cH
allows Hb to decrease entirely before Kni increases and vice-versa. This
does not capture the biological reality where the maternal gradients
change simultaneously, i.e., Hb is decreasing while Kni is increasing
along the A-P axis of the embryo. We capture this behavior in our
final graph construction, the path graph. However, we must first define
what it means for external variables to be changing simultaneously in
the context of DSGRN. In order to do that we develop the concept of a
diagonal subgraph in a product of oriented graphs.

Definition 5.4.2. Consider RN = (V,E) and regulatory nodes

{v1,...,0,,} C© V, with each v; affected by a corresponding external

variable c;(y). Let E;f =|R;|-IT(wpl+1, i.e., Ej is the number of factor
graph layers for v;. We call

£’? 5*

[max { co }]

the size ratio between v; and v;.

Tij +=

For example, in the StrongEdges network, we have £% = 5 and

Hb

Ly, =13 where £} and L} . denote the number of factor graph layers
ni Hb Kni
for Hb and Kni respectively. Then
r P = [max{ C* E;O" }] =3
Hb,Kni £’1‘< C’ .
ni
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Fig. 9. Example of sets Sy, and S7,.
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0O 1 2 3 4 5 6

(left) All black points are the points in the set S{fj for a; =8, a; =6 and r =2 and (right) S}, with 4; =q; =6 and r = 1. In both grids, the

red lines depict the upper bound of y in S,’fj and S, while the blue lines depict the lower bound of y.

Returning to the general case, fix two regulatory nodes v
{01, ..., 0, }. In order to simplify notation we set r := r; ;. The number
r will be used to describe a subregion S within a rectangle R =1[0,4;1%
[0,a;] C Z x Z, where a; := L] - = E; — 1. To be explicit we
assume a; > a;.

When sign(c)) = sign(cj’.) then we define a neighborhood of a
diagonal in R, S{, c R by

t’je

1,aj

r+1 1 _ r+1

S¢ :={x,ye R|x €[0,4;] and L <y<
’] r r

-
@)
Note that the lower bound of Sd is a line passing through point (r+1,0)
and the upper bound through the point (a;—r—1, a;), both with the same
slope <, see Fig. 9(left). For the case when sign(c]) # 51gn(cj) we set

+1 r+1

={x,ye R | x €[0,q;] and ——(x a;)— ——

5

3)
see Fig. 9(right).

Definition 5.4.3. Consider RN = (V,E) and regulatory nodes
{vy,...,v,} C V, with each v; for j = 1,...,m affected by a corre-
sponding external variable c;(y), and let ¢} be the graph as constructed
in Definition 5.4.1. The diagonal subgraph D is a node-induced sub-
graph of ¢H where a node V, € c¢H belongs to D if and only if the
corresponding factor graph layers satisfy

sS4 if sign(c!) = sign(c’)
L. C. ij i J
(£i(p). L(p)) € { Sy, if sign(c)) # sign(c))
for all pairs v, U; € {vy,...,v,} where Et’.‘ > E;f.

We restrict our attention to paths in the diagonal subgraph to
exclude paths that are not consistent with our interpretation of a simul-
taneous change in the external variables. For our final construction, we
further enforce that nodes in D must be connected to the collection of
starting and stopping nodes.

Definition 5.4.4. Let ¢cG = (cV,c&,W;cS,cT) be the condensed
chemical gradient graph, and consider the diagonal subgraph D of ¢H.
A node V, € D has terminal reach if one of the following is satisfied.

1. If V,, ¢ ¢S U cT, then there is both a path in D from at least one
V, € ¢S to ¥, and a path in D from V, to at least one ¥, € ¢7T.

2. If ¥V, € ¢S, then there is a path in D from V, to at least one
V,ecT.

3. If ¥V, € cT, then there is a path in D from at least one V, € ¢S
to V,.

Definition 5.4.5. The path graph P = (7, &) is the node-induced
subgraph of D where we have removed all nodes V, (and incident
edges) if ¥, does not have terminal reach in D. The edge (V,.V,) € &
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inherits the weight of the edge (V,,V,,) € ¢£. Anode in 7 is a starting
(stopping) node for P if it is a starting (stopping) node in cG.

The next theorem summarizes our construction.

Theorem 3. Every path in the path graph P from a starting node to
a stopping node is a condensed developmental path with simultaneous
changes in external variables. Moreover, every developmental path in cG
with simultaneous changes in external variables can be projected onto a path
in P.

We showed that every condensed developmental path in ¢G repre-
sents a developmental path in G and that every developmental path in G
can be projected uniquely onto a condensed developmental path in ¢G.
Since the path graph contains all condensed developmental paths that
satisfy the biologically motivated constraint of simultaneous external
variable change, it is sufficient to analyze the path graph in order to
understand the structure of the developmental paths in G. See Appendix
Fig. C.1 for a visualization of ¢G and P for both the example gap gene
models Fullconn and StrongEdges.

6. Robustness scores

In this section, we use the fact that every path in a path graph

= (7', &) matches spatial data represented by the phenotype pat-
tern graph. Our quantification of robustness will rely on features of
the shape and wiring of P, the extent of P lifted into G, and the
attractiveness of P as a subgraph of cG. For the last, we assume that
a random perturbation that redirects a developmental path out into ¢G
is undesirable. We assert that a high likelihood that such a perturbation
does not permanently divert paths out of P is a sign of a network model
that robustly matches the data. With this in mind, we say that a network
model is robust to perturbations if each of the following properties
are satisfied.

(P1) The path graph does not contain bottlenecks. Informally, a

bottleneck in the path graph is a node, or a set of nodes,

where a significant portion of perturbations result in a path in
¢G\ P. This property measures the fragility of the collection of
developmental paths in the path graph.

P is an attractor within the condensed chemical gradient graph.

This means that if a local perturbation of a node in P leads to a

node g outside of P, then paths starting at ¢ will re-enter P after

a few transitions. This permits the resumption of the phenotype

pattern after a local break.

(P3) A path in P is unlikely to be perturbed in such a way as to cause
portions of the phenotype pattern to be skipped. This means that
if there is a local perturbation of a node in P to another node in
P, then the new path will still be a proper developmental path.

(P2)
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(P4) The nodes and edges of P constitute a large portion of nodes and
edges of the chemical gradient graph ¢ when P is lifted back
into G. This means that for any given sequence of parameter
changes that respects the external variables, the correspond-
ing sequence of phenotypes is highly likely to reproduce the
phenotype pattern.

Lets consider properties P1-4 in context of the D. melanogaster ex-
ample. A path graph having property P1 suggests that any perturbation
will still result in the proper development of the embryo. For spatially
localized perturbations, property P2 would imply that the new path
is still a proper development path and property P3 would allow for
natural development of the embryo with only local flaws. Finally,
having property P4 means that chemical gradients Bed and Cad robustly
give rise to the phenotype pattern. We now introduce scores to quantify
properties P1-4.

6.1. Bottlenecks scored by optimized weighted cut (OW Cut) of the path
graph

A common understanding of a bottleneck is a restriction point for
traffic. In our case, the path graph describes a set of developmental
paths that represent a sequence of parameter changes consistent with
external variables that recapitulate qualitative observations about vari-
able expression across spatial regions. A bottleneck indicates a set of
parameter regions where a random perturbation will likely disrupt the
phenotype pattern. Our goal is to develop a mathematical definition
of a bottleneck that captures this behavior in the setting of a directed
weighted graph. To do so, we utilize the concept of weighted graph cut
from (Meila and Pentney, 2007).

Definition 6.1.1. A weighted directed graph G = (V,E,W) is a
directed graph equipped with a non-negative weight w; ; assigned to
each directed edge (v;,v;). We organize weights in a [V| x |[V| weight
matrix W = [w; ;]. If (v, v)) € E, then w;; =0.

Definition 6.1.2. Let W be the weight matrix of G. Let D be a
diagonal matrix where

D= {1 if ZU/EV w;; =0,
i = .
Zv,ev w;; otherwise.
where w; ; € W. Notice if all edges have weight 1, then } , w;; is
. ; .

the out-degree of v;. We call D the weighted out-degree matrix of the
graph G (Meila and Pentney, 2007).

Definition 6.1.3. def:Clusteret {C;,C,,...,Cg} be a collection of
disjoint subsets of V, i.e., C, C V for k=1,2,...,K and C;nC; = ¢ for
i# . If
CUGU-UC =V
then C = {C,,C,,...,Cx} is a K-clustering of G. We call
2 = Z D;
v, €Cy,

the degree of cluster k (Meila and Pentney, 2007).

We associate to each set of nodes C; C V' all the edges (u,v) € E that
connect vertices within C;. K-clustering imposes a cut on the graph G;
the cut contains the set of edges in E that connect vertices in different
clusters.

Definition 6.1.4. Let W and D be the weight and weighted out-
degree matrices of weighted directed graph G respectively and let C =
{C|,C;,...,Ck} be a K-clustering of G. Then the weighted cut of C is
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given by Meila and Pentney (2007)
o 1
W Cur(C) = Y 5 X D= Y w).
k=1 v;€Cy, v;€Cy

Further, let

S = 2 Z w;; and d; =

v;ECy v;EC

2 X
v;E€Cy v;EV\Cy.

Notice that s, is the sum of weights for every edge in the node-
induced subgraph of G with node set C,, denoted G[C,], while d, is
the sum of weights of edges departing G[C,]. If each w; ; represents a
probability of taking the edge from node v, to v;, then in general a path
starting in C, has a higher probability of staying in C, whenever s, is
higher than d,.

Definition 6.1.5. Let G = (V, E, W) be a weighted directed graph with
a K-cluster C. Given a cluster C;, € C, we say that G has a bottleneck
from G[C,] into G[V \ C,] whenever s, > d,. i.e., whenever a path
starting in G[C,] has a better chance of staying in G[C,] than it does
of departing G[C,].

We detect the existence of bottlenecks in a graph and score their
strength using the weighted cut.

Theorem 4. Let G = (V, E, W) be a weighted directed graph with weights
w;; € W such that w; ; € [0, 1] and ZUJEV w; ; < 1. Given some cluster C;,
of G, if

WCut({Cy,V \ C}) < %
then G has a bottleneck from G[C,] into G[V \ C.].

Proof. Let G = (V,E,W) be a weighted directed graph with weights
w;; € Win [0,1], let D be the weighted out-degree matrix, and let
C ={C,...,Cg} be a K-clustering of G. For every k notice that

2 w;; = Z ( Z Wi+ 2 w”’)

v, ECy v;EV v;EC v;EC v; EV\Cy

2 Xowyt XY X wy=stde

v;ECy v;ECy v ECy v, EV\Cy,

where the first equality is because C, UV \ C, = V. Then
D > Z Z w; ;= s +dy
v;ECY v;EV

with equality when D, := ZvjeV w;; # 0 Vi. We can also express
W Cut(C) of the clustering in terms of weights of internal edges s, and
external edges d,.

K
1
W Cut(C) = — D; — .
“ Zi D u,ezék( l v,»ezck wu)
K
1
= — D — .
k=1 9’( (U;k ‘ U,-Ez;'k z)];‘k w’,l)
K
= ; g%l((@k - Sk)

Il
M=

~
Il

—
|

IA
M =

— —
|

N

S—

Sk )
se+d /)

~
Il

We note that
Sk 1 . .
— ——— < - if and only if d; < 5.
sp+d 2 y kS Sk
Applying the W Cut to clustering consisting of two clusters {C,V \ C},
we observe that if WCut({C,V\C}) < %, then both d| < 5, and d, < s,.
Therefore there is a bottleneck between C and V' \ C. W
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Notice that if the cluster C;, has no edge to V' \ C, then d;, = 0 and
we have

S

k_ —o.
s +d
On the other hand if there are no edges connecting nodes within C;
then s, =0 and

1-—

LS
s+ dy
Therefore the closer W Cut({C,V \ C}) is to zero, the stronger the
bottleneck between C and V \ C.

Thus, to score property P1 we will find the optimal 2-clustering
of the path graph P that minimizes the W Cur of P, with the addi-
tional condition that one cluster contains all the starting nodes while
the other contains all the stopping nodes. We compute an optimal
2-clustering as follows using methods inspired by the normalized Lapla-
cian from (Meild and Pentney, 2007) and a grouping algorithm for
image segmentation (Shi and Malik, 2000) based on spectral clustering.
Let W and D be the weighted matrix and weighted degree matrix of
P, respectively. Computing the Hermitian part of the Laplacian L =
(D — W) and normalizing by D (Meila and Pentney, 2007), we have

1 1 1 1
Z:=D :iH(L)D %= %D_E(ZD -w-whD 2.

The key insight from spectral theory of harmonic maps is that while
the smallest eigenvalue of & has the eigenvector with positive entries,
the eigenvector corresponding to the second eigenvalue has entries of
both signs, and the nodes corresponding to each sign form two clusters
which minimize W Cur. Since the value zero does not have a privileged
position in our matrix &, we follow (Shi and Malik, 2000) to find an
optimum value to define the clusters. Let x = (x|, x,, ... X)) be the
eigenvector corresponding to the second smallest eigenvalue of &. We
reorder elements in x in ascending order and let (v}, v,, ..., o) be the
corresponding ordering of nodes in V. Let j be the index such that

lxj = Xj41l = I_Srlnlf‘lflﬁxi = Xiprl}
Then we define a 2-clustering of nodes by setting C, := (v, ...,v;) and

Cy = (jsps-eesUpy)) (Meild and Pentney, 2007; Shi and Malik, 2000). If
the starting and stopping nodes are not contained in separate clusters,
we find a clustering based on the next largest consecutive distance
|x; = x;41], until this condition is satisfied. We denote the W Cut of the
optimum 2-clustering of P (with starting/stopping node conditions
satisfied) by

OW Cut(P) := WCut({C,C,}).

We remark that the OW Cuz(P) is not computable for some path graphs
P because it is not possible to separate the starting and stopping nodes
into separate clusters. See Appendix Fig. C.2 for a visualization of the
optimal clustering of P for both Fullconn and StrongEdges.

6.2. Using absorbing Markov chains (AMC) to score leak (P2) and skip
(P3)

To score properties P2 and P3, we will score how likely a random
path that starts in the path graph P = (7, &) will veer away from
the path graph within the condensed chemical gradient graph ¢G =
(cV,c&, WS, cT). By construction, P is a subgraph of c¢G, i.e., 7 C ¢V
and & C c£. We will consider two types of edges in ¢€ \ & that may
lead to different disruptions of the phenotype pattern. Let

O:={(V,V)ECE|V, eV and V, ¢ 7 }
T ={(V,V,)ECE|V,,V, €V and (V,,V,) & & }.

The edges in O capture paths that leave the path graph P; this repre-
sents a leak from the set of developmental paths to those which do not
recapitulate the observed phenotype pattern. On the other hand, both
vertices of the edges in J lie in 7, but the edge is not in &. Therefore
edges in J represent paths that skip a portion of the phenotype pattern.
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We say an edge (V,.V,) € c€ is a leak edge if (V,,V,) € O and a skip
edge if (V,,V,) € J.

We use absorbing Markov chains to quantify the amount of leak
from P into ¢G and skip within P. A Markov chain (Privault, 2018)
is a discrete stochastic process with a finite number of states {sihg
for n € N where the probability of transitioning from state s; to state
depends only on the current state s; and not on previous states
ie.,

Siker

s , S

ig—17 772 %ig?

pCsi, Isipss 2Si) = P,

|Sik)-
This is called the Markov property. As a consequence, a Markov chain
can be represented by a transition matrix (Thompson and McNeal,

1967) W where o, ; is given by w, ; := p(s;|s;) and

n
2wy =1
=i

foreachi=1,...,n (Thompson and McNeal, 1967). An absorbing state
is a state s; with p(s;|s;) = 1 and a transient state is any state that is not
absorbing. An absorbing Markov chain is a Markov chain where each
state can reach an absorbing state in a finite number of steps (Ermon
et al., 2014; Thompson and McNeal, 1967). The probabilities of transi-
tioning from transition state s; to absorbing state s; in an AMC can be
calculated from its transition matrix W (Thompson and McNeal, 1967).

it LA

(€)]

Definition 6.2.1. Let P = (7', &) be the path graph of the condensed
chemical gradient graph ¢G = (c¢V,c&,W;cS,cT). The absorbing
Markov chain expansion of P, denoted by AMC(P,l,s) = (U, M)
with transition matrix W, is defined as follows. The nodes are U =
7" U {l,s}, where | and s are nodes that represent all states that are
targets of edges in @ and J, respectively. Consider the following sets
of weighted edges

& ={V, Vi wip) | V,,V,) €&},
O ={V,, Lw; ) | V,,V,) €O},

T = AV sw,) | V Vo) €T,
where w; ; € W. Then the set of edges of AMC(P,1,s) is

M= UO"UT* U{(V,.V, 1) | V, €cTIUWL,1)U(s,s, 1)

The entries »; ; € W are given by o, ; = w; ; for each (u,v,w; ;) € M
and 0 otherwise.

The interpretation of edge weights in ¢G as transition probabilities
allows us to view AMC(P,l,s) as a Markov chain. It is easy to see
that the transition matrix of AM C(P, I, s) satisfies the Markov property.
Observe that the stopping nodes of P, along with the nodes / and s, are
the absorbing nodes of AM C(P, 1, s). Then the probabilities p(/) and p(s)
are the probability of a random walk in AMC(P, 1, s) ending in nodes /
or s from a starting node. By construction of AMC(P,1,s), p(/) and p(s)
are then the probability of a random walk beginning at a starting node
of P and leaving P or skipping a region respectively. The probability
p(l) quantifies the lack of attractiveness of P within ¢G (property P2)
while the probability p(s) quantifies region skipping (property P3).

6.3. Size of lifted path graph in chemical gradient graph (P4)

Recall that the nodes of the path graph P = (7', &) are strong MG
equivalence classes of the chemical gradient graph ¢ = (V, &), and the
edges represent collections of edges between these components.

Let

Vp={veV|veV,forsomeV, 7}
Similarly, for (V,,V,) € &, consider the associated collection of edges
in G
Ew={,n€E&E|x,yeV,UV,},
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and let
&= U &
VY, )eE
Then the size of the lifting of the path graph into the chemical gradient
graph is given by
Vel +1€p]
$PO= Tyrrler

The rationale for using g(P, G) as an indicator of robustness is that if
P lifts to a large subgraph of G, then the collection of (non-condensed)
developmental paths that respect the external variables is also large.
A larger collection of developmental paths means that perturbations
are more likely to cause a shift to another developmental path, thus
ensuring that the phenotype pattern is preserved despite the disruption.

6.4. Scoring

Let N be a set of regulatory networks and let N € N, Additionally,
let D denote the descriptive pattern describing the spatial data. Let PV
and GV be the path graph and chemical gradient graph respectively
for N and D. We combine the bottleneck, path size, and leak and skip
scores

B(N) := OW Cut(PV), PS(N) := g(PN,¢") and LS(N) := 1—(p(1)+p(s)).

in such a way as to score the robustness of N.
First, we normalize each score to be between 0 and 1 to equalize
their impacts. For f € {B,PS,LS}, let
FN) = ming e (f(N))
max e v (f(N)) = ming e (f(N))

be our normalization, then we give N the robustness score

f(N) =

B(N) + PS(N) + LS(N)

S(N) = 3

7. Results

We consider two candidate network models for D. melanogaster
development: StrongEdges (introduced in Section 4.2) and FullConn
(introduced in Section 2.1.3). We found that both networks were
capable of capturing the protein expression data from regions R, to R,
seen in Fig. 6. The remainder of the results are dedicated to evaluating
and comparing their robustness. While values of the robustness score
S(N) for some networks N are hard to interpret in a physical sense,
we can use these values to compare network models. In particular, we
wish to compare the networks StrongEdges and FullConn with a class
of random networks. If these networks are valid representations of the
gap gene network (which is known to be robust) then they should,
in theory, have higher robustness scores than the average randomly
generated network. Additionally, we would like to know if any network
properties impact a network’s robustness score. To accomplish these
tasks, we must define a set of random networks, as well as define
network properties we wish to evaluate. Given that both StrongEdges
and FullConn have four nodes (Hb, Gt, Kr, and Kni) and eight edges,
we restrict our attention to networks with nodes Hb, Gt, Kr, and Kni
as well as eight edges. These can be any combination of edges between
the nodes, with either activating or repressing signs. There are 126,720
networks in this class, with DSGRN parameter graph sizes ranging
between 1.44 and 23.064 million nodes. For computational reasons, we
only consider networks with a DSGRN parameter graph size up to 4.32
million nodes. We note that FullConn and StrongEdges have DSGRN
parameter graph sizes of 2.56 and 3.24 million nodes respectively, so
this range allows comparison with networks that have both smaller and
larger parameter graphs. This class has 58,366 networks, which will be
our network population, denoted by N'.

Calculating the score S(N) for a single network N takes between
5 and 30 min, with time heavily dependent on the chemical gradient
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graph size. Using 3 threads in parallel, with this number limited by
memory constraints, the computation time for 100 networks takes
approximately one day. Hence we expect computing a score for all
58,366 networks would take nearly a year with our available resources.
Thus, we selected nearly 1000 networks from N and computed the
robustness score S(N) (sampling details are described below). The
ability to collect comprehensive data about the dynamics of such a large
set of networks is a unique characteristic of the DSGRN approach.

We used a mixed random sampling method to generate our sample
of networks from N'. We started by collecting a simple random sample,
meaning there was an equal probability of every network in N being
selected during the sampling process, from N for a baseline group
composed of 752 networks that we denote by 3. We then asked if the
following features of a regulatory network impact the robustness score.

1. Subnetworks of the gap gene network from Verd et al. (2019),
as seen in Fig. 1. Networks N € N that satisfy this condition are
said to have the feature Verd.

2. Subnetworks of the gap gene network from Reinitz (Manu et al.,
2009), see Appendix Fig. D.1. Since the Reinitz gap gene network
is a subgraph of Verd, a N that is a subgraph of the Reinitz gap
gene network is also a subgraph of Verd. We call this feature
Reinitz. When a N has the Verd feature but not the Reinitz
feature, we say this N has the strict Verd feature.

3. The ACDC 1-3 motifs from left to right in Fig. 2. We call these
the ACDC1, ACDC2 and ACDC3 features.

4. Networks that have all four repressing edges Hb to Kni, Kni to
Hb, Gt to Hb and Hb to Gt, which are the edges with the most
biological evidence. We call this the Ultra Strong feature.

5. The number of repressing edges in N. We call this integer-valued
property the RE feature.

6. The number of negative and positive feedback loops in N. These
are the NFL and PFL features, respectively.

We call categories (1)-(4) subgraph features and categories (5)-(6)
number features. While all networks have number features, only 2122
networks in N have at least one subgraph feature. We denote this set
of networks by F. Given that there are less than 4% of networks with a
subgraph feature, the random sample B did not produce many networks
from F in the baseline group.

In order to evaluate how subgraph features impact our score, we
used a stratified simple random sampling method to select more net-
works. Using the stratification of A into two disjoint groups, 7 and N\
F we randomly sampled 200 additional networks from 7, denoted By.
We remark that Bn By = @. We call By the feature group and Table 3
shows a breakdown of the number of networks in N, B, and By, the
number of networks in N we attempted to score, and the number of
networks we were able to score.

Of the networks we attempted to score, only 11 were unable to
reproduce the data, i.e., they did not contain a developmental path.
One of these networks (network 21,283) was unable to reproduce the
data due to having no stopping nodes in the chemical gradient graph.
The topology of this network can be seen in Appendix Fig. D.1. The
other 10 had path graphs that became disconnected after imposing
the requirement that developmental paths follow maternal gradient
flow simultaneously (see Definition 5.4.3). Additionally, there were 19
networks where OW Cut could not be calculated with the condition
that the starting and stopping nodes be in separate clusters. Due to not
having a calculated score, we left these 30 networks out of our statistical
analysis.

We would like to answer the following questions:

1. Is FullConn or StrongEdges more robust than the average
network from our population?

2. Is there evidence of a difference in robustness between our
baseline and feature groups? Specifically, we ask if networks
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Table 3
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The sizes of the groups of networks in the statistical analysis. The pair of numbers for each subgraph feature under “N™ is the population size of networks containing the specified
subgraph feature in N and by construction in F (first number), and the number of networks containing only the specified subgraph feature (second number). The pairs of numbers
for the number features are the population sizes of networks available in A" and F respectively for the counts of edges/loops in the row. No networks with greater than 7 positive

or negative loops exist in A In columns labeled B and B;,

“Scored” are the subsets of the “Sampled” sets that could be scored. Under B U B, “Total Scored” indicates the

population size of networks used in our statistical analysis. The integers beneath the number features for the sampled groups of networks indicate the counts of networks with

each number feature in the specified sample.

Subgraph feature N B By BU By
Total Disjoint Sampled Scored Sampled Scored Total scored
ACDC1 468 387 7 7 44 43 50
ACDC2 468 411 3 3 34 32 35
ACDC3 468 387 9 7 41 40 47
Ultra Strong 704 583 10 10 75 72 82
Strict Verd 170 116 0 0 18 17 17
Reinitz 85 37 1 1 14 13 14
Count of RE PFL NFL RE PFL NFL RE PFL NFL RE PFL NFL RE PFL NFL RE PFL  NFL
number N F N F N F
feature
0 255 0 1680 0 2160 120 1 31 33 1 31 33 0 0 17 0 0 16 1 31 49
1 1824 0 7680 128 5952 217 13 119 82 13 113 81 0 17 21 0 16 20 13 129 101
2 6060 0 14256 488 15888 752 83 191 183 82 188 175 0 43 69 0 41 66 82 229 241
3 12120 0 17712 687 18672 668 141 227 214 137 218 208 O 57 53 0 56 52 137 274 260
4 15690 119 12912 692 10512 287 207 131 173 201 125 167 9 68 30 9 65 30 210 190 197
5 13200 510 3168 87 4128 71 179 42 51 172 42 49 48 9 9 47 9 9 219 51 58
6 6924 850 720 36 1008 7 96 7 15 90 7 14 91 6 1 8 6 0 176 13 14
7 2040 534 240 4 48 0 29 4 1 29 4 1 42 0 0 41 0 0 70 4 1
8 255 109 0 0 0 0 3 0 0 3 0 100 O 0 10 O 0 13 0
Total 58368 752 728 200 193 914
Comparision of B(N) by Group Comparision of PS(N) by Group
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Fig. 10. Violin plots comparing normalized robustness scores between the baseline (gray) and feature (blue) groups. White bars depict the 95% mean confidence intervals. The
red dot and black square indicate the score for FullConn and StrongEdges respectively. Note in particular when the scores for FullConn and StrongEdges lie outside the 95% mean

confidence intervals for each group.

containing at least one of our noted features will be more or less
robust than average.

. Is there a relationship between any of the features and the net-
work robustness score? Specifically, we want to know if there is
evidence of a specific feature having an impact on the robustness
score.

Fig. 10 shows a summary of our analysis for both the baseline (gray)
B and the subgraph feature group (blue) By, together with means
and the 95% mean confidence intervals for each of the normalized
scores and the overall robustness score. The numerical values can be
seen in Appendix Table F.1, along with the results for FullConn and
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StrongEdges. Additionally, see Appendix Fig. E.1 for a summary of
score results before applying the normalization defined in Section 6.4.
We see that both FullConn and StrongEdges have robustness scores
that lie outside of the 95% confidence intervals for the baseline group.
In particular, FullConn exceeds the 95% mean confidence intervals
for the baseline group in all robustness scores and exceeds the 95%
mean confidence interval for the feature group in all scores but PS.
StrongEdges is a worse performer, with LS(StrongEdges) below the 95%
mean confidence intervals in the baseline and feature groups, and the
overall score S(StrongEdges) below the 95% mean confidence interval
in the feature group. Comparing the baseline and feature distributions,
we see evidence that a network containing a subgraph feature, on
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Fig. 11. Regression coefficients for each explanatory variable in our model and model intercept, plotted with 95% confidence intervals. See Appendix Table F.2 for coefficients,
95% confidence intervals, t and p-values for each of the response variables B (top left), PS (top right), LS (bottom left) and S (bottom right).

average, is more robust than a random network, primarily due to higher
performing 'S and PS scores.

To address question 3, we wused multi-linear regression
(MLR) (Greenwood, 2022) on all networks scored. The subgraph
and number features were set as the explanatory (independent)
variables and the network score as the response (dependent) variable.
All assumptions to ensure the validity of this model were checked, see
Appendix F.

Our results are summarized in Fig. 11. Each explanatory variable
coefficient is depicted by a black dot, and the 95% confidence interval
is depicted by the blue line on either side of the coefficients. For
example, for S in the lower right panel, we can see that when a network
contained ACDC2 as a subnetwork, we are 95% confident that the true
mean of the network score is increased by between 0.073 and 0.123 in
our population, after adjusting for the additional possible presence of
ACDC1, ACDC3, Ultra Strong, Strict Verd, Reinitz, NFL, PFL, and RE.
Additionally, for each repressive edge added to a regulatory network,
we are 95% confident that the true mean of the network score is
increased by between 0.0008 and 0.0086 in our population, after
adjusting for the presence of the remaining features. From this, we saw
evidence that 5 of the 9 features (ACDC2, Reinitz, Strict Verd, RE and
NFL) had an increasing or decreasing effect on our overall network
robustness score S. The impacts of feature groups on the component
scores B, PS, and LS are also shown.

In more detail, let F denote our set of explanatory variables. Given
an explanatory variable f € F, let H, , be the null hypothesis of f,
which states that there is no linear relationship between the network
score and f, once we have accounted for all explanatory variables in
F\ {f}. To determine if we can reject the null hypothesis, we use a
t-statistic and a p-value. Since our model has 906 degrees of freedom
(number of observations minus number of variables), then a t-statistic
(denoted 14(¢) above 1.963 or below —1.963 is considered significant at
the 95% level, along with a p-value less than 0.05 (Greenwood, 2022).
During our analysis, we found that there was evidence for a positive
linear relationship between network robustness and feature ACDC2,
once we accounted for the remaining features; i.e., there was evidence

against Hy acpca (fope = 7.4970, p-value < 0.0001). That is, the presence
of ACDC2 on average increased the score of any network of which it is a
subnetwork. We also found evidence for positive linear relationships in
Reinitz (19)s = 3.5587, p-value = 0.0004), Strict Verd (t9ps = 2.9821,
p-value = 0.0029), and RE (typs = 2.3844, p-value = 0.0173). On
the other hand, we saw evidence for a negative relationship in NFL
(tgps = —5.8644, p-value = < 0.0001). Lastly, we saw little to no
evidence against the null hypotheses for ACDC1 (9y, = 1.4800, p-value
= 0.1392), ACDC3 (1996 = —0.4808, p-value = 0.6308), Ultra Strong
(1905 = 0.5861, p-value = 0.5580) or PFL (1) = —0.4890, p-value =
0.6250).

Fig. 11 shows the impact of the three constituent robustness scores
of S as well. For example, we see evidence to suggest that there exists a
positive linear relationship between the path size score PS and feature
Reinitz once we account for all other features (1), = 3.7818, p-value
= 0.0002). However, we see little to no evidence that there exists a
linear relationship between Reinitz and the bottleneck score B (tgys =
1.0178, p-value = 0.3090), as well as the leak-skip score LS (fgp =
1.2341, p-value = 0.2175), once we account for all other features. This
suggests that the Reinitz feature impacted the overall robustness score
by increasing the size of the lifted path graph in the chemical gradient
graph.

8. Discussion

In this manuscript, we reinterpreted the output of the network
modeling tool DSGRN to accommodate a linear array of identical
networks that are impacted by spatially varying external factors. We
were motivated by the developmental program of D. melanogaster,
particularly by the stabilizing influence of maternal protein gradients
on gap gene network models in late-stage segmentation. We used the
new modeling framework to quantify the robustness of various such
models.

Our main mathematical contributions are three-fold. First, we con-
ceptually reinterpreted the output of the DSGRN methodology to enable
modeling of spatially arranged cells that are impacted by monotone
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control variables. This was done by proving that DSGRN factor param-
eter graphs can be represented as graded posets. Second, we defined
a path graph based on the graded posets that permits a DSGRN net-
work model to match spatial experimental data subject to constraints
from monotone control variables. The path graph summarizes all the
ways in which a network model is capable of matching the data
under these constraints. Lastly, we developed evaluation criteria for
the robustness of the match between model and data by devising
three robustness scores that quantify the structural fragilities of the path
graph. These structural fragilities can be interpreted as obstacles to
correct development.

Our major biological contributions are a rank ordering of proposed
gap gene network models in D. melanogaster according to robustness
score, a quantification of their performance over random networks,
and a characterization of the impact of various network motifs on
network model performance. In particular, we showed that while it is
common for a network model to be able to match experimental data, a
network model inspired by Verd et al. (2019) (FullConn) shows strong
robustness scores compared to a random sample of network models.
We also identified a motif (ACDC2) within FullConn that, on average,
improves the robustness scores of network models that contain it.

The network FullConn is an alternative view of the dynamic module
approach in Verd et al. (2019), with which we showed that it is possible
to model observed data using a single network functioning at different
parameter regimes across spatial locations, as opposed to modeling the
observed data using different networks across spatial locations. The
FullConn network is a combination of the modules proposed by Verd
et al., and our analysis showed that Fullconn had a better robustness
score than both the average random network with 4 nodes and 8 edges,
as well as the average random network containing other subgraph
features of interest. The FullConn network even had a higher robustness
score than the StrongEdges network, which was constructed using only
strong edges from the gap gene network from Fig. 1. This suggests
that the modules proposed by Verd et al. (2019) are a reasonable
hypothesis for dynamic control in the late-stage segmentation process
of D. melanogaster, although it is unnecessary to view them as distinct
networks. Moreover, we found that networks that are subnetworks of
the proposed (large) gap gene network from Verd et al. (2019) and
from Reinitz et al. (Manu et al., 2009), which is the same gap gene
network but without the edge Kni — Gt (see Appendix D), have higher
robustness scores, suggesting that both models contain subnetworks
important to the function of the gap gene network. Furthermore, the
motif ACDC2 had the most impact on our robustness score suggesting
this motif may be particularly biologically relevant for robustness in
the gap gene network.

We also found that nearly all of the randomly sampled networks
with 4 nodes and 8 edges can reproduce the phenotype pattern derived
from the developmental data between regions R, and R;. While our
score allows rank-ordering these networks, it may be desirable to con-
strain the potential network models further. Our framework is capable
of incorporating additional datasets that may help reduce the number
of networks that fit the phenotype pattern. In particular, measuring
expression of the gap genes in embryos where the spatial expression
of Bed and Cad was experimentally manipulated could lead to, for
example, non-diagonal developmental paths that any network model
would be required to match along with the wild-type data, resulting
in additional restrictions on network structure. A similar process of
using additional data to reduce the space of hypotheses was used in
the context of DSGRN models of yeast cell cycle network (Fox et al.,
2022).

Moreover, while the biologically and mathematically motivated
network models FullConn and StrongEdges scored well in comparison
to the random sample, there were plenty of networks that optimized
the robustness score even more. We hypothesize that optimizing for
robustness is a constrained optimization problem, where factors such

21

Journal of Theoretical Biology 580 (2024) 111720

as evolutionary and environmental constraints may cause a network
to be selected during evolution even if another network may provide
more robustness for developmental or other highly conserved genetic
programs.

The DSGRN approach that we present in this paper is a powerful
tool for the exploration of network models under different parameter
regimes across spatial domains. It enables the comprehensive descrip-
tion of (coarse) dynamical behavior across parameter space, enabling
the quantification of features such as robustness. Moreover, the com-
putational efficiency permits the exploration of very large samples
of network topologies, lending more credence to rank orderings of
possible network models.

There is an immediate application of our methods to insects with
a similar developmental system, such as embryonic development in
Episyrphus balteatus (Lemke et al., 2010) and Megaselia abdita (Wotton
et al., 2015). We could also apply our work to other network models,
such as the pair-rule gene network in D. melanogaster, where the
gap gene protein concentrations determine pair-rule gene transcrip-
tion (Gilbert and Barresi, 2018). Hence, in this model, the gap genes
would be the external variables to the pair-rule gene network, though
we would need to extend our work to non-monotone external variables.
Finally, we can further extend our approach to modeling late-stage
dynamic shifts in domain boundaries along the A-P axis of gap gene
protein concentrations.

CRediT authorship contribution statement

Elizabeth Andreas: Conceptualization, Data curation, Formal anal-
ysis, Investigation, Methodology, Software, Visualization, Writing —
original draft, Writing — review & editing. Breschine Cummins: Con-
ceptualization, Formal analysis, Investigation, Methodology, Resources,
Supervision, Writing — original draft, Writing — review & editing.
Toma$ Gedeon: Conceptualization, Formal analysis, Investigation,
Methodology, Supervision, Writing — original draft, Writing — review
& editing.

Declaration of competing interest
None
Data availability

All scripts and processed data used to produce the figures and results
in this manuscript can be found at https://github.com/Eandreas1857/
2023_GGN_Robustness.

Acknowledgments

We thank Dennis Mortiz (Montana State University) for his help
with the statistical analysis. EA was partially supported by National
Science Foundation DMS-1748883, as well as the SMART Scholarship
funded by OUSD/R&E (The Under Secretary of Defense-Research and
Engineering), National Defense Education Program (NDEP) / BA-1, Ba-
sic Research. TG and BC were partially supported by National Science
Foundation DMS-1839299 and NIH, United States 5SR01GM126555-
01. The funders had no role in the study design, execution, analysis,
interpretation of results, or decision to submit.

Appendix A. State transition graph (STG)

Given a regulatory network RN = (V,E), the set X = HLI;‘I X,
where X; = {0,...,|T(v;)|} for v; € V, is the set of nodes of the
state transition graph (STG). The directed edges between the nodes in
STG indicate the direction of flow between neighboring (non-diagonal)
domains. As we will now show, the edge directions are uniquely
determined by choice of DSGRN parameter. We first define the domain
target points.
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Definition A.1. Given a regulatory network RN = (V, E) with |V | =
N, let P be the associated set of DSGRN parameters. Fix a parameter
p € P. For each domain k € K (see Section 2.2.3 of main text), the
function A;(x) is constant for all x € k. Let A(k) := (A (k), ..., An(k))
denote the vector of these values. Note that the flow in each domain k
converges to a point determined by

ol = —Tv+ A(k) = 0. (A.1)

Here I is a diagonal matrix, with decay rates y; as its diagonal entries.
Then a target point for k is

TP(k) = I' " A(k). (A2)

When T P(k) € k, we call k an attracting domain.

We now translate the map k — ¢(T P(k)), which is the map £ - X
to a map on the space X. For p € P, the map F° : X x P — X defined
by

FO(x;p) :=y where y = ¢(TP($~" (x)).
That is, y € X is an integer signature of the domain where the target
point of domain ¢~!(x) lies.

We are ready to define a multi-valued map 7 on X that gives rise
to the STG.

Definition A.2. The multi-valued map ¥ : X XxP = X is generated by
70 and defined by

« If FO(x; p) = x then F(x;p) = {x}.
» For any component j = 1,...,N and g € {-1,1} satisfying
ﬂ?/(.)(x;p) > px; the state

X;=x;+p, X =x;fori#j

satisfies x € F(x; p).

Note that x € X is a fixed point of F if and only if x is a fixed point
of FO. The multivalued map F can be represented as a state transition
graph (STG), see Fig. 3(e) in the main text.

As an example, we construct a STG for the regulatory network in
Fig. 3(a) at a particular DSGRN parameter. Suppose y; = y, = 1 and
consider the DSGRN parameter p = (p;,p,) with p; = (&, a)),p; =
(&, @y). Assume that order parameters are

a;(0,,) =1

ay(0,,) =1,

@(6,1) =0,
ay(6,,) =0,

and logic parameters are

Sl <fupp 1l lpFup} <0 <0y <upy+upy
& thyplyy <ugplyy <015 <lppupy <Ohp <upsup.

This choice of parameter p determines STG in Fig. 3(e), which is
superimposed on phase space. For example, consider the domain &,
which is the bottom left domain. All the regulatory nodes in domain &,
are below their thresholds, thus the ordinary differential equations in
this domain are

Op = —vp+ U +uy ), Uy = =y + (It )

with TP(k) = (I; ,+1; 1,554, ;). Notice the choice of DSGRN parameter
p implies that the value /,, + 1, < 6,,, while 8, < l,,uy; < 6,,.
Therefore the target point T P(k,) is in domain k,. Repeating this for
every domain k i»J =1,...,9 we construct STG in 3(e).

Appendix B. Factor graph layers for DSGRN realizable parameters

Recall from Section 2.2.2 that a logic parameter for node v; in a
regulatory network is a function &; : R; — X, where

R; == {(x, . xp) | x,, € {Ujmotjm}}
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with k = |S(v;)| the number of source nodes of v;. Further recall that
an order parameter for v; is a bijective map a;:0; > {0,1,..., M1},
where ©; = {0, ;,...0;, ;} is the collection of thresholds for v; and
M = |T(v))| is the number of targets of v i Lastly, recall that a factor
graph F; = v}, Ep) for v; has M! isomorphic subgraphs G} = (V}, E})
where the Vj’ partition I/j, ie., |_|j Vj’ = V; (Cummins et al., 2016).
Each of these subgraphs G, called subfactor graphs, is associated with
a particular threshold order a;.. Each subfactor graph G;. has unique
lowest parameter node ¢, ; given by

¢ = (5?, a;.) where 5;)(x) =0 for all x € R;
unique highest parameter
;= (ng,a;) where ng(x) = M for all x € R;.
Definition B.1. A factor parameter node p = (&;, a;.) is DSGRN
realizable if there exist sets of real, positive values {{/; . u; , }fn oy and

0;, where the elements of 9, are all distinct, and a function g : RF 5 R
which has the form of product of sums

g(xy, ... xp) = HZX,,,,

such that for all x € R; and all 6, ;

(B.1)

g(x) <0, if and only if &(x) < a}(@n. D+

and an equality g(x) = 6, ; never occurs. We call the collection
w = {{l ;)Y 0O,

a witness of the parameter node p under function g.

Remark B.1. Note that the nodes ¢, ; and h; ; are realizable for any
function g of the form in (B.1). To see this, choose an arbitrary set of

real, positive values U := {{leVm’uj,m},I;:]} and set

mi=min{g(x) |x € R;} and M :=max{g(x)|x € R;}.

Note that 0 < i < M. Then if we select a set 0;(w) with max 0;(w) < i
then Uuo; is witness for h;; and if we select 0;(w) with min 0;(w) > M
then U U ©;(w) is witness for 7, ;.

We denote the set of 2% real-valued inputs evaluated on the witness
w by R (W) and the set of threshold values in witness w by © (W) and
let

Y(w) :={g(x) | x € R;w)},

where repeated elements are permitted.

Lemma B.1. Given parameter node p and function g, for a generic choice
of w, the set Y (w) is totally ordered. That is, there exists an open and dense
set U C V where V is an open subset of R1*! of those values that satisfy

1. 0<1;, <u;, (e, (5),

2. distinct thresholds in © s

3. Y(w)no; =4, and

4. the inequality constraints of the parameter node p,

such that w € U implies all values of Y (w) are distinct.

Proof. Notice that the requirement that 0 < /;,, < u;,, induces the
condition g(x) # g(x’) for x,x’ € R; whenever x,, # x/ and x; = x/
for all s # m. The problem of potential equality, g(x) = g(x’), can only
occur when x,, # X:n] and x,, # X:'lz for some m; # m,.

Suppose for a witness w for parameter p, there are two values
x#x' € R;(w) such that g(x) = g(x") € Y(w). Choose a position m such
that x,, # x} , and assume without loss of generality that x,, =/, ,.

Define w as a witness under g of some parameter node ¢ by taking
the witness w and changing exactly one value: [ im = 1jm + € for some
€ > 0. In particular, e must be small enough to ensure /; ,, +¢ < u; ,, and
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Fig. C.1. Condensed chemical gradient graph (all nodes) for FullConn (top) and
StrongEdges (bottom). FullConn has 12,398 and 100,179 nodes and edges respectively.
StrongEdges has 14,832 and 123,407 nodes and edges respectively. Purple, red, and
green nodes depict nodes in the path graph, starting nodes are shown in green, and
stopping nodes are shown in red. Graph visualization done using Gephi (Bastian et al.,
2009) with the OpenOrd layout algorithm (Martin et al., 2011).

Y(@)nO;(w) = @. The latter can be accomplished since Y (i0)u© () has
a finite number of points. Notice then that g(¥) # g(x’) = g(¥'), where
X = x + ¢e,, and e,, is the unit vector in the mt? direction. Note that
these conditions remain true for any 0 < § < e.

We would like to ensure that w is a witness for the same parameter
p as w, i.e. ¢ = p. It is sufficient to satisfy f;’;(y) = f;(y) forall y € R;(w).
Clearly this holds true for any y where y, = u;,, since y = y. So
consider a y with y,, = /; , and suppose g(y) < 0, ; for some 6, ;. Since
g is continuous, e can be chosen sufficiently small so that g(3) <6, ; as
well. Repeat for all y € R;(w) with y,, =, ,, to choose an ¢ sufficiently
small to simultaneously satisfy all these constraints, and ensure g = p.

We must also avoid introducing new equalities, i.e. we additionally
require g(y) # g(z) whenever g(y) # g(z) for y,z € R ;(w). Since
g is a continuous function and g(y) and g(z) are isolated, taking e

23

Fig. C.2. Path graph (all nodes) for FullConn (top) and StrongEdges (bottom). Colored
by optimum 2-clustering separating starting nodes (green) and stopping nodes (red).
FullConn has 1576 and 5767 nodes and edges respectively. StrongEdges has 2393 and
10,037 nodes and edges respectively. Note that visually one might say that FullConn
has a larger bottleneck than StrongEdges which we found not to be the case. This is
due to the lack of visualization of edge weights, as well as a two-dimensional graph
layout of a multi-dimensional graph. Recall any path from green to red nodes is a
matching developmental path. Graph visualization done using Gephi (Bastian et al.,
2009) with the OpenOrd layout algorithm (Martin et al., 2011).

sufficiently small ensures that for each such pair y, z, it remains true
that g(y) # g(2).

After all the adjustments to € have been made, the new witness w for
parameter p now ensures that g(x) # g(x') without introducing any new
duplicates in Y (). However, there may be other pairs y # y € R ()
that satisfy g(y) = g()’). Since there are at most a finite number, the
procedure above may be repeated on w until some final witness & for
p under g is constructed such that all elements of Y () are distinct.
Since at each step, the corresponding ¢ may be taken arbitrarily small,
it is true that given any witness w, there is another witness 0 arbitrarily
close to w where Y (i) is totally ordered. This proves that the property
of total ordering of Y () is dense in U.

Since g is continuous, there is an open neighborhood of witness w in
Rl whenever Y (w) is totally ordered, since Y (w) has a finite number of
isolated values. Call the neighborhood Nj(w). Then under the subspace
topology, V' N Ns(w) C U is relatively open in V. Since U is covered by
U,V NNsw),Uisopenin V. N
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Fig. D.1. First 6 networks are ordered from highest to lowest score, with networks 25,338 and 2888 being the best scoring networks for the Baseline and Feature group respectively
and networks 6420 and 9391 being the worst scoring networks for the Feature and Baseline group respectively. Network 21,283 is the only network that had an empty stopping
set S. Next are the gap gene networks as described in Reinitz et al. (Manu et al., 2009) and Verd et al. (2019) respectively. Lastly are the ACDC submodules derived by Verd
et al. (2019).

Definition B.2. A DSGRN realizable sub-factor graph G; = (I7ji E,’) Proof. Assume without loss of generality that the witness w induces a
under g is a node induced subgraph of Gj., where the collection of nodes totally ordered set Y (w), see Lemma B.1. Define the sets
f/ji C Vji are those nodesA that have' a witnesses under g. A DSGRN 0p = lu € R,(w) | &) =0}
realizable factor graph F; under g is the product
0, {MERJ'(W) |§j(u)= 1}

F’:HG} o

) N where recall M = [T (vl Since p # ¢, there exists at least one
Lemma B.2. Assume p = (§;,a;) € G}, p # ¢, j, and let w be a witness nonempty Q, with n > 0. Since Q, is a finite set, it has a smallest

{ue R(w) | &w =M},

of p under function g. Then there exists a path from p to ¢;; within G} element ry = &;(ug). Let r; € Q, be the smallest element in Q, \ {ry},
Likewise, there exists a path from p to h; ; within CA;; if it exists, and let r| = (a;.)‘l(n), if such a smallest element does not
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Fig. E.1. Score results for each network in the baseline and features group before applying the normalization detailed in Section 6.4. Notice that all but one network have

B(N) < 0.5 indicating a bottleneck existence per Theorem 4.

exist. Let A =r; —ry and let

0/

. A
1) = ro+ =

2
We define a new witness where we replace 6
the threshold 6/ oy

,—1, Dy the new value of

W= (s Y U

with @;. =(0O\{0,_1, })U{é’;_l,j }. Then w' is a witness for the parameter
q where the value of &;(uy) changes from n to value n — 1. Therefore ¢
is a node in G; that is the immediate neighbor of node p and therefore
there is an edge between p and q. Repeating this argument it is easy to
see that eventually only the set Q is non-empty, which occurs only at
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the node ¢, ;. Therefore, every node p in the subfactor graph has a path
to ;.

The analogous argument proves the existence of a path from p to
hi;. N

Corollary B.1. Every DSGRN realizable subfactor graph G} is connected.

Proof. By Remark B.1 every realizable subfactor graph G; contains
both 7; ; and h; ;. Then every node p # ¢, ;, including #, ;, in the é; is
connected to #; ; by Lemma B.2. W
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Table F.1
Mean, standard deviation, and confidence intervals for the random samples 3 and B, and the specific networks FullConn and StrongEdges.
Baseline Group (/3) Results Feature Group (5) Results FullConn StrongEdges
Mean Std dev Mean 95% CI Mean Std dev Mean 95% CI Results Results
B(V) 0.134 0.106 [0.127, 0.142] 0.139 0.120 [0.121, 0.156] 0.184 0.222
PS(N) 0.352 0.162 [0.340, 0.364] 0.449 0.178 [0.424, 0.475] 0.381 0.387
LS(N) 0.109 0.107 [0.102, 0.117] 0.155 0.116 [0.139, 0.172] 0.357 0.056
S(N) 0.199 0.078 [0.193, 0.204] 0.248 0.087 [0.235, 0.260] 0.307 0.222
Table F.2

The regression coefficients, standard errors, t-values, p-values lower and upper confidence intervals for our MLR model for the bottleneck score (B(N)), path size score (B(N)),

leak-skip score (LS(N)) and the robustness score (S(N)).

B(N) Coef Std dev t-value p-value 95% ci PS(N) Coef Std dev t-value p-value 95% ci
intercept 0.1542 0.0217 7.1 < 0.0001 [0.1116, 0.1969] intercept 0.4358 0.03 14.5109 < 0.0001 [0.3768, 0.4947]
ACDC3 —0.0091 0.0167 —-0.5416 0.5882 [-0.0419, 0.0238] ACDC3 —-0.0469 0.0232 —2.0243 0.0432 [-0.0923, —0.0014]
ACDC2 0.0497 0.0188 2.6433 0.0084 [0.0128, 0.0866] ACDC2 0.2104 0.026 8.0959 < 0.0001 [0.1594, 0.2614]
ACDC1 —0.0115 0.0167 —0.6904 0.4901 [-0.0442, 0.0212] ACDC1 0.0306 0.023 1.3308 0.1836 [-0.0145, 0.0758]
Ultra Strong -0.0125 0.0137 -0.9152 0.3603 [-0.0393, 0.0143] Ultra Strong -0.0129 0.0189 —-0.6841 0.4941 [-0.05, 0.0241]
Strict Verd 0.0923 0.0263 3.508 0.0005 [0.0407, 0.1439] Strict Verd 0.0982 0.0364 2.7011 0.007 [0.0269, 0.1696]
Reinitz 0.0298 0.0293 1.0178 0.309 [-0.0277, 0.0872] Reinitz 0.153 0.0405 3.7818 0.0002 [0.0736, 0.2325]
NFL 0.0007 0.0034 0.2073 0.8359 [-0.0061, 0.0075] NFL —0.0451 0.0048 —9.4607 < 0.0001 [-0.0544, —0.0357]
PFL —0.0089 0.0035 —2.5902 0.0097 [-0.0157, —0.0022] PFL —-0.005 0.0048 -1.0543 0.292 [-0.0144, 0.0043]
RE 0.0005 0.0028 0.1609 0.8722 [-0.0051, 0.006] RE 0.014 0.0039 3.6062 0.0003 [0.0064, 0.0216]
LS(N) Coef Std dev t-value p-value 95% ci S(N) Coef Std dev t-value p-value 95% ci
intercept 0.0782 0.0219 3.5723 0.0004 [0.0352, 0.1211] intercept 0.2227 0.0152 14.616 < 0.0001 [0.1928, 0.2526]
ACDC3 0.039 0.0169 2.311 0.0211 [0.0059, 0.0721] ACDC3 —0.0056 0.0117 —0.4808 0.6308 [-0.0287, 0.0174]
ACDC2 0.0365 0.0189 1.9277 0.0542 [-0.0007, 0.0737] ACDC2 0.0989 0.0132 7.497 < 0.0001 [0.073, 0.1248]
ACDC1 0.0327 0.0168 1.9507 0.0514 [-0.0002, 0.0657] ACDC1 0.0173 0.0117 1.48 0.1392 [-0.0056, 0.0402]
Ultra Strong 0.0423 0.0138 3.0714 0.0022 [0.0153, 0.0692] Ultra Strong 0.0056 0.0096 0.5861 0.558 [-0.0132, 0.0244]
Strict Verd —-0.0254 0.0265 —-0.9589 0.3378 [-0.0774, 0.0266] Strict Verd 0.055 0.0185 2.9821 0.0029 [0.0188, 0.0912]
Reinitz 0.0364 0.0295 1.2341 0.2175 [-0.0215, 0.0943] Reinitz 0.0731 0.0205 3.5587 0.0004 [0.0328, 0.1134]
NFL 0.0018 0.0035 0.5261 0.5989 [-0.005, 0.0086] NFL —-0.0142 0.0024 —5.8644 < 0.0001 [-0.0189, —0.0094]
PFL 0.0104 0.0035 2.9961 0.0028 [0.0036, 0.0172] PFL —0.0012 0.0024 —0.489 0.625 [-0.0059, 0.0036]
RE —0.0004 0.0028 -0.1275 0.8986 [-0.0059, 0.0052] RE 0.0047 0.002 2.3844 0.0173 [0.0008, 0.0086]

Table F.3

Each explanatory variable VIF for the MLR model.
Variable ACDC1 ACDC2 ACDC3 Ultra Strong Strict Verd Reinitz NFL PFL RE
VIF 1.105 1.050 1.074 1.182 1.049 1.086 1.615 1.566 1.417

Corollary B.2. Every DSGRN realizable factor graph F ; is connected.

Proof. Recall that ¢, ;. h;; € G} for any subfactor graph G} Consider
a subfactor graph G;.‘ such that “; and a;.‘ are identical except for
two adjacent thresholds. That is, a;.(e,,, )= a}(am,j) +1 and a;‘(em )=
a;(em’j) + 1, but a}l(esy/.) = 0’;‘(9.;,]) otherwise. Then the nodes ¢, ; and
¢\ ; are connected in F;, and therefore they are connected in FJ
Since there is a sequence of such adjacent swaps that connects any
two permutations of 0;, the set of nodes {#,;}"  is connected in FJ
Since each Gj. is connected, F; is connected.

Finally, note that I:“J inherits the structure of graded poset from F;.
Appendix C. Graph visualization

See Figs. C.1 and C.2.
Appendix D. Network topology

See Fig. D.1.
Appendix E. Network measure results before normalization

See Fig. E.1.
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Appendix F. Model results and MLR validity

Results of the difference in means model used to assess if there is
a difference between the average network in the baseline group versus
the average network in the features group can be seen in Table F.1.

We provide the data of the multilinear regression (MLR) used in
Section 7 (see Table F.2) as well as verification of all assumptions
needed to use the MLR model.

First, checking multicollinearity between our explanatory variables,
we consider the variance inflation factors (VIFs) (Greenwood, 2022),
which are shown in Table F.3. Since none of the VIFs are greater than
5, and in fact small (close to 1), we have evidence that multicollinear-
ity between our explanatory variables is not a problem (Greenwood,
2022).

We see no clear pattern in the Residuals vs Fitted plot, showing it
is reasonable to assume linearity of relationships (Greenwood, 2022).
The Scale-Location plot shows weak to moderate evidence against equal
variance, as indicated by having higher variance for the middling fitted
values (Greenwood, 2022). In general, our normal QQ-plot is showing
a deviation from the line of normality, though only a slight right-skew.
Hence, we see no indication of a violation of the normality assumption.
Lastly, our average leverage is approximately 0.01, meaning all points
with leverage greater than 0.02 have high leverage. However, since no
points have a Cook’s distance greater than 0.5 then we can conclude
no points are overly influential to our model (Greenwood, 2022) (see
Fig. F.1).
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