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Abstract

Investigating the cell cycle often depends on synchronizing cell populations to

measure various parameters in a time series as the cells traverse the cell cycle.

However, even under similar conditions, replicate experiments display differences

in the time required to recover from synchrony and to traverse the cell cycle,

thus preventing direct comparisons at each time point. The problem of comparing

dynamic measurements across experiments is exacerbated in mutant populations or

in alternative growth conditions that affect the synchrony recovery time and/or the cell-

cycle period.

We have previously published a parametric mathematical model named

Characterizing Loss of Cell Cycle Synchrony (CLOCCS) that monitors how

synchronous populations of cells release from synchrony and progress through the

cell cycle. The learned parameters from the model can then be used to convert

experimental time points from synchronized time-series experiments into a normalized

time scale (lifeline points). Rather than representing the elapsed time in minutes

from the start of the experiment, the lifeline scale represents the progression from

synchrony to cell-cycle entry and then through the phases of the cell cycle. Since

lifeline points correspond to the phase of the average cell within the synchronized

population, this normalized time scale allows for direct comparisons between

experiments, including those with varying periods and recovery times. Furthermore,

the model has been used to align cell-cycle experiments between different species

(e.g., Saccharomyces cerevisiae and Schizosaccharomyces pombe), thus enabling

direct comparison of cell-cycle measurements, which may reveal evolutionary

similarities and differences.
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Introduction

Time-series measurements made on synchronized

populations of cells as they progress through the cell cycle

is a standard method for investigating the mechanisms

that control cell-cycle progression1,2 ,3 ,4 ,5 ,6 ,7 ,8 . The ability

to make comparisons across synchrony/release time-series

experiments is vital to our understanding of these dynamic

processes. The use of replicate experiments to corroborate

findings can increase the confidence in the reproducibility

of the conclusions. Furthermore, comparisons between

environmental conditions, across mutants, and even between

species can uncover many new insights into cell-cycle

regulation. However, interexperimental variability in the

recovery from synchrony and in the speed of cell-cycle

progression impairs the ability to make time-point-to-time-

point comparisons across replicates or between experiments

with altered cell-cycle timing. Due to these challenges,

replicates are often not included for the full time series

(e.g., Spellman et al.4). When replicates for the entire

time series are gathered, the data cannot be analyzed in

aggregate, but rather a single replicate is used for analysis,

and other replicates are often relegated to supplemental

figures (e.g., Orlando et al.8). Furthermore, comparisons

between experiments with different recovery or cell-cycle

progression characteristics are difficult. The measurements

of smaller intervals between an event of interest and a cell-

cycle landmark (e.g., bud emergence, S-phase entry, or

anaphase onset) can help reduce errors if these landmark

events are tracked1,2 ,3 ,9 ,10 ,11 ,12. However, subtle but

important differences may remain undetected or obscured

using these ad hoc methods. Finally, single-cell analyses

allow for analyzing cell-cycle progression without relying

on synchronization or alignment13, though large-scale

measurements in single-cell studies can be challenging and

costly.

To overcome these difficulties, we developed the

Characterizing Loss of Cell Cycle Synchrony (CLOCCS)

model to aid the analysis of time-series measurements

made on synchronized populations14,15. CLOCCS is a

flexible mathematical model that describes the distribution

of synchronized cells across cell-cycle phases as they are

released from synchrony and progress through the cell

cycle. The branching process framework enables the model

to account for the asymmetric qualities of mother and

daughter cells after division, as observed in S. cerevisiae,

while still being useful for organisms that divide by fission,

such as S. pombe. The model can take inputs from a

diverse set of measurement types to specify the cell-cycle

phase. It can ingest budding cell-cycle phase data, which

includes measurements of the percent budded cells over

time, allowing for the estimation of the number of cells outside

of the unbudded G1 phase14,15. The model can also ingest

flow cytometric data that measures the DNA content, thus

enabling the assessment of landmark transitions from G1

to S, S to G2, and M to G115. Fluorescent morphological

markers can also be used to identify the cell-cycle phase. The

fluorescent labeling of myosin rings, nuclei, and spindle pole

bodies (SPBs) can be used to determine the cell-cycle phase,

and these were incorporated into the CLOCCS model11;

however, these measurements will not be described in this

protocol. Additionally, the septation index was used as an

input for modeling data from S. pombe14. Thus, the model

can be used for cell-cycle analyses in a variety of organisms

and can be further expanded.

https://www.jove.com
https://www.jove.com/
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CLOCCS is a parametric model that allows for the full

Bayesian inference of multiple parameters from the input data

(e.g., budding percentage, DNA content). These parameters

include the recovery time from synchrony, the length of

the cell-cycle period (estimated separately for mother and

daughter cells), and the average cell-cycle position of the cells

at each time point. These parameters represent the behavior

of the average cell in the population, enabling the researcher

to map each time point to a cell-cycle position expressed

as a lifeline point. The conversion to lifeline points depends

on the CLOCCS parameters lambda (λ) and mu0 (µ0)14,15.

The parameter λ corresponds to the average cell-cycle period

of the mother cells. However, due to the mother-daughter

delay14,15, this is not the average cell-cycle period of the full

population that includes both the mother and daughter cells.

CLOCCS additionally infers the parameter delta (δ), which

corresponds to the mother-daughter delay and, thus, allows

for the calculation of the average cell-cycle period of the full

population. Finally, because each experiment begins after

release from cell-cycle synchronization, the time required to

recover from the synchronization method is represented by

the CLOCCS parameter µ0. CLOCCS fits a model to the input

cell-cycle phase data and then infers these parameters using

a random walk Markov chain Monte Carlo algorithm14,15. By

mapping multiple experiments to a common cell-cycle lifeline

time scale, direct phase-specific comparisons can be made

between replicates or experiments where the recovery time

or cell-cycle periods are not identical8 ,14 ,15.

As synchronized populations lose synchrony at some rate

over the course of the time series14,15 ,16 ,17, variability in

the rate of synchrony loss can also impede quantitative

comparisons across experiments. By identifying the location

of populations and the variance in their distributions,

CLOCCS accounts for differences in rates of synchrony

loss. This powerful tool allows for specific and detailed

comparisons across experiments, thus providing the ability

to directly make relevant comparisons not only between

replicates but also between environmental conditions,

mutants, and even species that have dramatically different

cell-cycle timing14,15.

This paper describes a method using CLOCCS to estimate

parameters by fitting data from synchrony/release time-series

experiments, map the data to a common lifeline scale,

and then make relevant comparisons between replicates

or experiments. Lifeline alignment allows for direct phase-

specific comparisons across these experiments, which allows

for the aggregation and comparison of replicates and for

making more relevant comparisons across experiments with

different recovery timings and cell-cycle periods.

Protocol

1. Collecting cell-cycle phase and experimental
data

1. Synchronize the cells with respect to the cell cycle using

the desired synchronization method (e.g., centrifugal

elutriation as described in Leman et al.18 or mating

pheromone arrest as described in Rosebrock19; both

Leman et al.18 and Rosebrock19 also include methods

for the release from synchrony). Begin sampling

throughout the time series, ensuring that the time series

is at least two full cell-cycle periods in length, and

optimally, collect at least 10 samples per cell cycle. At

each time point, collect a sample for cell-cycle phase

data (budding or flow cytometry) and a sample for

experimental data, as described below.

https://www.jove.com
https://www.jove.com/
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2. If using budding data as the cell-cycle phase data, collect

data on budding for the CLOCCS alignment.

1. Sample throughout the time series. For each time

point, collect cells, and fix them by mixing 200 µL of

sonicated cell culture with 200 µL of fixative solution,

as described in Leman et al.18.

2. For standard budding, count at least 200 cells per

time point using a transmitted light microscope with

a 40x objective and a hemocytometer. Add the cell

sample from step 1.2.1 to the hemocytometer, and

dilute if the density prevents counting. Record the

number of budded and unbudded cells at each time

point. Calculate the percent of budded cells, and plot

for each time point in a budding curve.

NOTE: Other methods of specifying the cell-cycle

phase information are available, but these are not

described in this protocol. The other methods are

described in the CLOCCS readme and in a previous

work11.

3. If using flow-cytometric DNA content data as the cell-

cycle phase data, collect flow cytometry DNA staining

data for the flow-cytometric CLOCCS alignment.

1. Sample throughout the time series. For each time

point, collect cells, and fix them as described in

Haase and Reed20.

2. Stain the DNA, and analyze using standard

flow cytometric analysis. A recommended staining

protocol for S. cerevisiae is described in Haase and

Reed20.

4. Collect associated omics or related experimental data.

For standard transcriptomic data, collect as described

in Leman et al.18 and Kelliher et al.21 ,22. Ensure that

the data are associated with time points containing cell-

cycle phase data to allow for downstream alignment. For

optimal alignment, ensure that each time point containing

experimental data also has phase data associated with it.

NOTE: The experimental data can take many forms.

Traditionally, we use the alignment method described

for aligning time-series transcriptomic experiments.

However, any type of data associated with time points

can be aligned (i.e., proteomics22).

2. Installing the required software

NOTE: This section assumes that Conda, Java 19, and Git

are already installed (Table of Materials).

1. Download the CLOCCS_alignment repo by entering the

following command into the terminal:

git clone git clone https://gitlab.com/haase-lab-group/

cloccs_alignment.git

2. Create a Conda environment using the conda_req.yml

file by entering the following command into the terminal

in the folder where the CLOCCS_alignment repo was

cloned:

conda env create -f conda_req.yml

3. Using CLOCCS to parameterize the
experiments

1. Double-click on the cloccs_v2023.jar file in the CLOCCS

folder in the CLOCCS_alignment repo, and wait for a

graphical user interface to open. This screen allows for

inputting options for the CLOCCS run and displays the

results once run.

2. Input the general settings.

1. Set Sim Anneal, Burn In, and Iterations by typing

in the associated text input boxes. Sim Anneal

https://www.jove.com
https://www.jove.com/
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(simulated annealing) identifies good starting

parameter values, Burn In searches for posterior

modes, and the final stage allows for all posterior

inferences to be drawn. Higher values increase the

run-time but also increase the accuracy.

2. Input the experimental conditions by specifying the

temperature in Celsius and the synchronization

method using the text box labeled Temperature

and the dropdown menu Synchro. Method,

respectively.

3. Optionally configure the advanced settings in the

Advanced Settings menu. The advanced settings

allow for priors to be set for each of the parameters

("mu0", "sigma0", "sigmav", "lambda", "bud.start",

"bud.end").

NOTE: More information regarding the advanced

settings can be found in the readme.txt in the

CLOCCS folder of the CLOCCS_alignment repo.

3. Input the settings for use with the budding data.

1. Choose the appropriate selection from the Model

Type dropdown menu. The default option Bud is for

standard budding information for budding yeast.

NOTE: Other more advanced options also exist

in the dropdown menu: Mutant for budding

information for mutants that undergo multiple

budding cycles without division, BudSSLSMR

for budding information and additional spindle

pole body and myosin ring information, and

BudNucDivNeck for budding information and

additional dividing and bud neck nuclei information.

These advanced options are described in the

CLOCCS readme and in previous work11,14 ,15.

2. Import the data using the Data Import panel by

typing into the text input boxes or by uploading a

file by clicking on the Select File button. The first

column specifies the time points. The remaining two

columns specify the budding data and can take any

of the following options: the number of unbudded

cells (No Bud), the number of budded cells (Bud),

or the total number of cells (Total).

4. Input the settings for use with the flow cytometric data.

For each experiment, run either step 3.3 or step 3.4.

NOTE: Flow cytometric data and budding data can

be used together. Though previously we described

running them together15, for this tool, they must be run

independently and then compared.

1. Convert the .fcs files into the correct CLOCCS

input format for flow cytometry by following the

instructions in Supplemental File 1 (also found

in the CLOCCS_alignment repo as CLOCCS/

flow_cytometry_conversion_instructions.txt).

2. Select the Flow selection from the Model Type

dropdown menu.

3. Import the data using the Data Import panel. Click

on Select File, and select the file generated in step

3.4.1.

4. Select the time points for which a flow cytometric

CLOCCS fit should be plotted by selecting the time

points in the Times for Fitting box.

5. Once all the inputs have been selected for either budding

or flow cytometry, click on the Apply button, and then

click on the Sample button at the top of the screen.

https://www.jove.com
https://www.jove.com/
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6. View the budding curve or flow cytometry plots with the

predicted fits by selecting the Predicted Fits tab. This

tab opens by default immediately after the previous step.

7. View the parameter histograms for each parameter

by selecting the Parameter Histograms tab and then

selecting the sub-tab that corresponds to the parameter

of interest from the following options: mu0, delta,

sigma0, sigmav, lambda, bud.start, bud.end, etc.

8. View the posterior score plot by selecting the Posterior

Score tab.

9. View the settings, and further alter them by selecting

the Settings tab; view the log of the previous runs by

selecting the Log tab.

10. Obtain the CLOCCS parameters from the fit by selecting

the Posterior Parameters tab. The resulting table

will have the following form: each row consists of a

parameter, with the final row being the posterior. The

columns consist of the predicted parameter for the mean,

the 2.5% lower confidence interval, the 97.5% upper

confidence interval, and the acceptance rate.

1. Record the parameters used for alignment for each

experiment: the recovery time from synchrony

(µ0) and the average cell-cycle period of the

mother cells (λ).

2. Calculate the cell-cycle period by calculating the

average of the mother cell period (λ) and the

daughter cell period (λ + δ), where δ is the

daughter-specific delay.

NOTE: Repeat section 3 with all the experiments to

be included in the comparisons.

4. Conversion of time points to lifeline points
using the Python conversion functions and the
CLOCCS parameters

NOTE: Conversion between time points and lifeline

points requires two conversion formulas21. A Python

implementation for conversion and data visualization are

available in the CLOCCS_alignment repo and described

below.

1. Activate the Conda environment by entering the

following command into the terminal: conda activate

CLOCCS_alignment

2. Open an interactive Python notebook by typing the

following command into the terminal: jupyter notebook

3. Create a new Python notebook in the desired folder.

NOTE: An example notebook has been included

to demonstrate standard use and can be found

in Alignment/JOVE_example.ipynb in the CLOCCS_

alignment repo.

4. Import the Python file containing the alignment functions

by running the following command in the first cell:

%run path_to_repo/cloccs_alignment/Alignment/

utilities.py

1. Substitute the path to the CLOCCS_alignment repo

for path_to_repo.

5. If using budding data as the cell-cycle phase data, import

a data frame containing the percent budded at each time

point by running the following command in a new cell:

budding_df = pd.read_csv("path_to_folder/

budding_filename.tsv", sep ="\t", index_col=0)

1. Substitute the appropriate file path and filename. If

the file is a .csv file, remove sep ="\t"

https://www.jove.com
https://www.jove.com/


Copyright © 2023  JoVE Journal of Visualized Experiments jove.com June 2023 • 196 •  e65466 • Page 7 of 25

6. If using budding data as the cell-cycle phase data, align

the budding data to a lifeline point time scale by entering

the following function into a new cell:

aligned_budding_df =

df_conversion_from_parameters(budding_df,

timepoints, param_mu0, param_lambda)

1. For timepoints, substitute a list of the time points to

be the index of the budding_df data frame.

2. For param_mu0 and param_lambda, substitute the

learned parameters from the budding CLOCCS run

in section 3 for the experiment.

7. If using flow cytometry data, import the flow cytometry

data by running the following command in a new cell:

flow_samples =

flow_cytometry_import(flow_input_folder)

1. For flow_input_folder, substitute the appropriate

path to the folder containing the flow cytometry .fcs

files.

8. If using flow cytometry data, generate a conversion table

between the time points and lifeline points for each

experiment by typing the following command into a new

cell:

flow_converter = convert_tp_to_ll(timepoints,

param_mu0, param_lambda)

1. For timepoints, substitute a list of the time points

from the flow cytometry data.

2. For param_mu0 and param_lambda, substitute

the learned parameters from the flow cytometry

CLOCCS run in section 3 for the experiment.

9. Import the data frame containing the experimental data

into the notebook by running the following command in

a new cell:

data_df = pd.read_csv("path_to_folder/

exp_data_filename.tsv", sep ="\t", index_col=0)

1. Substitute the appropriate file path and filename. If

the file is a .csv file, remove sep ="\t".

NOTE: This can be done for any tabular data.

The experimental data must simply have the time

points as either the columns or the index of the

data frame. Example data can be found in the

CLOCCS_alignment repo.

10. Align the experimental data to a lifeline point time scale

by entering the following function into a new cell:

lifeline_aligned_df =

df_conversion_from_parameters(data_df, timepoints,

param_mu0, param_lambda, interpolate, lowerll, upperll)

1. For timepoints, substitute a list of the time points as

the index or the columns of the experimental data_df

from the previous step.

2. For param_mu0 and param_lambda, substitute the

values obtained in section 3 from CLOCCS.

NOTE: The parameters can come from any

CLOCCS run performed on any of the accepted cell-

cycle phase data types.

3. Optionally, substitute interpolate with True or False,

or leave blank (the default is False).

NOTE: When set to False, the data will not be

interpolated. When set to True, the lifeline points

will be rounded and interpolated to fill in the values

between the lifeline points, such that there is a point

per integer in the range of the lifeline points. This

allows for better comparison across datasets.

4. Optionally, substitute lowerll and upperll with None

or integer values.

https://www.jove.com
https://www.jove.com/
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NOTE: When set to None, all of the lifeline points

after interpolation are kept. When integers are

supplied, this truncates the data so that the lifeline

points range from the lowerll to the upperll.

This allows for comparison across datasets with a

different lowerll or upperll.

11. Download the lifeline-aligned dataset by entering

the following command into a new cell:

lifeline_aligned_df.to_csv("path_to_desired_location/

name_of_file.tsv", sep = "\t")

12. Repeat steps 4.5-4.11 with all the experiments to be

included in the comparisons.

5. Comparing budding curves and flow cytometry
data

1. Plot the budding curves prior to alignment using

the Python utilities function by entering the following

command into a new cell:

plot_budding_curves(list_of_budding_curves,

list_for_legend = leg_list, point_type = str_type, title =

str_title)

1. Substitute a list containing the data frames

of all the desired budding curves for plotting

for list_of_budding_curves-[bud_df1, bud_df2,

bud_df3].

2. Substitute a list of the labels for the legend-

[Experiment 1, Experiment 2, Mutant] for leg_list if

desired. If not, exclude or substitute None.

3. Substitute time for str_type.

4. Substitute a string title Comparison Budding

Curves for str_title if desired. If not, substitute None,

or exclude.

2. Plot the budding curves after alignment using the Python

utilities function by following the instructions in step 5.1,

but with a list of aligned budding curves substituted for

list_of_budding_curves and with lifeline for point_type

instead of time.

3. To plot the flow cytometry data, plot the associated data

from the .fcs files at the corresponding lifeline points

using the converter generated in step 4.8.

4. Convert the lifeline points to the cell-cycle phase by using

the converter table (Table 1).

NOTE: This can also be plotted by following the

instructions in step 5.1, but with phase for point_type

instead of time.

6. Comparing the experimental data

1. Determine the gene list to be plotted in the line graphs

based on literature information or the genes of interest

for the research.

2. Use the provided plot_linegraph_comparison in the

Python utilities file to perform line graph comparisons

on the original, aligned, or aligned and interpolated data

frame by typing the following command into a new cell:

plot_linegraph_comparison(list_of_dfs, list_for_legend,

genelist, point_type = str_type, title = str_title)

1. Substitute a list of the data frames of the

experiments to be compared for list_of_dfs.

NOTE: The data frames can be unaligned or aligned;

however, the corresponding point_type must be

input in step 6.2.4.

2. Substitute a list of the titles for each data frame

in the same order as the list of data frames for

list_for_legend.

https://www.jove.com
https://www.jove.com/
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3. Substitute a list of the gene names (which must be

included in the index of the data frames) to be plotted

for genelist.

4. Substitute the point type for str_type. Use lifeline

(the default is lifeline point scale) or phase (the cell-

cycle phase lifeline scale) for the aligned data frames

in step 6.2.1 or time for the unaligned data frames

in step 6.2.1.

5. Substitute an optional string title for str_title.

3. Determine the gene list to be included in the heatmap

using the literature or algorithms to determine the top

periodic genes.

NOTE: For proper heatmap comparisons, the data

should be aligned, interpolated, and timescale-adjusted

in step 6.2; it should have the same starting and ending

lifeline value for each experiment.

1. Run periodicity algorithms to determine the top

periodic genes23,24, or use the desired alternative

methods to determine the gene list (i.e., literature

results).

2. Import a .csv or .tsv gene list file into the notebook

using the following command in a new cell:

sort_df = pd.read_csv("path_to_folder/

sorting_filename.tsv", sep="\t", index_col=0)

3. Substitute the appropriate file path and filename. If

the file is a .csv file, remove sep="\t".

4. Use the provided function plot_heatmap_comparison in

the Python utilities file to perform a heatmap comparison

on the aligned, interpolated, and phase-aligned data

frame by typing the following command into a new cell:

plot_heatmap_comparison(list_of_dfs, list_for_legend,

genelist, title = str_title)

1. Substitute a list of the aligned data frames of the

experiments to be compared for list_of_dfs.

2. Substitute a list of the titles for each data frame

in the same order as the list of data frames for

list_for_legend.

3. Substitute a list of the gene names (which must be

included in the index of the data frames) to be plotted

for genelist.

4. Substitute an optional string title for str_title.

NOTE: The first data frame in the list is the one that

will be used for ordering the genes in the heatmap.

The genes will be ordered by the maximum in the

first period for that data frame, and the same order

will be used for the subsequent data frames in the

list.

Representative Results

The steps described in the above protocol and in the workflow

in Figure 1 were applied to five cell-cycle synchronized

time-series experiments to demonstrate two representative

comparisons: between replicates with different synchrony

methods (mating pheromone and centrifugal elutriation18)

and sequencing platforms (RNA-sequencing [RNA-seq] and

microarray), as well as across experimental conditions.

Multiple experiments were performed with S. cerevisiae, and

cell-cycle phase and experimental data were collected for

each experiment. The workflow involves using CLOCCS

to parameterize the various synchrony/release time-series

experiments, using these parameters to align the experiments

to a common comparable lifeline scale, and then using these

aligned experiments for the two representative comparisons.

To demonstrate the representative comparison across

replicates, we selected three experiments performed with the

https://www.jove.com
https://www.jove.com/
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same strain and in the same experimental conditions, called

Condition 1. Two of these experiments were direct replicates

of each other, and both were analyzed via microarray

analysis and synchronized via centrifugal elutriation. The

third experiment was analyzed using RNA-seq analysis and

synchronized via alpha factor mating pheromone arrest. To

demonstrate the second comparison across experiments

with varying cell-cycle periods, the Condition 1 RNA-

seq experiment (cell-cycle period: 71 min) from above

was compared with Condition 2 (cell-cycle period: 82

min), and Condition 3 (cell-cycle period: 110 min) (Table

2). For each experiment, the cells were grown in their

respective conditions, synchronized, released, and then

sampled throughout two or more cell-cycle periods. The

budding and/or flow cytometry data were collected to provide

information on the cell-cycle phase, and either microarray or

RNA-seq time-series transcriptomic data were collected as

described in Leman et al.18 (Supplemental Table S1).

For each experiment, the data took the forms described in

Figure 2, which presents the Condition 2 experiment as

an example for demonstration. Each dataset had a budding

curve, which allowed for the inference of the cell-cycle phase.

This curve comprised a budding percent value for each time

point in the time series, which was then plotted to produce

a budding curve displaying multiple cell-cycle oscillations

(Figure 2). The cell-cycle phase data also took the form

of flow-cytometric DNA content staining data for each time

point in the time series. Select time points for Condition

2 were plotted (Figure 2). The flow cytometry files were

combined into a single table comprising the cells in each

log fluorescence bin for each time point for inputting into the

CLOCCS using the flow_cytometry_CLOCCS_file_from_fcs

function in the Python utilities. Each dataset also contained

experimental data. In this case, the data were transcriptomic

data, and the data were organized into rows of genes, each

with a value for the abundance of RNA at each time point in

the experiment (Figure 2).

We have demonstrated the use of CLOCCS and the

conversion to lifeline points for the Condition 2 RNA-seq

dataset; however, the process was identical for the other

experiments as well. The budding information was input into

the CLOCCS algorithm as described in protocol section 3 and

as shown in Figure 3A. The default values for Sim Anneal,

Burn In, Iterations, and Advanced Settings were used.

The appropriate experimental conditions were selected. The

model type of "Bud" was used for the budding data. The

resulting CLOCCS budding fits were viewed to ensure that

the budding curves were properly fit, as demonstrated by

the data points overlaying the corresponding fit curve with a

small 95% confidence band (Figure 3B and Supplemental

Figure S1). The parameters µ0 and λ from the posterior

parameters table (Figure 3C) were recorded for use in the

alignment. The flow cytometry data for Condition 2 were

separately input into CLOCCS, as described in protocol

section 3. Currently, CLOCCS expects flow cytometers to

produce 10 bit data with 1,024 channels; however, modern

flow cytometers can have more channels. Since our flow

cytometer produces data with more than 1,024 channels, the

data were binned into 1,024 bins. With flow cytometry cell-

cycle phase data, CLOCCS produces a CLOCCS fit for each

selected time point (Figure 3D and Supplemental Figure

S2) and supplies a posterior parameters table similar to

the budding posterior parameters table in Figure 3C.

The parameters for budding that CLOCCS runs for each of

the other experiments are described in Table 2, and the

parameters for the flow cytometry that CLOCCS runs are

described in Supplemental Table S2.

https://www.jove.com
https://www.jove.com/
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The CLOCCS parameters corresponding to the cell-cycle

period of the mother cells (λ) and the recovery time (µ0)

were used for the lifeline alignment. It is important to note

that λ does not necessarily represent the average cell-

cycle period of the cell population. In cases where the cells

undergo a full division, there are an equal number of mother

and daughter cells, so the average cell-cycle period is the

average between the cell-cycle period of the mother cells

(λ) and the cell-cycle period of the daughter cells (λ + δ);

specifically, delta (δ) is the length of the daughter-specific

delay. This is the calculation that we used for the cell-cycle

period for each experiment (Table 2). For each experiment,

the corresponding parameters λ and µ0 were then used

in the conversion function, df_conversion_from_parameters,

supplied in the Python utilities file, as demonstrated for

Condition 2 (Figure 4A). For the budding curves, the data

were not interpolated. However, for experimental data, the

lifeline-aligned datasets were resampled using interpolation

such that each lifeline point contained interpolated data

for improved plotting. To ensure that the lifeline-aligned

datasets had the same range of lifeline points, lower and

upper lifeline limits were set to truncate the data at those

points. These lowerll and upperll parameters were input

into the df_conversion_from_parameters function when the

interpolation was set to True. For the Condition 1 comparison,

they were set to 44 and 270, respectively, for all the datasets,

and for the comparison across environmental conditions, they

were set to 50 and 300, respectively. An example use of

these functions for alignment and comparison can be seen

in the example Python notebook JOVE_example.ipynb, and

the code used for generating the figures can be seen in the

JOVE_Figures.ipynb notebook in the CLOCCS_alignment

repo.

This conversion from time points to lifeline points depends on

two formulas21 (Figure 4A) using µ0 (recovery time) and λ

(mother period). The first formula, , is the recovery

phase formula (Figure 4A).This formula is used only for

time points within the recovery phase, which consists of the

time points up to and including µ0, since µ0 corresponds to

the recovery time. The time points are then converted to a

lifeline scale range ending with 100 lifeline points (Table 1),

marking the end of the recovery phase and the beginning of

the first cell cycle. The post-recovery phase uses the second

formula,  (Figure 4A), which converts

each subsequent post-recovery time point into a lifeline point

after 100. Each subsequent 100 lifeline points correspond to

a new cell cycle, with the first cycle corresponding to lifeline

points 100 to 200, the second cycle corresponding to lifeline

points 200 to 300, and so on (Table 1). The conversion

from time points to lifeline points is applied to each dataset

individually using the corresponding CLOCCS parameters for

that dataset. After each dataset is converted to the lifeline

scale, the cell-cycle phases are aligned, which allows for

phase-specific comparisons across datasets.

Table 3 shows the conversion of select time points into their

respective lifeline points for the representative conversion of

the Condition 2 dataset using parameters from the budding

CLOCCS run. The budding data collected from the Condition

2 RNA-seq were plotted in a budding curve showing the

percent budded over time for both the unaligned time

scale in minutes (Figure 4B) and the aligned timescale

in lifeline points (Figure 4C) using the Python function

plot_budding_curves in a Python notebook. The lifeline points

could be easily converted into experimental and cell-cycle

phase information (Table 1), and the recovery phase and

first to third cell cycles were color-coded by hand accordingly

https://www.jove.com
https://www.jove.com/


Copyright © 2023  JoVE Journal of Visualized Experiments jove.com June 2023 • 196 •  e65466 • Page 12 of 25

(Figure 4B,C). Since each lifeline point corresponded to a

cell-cycle phase, individual flow cytometry plots could be

labeled via the Python functions using the cell-cycle phase

determined by the lifeline alignment. These phases matched

with the phases determined via flow-cytometric analysis

for Condition 2. The flow cytometry data collected for the

Condition 2 dataset were plotted for select time points and

labeled using the cell-cycle phase determined from the flow

cytometry lifeline alignment. In each case, the data matched

the phase determined by the alignment (Figure 4D).

It is important to note that the expression level of each gene

for each sample remains the same, but the labeling of the

time points is altered from time in minutes to lifeline points.

However, the conversion is not linear. The recovery phase,

highlighted in gray, occupies a higher percentage of the

experimental time once the conversion to lifeline points has

been performed (Figure 4B,C). The advantage of the lifeline

scale is that it allows for detailed phase information and phase

comparisons across experiments. The phase information is

contained in the lifeline points, as described above and

displayed in Table 1. Furthermore, G1 is contained in the first

15.5 lifeline points of each cell cycle, S in the next 20 lifeline

points, and G2/M in the next 64.5 lifeline points (Table 1).

However, this artificially constrains the recovery time to the

same time span of each consecutive cell cycle, even if the

recovery phase appears very short in the original time point

scale. This does not obscure the comparisons, because the

phases of each experiment are aligned. In most cases, it is

more relevant to compare the data at points that occur at the

same experimental and biological phase rather than at time

points that occur at the same time in minutes.

Once all the experiments have been converted to the

aligned lifeline scale using the provided Python functions

in the Python utilities file, they can be compared.

Here, we demonstrate two common comparisons between

experiments: one between replicates of a similar experiment

across platforms and synchronization methods (Figure 5)

and one between different experimental conditions with a

changing period length (Figure 6 and Figure 7). As described

above, the first comparison is across two elutriated microarray

replicates and one alpha factor synchronized RNA-seq

experiment. Before alignment, the two microarray replicates

showed similar synchrony and cell-cycle dynamics, but the

Condition 1 Microarray 2 replicate appeared slightly delayed

(Figure 5A). The most striking difference was found when

comparing the unaligned datasets; the Condition 1 RNA-seq

second cycle appeared aligned with the first cycle of the

two microarray experiments. The difference was likely not

related to the different transcriptomic platforms but rather the

different synchronization methods. The cell populations in

the microarray experiments were synchronized by centrifugal

elutriation, while the population for the RNA-seq experiment

was synchronized by a mating pheromone treatment.

Indeed, synchronization with mating pheromone substantially

reduced the recovery time compared to elutriation (Figure 5A

and Table 2).

Despite the obvious differences between replicates when

plotted in terms of the elapsed time, after the lifeline

alignment, the curves were almost identical, and more

detailed and relevant comparisons across replicates were

made possible (Figure 5B). The recovery phase was aligned

so that each experiment began at the same lifeline point,

and the variations in period were normalized by lifeline

alignment. Due to the alignment, experimental values at

the same lifeline point across replicates occurred in the

same cell-cycle phase, thus enabling calculations of the

experimental variance across replicates. The recovery and

https://www.jove.com
https://www.jove.com/
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cell-cycle phases are labeled in Figure 5B to provide

additional information about cell-cycle phases in each of the

experiments. This lifeline alignment could then be applied

to the experimental dataset (Figure 5C,D) using the Python

function df_conversion_from_parameters provided in the

utilities file, as described above.

In Figure 5D, the transcriptomic data were aligned, and

the expression dynamics for the CDC20 gene were plotted

using the plot_linegraph_comparison Python function in a

Python notebook. Before alignment, it appeared as if the first

peak expression of the microarray experiments aligned with

the second peak of the RNA-seq experiment (Figure 5C);

however, after alignment, the first cell-cycle peaks of each

dataset aligned properly (Figure 5D). Furthermore, the peak

width of the experiments appeared to differ between the RNA-

seq dataset and the microarray datasets, but after alignment,

the peak width was more aligned (Figure 5C,D).

The second comparison is between experiments in different

environmental conditions with different cell-cycle periods

(Figure 6). As described above, here, we compared S.

cerevisiae datasets in Condition 1 to Condition 2 and

Condition 3, which correspond to cell-cycle periods of 71,

82, and 110 min, respectively. These differences in the cell-

cycle period introduced uncertainty when comparing across

experiments prior to cell-cycle phase alignment, as shown

in the unaligned budding curves. The period differences

are visible in the unaligned budding curves (Figure 6A).

However, when they were CLOCCS aligned using this

protocol, the three curves looked remarkably similar, thus

making comparisons of experimental data possible (Figure

6B).

Using the flow cytometry CLOCCS parameters, Condition 1

and Condition 2 were aligned to a common lifeline scale,

and DNA content histograms were plotted in Condition 2 and

at equivalent lifeline points in Condition 1. Flow cytometric

measurements of the DNA content across lifeline points were

compared (Figure 6C). As the DNA content measurements

were not continuous and not easily interpolated, we could

only compare the nearest lifeline points. The cell-cycle phase

data for each comparable lifeline point was not identical

between the two conditions (Figure 6C), which indicates

that the CLOCCS fits and resulting parameters were likely

slightly misaligned for Condition 1. This was likely due to the

poorer CLOCCS fit to the flow cytometric data for Condition 1

compared to Condition 2 (Supplemental Figure 2). However,

the alignment only deviated in one sample and, thus, still

allows for improved phase-specific comparisons.

The budding lifeline alignment was then applied to

the experimental data for the RNA-seq experiments

in Condition 1, Condition 2, and Condition 3 (Figure

7) by using the budding CLOCCS parameters in

the df_conversion_from_parameters function on the

experimental data. The transcriptomic data were aligned, and

the gene expression of the gene CDC20 for each time series

was shown for the three experiments. Prior to alignment, the

transcript dynamics of CDC20 were non-overlapping (Figure

7A). After the alignment, the first and second peaks of the

CDC20 gene expression were much more closely aligned for

all three datasets. After alignment, it became clear that the

peaks occurred in the same cell-cycle phase, but the shapes

of the curves were different (Figure 7B). Condition 3 had

a lower and broader first peak compared to the other two

conditions, even after accounting for the differences in the

cell-cycle period, suggesting that these differences were likely

related to the experimental conditions being tested (Figure

7B).

https://www.jove.com
https://www.jove.com/
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Large-scale transcriptomic comparisons could also be made.

For these comparisons, 278 genes were selected by running

the periodicity algorithm JTK_CYCLE23 on each dataset

and taking the intersection of the top periodic genes.

However, genes can be selected using any desired method

or from the literature. These genes were plotted in the

same order for all three conditions both for the unaligned

(Figure 7C) and the aligned (Figure 7D) heatmaps using

the plot_heatmap_comparison Python function in a Python

notebook. These heatmaps allow for hundreds of gene-

level comparisons to be made simultaneously. Comparisons

across unaligned experiments could be made regarding

the change in curve dynamics, the peak time relative to

neighboring genes, and the period length, etc. (Figure 7C).

However, detailed phase-specific comparisons could not be

made because the time points do not necessarily correlate

to the same cell-cycle phase across conditions. Although

the second cycles appeared similar after alignment, the first

cycles were slightly shifted between the conditions (Figure

7D). This shift may reflect the fact that the budding cell-

cycle phase information was of lower quality for Condition

3. Nonetheless, the alignment of the experiments for the

three conditions allowed for an improved phase-specific

comparison. Prior to alignment, it was unclear whether the

first peak of expression in each condition would occur

at the same cell-cycle phase (Figure 7C); however, after

alignment, the experiments could be compared in a phase-

specific manner (Figure 7D). Prior to alignment, the peaks

in Condition 3 appeared much broader than in the other two

conditions (Figure 7C); however, after alignment, it became

clear that the peaks in Condition 3 were of similar width to the

other conditions when aligned (Figure 7D).

These representative results demonstrate the process for the

use of CLOCCS to align experiments to a common time scale.

Prior to alignment, direct time point comparisons often do not

correlate to a similar cell-cycle phase. The conversion of the

elapsed experimental time in minutes to lifeline points that

represent the cell-cycle phase allows for phase-specific and

biologically relevant comparisons between experiments at the

same point in the cell cycle.

Figure 1: CLOCCS lifeline alignment workflow overview. The experimental workflow for the alignment of two example

datasets using CLOCCS, followed by representative comparisons between the datasets. The major steps from the protocol

https://www.jove.com
https://www.jove.com/
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are illustrated: the collection of unaligned cell-cycle phase and experimental data for each of the datasets (step 1), the

use of CLOCCS for the parameterization of each dataset (step 2 and step 3), the alignment of the datasets to a common

lifeline (step 4), and finally, the comparison of the cell-cycle phase and experimental dynamics (step 5 and step 6). The

unaligned cell-cycle phase data are input into CLOCCS to provide learned parameters, which are then used for alignment to

a common lifeline scale. These aligned datasets are then compared. Abbreviation: CLOCCS = Characterizing Loss of Cell

Cycle Synchrony. Please click here to view a larger version of this figure.

Figure 2: Format of the cell-cycle phase and experimental data required for the workflow. The data required for the

workflow consist of two main components: cell-cycle phase data and cell-cycle experimental data. The cell-cycle phase

data can consist of cell-cycle budding data or flow-cytometric DNA content data for each time point in the time series. The

experimental data can take many forms, but in this case, are transcriptomic data, which consist of gene expression data for

each gene for every time point in the time series. Please click here to view a larger version of this figure.

https://www.jove.com
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Figure 3: Example of results from running CLOCCS on an S. cerevisiae cell-cycle dataset. (A) A screenshot of the

CLOCCS graphical user interface with the input values and settings supplied for Condition 2 budding data. The times, the

number of unbudded cells, and the number of budded cells are input, as well as the model type, iterations, and conditions,

etc. (B) A screenshot of the resulting CLOCCS budding fit for Condition 2 under the "Predicted Fit" tab of the results. Each

datapoint has an associated sampling error bar corresponding to the 95% binomial proportion confidence intervals of the

data (for each time point, at least 200 cells were counted [between 204 and 295 cells]). The resulting budding fit curve shows

the confidence band for the 95% confidence interval of the CLOCCS fit in purple. (C) A screenshot of the resulting "Posterior

Parameters" table for the Condition 2 budding CLOCCS run consisting of the CLOCCS parameters at the mean, the 2.5%

confidence interval, and the 97.5% confidence interval. The posterior and acceptance rates are also shown. (D) A screenshot

of the flow cytometry CLOCCS fits for Condition 2 at 70 min and 150 min. Please click here to view a larger version of this

figure.

https://www.jove.com
https://www.jove.com/
https://www.jove.com/files/ftp_upload/65466/65466fig03large.jpg
https://www.jove.com/files/ftp_upload/65466/65466fig03large.jpg


Copyright © 2023  JoVE Journal of Visualized Experiments jove.com June 2023 • 196 •  e65466 • Page 17 of 25

Figure 4: Example of the conversion process from time points to aligned lifeline points for the Condition 2 dataset.

(A) The conversion formulas used to convert from time points to lifeline points. A screenshot of the Python functions in the

Python notebook for conversion and plotting the budding curves. (B) The unaligned Condition 2 budding curve showing

the budding percent for each time point in minutes. The cell-cycle and recovery phases are highlighted as follows: recovery

(gray), first cell cycle (blue), second cell cycle (magenta), and third cell cycle (salmon). (C) The aligned Condition 2 budding

curve showing the same budding percentages but plotted on the lifeline-aligned scale. The cell-cycle and recovery phases

are highlighted as in panel C. (D) The aligned flow cytometry plots for select time points from Condition 2 corresponding to

distinct cell-cycle phases based on the lifeline scale: the beginning of G1, the beginning of S-phase, the beginning of G2/M,

and late G2/M. Please click here to view a larger version of this figure.

https://www.jove.com
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Figure 5: Representative results for the comparison of the aligned and unaligned Condition 1 replicate experiments.

Comparison of the Condition 1 replicates: Condition 1 RNA-seq (blue), Condition 1 microarray 1 (purple), and Condition 1

microarray 2 (gray). (A) The unaligned budding curve for the Condition 1 datasets. (B) The aligned budding curve for the

Condition 1 datasets. The lifeline points have been converted to the cell-cycle phase and are color-coded below the x-axis.

(C) The unaligned gene expression of a representative gene, CDC20, for the Condition 1 datasets. (D) The aligned gene

expression of a representative gene, CDC20, for the Condition 1 datasets. Please click here to view a larger version of this

figure.
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Figure 6: Representative results for the comparison of aligned and unaligned cell-cycle phase data across

experiments with varying periods. Comparison of the cell-cycle phase data for datasets with three different environmental

conditions and, thus, three different cell-cycle periods: Condition 1 RNA-seq (cell-cycle period: 71 min), Condition 2 RNA-seq

(cell-cycle period: 82 min), and Condition 3 RNA-seq (cell-cycle period: 110 min). (A) The unaligned budding curve for the

datasets. (B) The aligned budding curve for the datasets. (C) The flow-cytometric DNA content histograms for Condition 2

(top row) compared to the equivalent lifeline points in Condition 1 (bottom row). Please click here to view a larger version of

this figure.
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Figure 7: Representative results for the comparison of the aligned and unaligned transcriptomic data across

experiments with varying periods. Comparison of the transcriptomic data associated with the datasets in Figure

6: Condition 1 RNA-seq, Condition 2, and Condition 3. (A) The unaligned gene expression of a representative gene,

CDC20, for the Condition 1, Condition 2, and Condition 3 RNA-seq datasets. (B) The aligned gene expression of CDC20

for the datasets. (C) The unaligned heatmap of the top cell-cycle periodic genes in the same order for each dataset. (D) The

lifeline-aligned heatmaps of the same cell-cycle periodic genes from panel C in the same order. The dashed purple lines

correspond to the lifeline points 100 and 200. Please click here to view a larger version of this figure.

Table 1: Lifeline point to cell-cycle phase conversion.

The conversion key between the lifeline point scale and the

corresponding phase in the experiment. Lifeline points 0-100

correspond to recovery from synchrony. Each subsequent

100 lifeline points correspond to a new cell cycle, with the

first 15.5 lifeline points corresponding to G1, the next 20

corresponding to S-phase, and the remaining lifeline points

corresponding to G2/M. Please click here to download this

Table.

Table 2: Budding CLOCCS parameters. The resulting

budding CLOCCS parameters "lambda" and "mu0" for each

experiment from the representative results. Additionally, the

daughter-specific delay "Delta" and the calculated cell-cycle

period are shown for each experiment. Please click here to

download this Table.

Table 3: Conversion table showing the conversion

between time points in minutes and their respective

corresponding lifeline points for Condition 2. Please click

here to download this Table.

Supplemental Figure S1: CLOCCS budding fits for

Condition 1 and Condition 3. Screenshot of the resulting

CLOCCS budding fit for (A) the Condition 1 RNA seq budding

data, (B) the Condition 1 microarray 1 budding data, (C)

https://www.jove.com
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the Condition 1 microarray 2 budding data, and for (D)

the Condition 3 budding data. The CLOCCS budding fit for

Condition 2 can be seen in Figure 3B. The 95% confidence

band and the sampling error bars are as described in the

CLOCCS documentation14,15and in Figure 3. For each time

point for each time series, approximately 200 cells were

counted. Please click here to download this File.

Supplemental Figure S2: CLOCCS flow cytometry fits

for Condition 1 and Condition 2. Screenshot of the flow

cytometry CLOCCS fits for the samples shown in Figure 6C

for Condition 2 (top row: A-D) and Condition 1 (bottom row:

E,F). Please click here to download this File.

Supplemental Figure S3: Sensitivity of the alignment to

variations in the CLOCCS parameters. Comparison of the

alignment of the Condition 1 RNA-Seq dataset using (A-C)

variations in the CLOCCS parameters λ and µ0 within the

confidence interval of the CLOCCS fit and (D,E) with large

variations in the parameters. Comparison between the mean

value with the 2.5% and 97.5% confidence values output in

the parameter table by CLOCCS for (A) the parameter µ0, (B)

the parameter λ, and (C) for both parameters µ0 and λ. (D)

Comparison between the alignment using the mean value for

µ0 compared to large variations in the µ0 parameter (200%

to 0.25% of µ0). (E) Comparison between the alignment

using the mean value for λ compared to large variations in

the λ parameter (200% to 0.25% of λ). Please click here to

download this File.

Supplemental Table S1: Description of the data collection

for each experiment. For each experiment, this table

provides a description of the budding data, flow cytometry

data, transcriptomic data, and synchronization method.

Please click here to download this File.

Supplemental Table S2: CLOCCS parameters from the

flow-cytometric CLOCCS runs. The CLOCCS parameters

"mu0" and "lambda" for the Condition 1 and Condition 2 flow

cytometry CLOCCS runs. Please click here to download this

File.

Supplemental File 1: Instructions for the conversion of

the flow-cytometric data into CLOCCS input format. For

the use of CLOCCS with flow-cytometric data, a specific

input format is required. This file provides more detailed

instructions regarding protocol step 3.4.1 to explain how to

use the Python utility functions to perform this conversion.

Please click here to download this File.

Discussion

This paper presents a method for more accurately and

quantitatively assessing data from time-series experiments

on synchronized populations of cells. The method utilizes

learned parameters from CLOCCS, a Bayesian inference

model that uses input cell-cycle phase data, such as

budding data and flow-cytometric DNA content data, to

parameterize each experiment14,15. CLOCCS uses the input

cell-cycle phase data to infer the parameters for each

experiment, which are then used for alignment to a common

lifeline scale. Converting multiple synchrony/release time-

series experiments to a single lifeline-aligned time scale

allows for phase-specific and relevant comparisons between

experiments and the aggregation of multiple replicate

experiments, which were previously difficult or impossible.

The critical steps of this protocol include gathering the data,

running CLOCCS, aligning the datasets, and comparing

across the datasets. First, data must be gathered for use

in this protocol. The data must consist of both experimental

data-containing information regarding the question of interest

(i.e., transcriptomic data, gene-expression data, proteomic

https://www.jove.com
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data)-and cell-cycle phase data-containing information on the

phase of the cell cycle (i.e., budding data, flow-cytometric

DNA content data). Then, the cell-cycle phase data can be

used in CLOCCS to gather the parameter information for each

experiment. The parameters µ0 (recovery phase length) and λ

(mother cell-cycle period) are used to convert the time points

into lifeline points. The lifeline point alignment allows for the

aligned time series to be directly compared.

One limitation of the method is that proper alignment is

dependent on identifying a good fit to the data. Achieving

the best CLOCCS fit relies on the quality of the cell-cycle

phase data and the use of the correct input settings for

the experiment in CLOCCS. The fit to the cell-cycle phase

data determines the accuracy of the learned parameters

and, thus, greatly impacts the accuracy of the alignment,

because it depends on the use of these parameters. As broad

changes in the parameters would greatly affect the alignment,

the changes remain minimal within the confidence interval

supplied in the CLOCCS output (Supplemental Figure S3).

It is important to note that this sensitivity to variations in

the parameters is also what allows for alignment between

datasets with varying cell-cycle timing.

The accuracy of the CLOCCS fit can be determined using

the resulting CLOCCS fit curve and the corresponding error

bars and error band (Figure 3B,D, Supplemental Figure S1,

and Supplemental Figure S2). The CLOCCS fit tab shows

the original data points, as well as the CLOCCS fit curve with

the confidence band corresponding to the confidence interval

of the CLOCCS fit and the error bars corresponding to the

95% binomial proportion confidence interval of the data, since

the counts are assumed to be independent binomial random

variables14. For example, the confidence bars on the budding

data measure the confidence in the proportion of budded cells

for a given sample.

One method for determining the quality of the CLOCCS

fit involves determining whether the error bars of the data

overlap with the confidence interval band of the CLOCCS fit.

Another indication is the broadness of the 95% confidence

band of the CLOCCS fit. In general, the width of the band

decreases with increased goodness of fit. An indication of

poor alignment is if the cell-cycle phase of the original

data does not match with the cell-cycle phase inferred from

the alignment. Each alignment can be double-checked by

confirming that for, each time point, the phase indicated by

the cell-cycle phase information data matches with the cell-

cycle phase assigned by the alignment.

A poor CLOCCS fits or poor alignment could be the result of

low-quality cell-cycle phase data. High-quality budding data

will have a very low budding percentage immediately after

arrest and a very high budding percentage at the first peak.

The subsequent peaks and troughs will lose synchrony but

should be distinct and evenly spaced. Since the lifeline points

represent the average cell-cycle phase of the population, poor

synchronization can impede proper alignment as well. High-

quality flow-cytometric DNA content data will have distinct

1C and 2C peaks for each time point corresponding to

the appropriate cell-cycle phase. Additionally, insufficient

cell-cycle phase data introduces parameter identifiability

problems. In the case of sufficient data, the parameters

can be inferred and do not change substantially between

CLOCCS runs. However, the parameters described in this

protocol (lambda, delta, mu0) cannot be disentangled when

the cell-cycle phase data contain only one full cell cycle.

To allow for improved parameter estimation, sufficient and

well-constructed cell-cycle data should be used for the

https://www.jove.com
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CLOCCS fits14,15. Furthermore, the CLOCCS model uses

prior information as described in Orlando et al.15, but this

information can be adjusted to better suit the experimental

conditions used.

If the quality of the cell-cycle phase data is good, then re-

adjusting the CLOCCS settings may help produce a more

accurate fit. For example, the number of iterations selected

could be increased to improve accuracy. Confirming that the

correct synchronization method was selected in CLOCCS can

also be useful, since alpha factor arrest is associated with a

shorter recovery time compared to elutriation.

This method is also limited in terms of the types of cell-

cycle phase data currently supported. However, CLOCCS

is flexible and can be adapted to support other types of

data. For example, CLOCCS has previously been adapted

to support the cell-cycle fluorescent labeling of spindle pole

bodies, myosin rings, and nuclei11 for use as cell-cycle phase

identifiers. Furthermore, the use of CLOCCS with species

other than S. cerevisiae has been made possible. CLOCCS

accepts septation indices as a marker for the cell-cycle phase

in S. pombe14, as well as flow-cytometric DNA content data,

which are easily collectable for many species15. This allows

for the comparison of experimental data at the same phase

of the cell cycle for two completely different species and can

give insights into changes in the cell cycle across evolution.

Though only supported forms of cell-cycle phase data can

be used with this lifeline alignment method, this method

is agnostic to the type of time-series experimental data

used. In this protocol, we have demonstrated its use in

aligning the gene expression of an individual gene, as well

as time-series transcriptomic data for hundreds of genes

in tandem. We have shown that this method can be used

to compare across platforms and, thus, make comparisons

between RNA-seq datasets and microarray datasets taken

in similar conditions. We have also shown that this method

can be used to align datasets with different synchronization

methods by comparing between a dataset that was elutriated

(Condition 1 Microarray) with a dataset that was alpha factor

arrested (Condition 1 RNA-seq). Previously, CLOCCS has

also been used to align time-series transcriptomic and time-

series proteomic data using budding cell-cycle phase data22,

which allowed for direct comparisons between the mRNA

dynamics and the dynamics of the corresponding protein.

CLOCCS has also been used to align time-series data across

species, such as for alignment between S. cerevisiae and

S. pombe14 and between the first cycle of S. cerevisiae and

the pathogenic yeast Cryptococcus neoformans21. Finally,

CLOCCS alignment is currently specific for cell-cycle time-

series data and has not yet been adapted for use with other

types of rhythmic processes. One area where this would be

of particular interest is for circadian rhythms, where circadian

time (CT) is conventionally used to align experiments,

though its implementation is not consistently applied. Another

area of interest is for investigating developmental rhythms,

such as those of the malaria parasite. For example, the

alignment of Plasmodium falciparum strains with different

periods, as described in Smith et al.25, would allow for

more detailed comparisons across strains. The alignment of

these periodic processes for comparison would allow for a

better understanding of these important rhythmic biological

functions. These types of cell-cycle comparisons have been

made possible by using CLOCCS for lifeline alignment, as

described in this protocol.
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