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Investigating the cell cycle often depends on synchronizing cell populations to
measure various parameters in a time series as the cells traverse the cell cycle.
However, even under similar conditions, replicate experiments display differences
in the time required to recover from synchrony and to traverse the cell cycle,
thus preventing direct comparisons at each time point. The problem of comparing
dynamic measurements across experiments is exacerbated in mutant populations or
in alternative growth conditions that affect the synchrony recovery time and/or the cell-

cycle period.

We have previously published a parametric mathematical model named
Characterizing Loss of Cell Cycle Synchrony (CLOCCS) that monitors how
synchronous populations of cells release from synchrony and progress through the
cell cycle. The learned parameters from the model can then be used to convert
experimental time points from synchronized time-series experiments into a normalized
time scale (lifeline points). Rather than representing the elapsed time in minutes
from the start of the experiment, the lifeline scale represents the progression from
synchrony to cell-cycle entry and then through the phases of the cell cycle. Since
lifeline points correspond to the phase of the average cell within the synchronized
population, this normalized time scale allows for direct comparisons between
experiments, including those with varying periods and recovery times. Furthermore,
the model has been used to align cell-cycle experiments between different species
(e.g., Saccharomyces cerevisiae and Schizosaccharomyces pombe), thus enabling

direct comparison of cell-cycle measurements, which may reveal evolutionary

similarities and differences.
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Introduction

Time-series measurements made on synchronized
populations of cells as they progress through the cell cycle
is a standard method for investigating the mechanisms
that control cell-cycle progression1 12,3,4,5.6,7.8 The ability
to make comparisons across synchrony/release time-series
experiments is vital to our understanding of these dynamic
processes. The use of replicate experiments to corroborate
findings can increase the confidence in the reproducibility
of the conclusions. Furthermore, comparisons between
environmental conditions, across mutants, and even between
species can uncover many new insights into cell-cycle
regulation. However, interexperimental variability in the
recovery from synchrony and in the speed of cell-cycle
progression impairs the ability to make time-point-to-time-
point comparisons across replicates or between experiments
with altered cell-cycle timing. Due to these challenges,
replicates are often not included for the full time series
(e.g., Spellman et al.*). When replicates for the entire
time series are gathered, the data cannot be analyzed in
aggregate, but rather a single replicate is used for analysis,
and other replicates are often relegated to supplemental
figures (e.g., Orlando et aI.8). Furthermore, comparisons
between experiments with different recovery or cell-cycle
progression characteristics are difficult. The measurements
of smaller intervals between an event of interest and a cell-
cycle landmark (e.g., bud emergence, S-phase entry, or
anaphase onset) can help reduce errors if these landmark
events are tracked! 2:3.9.10.11.12  However, subtle but
important differences may remain undetected or obscured
using these ad hoc methods. Finally, single-cell analyses
allow for analyzing cell-cycle progression without relying

t13

on synchronization or alignment'”, though large-scale

measurements in single-cell studies can be challenging and

costly.

To overcome these difficulties, we developed the
Characterizing Loss of Cell Cycle Synchrony (CLOCCS)
model to aid the analysis of time-series measurements
made on synchronized populations14’15. CLOCCS is a
flexible mathematical model that describes the distribution
of synchronized cells across cell-cycle phases as they are
released from synchrony and progress through the cell
cycle. The branching process framework enables the model
to account for the asymmetric qualities of mother and
daughter cells after division, as observed in S. cerevisiae,
while still being useful for organisms that divide by fission,
such as S. pombe. The model can take inputs from a
diverse set of measurement types to specify the cell-cycle
phase. It can ingest budding cell-cycle phase data, which
includes measurements of the percent budded cells over
time, allowing for the estimation of the number of cells outside
of the unbudded G1 phase14’15. The model can also ingest
flow cytometric data that measures the DNA content, thus
enabling the assessment of landmark transitions from G1
to S, S to G2, and M to G1°. Fluorescent morphological
markers can also be used to identify the cell-cycle phase. The
fluorescent labeling of myosin rings, nuclei, and spindle pole
bodies (SPBs) can be used to determine the cell-cycle phase,
and these were incorporated into the CLOCCS model'!;
however, these measurements will not be described in this
protocol. Additionally, the septation index was used as an
input for modeling data from S. pombe'. Thus, the model
can be used for cell-cycle analyses in a variety of organisms

and can be further expanded.
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CLOCCS is a parametric model that allows for the full
Bayesian inference of multiple parameters from the input data
(e.g., budding percentage, DNA content). These parameters
include the recovery time from synchrony, the length of
the cell-cycle period (estimated separately for mother and
daughter cells), and the average cell-cycle position of the cells
at each time point. These parameters represent the behavior
of the average cell in the population, enabling the researcher
to map each time point to a cell-cycle position expressed
as a lifeline point. The conversion to lifeline points depends
on the CLOCCS parameters lambda (A) and mu0 (U0)14’15-
The parameter A corresponds to the average cell-cycle period
of the mother cells. However, due to the mother-daughter
delay14'15, this is not the average cell-cycle period of the full
population that includes both the mother and daughter cells.
CLOCCS additionally infers the parameter delta (8), which
corresponds to the mother-daughter delay and, thus, allows
for the calculation of the average cell-cycle period of the full
population. Finally, because each experiment begins after
release from cell-cycle synchronization, the time required to
recover from the synchronization method is represented by
the CLOCCS parameter ug. CLOCCS fits a model to the input
cell-cycle phase data and then infers these parameters using
a random walk Markov chain Monte Carlo algorithm14* 15, By
mapping multiple experiments to a common cell-cycle lifeline
time scale, direct phase-specific comparisons can be made
between replicates or experiments where the recovery time

or cell-cycle periods are not identical®: 14:15,

As synchronized populations lose synchrony at some rate

over the course of the time series'4:15.16.17

, variability in
the rate of synchrony loss can also impede quantitative
comparisons across experiments. By identifying the location
of populations and the variance in their distributions,

CLOCCS accounts for differences in rates of synchrony

loss. This powerful tool allows for specific and detailed
comparisons across experiments, thus providing the ability
to directly make relevant comparisons not only between
replicates but also between environmental conditions,
mutants, and even species that have dramatically different

cell-cycle timing14* 15,

This paper describes a method using CLOCCS to estimate
parameters by fitting data from synchrony/release time-series
experiments, map the data to a common lifeline scale,
and then make relevant comparisons between replicates
or experiments. Lifeline alignment allows for direct phase-
specific comparisons across these experiments, which allows
for the aggregation and comparison of replicates and for
making more relevant comparisons across experiments with

different recovery timings and cell-cycle periods.

Protocol

1. Collecting cell-cycle phase and experimental
data

1. Synchronize the cells with respect to the cell cycle using

the desired synchronization method (e.g., centrifugal
elutriation as described in Leman et al.’® or mating
pheromone arrest as described in Rosebrock19; both

Leman et al.’® and Rosebrock'® also include methods

for the release from synchrony). Begin sampling
throughout the time series, ensuring that the time series
is at least two full cell-cycle periods in length, and
optimally, collect at least 10 samples per cell cycle. At
each time point, collect a sample for cell-cycle phase
data (budding or flow cytometry) and a sample for

experimental data, as described below.
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If using budding data as the cell-cycle phase data, collect

data on budding for the CLOCCS alignment.

1. Sample throughout the time series. For each time
point, collect cells, and fix them by mixing 200 uL of
sonicated cell culture with 200 yL of fixative solution,

as described in Leman et al.'8.

2. For standard budding, count at least 200 cells per
time point using a transmitted light microscope with
a 40x objective and a hemocytometer. Add the cell
sample from step 1.2.1 to the hemocytometer, and
dilute if the density prevents counting. Record the
number of budded and unbudded cells at each time
point. Calculate the percent of budded cells, and plot
for each time point in a budding curve.

NOTE: Other methods of specifying the cell-cycle
phase information are available, but these are not
described in this protocol. The other methods are

described in the CLOCCS readme and in a previous
work .
If using flow-cytometric DNA content data as the cell-

cycle phase data, collect flow cytometry DNA staining

data for the flow-cytometric CLOCCS alignment.

1. Sample throughout the time series. For each time
point, collect cells, and fix them as described in
Haase and Reed?°.

2. Stain the DNA, and analyze using standard

flow cytometric analysis. A recommended staining

protocol for S. cerevisiae is described in Haase and
Reed?0.
Collect associated omics or related experimental data.
For standard transcriptomic data, collect as described

in Leman et al.’® and Kelliher et al.2":22_ Ensure that

the data are associated with time points containing cell-
cycle phase data to allow for downstream alignment. For
optimal alignment, ensure that each time point containing
experimental data also has phase data associated with it.
NOTE: The experimental data can take many forms.
Traditionally, we use the alignment method described
for aligning time-series transcriptomic experiments.
However, any type of data associated with time points

can be aligned (i.e., proteomics2?).

2. Installing the required software

NOTE: This section assumes that Conda, Java 19, and Git

are already installed (Table of Materials).

Download the CLOCCS_alignment repo by entering the
following command into the terminal:
git clone git clone https://gitlab.com/haase-lab-group/

cloccs_alignment.git

Create a Conda environment using the conda_req.yml
file by entering the following command into the terminal
in the folder where the CLOCCS_alignment repo was
cloned:

conda env create -f conda_req.yml

3. Using CLOCCS to parameterize the
experiments

Double-click on the cloccs v2023.jar file in the CLOCCS
folder in the CLOCCS_alignment repo, and wait for a
graphical user interface to open. This screen allows for
inputting options for the CLOCCS run and displays the

results once run.
Input the general settings.

1. Set Sim Anneal, Burn In, and Iterations by typing

in the associated text input boxes. Sim Anneal
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(simulated annealing) identifies good starting
parameter values, Burn In searches for posterior
modes, and the final stage allows for all posterior
inferences to be drawn. Higher values increase the

run-time but also increase the accuracy.

Input the experimental conditions by specifying the
temperature in Celsius and the synchronization
method using the text box labeled Temperature
and the dropdown menu Synchro. Method,

respectively.

Optionally configure the advanced settings in the
Advanced Settings menu. The advanced settings
allow for priors to be set for each of the parameters
("mu0", "sigma0", "sigmav", "lambda", "bud.start",
"bud.end").

NOTE: More information regarding the advanced
settings can be found in the readme.txt in the

CLOCCS folder of the CLOCCS_alignment repo.

3. Input the settings for use with the budding data.

1.

Choose the appropriate selection from the Model
Type dropdown menu. The default option Bud is for
standard budding information for budding yeast.

NOTE: Other more advanced options also exist
in the dropdown menu: Mutant for budding
information for mutants that undergo multiple
budding cycles without division, BudSSLSMR
for budding information and additional spindle
pole body and myosin ring information, and
BudNucDivNeck for budding information and
additional dividing and bud neck nuclei information.
These advanced options are described in the

CLOCCS readme and in previous work!1:14:15

Import the data using the Data Import panel by
typing into the text input boxes or by uploading a
file by clicking on the Select File button. The first
column specifies the time points. The remaining two
columns specify the budding data and can take any
of the following options: the number of unbudded
cells (No Bud), the number of budded cells (Bud),

or the total number of cells (Total).

Input the settings for use with the flow cytometric data.

For each experiment, run either step 3.3 or step 3.4.

NOTE: Flow cytometric data and budding data can

be used together. Though previously we described

running them together15, for this tool, they must be run

independently and then compared.

1.

Convert the .fcs files into the correct CLOCCS
input format for flow cytometry by following the
instructions in Supplemental File 1 (also found
in the CLOCCS_ alignment repo as CLOCCS/

flow_cytometry_conversion_instructions.txt).

Select the Flow selection from the Model Type

dropdown menu.

Import the data using the Data Import panel. Click
on Select File, and select the file generated in step

3.4.1.

Select the time points for which a flow cytometric
CLOCCS fit should be plotted by selecting the time

points in the Times for Fitting box.

Once all the inputs have been selected for either budding

or flow cytometry, click on the Apply button, and then

click on the Sample button at the top of the screen.
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10.

View the budding curve or flow cytometry plots with the
predicted fits by selecting the Predicted Fits tab. This

tab opens by default immediately after the previous step.

View the parameter histograms for each parameter
by selecting the Parameter Histograms tab and then
selecting the sub-tab that corresponds to the parameter
of interest from the following options: mu0, delta,

sigma0, sigmav, lambda, bud.start, bud.end, etc.

View the posterior score plot by selecting the Posterior

Score tab.

View the settings, and further alter them by selecting
the Settings tab; view the log of the previous runs by

selecting the Log tab.

Obtain the CLOCCS parameters from the fit by selecting
the Posterior Parameters tab. The resulting table
will have the following form: each row consists of a
parameter, with the final row being the posterior. The
columns consist of the predicted parameter for the mean,
the 2.5% lower confidence interval, the 97.5% upper

confidence interval, and the acceptance rate.

1. Record the parameters used for alignment for each
experiment: the recovery time from synchrony
(Mo) and the average cell-cycle period of the

mother cells (A).

2. Calculate the cell-cycle period by calculating the
average of the mother cell period (A) and the
daughter cell period (A + 3), where & is the
daughter-specific delay.

NOTE: Repeat section 3 with all the experiments to

be included in the comparisons.

4. Conversion of time points to lifeline points
using the Python conversion functions and the
CLOCCS parameters

NOTE: Conversion between time points and lifeline
points requires two conversion formulas?!. A Python
implementation for conversion and data visualization are
available in the CLOCCS_alignment repo and described

below.

1. Activate the Conda environment by entering the
following command into the terminal: conda activate

CLOCCS_alignment

2. Open an interactive Python notebook by typing the

following command into the terminal: jupyter notebook

3. Create a new Python notebook in the desired folder.
NOTE: An example notebook has been included
to demonstrate standard use and can be found
in Alignment/JOVE_example.ipynb in the CLOCCS_

alignment repo.

4. Import the Python file containing the alignment functions
by running the following command in the first cell:
Y%run path_to_repo/cloccs_alignment/Alignment/

utilities.py

1. Substitute the path to the CLOCCS_alignment repo

for path_to_repo.

5. Ifusing budding data as the cell-cycle phase data, import
a data frame containing the percent budded at each time
point by running the following command in a new cell:
budding_df = pd.read_csv("path_to_folder/

budding_filename.tsv", sep ="\t", index_col=0)

1. Substitute the appropriate file path and filename. If

the file is a .csv file, remove sep ="\t"
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If using budding data as the cell-cycle phase data, align
the budding data to a lifeline point time scale by entering
the following function into a new cell:
aligned_budding_df =
df_conversion_from_parameters(budding_df,

timepoints, param_mu0, param_lambda)

1. For timepoints, substitute a list of the time points to

be the index of the budding_df data frame.

2. For param_mu0 and param_lambda, substitute the
learned parameters from the budding CLOCCS run

in section 3 for the experiment.

If using flow cytometry data, import the flow cytometry
data by running the following command in a new cell:
flow_samples =

flow_cytometry_import(flow_input_folder)

1. For flow_input folder, substitute the appropriate
path to the folder containing the flow cytometry .fcs

files.

If using flow cytometry data, generate a conversion table
between the time points and lifeline points for each
experiment by typing the following command into a new
cell:

flow_converter = convert_tp_to_lI(timepoints,

param_mu0, param_lambda)

1. For timepoints, substitute a list of the time points

from the flow cytometry data.

2. For param_muO and param_lambda, substitute
the learned parameters from the flow cytometry

CLOCCS run in section 3 for the experiment.

Import the data frame containing the experimental data
into the notebook by running the following command in

a new cell:

data_df = pd.read_csv("path_to_folder/

exp_data_filename.tsv", sep ="\t", index_col=0)

1. Substitute the appropriate file path and filename. If
the file is a .csv file, remove sep ="\t".
NOTE: This can be done for any tabular data.
The experimental data must simply have the time
points as either the columns or the index of the
data frame. Example data can be found in the

CLOCCS_alignment repo.

10. Align the experimental data to a lifeline point time scale

by entering the following function into a new cell:
lifeline_aligned_df =
df _conversion_from_parameters(data_df, timepoints,

param_muO0, param_lambda, interpolate, lowerll, upperll)

1. For timepoints, substitute a list of the time points as
the index or the columns of the experimental data_df

from the previous step.

2. For param_mu0O and param_lambda, substitute the
values obtained in section 3 from CLOCCS.
NOTE: The parameters can come from any
CLOCCS run performed on any of the accepted cell-

cycle phase data types.

3. Optionally, substitute interpolate with True or False,
or leave blank (the default is False).
NOTE: When set to False, the data will not be
interpolated. When set to True, the lifeline points
will be rounded and interpolated to fill in the values
between the lifeline points, such that there is a point
per integer in the range of the lifeline points. This

allows for better comparison across datasets.

4. Optionally, substitute lowerll and upperll with None

or integer values.
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NOTE: When set to None, all of the lifeline points 2

after interpolation are kept. When integers are
supplied, this truncates the data so that the lifeline
points range from the lowerll to the upperll.
This allows for comparison across datasets with a

different lowerll or upperill.

3.
11. Download the lifeline-aligned dataset by entering
the following command into a new cell
lifeline_aligned_df.to_csv("path_to_desired_location/
4,

name_of file.tsv", sep ="\t")
12. Repeat steps 4.5-4.11 with all the experiments to be

included in the comparisons.

5. Comparing budding curves and flow cytometry
data

Plot the budding curves after alignment using the Python
utilities function by following the instructions in step 5.1,
but with a list of aligned budding curves substituted for
list_of budding_curves and with lifeline for point_type

instead of time.

To plot the flow cytometry data, plot the associated data
from the .fcs files at the corresponding lifeline points

using the converter generated in step 4.8.

Convert the lifeline points to the cell-cycle phase by using
the converter table (Table 1).

NOTE: This can also be plotted by following the
instructions in step 5.1, but with phase for point_type

instead of time.

6. Comparing the experimental data

1. Plot the budding curves prior to alignment using
the Python utilities function by entering the following
command into a new cell:
plot_budding_curves(list_of budding_curves,
list for legend = leg_list, point_type = str_type, title =
str_title)

1. Substitute a list containing the data frames
of all the desired budding curves for plotting
for list_of _budding_curves-[bud_df1, bud_df2,
bud_df3].

2. Substitute a list of the labels for the legend-
[Experiment 1, Experiment 2, Mutant] for leg_list if

desired. If not, exclude or substitute None.
3. Substitute time for str_type.

4. Substitute a string titte Comparison Budding
Curves for str_title if desired. If not, substitute None,

or exclude.

Determine the gene list to be plotted in the line graphs
based on literature information or the genes of interest

for the research.

Use the provided plot_linegraph_comparison in the
Python utilities file to perform line graph comparisons
on the original, aligned, or aligned and interpolated data
frame by typing the following command into a new cell:

plot_linegraph_comparison(list_of dfs, list for_legend,

genelist, point_type = str_type, title = str_title)

1. Substitute a list of the data frames of the
experiments to be compared for list_of dfs.
NOTE: The data frames can be unaligned or aligned;
however, the corresponding point_type must be

input in step 6.2.4.

2. Substitute a list of the titles for each data frame
in the same order as the list of data frames for

list_for_legend.
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3. Substitute a list of the gene names (which must be
included in the index of the data frames) to be plotted

for genelist.

4. Substitute the point type for str_type. Use lifeline
(the default is lifeline point scale) or phase (the cell-
cycle phase lifeline scale) for the aligned data frames
in step 6.2.1 or time for the unaligned data frames

in step 6.2.1.
5. Substitute an optional string title for str_title.

3. Determine the gene list to be included in the heatmap
using the literature or algorithms to determine the top
periodic genes.

NOTE: For proper heatmap comparisons, the data
should be aligned, interpolated, and timescale-adjusted
in step 6.2; it should have the same starting and ending

lifeline value for each experiment.

1. Run periodicity algorithms to determine the top

periodic genes23 24

, or use the desired alternative
methods to determine the gene list (i.e., literature

results).

2. Import a .csv or .tsv gene list file into the notebook
using the following command in a new cell:
sort_df = pd.read_csv("path_to_folder/

sorting_filename.tsv", sep="\t", index_col=0)

3. Substitute the appropriate file path and filename. If

the file is a .csv file, remove sep="\t".

4. Use the provided function plot_heatmap_comparison in
the Python utilities file to perform a heatmap comparison
on the aligned, interpolated, and phase-aligned data
frame by typing the following command into a new cell:
plot_heatmap_comparison(list_of dfs, list_for_legend,

genelist, title = str_title)

1. Substitute a list of the aligned data frames of the

experiments to be compared for list_of dfs.

2. Substitute a list of the titles for each data frame
in the same order as the list of data frames for

list_for_legend.

3. Substitute a list of the gene names (which must be
included in the index of the data frames) to be plotted

for genelist.

4. Substitute an optional string title for str_title.
NOTE: The first data frame in the list is the one that
will be used for ordering the genes in the heatmap.
The genes will be ordered by the maximum in the
first period for that data frame, and the same order
will be used for the subsequent data frames in the

list.

Representative Results

The steps described in the above protocol and in the workflow
in Figure 1 were applied to five cell-cycle synchronized
time-series experiments to demonstrate two representative
comparisons: between replicates with different synchrony
methods (mating pheromone and centrifugal elutriation18)
and sequencing platforms (RNA-sequencing [RNA-seq] and
microarray), as well as across experimental conditions.
Multiple experiments were performed with S. cerevisiae, and
cell-cycle phase and experimental data were collected for
each experiment. The workflow involves using CLOCCS
to parameterize the various synchrony/release time-series
experiments, using these parameters to align the experiments
to a common comparabile lifeline scale, and then using these

aligned experiments for the two representative comparisons.

To demonstrate the representative comparison across

replicates, we selected three experiments performed with the
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same strain and in the same experimental conditions, called
Condition 1. Two of these experiments were direct replicates
of each other, and both were analyzed via microarray
analysis and synchronized via centrifugal elutriation. The
third experiment was analyzed using RNA-seq analysis and
synchronized via alpha factor mating pheromone arrest. To
demonstrate the second comparison across experiments
with varying cell-cycle periods, the Condition 1 RNA-
seq experiment (cell-cycle period: 71 min) from above
was compared with Condition 2 (cell-cycle period: 82
min), and Condition 3 (cell-cycle period: 110 min) (Table
2). For each experiment, the cells were grown in their
respective conditions, synchronized, released, and then
sampled throughout two or more cell-cycle periods. The
budding and/or flow cytometry data were collected to provide
information on the cell-cycle phase, and either microarray or
RNA-seq time-series transcriptomic data were collected as

|_18(

described in Leman et a Supplemental Table S1).

For each experiment, the data took the forms described in
Figure 2, which presents the Condition 2 experiment as
an example for demonstration. Each dataset had a budding
curve, which allowed for the inference of the cell-cycle phase.
This curve comprised a budding percent value for each time
point in the time series, which was then plotted to produce
a budding curve displaying multiple cell-cycle oscillations
(Figure 2). The cell-cycle phase data also took the form
of flow-cytometric DNA content staining data for each time
point in the time series. Select time points for Condition
2 were plotted (Figure 2). The flow cytometry files were
combined into a single table comprising the cells in each
log fluorescence bin for each time point for inputting into the
CLOCCS using the flow_cytometry CLOCCS file_from_fcs
function in the Python utilities. Each dataset also contained

experimental data. In this case, the data were transcriptomic

data, and the data were organized into rows of genes, each
with a value for the abundance of RNA at each time point in

the experiment (Figure 2).

We have demonstrated the use of CLOCCS and the
conversion to lifeline points for the Condition 2 RNA-seq
dataset; however, the process was identical for the other
experiments as well. The budding information was input into
the CLOCCS algorithm as described in protocol section 3 and
as shown in Figure 3A. The default values for Sim Anneal,
Burn In, Iterations, and Advanced Settings were used.
The appropriate experimental conditions were selected. The
model type of "Bud" was used for the budding data. The
resulting CLOCCS budding fits were viewed to ensure that
the budding curves were properly fit, as demonstrated by
the data points overlaying the corresponding fit curve with a
small 95% confidence band (Figure 3B and Supplemental
Figure S1). The parameters g and A from the posterior
parameters table (Figure 3C) were recorded for use in the
alignment. The flow cytometry data for Condition 2 were
separately input into CLOCCS, as described in protocol
section 3. Currently, CLOCCS expects flow cytometers to
produce 10 bit data with 1,024 channels; however, modern
flow cytometers can have more channels. Since our flow
cytometer produces data with more than 1,024 channels, the
data were binned into 1,024 bins. With flow cytometry cell-
cycle phase data, CLOCCS produces a CLOCCS fit for each
selected time point (Figure 3D and Supplemental Figure
S$2) and supplies a posterior parameters table similar to
the budding posterior parameters table in Figure 3C.
The parameters for budding that CLOCCS runs for each of
the other experiments are described in Table 2, and the
parameters for the flow cytometry that CLOCCS runs are

described in Supplemental Table S2.
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The CLOCCS parameters corresponding to the cell-cycle
period of the mother cells (A) and the recovery time (ug)
were used for the lifeline alignment. It is important to note
that A does not necessarily represent the average cell-
cycle period of the cell population. In cases where the cells
undergo a full division, there are an equal number of mother
and daughter cells, so the average cell-cycle period is the
average between the cell-cycle period of the mother cells
(A) and the cell-cycle period of the daughter cells (A + 0);
specifically, delta (8) is the length of the daughter-specific
delay. This is the calculation that we used for the cell-cycle
period for each experiment (Table 2). For each experiment,
the corresponding parameters A and pg were then used
in the conversion function, df _conversion_from_parameters,
supplied in the Python ultilities file, as demonstrated for
Condition 2 (Figure 4A). For the budding curves, the data
were not interpolated. However, for experimental data, the
lifeline-aligned datasets were resampled using interpolation
such that each lifeline point contained interpolated data
for improved plotting. To ensure that the lifeline-aligned
datasets had the same range of lifeline points, lower and
upper lifeline limits were set to truncate the data at those
points. These lowerll and upperll parameters were input
into the df_conversion_from_parameters function when the
interpolation was set to True. For the Condition 1 comparison,
they were set to 44 and 270, respectively, for all the datasets,
and for the comparison across environmental conditions, they
were set to 50 and 300, respectively. An example use of
these functions for alignment and comparison can be seen
in the example Python notebook JOVE_example.ipynb, and
the code used for generating the figures can be seen in the
JOVE_Figures.ipynb notebook in the CLOCCS_alignment

repo.

This conversion from time points to lifeline points depends on

two formulas?’ (Figure 4A) using yg (recovery time) and A

TP
(mother period). The first formula, o X

, is the recovery
phase formula (Figure 4A).This formula is used only for
time points within the recovery phase, which consists of the
time points up to and including pg, since g corresponds to
the recovery time. The time points are then converted to a
lifeline scale range ending with 100 lifeline points (Table 1),
marking the end of the recovery phase and the beginning of

the first cell cycle. The post-recovery phase uses the second

TP —lg
formula, ~ % x 100+ 100

(Figure 4A), which converts
each subsequent post-recovery time point into a lifeline point
after 100. Each subsequent 100 lifeline points correspond to
a new cell cycle, with the first cycle corresponding to lifeline
points 100 to 200, the second cycle corresponding to lifeline
points 200 to 300, and so on (Table 1). The conversion
from time points to lifeline points is applied to each dataset
individually using the corresponding CLOCCS parameters for
that dataset. After each dataset is converted to the lifeline

scale, the cell-cycle phases are aligned, which allows for

phase-specific comparisons across datasets.

Table 3 shows the conversion of select time points into their
respective lifeline points for the representative conversion of
the Condition 2 dataset using parameters from the budding
CLOCCS run. The budding data collected from the Condition
2 RNA-seq were plotted in a budding curve showing the
percent budded over time for both the unaligned time
scale in minutes (Figure 4B) and the aligned timescale
in lifeline points (Figure 4C) using the Python function
plot_budding_curves in a Python notebook. The lifeline points
could be easily converted into experimental and cell-cycle
phase information (Table 1), and the recovery phase and

first to third cell cycles were color-coded by hand accordingly
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(Figure 4B,C). Since each lifeline point corresponded to a
cell-cycle phase, individual flow cytometry plots could be
labeled via the Python functions using the cell-cycle phase
determined by the lifeline alignment. These phases matched
with the phases determined via flow-cytometric analysis
for Condition 2. The flow cytometry data collected for the
Condition 2 dataset were plotted for select time points and
labeled using the cell-cycle phase determined from the flow
cytometry lifeline alignment. In each case, the data matched

the phase determined by the alignment (Figure 4D).

It is important to note that the expression level of each gene
for each sample remains the same, but the labeling of the
time points is altered from time in minutes to lifeline points.
However, the conversion is not linear. The recovery phase,
highlighted in gray, occupies a higher percentage of the
experimental time once the conversion to lifeline points has
been performed (Figure 4B,C). The advantage of the lifeline
scale is that it allows for detailed phase information and phase
comparisons across experiments. The phase information is
contained in the lifeline points, as described above and
displayed in Table 1. Furthermore, G1 is contained in the first
15.5 lifeline points of each cell cycle, S in the next 20 lifeline
points, and G2/M in the next 64.5 lifeline points (Table 1).
However, this artificially constrains the recovery time to the
same time span of each consecutive cell cycle, even if the
recovery phase appears very short in the original time point
scale. This does not obscure the comparisons, because the
phases of each experiment are aligned. In most cases, it is
more relevant to compare the data at points that occur at the
same experimental and biological phase rather than at time

points that occur at the same time in minutes.

Once all the experiments have been converted to the

aligned lifeline scale using the provided Python functions

in the Python utilities file, they can be compared.
Here, we demonstrate two common comparisons between
experiments: one between replicates of a similar experiment
across platforms and synchronization methods (Figure 5)
and one between different experimental conditions with a
changing period length (Figure 6 and Figure 7). As described
above, the first comparison is across two elutriated microarray
replicates and one alpha factor synchronized RNA-seq
experiment. Before alignment, the two microarray replicates
showed similar synchrony and cell-cycle dynamics, but the
Condition 1 Microarray 2 replicate appeared slightly delayed
(Figure 5A). The most striking difference was found when
comparing the unaligned datasets; the Condition 1 RNA-seq
second cycle appeared aligned with the first cycle of the
two microarray experiments. The difference was likely not
related to the different transcriptomic platforms but rather the
different synchronization methods. The cell populations in
the microarray experiments were synchronized by centrifugal
elutriation, while the population for the RNA-seq experiment
was synchronized by a mating pheromone treatment.
Indeed, synchronization with mating pheromone substantially
reduced the recovery time compared to elutriation (Figure 5A

and Table 2).

Despite the obvious differences between replicates when
plotted in terms of the elapsed time, after the lifeline
alignment, the curves were almost identical, and more
detailed and relevant comparisons across replicates were
made possible (Figure 5B). The recovery phase was aligned
so that each experiment began at the same lifeline point,
and the variations in period were normalized by lifeline
alignment. Due to the alignment, experimental values at
the same lifeline point across replicates occurred in the
same cell-cycle phase, thus enabling calculations of the

experimental variance across replicates. The recovery and
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cell-cycle phases are labeled in Figure 5B to provide
additional information about cell-cycle phases in each of the
experiments. This lifeline alignment could then be applied
to the experimental dataset (Figure 5C,D) using the Python
function df conversion_from_parameters provided in the

utilities file, as described above.

In Figure 5D, the transcriptomic data were aligned, and
the expression dynamics for the CDC20 gene were plotted
using the plot_linegraph_comparison Python function in a
Python notebook. Before alignment, it appeared as if the first
peak expression of the microarray experiments aligned with
the second peak of the RNA-seq experiment (Figure 5C);
however, after alignment, the first cell-cycle peaks of each
dataset aligned properly (Figure 5D). Furthermore, the peak
width of the experiments appeared to differ between the RNA-
seq dataset and the microarray datasets, but after alignment,

the peak width was more aligned (Figure 5C,D).

The second comparison is between experiments in different
environmental conditions with different cell-cycle periods
(Figure 6). As described above, here, we compared S.
cerevisiae datasets in Condition 1 to Condition 2 and
Condition 3, which correspond to cell-cycle periods of 71,
82, and 110 min, respectively. These differences in the cell-
cycle period introduced uncertainty when comparing across
experiments prior to cell-cycle phase alignment, as shown
in the unaligned budding curves. The period differences
are visible in the unaligned budding curves (Figure 6A).
However, when they were CLOCCS aligned using this
protocol, the three curves looked remarkably similar, thus
making comparisons of experimental data possible (Figure

6B).

Using the flow cytometry CLOCCS parameters, Condition 1

and Condition 2 were aligned to a common lifeline scale,

and DNA content histograms were plotted in Condition 2 and
at equivalent lifeline points in Condition 1. Flow cytometric
measurements of the DNA content across lifeline points were
compared (Figure 6C). As the DNA content measurements
were not continuous and not easily interpolated, we could
only compare the nearest lifeline points. The cell-cycle phase
data for each comparable lifeline point was not identical
between the two conditions (Figure 6C), which indicates
that the CLOCCS fits and resulting parameters were likely
slightly misaligned for Condition 1. This was likely due to the
poorer CLOCCS fit to the flow cytometric data for Condition 1
compared to Condition 2 (Supplemental Figure 2). However,
the alignment only deviated in one sample and, thus, still

allows for improved phase-specific comparisons.

The budding lifeline alignment was then applied to

the experimental data for the RNA-seq experiments
in Condition 1, Condition 2, and Condition 3 (Figure
7) by using the budding CLOCCS parameters in
the df_conversion_from_parameters function on the
experimental data. The transcriptomic data were aligned, and
the gene expression of the gene CDC20 for each time series
was shown for the three experiments. Prior to alignment, the
transcript dynamics of CDC20 were non-overlapping (Figure
7A). After the alignment, the first and second peaks of the
CDC20 gene expression were much more closely aligned for
all three datasets. After alignment, it became clear that the
peaks occurred in the same cell-cycle phase, but the shapes
of the curves were different (Figure 7B). Condition 3 had
a lower and broader first peak compared to the other two
conditions, even after accounting for the differences in the
cell-cycle period, suggesting that these differences were likely
related to the experimental conditions being tested (Figure

7B).
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Large-scale transcriptomic comparisons could also be made.
For these comparisons, 278 genes were selected by running
the periodicity algorithm JTK_CYCLE?3 on each dataset
and taking the intersection of the top periodic genes.
However, genes can be selected using any desired method
or from the literature. These genes were plotted in the
same order for all three conditions both for the unaligned
(Figure 7C) and the aligned (Figure 7D) heatmaps using
the plot_heatmap_comparison Python function in a Python
notebook. These heatmaps allow for hundreds of gene-
level comparisons to be made simultaneously. Comparisons
across unaligned experiments could be made regarding
the change in curve dynamics, the peak time relative to
neighboring genes, and the period length, etc. (Figure 7C).
However, detailed phase-specific comparisons could not be
made because the time points do not necessarily correlate
to the same cell-cycle phase across conditions. Although
the second cycles appeared similar after alignment, the first
cycles were slightly shifted between the conditions (Figure
7D). This shift may reflect the fact that the budding cell-

cycle phase information was of lower quality for Condition

Step 1:
Unaligned Time-series Data

Step 2and 3:
CLOCCS Parameterization

3. Nonetheless, the alignment of the experiments for the
three conditions allowed for an improved phase-specific
comparison. Prior to alignment, it was unclear whether the
first peak of expression in each condition would occur
at the same cell-cycle phase (Figure 7C); however, after
alignment, the experiments could be compared in a phase-
specific manner (Figure 7D). Prior to alignment, the peaks
in Condition 3 appeared much broader than in the other two
conditions (Figure 7C); however, after alignment, it became
clear that the peaks in Condition 3 were of similar width to the

other conditions when aligned (Figure 7D).

These representative results demonstrate the process for the
use of CLOCCS to align experiments to a common time scale.
Prior to alignment, direct time point comparisons often do not
correlate to a similar cell-cycle phase. The conversion of the
elapsed experimental time in minutes to lifeline points that
represent the cell-cycle phase allows for phase-specific and
biologically relevant comparisons between experiments at the

same point in the cell cycle.

Step 4:
Aligned Time-series Data
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Figure 1: CLOCCS lifeline alignment workflow overview. The experimental workflow for the alignment of two example

datasets using CLOCCS, followed by representative comparisons between the datasets. The major steps from the protocol
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are illustrated: the collection of unaligned cell-cycle phase and experimental data for each of the datasets (step 1), the

use of CLOCCS for the parameterization of each dataset (step 2 and step 3), the alignment of the datasets to a common
lifeline (step 4), and finally, the comparison of the cell-cycle phase and experimental dynamics (step 5 and step 6). The
unaligned cell-cycle phase data are input into CLOCCS to provide learned parameters, which are then used for alignment to
a common lifeline scale. These aligned datasets are then compared. Abbreviation: CLOCCS = Characterizing Loss of Cell

Cycle Synchrony. Please click here to view a larger version of this figure.
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Figure 2: Format of the cell-cycle phase and experimental data required for the workflow. The data required for the
workflow consist of two main components: cell-cycle phase data and cell-cycle experimental data. The cell-cycle phase
data can consist of cell-cycle budding data or flow-cytometric DNA content data for each time point in the time series. The
experimental data can take many forms, but in this case, are transcriptomic data, which consist of gene expression data for

each gene for every time point in the time series. Please click here to view a larger version of this figure.
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Figure 3: Example of results from running CLOCCS on an S. cerevisiae cell-cycle dataset. (A) A screenshot of the
CLOCCS graphical user interface with the input values and settings supplied for Condition 2 budding data. The times, the
number of unbudded cells, and the number of budded cells are input, as well as the model type, iterations, and conditions,
etc. (B) A screenshot of the resulting CLOCCS budding fit for Condition 2 under the "Predicted Fit" tab of the results. Each
datapoint has an associated sampling error bar corresponding to the 95% binomial proportion confidence intervals of the
data (for each time point, at least 200 cells were counted [between 204 and 295 cells]). The resulting budding fit curve shows
the confidence band for the 95% confidence interval of the CLOCCS fit in purple. (C) A screenshot of the resulting "Posterior
Parameters" table for the Condition 2 budding CLOCCS run consisting of the CLOCCS parameters at the mean, the 2.5%
confidence interval, and the 97.5% confidence interval. The posterior and acceptance rates are also shown. (D) A screenshot
of the flow cytometry CLOCCS fits for Condition 2 at 70 min and 150 min. Please click here to view a larger version of this

figure.
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Figure 4: Example of the conversion process from time points to aligned lifeline points for the Condition 2 dataset.
(A) The conversion formulas used to convert from time points to lifeline points. A screenshot of the Python functions in the
Python notebook for conversion and plotting the budding curves. (B) The unaligned Condition 2 budding curve showing

the budding percent for each time point in minutes. The cell-cycle and recovery phases are highlighted as follows: recovery
(gray), first cell cycle (blue), second cell cycle (magenta), and third cell cycle (salmon). (C) The aligned Condition 2 budding
curve showing the same budding percentages but plotted on the lifeline-aligned scale. The cell-cycle and recovery phases
are highlighted as in panel C. (D) The aligned flow cytometry plots for select time points from Condition 2 corresponding to
distinct cell-cycle phases based on the lifeline scale: the beginning of G1, the beginning of S-phase, the beginning of G2/M,

and late G2/M. Please click here to view a larger version of this figure.
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Figure 5: Representative results for the comparison of the aligned and unaligned Condition 1 replicate experiments.

Comparison of the Condition 1 replicates: Condition 1 RNA-seq (blue), Condition 1 microarray 1 (purple), and Condition 1

microarray 2 (gray). (A) The unaligned budding curve for the Condition 1 datasets. (B) The aligned budding curve for the

Condition 1 datasets. The lifeline points have been converted to the cell-cycle phase and are color-coded below the x-axis.

(C) The unaligned gene expression of a representative gene, CDC20, for the Condition 1 datasets. (D) The aligned gene

expression of a representative gene, CDC20, for the Condition 1 datasets. Please click here to view a larger version of this

figure.
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Figure 6: Representative results for the comparison of aligned and unaligned cell-cycle phase data across

experiments with varying periods. Comparison of the cell-cycle phase data for datasets with three different environmental

conditions and, thus, three different cell-cycle periods: Condition 1 RNA-seq (cell-cycle period: 71 min), Condition 2 RNA-seq

(cell-cycle period: 82 min), and Condition 3 RNA-seq (cell-cycle period: 110 min). (A) The unaligned budding curve for the

datasets. (B) The aligned budding curve for the datasets. (C) The flow-cytometric DNA content histograms for Condition 2

(top row) compared to the equivalent lifeline points in Condition 1 (bottom row). Please click here to view a larger version of

this figure.
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Figure 7: Representative results for the comparison of the aligned and unaligned transcriptomic data across

experiments with varying periods. Comparison of the transcriptomic data associated with the datasets in Figure

6: Condition 1 RNA-seq, Condition 2, and Condition 3. (A) The unaligned gene expression of a representative gene,

CDC20, for the Condition 1, Condition 2, and Condition 3 RNA-seq datasets. (B) The aligned gene expression of CDC20

for the datasets. (C) The unaligned heatmap of the top cell-cycle periodic genes in the same order for each dataset. (D) The

lifeline-aligned heatmaps of the same cell-cycle periodic genes from panel C in the same order. The dashed purple lines

correspond to the lifeline points 100 and 200. Please click here to view a larger version of this figure.

Table 1: Lifeline point to cell-cycle phase conversion.
The conversion key between the lifeline point scale and the
corresponding phase in the experiment. Lifeline points 0-100
correspond to recovery from synchrony. Each subsequent
100 lifeline points correspond to a new cell cycle, with the
first 15.5 lifeline points corresponding to G1, the next 20
corresponding to S-phase, and the remaining lifeline points
corresponding to G2/M. Please click here to download this

Table.

Table 2: Budding CLOCCS parameters. The resulting
budding CLOCCS parameters "lambda" and "mu0" for each

experiment from the representative results. Additionally, the

daughter-specific delay "Delta" and the calculated cell-cycle
period are shown for each experiment. Please click here to

download this Table.

Table 3: Conversion table showing the conversion
between time points in minutes and their respective
corresponding lifeline points for Condition 2. Please click

here to download this Table.

Supplemental Figure S1: CLOCCS budding fits for
Condition 1 and Condition 3. Screenshot of the resulting
CLOCCS budding fit for (A) the Condition 1 RNA seq budding
data, (B) the Condition 1 microarray 1 budding data, (C)
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the Condition 1 microarray 2 budding data, and for (D)
the Condition 3 budding data. The CLOCCS budding fit for
Condition 2 can be seen in Figure 3B. The 95% confidence
band and the sampling error bars are as described in the
CLOCCS documentation'-1%and in Figure 3. For each time
point for each time series, approximately 200 cells were

counted. Please click here to download this File.

Supplemental Figure S2: CLOCCS flow cytometry fits
for Condition 1 and Condition 2. Screenshot of the flow
cytometry CLOCCS fits for the samples shown in Figure 6C
for Condition 2 (top row: A-D) and Condition 1 (bottom row:

E,F). Please click here to download this File.

Supplemental Figure S3: Sensitivity of the alignment to
variations in the CLOCCS parameters. Comparison of the
alignment of the Condition 1 RNA-Seq dataset using (A-C)
variations in the CLOCCS parameters A and g0 within the
confidence interval of the CLOCCS fit and (D,E) with large
variations in the parameters. Comparison between the mean
value with the 2.5% and 97.5% confidence values output in
the parameter table by CLOCCS for (A) the parameter u0, (B)
the parameter A, and (C) for both parameters y0 and A. (D)
Comparison between the alignment using the mean value for
MO0 compared to large variations in the y0 parameter (200%
to 0.25% of p0). (E) Comparison between the alignment
using the mean value for A compared to large variations in
the A parameter (200% to 0.25% of A). Please click here to

download this File.

Supplemental Table S1: Description of the data collection
for each experiment. For each experiment, this table
provides a description of the budding data, flow cytometry
data, transcriptomic data, and synchronization method.

Please click here to download this File.

Supplemental Table S2: CLOCCS parameters from the
flow-cytometric CLOCCS runs. The CLOCCS parameters
"mu0" and "lambda" for the Condition 1 and Condition 2 flow
cytometry CLOCCS runs. Please click here to download this
File.

Supplemental File 1: Instructions for the conversion of
the flow-cytometric data into CLOCCS input format. For
the use of CLOCCS with flow-cytometric data, a specific
input format is required. This file provides more detailed
instructions regarding protocol step 3.4.1 to explain how to
use the Python utility functions to perform this conversion.

Please click here to download this File.

Discussion

This paper presents a method for more accurately and
quantitatively assessing data from time-series experiments
on synchronized populations of cells. The method utilizes
learned parameters from CLOCCS, a Bayesian inference
model that uses input cell-cycle phase data, such as
budding data and flow-cytometric DNA content data, to
parameterize each experiment14'15. CLOCCS uses the input
cell-cycle phase data to infer the parameters for each
experiment, which are then used for alignment to a common
lifeline scale. Converting multiple synchrony/release time-
series experiments to a single lifeline-aligned time scale
allows for phase-specific and relevant comparisons between
experiments and the aggregation of multiple replicate

experiments, which were previously difficult or impossible.

The critical steps of this protocol include gathering the data,
running CLOCCS, aligning the datasets, and comparing
across the datasets. First, data must be gathered for use
in this protocol. The data must consist of both experimental
data-containing information regarding the question of interest

(i.e., transcriptomic data, gene-expression data, proteomic
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data)-and cell-cycle phase data-containing information on the
phase of the cell cycle (i.e., budding data, flow-cytometric
DNA content data). Then, the cell-cycle phase data can be
used in CLOCCS to gather the parameter information for each
experiment. The parameters pg (recovery phase length) and A
(mother cell-cycle period) are used to convert the time points
into lifeline points. The lifeline point alignment allows for the

aligned time series to be directly compared.

One limitation of the method is that proper alignment is
dependent on identifying a good fit to the data. Achieving
the best CLOCCS fit relies on the quality of the cell-cycle
phase data and the use of the correct input settings for
the experiment in CLOCCS. The fit to the cell-cycle phase
data determines the accuracy of the learned parameters
and, thus, greatly impacts the accuracy of the alignment,
because it depends on the use of these parameters. As broad
changes in the parameters would greatly affect the alignment,
the changes remain minimal within the confidence interval
supplied in the CLOCCS output (Supplemental Figure S3).
It is important to note that this sensitivity to variations in
the parameters is also what allows for alignment between

datasets with varying cell-cycle timing.

The accuracy of the CLOCCS fit can be determined using
the resulting CLOCCS fit curve and the corresponding error
bars and error band (Figure 3B,D, Supplemental Figure S1,
and Supplemental Figure S2). The CLOCCS fit tab shows
the original data points, as well as the CLOCCS fit curve with
the confidence band corresponding to the confidence interval
of the CLOCCS fit and the error bars corresponding to the
95% binomial proportion confidence interval of the data, since
the counts are assumed to be independent binomial random

variables'4. For example, the confidence bars on the budding

data measure the confidence in the proportion of budded cells

for a given sample.

One method for determining the quality of the CLOCCS
fit involves determining whether the error bars of the data
overlap with the confidence interval band of the CLOCCS fit.
Another indication is the broadness of the 95% confidence
band of the CLOCCS fit. In general, the width of the band
decreases with increased goodness of fit. An indication of
poor alignment is if the cell-cycle phase of the original
data does not match with the cell-cycle phase inferred from
the alignment. Each alignment can be double-checked by
confirming that for, each time point, the phase indicated by
the cell-cycle phase information data matches with the cell-

cycle phase assigned by the alignment.

A poor CLOCCS fits or poor alignment could be the result of
low-quality cell-cycle phase data. High-quality budding data
will have a very low budding percentage immediately after
arrest and a very high budding percentage at the first peak.
The subsequent peaks and troughs will lose synchrony but
should be distinct and evenly spaced. Since the lifeline points
represent the average cell-cycle phase of the population, poor
synchronization can impede proper alignment as well. High-
quality flow-cytometric DNA content data will have distinct
1C and 2C peaks for each time point corresponding to
the appropriate cell-cycle phase. Additionally, insufficient
cell-cycle phase data introduces parameter identifiability
problems. In the case of sufficient data, the parameters
can be inferred and do not change substantially between
CLOCCS runs. However, the parameters described in this
protocol (lambda, delta, mu0) cannot be disentangled when
the cell-cycle phase data contain only one full cell cycle.
To allow for improved parameter estimation, sufficient and

well-constructed cell-cycle data should be used for the
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CLOCCS fits'* 12, Furthermore, the CLOCCS model uses
prior information as described in Orlando et al.!®, but this
information can be adjusted to better suit the experimental

conditions used.

If the quality of the cell-cycle phase data is good, then re-
adjusting the CLOCCS settings may help produce a more
accurate fit. For example, the number of iterations selected
could be increased to improve accuracy. Confirming that the
correct synchronization method was selected in CLOCCS can
also be useful, since alpha factor arrest is associated with a

shorter recovery time compared to elutriation.

This method is also limited in terms of the types of cell-
cycle phase data currently supported. However, CLOCCS
is flexible and can be adapted to support other types of
data. For example, CLOCCS has previously been adapted
to support the cell-cycle fluorescent labeling of spindle pole
bodies, myosin rings, and nuclei'! for use as cell-cycle phase
identifiers. Furthermore, the use of CLOCCS with species
other than S. cerevisiae has been made possible. CLOCCS
accepts septation indices as a marker for the cell-cycle phase
in S. pombe14, as well as flow-cytometric DNA content data,
which are easily collectable for many species15. This allows
for the comparison of experimental data at the same phase
of the cell cycle for two completely different species and can

give insights into changes in the cell cycle across evolution.

Though only supported forms of cell-cycle phase data can
be used with this lifeline alignment method, this method
is agnostic to the type of time-series experimental data
used. In this protocol, we have demonstrated its use in
aligning the gene expression of an individual gene, as well
as time-series transcriptomic data for hundreds of genes
in tandem. We have shown that this method can be used

to compare across platforms and, thus, make comparisons

between RNA-seq datasets and microarray datasets taken
in similar conditions. We have also shown that this method
can be used to align datasets with different synchronization
methods by comparing between a dataset that was elutriated
(Condition 1 Microarray) with a dataset that was alpha factor
arrested (Condition 1 RNA-seq). Previously, CLOCCS has
also been used to align time-series transcriptomic and time-
series proteomic data using budding cell-cycle phase data??,
which allowed for direct comparisons between the mRNA
dynamics and the dynamics of the corresponding protein.
CLOCCS has also been used to align time-series data across
species, such as for alignment between S. cerevisiae and
S. pombe14 and between the first cycle of S. cerevisiae and
the pathogenic yeast Cryptococcus neoformans?®'. Finally,
CLOCCS alignment is currently specific for cell-cycle time-
series data and has not yet been adapted for use with other
types of rhythmic processes. One area where this would be
of particular interest is for circadian rhythms, where circadian
time (CT) is conventionally used to align experiments,
though its implementation is not consistently applied. Another
area of interest is for investigating developmental rhythms,
such as those of the malaria parasite. For example, the
alignment of Plasmodium falciparum strains with different
periods, as described in Smith et aI.25, would allow for
more detailed comparisons across strains. The alignment of
these periodic processes for comparison would allow for a
better understanding of these important rhythmic biological
functions. These types of cell-cycle comparisons have been
made possible by using CLOCCS for lifeline alignment, as

described in this protocol.
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