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A B S T R A C T

Modeling biological systems holds great promise for speeding up the rate of discovery in systems biology by
predicting experimental outcomes and suggesting targeted interventions. However, this process is dogged by an
identifiability issue, in which network models and their parameters are not sufficiently constrained by coarse
and noisy data to ensure unique solutions. In this work, we evaluated the capability of a simplified yeast
cell-cycle network model to reproduce multiple observed transcriptomic behaviors under genomic mutations.
We matched time-series data from both cycling and checkpoint arrested cells to model predictions using an
asynchronous multi-level Boolean approach. We showed that this single network model, despite its simplicity,
is capable of exhibiting dynamical behavior similar to the datasets in most cases, and we demonstrated the
drop in severity of the identifiability issue that results from matching multiple datasets.

1. Introduction

The promise of modeling complex molecular systems is that the rate
of discovery of important mechanisms can increase through targeted
experimentation informed by model predictions. However, a large bar-
rier to the fulfillment of this promise is an unavoidable identifiability
problem. That is, multiple modeling frameworks are capable of describ-
ing (generally coarse and noisy) data to a sufficient degree that the
underlying system mechanisms cannot be distinguished computation-
ally. Moreover, even if the ‘‘true’’ model could be identified, the high
dimensionality of parameter space and sparse data generally permit
many acceptable solutions to the data fitting problem, i.e., practical
non-identifiability [1]. The uncertainty of system parameters means
that predicted responses to perturbations have high uncertainty as well,
slowing down the iterative exchange between model and experiment
through loss of accuracy.

However, there is another way to view non-identifiability, and that
is as a measure of robustness of a network model with regard to a
particular dynamical behavior. In other words, if a model is perturbed
to a different parameterization and yet maintains the observed dy-
namical behavior, the model is robust to that particular perturbation.
A quantification of non-disruptive parameter perturbations could then
serve as a measure of robustness of the network model with respect to
a dynamical behavior. We adopt this perspective in this manuscript.
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It would be tempting to optimize network models on this criterion
of robustness and choose the highest-ranking networks as the most
plausible models of a biological system. However, evolution involves
a multi-objective optimization in which different objectives can be
in conflict. Particularly relevant to our discussion in this paper is
the trade-off between robustness and controllability. Genetic and/or
protein networks that control various cellular processes may need
to have different dynamical behaviors under different environmental
conditions; i.e., the network’s dynamical behavior can be controlled
by external factors. Therefore, it is not clear that the most robust
network models are the best hypotheses for all systems, given that some
level of controllability is often desirable. We claim that the expression
of different dynamical behaviors induced by the controllability of a
genetic network permits a meaningful reduction in the parameter space
of a network model.

In this manuscript, we introduce a computational methodology via
an example that leverages observations of distinct dynamical behaviors
to reduce parameter space. We model a small yeast cell-cycle regulatory
network along with a single control point, and match model predictions
to multiple experimental datasets that represent different dynamical be-
haviors under different perturbations with direct or indirect effects on
the activity of the control point. The example demonstrates the extreme
reduction in parameter space that can be achieved by incorporating the
results of a broad array of genetic perturbations at a control point.
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Models for the mechanisms controlling cell-cycle progression have
evolved over time. Early biochemical studies in marine invertebrates
identified cyclins and cyclin dependent kinases (CDKs) as key regulators
of cell-cycle oscillations along with the anaphase promoting complex
(APC) (a ubiquitin ligase) [2–4]. By forming a negative feedback loop,
it was hypothesized that this simple cell-cycle network was capable
of producing periodic behavior [5,6]. Genetic studies in both Sac-
charomyces cerevisiae and S. pombe also identified cyclins, CDKs, and
APC complexes as critical regulators of cell-cycle progression, indi-
cating that machinery was highly conserved across phyla and that
these components are the basic components of the cell-cycle oscillator
[7–10]. Cell-cycle models became more complex over time and mount-
ing evidence indicated that oscillations of cell cycle events could con-
tinue when the CDK/APC motif was prevented from oscillating [11].
The advent of genome technologies identified large programs of dy-
namic gene expression associated with the cell cycle, and new models
emerged suggesting the importance of transcriptional networks on
producing cell-cycle oscillations [12–15].

Although ODE models of the yeast cell-cycle that are focused pri-
marily on biochemical interactions have been remarkably predictive
of mutant phenotypes [16], there is a compelling argument that tran-
scription factors (TFs), cyclin-dependent kinases (CDKs), and ubiquitin
ligases all play key roles in regulating cell-cycle progression [17].
Multiple studies have demonstrated that temporally ordered, high-
amplitude transcript dynamics were present in budding yeast with
non-oscillating levels of CDK [13,17–20] indicating that the CDK/APC
oscillator identified in early embryonic systems may not be the core
motif driving periodic behavior during the yeast cell cycle.

In 2016, the Cross group disputed the claim that the mitotic
CDK/APC may be dispensable for cell-cycle oscillations in yeast, sug-
gesting that in cyclin mutant strains in previous experiments incom-
pletely eliminated mitotic cyclin (Clb1) and that undetectable Clb1
oscillations were driving the observed oscillations [21]. A thorough
rebuttal of claims from Rahi et al. [21] were detailed by Cho et al. [17]
and will not be reproduced here. However, in a strain where the
authors eliminated all mitotic cyclins (Clb2 in their strain) as well
as G1 cyclins, a strikingly similar transcriptional wave moving from
G1 to mitosis was observed, indicating that transcriptional dynamics
can progress through the ordered phases of the cell-cycle without
periodic input from CDK [21]. Thus, a substantial portion of cell-cycle
transcriptional dynamics can be uncoupled from cell-cycle progression
and that dynamical behavior is worth modeling.

The ability to uncouple cell-cycle progression from transcriptional
progression suggested the existence of a mechanism(s) to prevent this
decoupling during physiological arrests. In 2014 we demonstrated that
the DNA replication checkpoint and the spindle assembly checkpoint
both act directly on the transcription machinery to halt transcriptional
dynamics [18]. Here we explicitly model checkpoint activation and ask
whether the model output fits the data.

Regardless of this conflict, much of the cell-cycle modeling efforts
have focused on biochemical interactions of cyclins, CDKs, APC, and
their regulators without explicit regard for the periodic synthesis of
these components (e.g. [16]). This convention likely stems from the
initial biochemical assessments of oscillations and the cell-cycle oscil-
lator in early embryonic systems where there is very little transcription,
and synthesis of cell-cycle regulators comes from large maternal stores
of mRNA. This framework was extrapolated to somatic cells and yeast
despite the substantial cell-cycle remodeling as cells transition from
very rapid embryonic divisions driven by maternal stores of mRNAs
to substantially slower divisions driven by periodic transcription of
cell-cycle regulators [22].

More recent work interrogated the transcriptional network model
by mutating network components and assessing system-wide pheno-
types [19]. The results suggest that a pulse-generating TF network
containing an oscillatory mechanism was responsible for a transcrip-
tional pulse that was thought to drive global phase-specific transcrip-
tion. The pulse generator seems to operate in a start–stop manner,

where the network is first quiescent and then, after receiving a start
signal, creates a wave of sequential transcription through the network
which is hypothesized to be driven by the interaction of CDKs with
a TF network [13,18,19]. Reactivation of the pulse generating motif
is actively inhibited by the expression of transcriptional repressors
until the end of the cell cycle when they are actively degraded by
the APC [19]. The transcriptional pulse driving progression through
the cell cycle operates consistently, meaning that the gene products
express in a stereotyped order [19,23], and the timing and robustness
of this periodic transcription was affected when G1-CDK activities were
depleted, knocked out, or up-regulated, creating a weaker and less
robust cycle [20]. It is important to note that periodic transcription,
while weaker and less robust, was still present in some of the mutants.
Therefore, the dynamics expressed by any hypothesized network model
should exhibit oscillations under both wild-type (WT) and CDK mutant
phenotypes.

Synchronous and autonomous Boolean models of yeast cell-cycle
networks containing TFs and CDK have produced robust oscillatory
behavior [13,24], but more sophisticated dynamical models that match
observed dynamics (including transcriptional dynamics) across wild-
type and mutant strains have not been reported. Moreover, these
models have not addressed the observation that certain environmen-
tal perturbations (e.g. DNA damage or spindle assembly defects) can
reversibly arrest the cell cycle until damage is repaired.

To jointly address these modeling gaps, we employ a type of asyn-
chronous multi-level Boolean approach [25] called Dynamic Signatures
Generated by Regulatory Networks (DSGRN) [26–28]. The DSGRN
software package can exhaustively compute all of the qualitative dy-
namics a genetic regulatory network (GRN) can produce, allowing for a
comprehensive description of potential network behaviors across high-
dimensional parameter space. DSGRN is organism-agnostic and system-
atic, precluding the need for deep biological expertise. It has been used
to model and predict genetic network behavior in biological systems
similar to the yeast cell cycle, such as the epithelial-to-mesenchymal
transition in cancer [29] and the Rb-E2F mechanism of the mammalian
cell cycle [30]. Because of its comprehensive description of network
dynamics, DSGRN is tailored to the discovery of small regions of
parameter space where multiple dynamical behaviors are predicted to
occur. These predictions can be matched to experimental observations,
focusing attention on regions of parameter space that are hypothesized
to be biologically relevant, and that can be quite small in relation to the
entirety of parameter space. DSGRN overcomes the possibility that such
regions will be missed, as is likely when using the sampling techniques
employed in the traditional ODE modeling paradigm.

Identifying promising parameter regions using DSGRN permits the
construction of parameterized Hill models from parameter sampling
restricted to this (much) smaller region of parameter space. The transla-
tion of Boolean (or multi-level Boolean) models into systems of ODEs is
well studied. It is known that every monotone Boolean function model
of a genetic regulatory network can be written as a K-system [25],
which is a collection of piecewise constant ODEs [31]. Special cases of
K-systems can be written as switching ODE systems with algebraic con-
straints (i.e., DSGRN) [25,27], which themselves are approximations
of Hill ODE models [32]. Furthermore, there is a recent simulation
study [33] comparing DSGRN output to the Hill model approach of
RACIPE [34]. Outside of our group, there are other approaches to
building continuous models from Boolean systems, e.g. [35–37], as well
as simulation studies comparing Boolean and continuous models [38].

DSGRN model validation and robustness quantification uses only
coarse information from transcriptomics time series. In particular,
model predictions are not required to exactly match observed tra-
jectories, but rather large features of time series data are conserved
across parameters, particularly transcriptional oscillatory behavior and
checkpoint behavior. We remark that the robustness of checkpoints and
the G1 cell cycle phase was previously explored in [39] for a yeast cell-
cycle network model without the pulse generation module from [19]
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that is hypothesized to generate transcriptional oscillations. The def-
inition of robustness in [39] is different than in the treatment here,
mostly concentrating on the size of basins of attraction of cell-cycle
states, rather than on non-local parameter non-identifiability.

In Section 2, we describe the network model we explore, experi-
mental observations of seven datasets, and the desired model output
in a DSGRN frame of reference. In Section 3, we report the dramatic
reduction in parameter space achieved by matching network model pre-
dictions to the seven datasets. In Section 4, we discuss the significance
of our findings, and in Section 5, we present detailed methods.

2. Network modeling approach

In this section, we discuss the evidence-based network model that
we check for consistency with multiple wild-type and mutant datasets.
Each of these datasets exhibits a cellular phenotype, namely, the cell
cycle is either progressing or arrested. This cellular phenotype is some-
times uncoupled from the transcriptional phenotype, that in some mu-
tants can be progressing while the cellular phenotype is arrested [11,
13,18–20]. We distinguish between these cellular phenotypes and tran-
scriptional phenotypes based on wild type and mutant microarray and
RNAseq time series datasets from [13,17–19]. Transcriptional pheno-
types consist of observed cycling or steady equilibrium behavior seen
in the time series. We also define dynamical phenotypes based on DSGRN
predictions of network model dynamics that allow us to determine
model consistency with the data. Dynamical phenotypes are graphs
produced by DSGRN that describe stable or unstable cycling behavior as
well as equilibria. In order to be declared consistent with the observed
data, a network model must be able to reproduce cyclic patterns in WT
and mutant data and needs to support the arrest of cycling behavior
during a triggered checkpoint.

2.1. Cell-cycle network models

Most mathematical models of the cell-cycle have aimed to explain
cellular phenotypes related to the ordered progression of cell-cycle
events such as bud emergence, DNA replication and mitosis. The goal
of our modeling exercise was to address the cell-cycle transcriptional
phenotypes of wild-type and mutant cells that have been largely un-
explored by previous dynamical cell-cycle models. Thus, our choice
of network models must accommodate these transcriptional pheno-
types by explicitly modeling control of cell-cycle transcription. Gene
Regulatory Network (GRN) models must represent relevant regulatory
connections between transcription factors and other transcription fac-
tors as well as transcription factors and other cell-cycle regulators
(e.g. cyclin genes). Although cell-cycle network models such as that
described by Chen and colleagues include some of the known cell-
cycle machinery, they lack many of the well-established transcriptional
connections and thus are unable to capture the transcriptional be-
haviors we seek to explain by modeling [16]. This is also true of
the textbook models of the yeast cell cycle [40]. In Fig. 1 (Left) as
well as in previous publications, we have attempted to capture both
relevant biochemical and transcriptional relationships in the cell-cycle
network. The network simplification depicted in Fig. 1 (Right) aims to
capture the relevant transcriptional connections that are appropriate
for describing transcriptional phenotypes.

A network oscillator model [17] representing a collection of reg-
ulatory interactions hypothesized to be capable of exhibiting multiple
cell-cycle behaviors is visualized as a cell-cycle GRN in Fig. 1 (Left). The
edges in the cell-cycle GRN reflect different regulatory mechanisms.
A TF regulates another TF or CDK through transcriptional control
of gene products. A CDK regulates another CDK or TF only when
bound in a cyclin/CDK complex (post-transcriptional control). Once
assembled, the complex is able to phosphorylate the target protein,
which can have either an activating or inhibiting effect depending
on the target. In Fig. 1, black arrows indicate activation, red arrows

Table 1
Proxy choices for the simplified cell-cycle network.
SCC network proxy sets

Proxies SCC nodes

SBF Nrm1/Yox1 SFF Clb2 Swi5

Swi5-Nrm1 Swi4 Nrm1 Ndd1 Clb2 Swi5
Swi5-Yox1 Swi4 Yox1 Ndd1 Clb2 Swi5
Ace2-Nrm1 Swi4 Nrm1 Ndd1 Clb2 Ace2
Ace2-Yox1 Swi4 Yox1 Ndd1 Clb2 Ace2

indicate inhibition, solid arrows indicate transcriptional control, and
dashed arrows post-transcriptional control.

While the CDKs and TFs identified in Fig. 1 (Left) are impor-
tant for progression of the cell cycle, some research has focused on
investigating the importance of smaller subnetworks [13,18,19]; for
example, concentrating on the impact that Clb2 activity has on its
targets and the progression of the transcriptional program. We continue
along these lines by computationally investigating a small network
derived from the cell-cycle GRN. We will refer to this network as the
simplified cell-cycle GRN, or SCC network, seen in Fig. 1 (Right). We
remark that although post-transcriptional interactions are modeled, the
differences between transcriptional and post-transcriptional regulation
are not modeled; however, see the recent advance in DSGRN [41]
that incorporates the processes of ubiquitination and phosphorylation.
We instead model under the assumption that the activity of Clb2 is
well-correlated with its abundance, and we use transcript abundance
data as a proxy for protein abundance. These data are known to be
well-correlated [42].

Not all nodes in the cell-cycle GRN are associated to a unique TF or
cyclin/CDK; in some cases the node refers to a complex of TFs or cyclins
and CDKs. (By convention, the name of a complex of proteins has all
letters capitalized, the name of an individual protein has only the first
letter capitalized.) As is clear from the presence of these complexes and
boxed TFs in Fig. 1, multiple choices are available for data representing
each node for the SCC network. We evaluated model consistency with
the data for each of the proxy sets listed in Table 1.

The SCC network model was partially chosen for computational
tractability and many nodes and edges from the cell-cycle GRN are
absorbed or disregarded. The choices we made have some dynamical
justification based on network topology. The self-edge on SBF comes
from the length three path from MBF/SBF to itself through Cln1/2 and
Whi5 in Fig. 1 (Left). Since there is a double repression, this indirect
self-regulation is activating. Likewise, the edge from Swi5 to SBF in the
SCC network is a collapsed path through double repression in Cln3 and
Whi5. The Hcm1 node in the linear transmission array is absorbed into
SFF, since it has no other dynamical significance. The APC-Cdc20 off
switch and Sic1 and APC-Cdh1 regulation are absorbed into the decay
and activity parameters for Clb2. The removal of Cdc14 is justified since
its impact on Swi5/Ace2 can be viewed as an indirect effect of SFF,
which already has a parallel direct edge to Swi5/Ace2.

Lastly, the subnetwork of SCC excluding Clb2 that consists only
of the four nodes SBF, SFF, Swi5/Ace2, and Nrm1/Yox1 is important
in its own right for parameter reduction. We will refer to it as the
transcription factor oscillator subnetwork, or TFO subnetwork.

2.2. Transcriptional phenotypes

We describe seven different transcriptional phenotypes expressed
in seven datasets. The transcriptional phenotypes are called WT, Clb2
OFF, Clb2 ON, Clb2 intermediate-low (INT-L), Clb2 intermediate-high
(INT-H), spindle assembly checkpoint (SAC), and DNA replication
checkpoint (DRC). Their relationships to datasets and cellular pheno-
types is shown in Table 2.

The wild-type (WT) microarray dataset comes from [13] where
genome-wide transcription was analyzed for S. cerevisiae. The WT
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Fig. 1. (Left) A proposed cell-cycle GRN, or network oscillator, corresponding to Fig 7 A in [17]. The timing of the activity of the network nodes is given by the linear arrangement
of cell cycle phases (G1, S, G2/M) at the base of the figure. (Right) The simplified cell-cycle GRN (SCC network) that attempts to capture important features of multiple datasets.
We call the subnetwork without Clb2 the TF oscillator subnetwork (TFO subnetwork), consisting of nodes SBF, SFF, Swi5/Ace2, and Nrm1/Yox1. Black arrows indicate activation,
red blunt arrows indicate repression, dashed lines represent post-transcriptional interactions and solid lines represent transcriptional interactions. Notice that dashed lines are not
included on the right, because we do not explicitly model post-transcriptional modification in this paper.

Table 2
The mapping between dynamical and transcriptional phenotypes and their associated datasets[13,17,18].
Dataset Transcriptional phenotype Cellular phenotype Dynamical phenotype

WT WT cycling Normal cell cycle I: WT cycling
cdc20� Clb2 ON with TF cycling Metaphase-to-anaphase arrest II: mutant cycling
clb� Clb2 OFF with TF cycling G1/S arrest II: mutant cycling
cdc14-3 Clb2 INT-H with TF cycling Mitotic exit arrest II: mutant cycling
cdc15-2 Clb2 INT-L with TF cycling Mitotic exit arrest II: mutant cycling
cse4 SAC steady state Metaphase-to-anaphase arrest III: checkpoint arrest
cdc8 DRC steady state G1/S arrest III: checkpoint arrest

dataset acts a baseline for the dynamics present within the cell cycle.
Oscillations were seen in transcription factors and in cyclins both
modeled in the cell-cycle GRN as well as outside it.

The Clb2 OFF mutant is a clb� mutant in which all mitotic cyclin
genes clb1-6 are disrupted [13]. The cellular phenotype corresponding
to this transcriptional phenotype is arrest at the G1/S border. The
Clb2 ON mutant is a cdc20� depletion mutant [18]. This knockout
leads to cells arrested at the metaphase-to-anaphase border in mitosis
containing high levels of non-oscillating Clb2 protein. The two mutant
phenotypes with intermediate Clb2 expression are identified with the
cdc14-3 and cdc15-2 mutants from [17]. It was observed that the
temperature sensitive cdc14-3 and cdc15-2 mutants arrest at mitotic
exit and had moderate levels of non-oscillating Clb2 activity [19,43],
with cdc14-3 cells having more Clb2 than cdc15-2. We accordingly
name the corresponding phenotypes Clb2 INT-H and Clb2 INT-L. In all
four of these mutant datasets, transcriptional oscillations were observed
despite steady levels of Clb2.

We identify the SAC transcriptional phenotype from cells with a cse4
mutation that disrupts spindle assembly and triggers the Spindle As-
sembly Checkpoint (SAC) [18]. The DNA replication checkpoint (DRC)
transcriptional phenotype was collected from a cdc8 mutant [18] that
disrupts thymidylate kinase activity, thus inhibiting DNA synthesis [44]
and causing arrest at the G1/S border. In both cases, transcriptional
oscillations are silenced and the resulting steady states serve as the
transcriptional phenotypes.

2.3. Dynamical phenotypes

Dynamical phenotypes can be observed in data, but are more pre-
cisely defined using modeling approaches. In the traditional ODE mod-
eling paradigm, a mechanistic model is constructed, often using Hill
functions in the GRN setting, and numerous parameters are either fit

to data or drawn from the literature. Frequently, a sensitivity analysis
is performed to check the variability of model output to small pertur-
bations in parameters. This approach, while valuable, has limitations.
First, only a small fraction of parameter space can be explored, and
second, the large number of parameters can lead to overfitting. We offer
an alternative framework in which large regions of parameter space are
excluded as unable to produce the desired dynamical behavior using
a multi-level Boolean modeling approach. After identifying a reduced
parameter space, parameterized Hill models can be created to replicate
the desired behavior.

The modeling framework Dynamical Signatures Generated by Reg-
ulatory Networks (DSGRN) [26–28] is based on an ODE system with
switching functions (Section 5.1) that leads to a fundamentally differ-
ent approach. First, DSGRN provides a searchable database of coarse
dynamics over the entirety of parameter space (Sections 5.2–5.4). This
is possible because DSGRN divides parameter space into a finite number
of regions, each called a DSGRN parameter node. The coarse dynamics
are given by a collection of discrete transitions captured in a state
transition graph. Any real-valued parameter set sampled from a fixed
DSGRN parameter node will have the same state transition graph.
Second, DSGRN uses only coarse information from a time series dataset,
which avoids overfitting.

DSGRN output contains information on the number and type of
fixed points (equilibria) and oscillations that the network can exhibit at
a given DSGRN parameter node. The fixed points identified by DSGRN
are not quantitative, they only indicate whether the associated gene
product is predicted to have high, low, or intermediate concentrations.
Likewise, cycling behavior is not modeled by a smooth trajectory, but
rather a sequence of maxima and minima for each gene’s expression
level.

Model consistency in cycling behavior is determined by what we call
a pattern match (Sections 5.5–5.6) between the sequence of maxima
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Table 3
The fixed points representing the SAC and DRC based on the comparison between the WT dataset and the cse4 and cdc8 datasets, respectively
(see Fig. 2).
Checkpoint Proxies Swi4 Nrm1/Yox1 Ndd1 Swi5/Ace2 Clb2

SAC All proxy sets Low Low High High Intermediate/high

DRC Yox1 proxy sets Low Low High High Intermediate/high
Nrm1 Proxy sets Low High High High Intermediate/high

and minima predicted by a network model and the observed sequence
of maxima and minima for each gene in the data. Model consistency
for a fixed point involves a judgment call on whether gene expression
is best described as high, low, or intermediate at the time when steady
behavior is observed. For both types of model consistency, the pro-
portion of DSGRN parameter nodes that exhibit the observed behavior
indicates how robustly the network model recapitulates the data. We
remark that increased robustness, as measured by model consistency
with the data across an enlarged number of parameter nodes, implies
greater non-identifiability of the network model.

Each DSGRN parameter can be decomposed into a collection of
independent DSGRN factor parameters, one per node in a GRN. In the
SCC network (Fig. 1 Right), we will distinguish between the DSGRN
factor parameter for Clb2 (the Clb2 parameter, Section 5.3) and the
collection of remaining DSGRN factor parameters, which we call the
TFO subnetwork parameter. In particular, we explore the behavior of
the SCC network as the Clb2 factor parameter changes, but the TFO
subnetwork parameter remains fixed, mimicking a control mechanism
of Clb2 on the TFO subnetwork.

We defined three different dynamical phenotypes based on DS-
GRN output that are intended to represent important features of the
experimental data and associated transcriptional phenotypes; see the
correspondence in Table 2. Dynamical phenotype I (WT cycling) is a
pattern match to the wild-type data within a stable DSGRN cycle. This
phenotype is roughly analogous to ensuring similar phase relationships
between expression levels that are robust to small perturbations. We
identify the DSGRN parameter nodes at which consistency with the WT
cycling in the data occurs.

Dynamical phenotype II captures Clb2 mutant cycling in which only
the expression levels in the TFO subnetwork are stably oscillating.
In addition, we seek DSGRN parameter pairs that differ only in the
Clb2 parameter, where one shows WT cycling and the other shows
mutant cycling. In other words, the TFO subnetwork parameter is fixed
while the Clb2 parameter varies, and there is a pattern match to two
different datasets. The implication of the existence of such a pair of
DSGRN parameters is that the TFO subnetwork is predicted to operate
independently of changes to Clb2.

In dynamical phenotype III (checkpoint arrest), we identified DS-
GRN fixed point (FP) surrogates of the SAC and DRC equilibria. We
examined the data in [18] for the cse4 mutant (SAC), and the cdc8
mutant (DRC) and assigned qualitative equilibrium values, see Fig. 2
and Table 3. Qualitatively high was assigned when the endpoint of
a gene transcript level in mutant time series was substantially above
50% maximum WT transcript level. Similarly, low was assigned for
endpoint mutant transcript levels substantially below 50% maximum
WT. Intermediate was assigned in the remaining cases, where endpoint
mutant transcript levels were in the neighborhood of 50% maximum
WT. We remark that all seven datasets were normalized together to
permit such comparisons (see Data Availability).

The SAC FP is given in Table 3, first row. Notice that Clb2 expression
levels are largely indeterminate since they have not achieved steady
state by the end of the time series. For the DRC mutant in Table 3
second row, the SAC and DRC FPs are identical when considering both
Yox1 proxy sets, indicating that the SCC network has an insufficient
diversity of nodes to distinguish between the two checkpoints. For the
Nrm1 proxy sets, the fixed points differ at the Nrm1 value, where
the SAC exhibits low Nrm1 activity and the DRC exhibits high Nrm1
activity.

As in mutant cycling, we checked for the existence of DSGRN
parameter node pairs where one showed WT cycling and the other
a SAC/DRC FP with the same TFO subnetwork parameter. Unlike in
mutant cycling, the arrest at a checkpoint in phenotype III indicates
different dynamical behavior in the TFO subnetwork as compared to
WT. Therefore, the existence of such a pair indicates that regulation
through Clb2 alone is sufficient to control entry into a checkpoint
within the SCC network model without additional external regulation
at other network nodes. It is important to stress that this does not
exclude the existence of other regulators in a larger network in the
cell; it merely indicates that the SCC network model as constructed can
replicate the mutant phenotype of interest.

3. Results

We assess the consistency of the predictions of the SCC network
model with the datasets by checking for the existence of the DSGRN
dynamical phenotypes at a collection of DSGRN parameters. The num-
ber of DSGRN parameter nodes for the SCC network is quite large:
275 466 240 total. We first divide DSGRN parameters into five distinct
groups as described below (see Section 5.3 for technical details). This
division of DSGRN parameter space is based solely on the Clb2 DSGRN
factor parameter, and not on the TFO subnetwork parameter.

A full 60% of DSGRN parameter space allows for changing levels
of Clb2 and therefore has the capacity for exhibiting the wild-type
cycling phenotype. The remaining 40% of DSGRN parameter space is
composed of parameters that have a fixed value of Clb2, with 10%
each at high, low, and intermediate-high/low. These correspond to
the mutant cycling dynamical phenotypes. We enforce that the SCC
network model predictions can only be consistent with the Clb2 mutant
datasets at the appropriately assigned parameters for Clb2 ON (fixed
high), OFF (fixed low), INT-H (fixed intermediate high), and INT-L
(fixed intermediate low). The checkpoint datasets do not provide any
a priori parameter constraints and consistency is assessed over 100% of
DSGRN parameter space (checkpoint arrest phenotypes). The subsets
of DSGRN parameter nodes over which matches to given datasets are
searched are called phenotype-permissible parameters. In particular, WT
cycling phenotype-permissible parameters comprise 60% of parame-
ter space, mutant cycling phenotype-permissible parameters comprise
10% of parameter space each, and checkpoint phenotype-permissible
parameters are unconstrained.

Our results are reported as proportions over subsets of DSGRN
parameter space. Dynamical phenotype I results are the percentages
of WT cycling matches over 60% of parameter space. From this set of
DSGRN parameters, the number of unique TFO subnetwork parame-
ters was extracted and used as the normalization term for dynamical
phenotypes II and III. This was justified because we sought to discover
regions of parameter space where a change in Clb2 was the only impact
on the network behavior; therefore, we looked for TFO parameters that
showed WT cycling and matched at least one other phenotype.

3.1. Dynamical phenotype I: Wild-type cycling

The purpose of dynamical phenotype I is to show that the SCC
network model can match the normal function of the cell cycle, namely
the experimental WT dataset, by identifying the percent of phenotype-
permissible DSGRN parameter nodes that can be pattern matched in a
stable cycle. Table 4 shows that the proxy sets have WT pattern matches
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Fig. 2. (a) and (d) The transcript levels for proxy sets in the cdc8 mutant exhibiting DRC arrest. (b) and (e) The transcript levels for proxy sets in the WT data. (c) and (f) The
transcript levels for proxy sets in the cse4 mutant exhibiting SAC arrest. The datasets have been jointly normalized and WT data is in the middle to facilitate comparison with
both checkpoint datasets.

Table 4
Dynamical phenotype I: wild-type cycling results. The raw number of
matches and the corresponding proportion of phenotype-permissible
parameters are shown in columns 1 and 2. Column 3 shows the number
of distinct TFO subnetwork parameters within the WT cycling matches.
The numbers in column 3 are the normalization constants in Fig. 4.
DSGRN Phenotype I

Proxies matches % of matches TFO parameters

Swi5-Nrm1 7 073 137 4.3% 1 541 616
Ace2-Nrm1 7 073 137 4.3% 1 541 616
Swi5-Yox1 6 071 292 3.7% 1 347 895
Ace2-Yox1 6 071 292 3.7% 1 347 895

ranging from 3.7% up to 4.3% of phenotype-permissible DSGRN pa-
rameters. This demonstrates that every proxy set can recapitulate the
oscillating sequence of maxima and minima seen in the WT data, and
therefore the SCC network model cannot be excluded as a reasonable
network model for controlling the yeast cell cycle.

In addition, matching WT cycling greatly reduced parameter space.
We parameterized Hill models from this reduced region (see Sec-
tion 5.7) to demonstrate the utility of DSGRN in locating useful regions
of parameter space. The result of one such simulation is shown in
Fig. 3(b) with the comparable WT data shown in Fig. 3(a). Both sets
of curves are normalized between 0 and 1 to emphasize the order of
maxima and minima in the time series, which is the behavior that DS-
GRN predicts. We see that in both cases, the peak of Swi4 precedes the
peaks of Nrm1 and Ndd1, which themselves precede the peaks of Swi5
and Clb2. Swi5 and Clb2 have nearly indistinguishable peaks in both
panels. The order of the Ndd1 and Nrm1 peaks are indistinguishable
in the WT data in panel (a), but are ordered with Ndd1 first in the
simulation in (b). Since Ndd1 has a faster rise in the WT data, the
simulation ordering shows consistency with the WT data. We regard the
recapitulation of this order of extrema as a successful model; however,
we made no attempt to match either amplitude or period of the WT
data.

We determined the number of unique TFO subnetwork parameters
in the set of WT cycling pattern matches, shown in Table 4, column
3 for each proxy. These numbers are the normalization factors for the
dynamical phenotypes II and III results shown in Fig. 4.

3.2. Dynamical phenotype II: Clb2 mutant cycling

We checked for the existence of dynamical phenotype II (mutant
cycling) at Clb2 ON, Clb2 OFF, Clb2 INT-H, and Clb2 INT-L phenotype-
permissible parameters; i.e., we checked for the co-existence of mutant
and WT cycles at a single TFO parameter, which would indicate that a
change in Clb2 alone does not disrupt TFO subnetwork oscillations in
the SCC network.

The percentages of TFO parameters where this occurs are shown in
Fig. 4. The nonzero results indicate that a perturbation of Clb2 allows
the SCC network to transition from WT cycling to every type of mutant
cycling in three of the four proxy sets.

The four Clb2 mutant datasets are shown in panels (a)–(d) of
Fig. 5 normalized between 0 and 1. It can be seen that they all have
approximately the same order of maxima and minima. Therefore, a
single Hill model is sufficient to reproduce the behavior of all four
datasets. We chose to sample TFO subnetwork parameters for the Swi5-
Nrm1 proxy group that are predicted by DSGRN to be able to exhibit
WT cycling as well as all four types of mutant cycling for varying Clb2
factor parameters (see Section 3.4). Fig. 5 (e)–(f) show simulations
for two different TFO parameters that match the expected order of
maxima and minima. We remark that Clb2 expression also oscillated
in these simulations (not shown). This case is not excluded by DSGRN,
since DSGRN will not predict oscillations that are too small to impact
downstream targets.

It may seem inconsistent that there are Hill models that can re-
capitulate all four mutant cycling datasets, and yet the percent of
pattern matches for the Clb2 ON, OFF, INT-L, and INT-H in Fig. 4 are
not identical within each proxy set. This occurs because the DSGRN
pattern matching methodology is sensitive to measurement noise that
introduces spurious maxima and minima in the dataset.
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Fig. 3. Hill model simulation for wild type cells. (a) Wild type data normalized between zero and one. (b) Hill model simulation using a DSGRN TFO parameter predicted to
exhibit wild type oscillations, also normalized. The curves for Swi5 and Clb2 are (nearly) coincident. No attempt was made to match amplitude or period, only the ordering of
extrema.

Fig. 4. The percentage of WT cycling TFO parameters that also are predicted to show behavior consistent with a dataset associated to dynamical phenotype II or III. The x-axis
is labeled by the transcriptional phenotypes shown in Table 2. All percentages are nonzero except for the Clb2 INT-H and INT-L transcriptional phenotypes for the Ace2 proxy
groups and the DRC transcriptional phenotype for the Nrm1 proxy groups.

3.3. Dynamical phenotype III: Checkpoint arrest

In DSGRN phenotype III, we identified TFO parameters that were
predicted to exhibit a WT pattern match at one Clb2 factor parameter
and a SAC or DRC FP at another. In Fig. 4, the ‘‘SAC" bars correspond to
the percentages of TFO parameters exhibiting WT cycling and the SAC
FP, which is identically the DRC FP for the Yox1 proxies seen by looking
at the ‘‘DRC" bars. The fact that these percentages are nonzero indicates
that the Yox1 proxies are consistent with both mutant datasets, which
must be true given that the dynamical phenotype representation of the
two datasets is identical.

On the other hand, the Nrm1 proxies are only consistent with the
cse4 mutant dataset representing the SAC phenotype. The DRC FP for
the Nrm1 proxies was absent not only in TFO parameters with WT

cycling, but also absent across all of DSGRN parameter space. This
finding indicates that the SCC network topology contains insufficient
regulatory interactions to recapitulate the DRC phenotype when the
Nrm1 time trace is considered.

An example of a simulation from a Hill model parameterized using
a DSGRN TFO factor parameter predicted to show both WT cycling and
a SAC FP is shown in Fig. 6 for the Swi5-Nrm1 proxy group. It is easily
seen by examination that the simulation traces are consistent with the
SAC FP in Table 3.

3.4. Co-existing phenotypes

We looked for TFO subnetwork parameters that could support all
four mutant cycling phenotypes in addition to WT cycling at phenotype-
permissible parameters. There were none such, indicating that either



Mathematical Biosciences xxx (xxxx) xxx

8

J. Fox et al.

Fig. 5. Hill modeling for mutant cycling in the TFO subnetwork. (a)–(d) The four mutant datasets associated to phenotype II, normalized between 0 and 1. (e)–(f) Hill models
parameterized to match the order of extrema in the datasets. Notice that all four datasets show the Swi4 peak preceding the Nrm1 and Ndd1 peaks (which are nearly coincident),
followed by the Swi5 peak. Therefore, all four datasets can be roughly matched by the same parameterization of the TFO subnetwork, and two examples are given in (e)–(f) for
very different TFO parameters. In both of these choices, the peak order is consistent with the datasets. As in the WT simulation, we made no attempt to match amplitude or
period.

an internal change in or an external regulation of the TFO subnetwork
occurs between mutant phenotypes. This result is dependent on the
modeling choice of using only phenotype-permissible parameters asso-
ciated to the Clb2 mutant cycling datasets. If this restriction is relaxed,
the percentage of TFO subnetwork parameters at which there is both
WT cycling and a single mutant cycling dataset increases (compare
Fig. 7 to Fig. 4). More precisely, relaxing the phenotype-permissible
restriction means that mutant cycling phenotypes are searched over
all values of the Clb2 factor parameter, not just the 10% of DSGRN
parameter nodes originally specified.

However, relaxing the phenotype-permissible modeling restriction
still does not allow a TFO subnetwork parameter that can show matches

to every dataset in all three dynamical phenotypes, including check-
point arrest. The closest achiever was the Swi5-Nrm1 proxy set for
which the SCC network model was able to exhibit the WT cycling
phenotype, the four mutant cycling phenotypes, and the SAC phenotype
at 3575 TFO subnetwork parameters. This is 0.2% of DSGRN parame-
ter nodes when compared to matching WT data alone, a substantial
reduction in parameter space, although still large enough to signal an
identifiability issue.

4. Discussion

We have demonstrated that a small network model (SCC network,
Fig. 1 (Right)) approximating the pulse generation capacity of the



Mathematical Biosciences xxx (xxxx) xxx

9

J. Fox et al.

Fig. 6. Hill model of the SAC, where Swi4 and Nrm1 are low, Ndd1 and Swi5 are
high, and Clb2 is not low.

yeast cell-cycle GRN (Fig. 1 (Left)) is capable of matching multiple
datasets with different experimental perturbations. We devised three
computational phenotypes using the software DSGRN [27,28] that
associate to seven different datasets (Table 2). Dynamical phenotype
I corresponds to wild-type cell cycle behavior. Dynamical phenotype II
encompasses mutant cycling—oscillations of the TFO subnetwork under
fixed values of the CDK Clb2 induced by various knockout experiments.
In dynamical phenotype III, checkpoint behavior was evaluated by
computationally seeking qualitative equilibrium values determined by
each of two datasets, one representing the spindle assembly checkpoint
and one representing the DNA replication checkpoint.

We interpreted the consistency of model predictions with the data
in the following manner. When the SCC network model was consistent
with wild-type cycling, then the model faithfully captured the behavior
of the undisrupted cell cycle. When it was consistent with mutant cy-
cling, then the model was capable of reproducing observed oscillatory
behavior in the TFO subnetwork regardless of the state of Clb2. When
it was consistent with checkpoint behavior, then regulation through
Clb2 was sufficient to induce the checkpoint in the TFO subnetwork,
even if in reality other regulators are implicated in cell cycle control.
Consistency with all of these dynamical phenotypes would mean that
the SCC network model cannot be rejected as a complete hypothesis for
explaining the seven datasets, while the non-existence of any mutant
phenotype would indicate network model incompleteness.

We found that 3.7-4.3% of potential wild-type DSGRN parameters
predicted dynamical behavior consistent with the WT dataset, indi-
cating that the network model is capable of reproducing cell-cycle
behavior in the subset of proteins considered. Of these WT pattern-
matched parameters, up to 20.0% were consistent with various mutant
datasets, although not all phenotypes were exhibited at every proxy
set. There were no TFO subnetwork parameters that could support WT
cycling and all four types of mutant cycling within a single proxy group
at phenotype-permissible DSGRN parameters, i.e., at fixed Clb2 levels
hypothesized to be associated to particular datasets. However, if this
modeling choice is not enforced, TFO subnetwork parameters were
located that support WT and all four mutant cycling phenotypes, as
well as (in some cases) SAC arrest. Relaxing phenotype-permissibility
in the mutant cycling phenotype is akin to acknowledging that Clb2
expression in the datasets may not be sufficiently close to constant for
our model assumptions to hold. If we allow for this possibility, then
there exists a highly narrowed selection of TFO subnetwork parameters
that can recapitulate the dynamics seen in multiple datasets. One inter-
esting and open problem is whether this selection of parameters is most

likely to contain biologically reasonable parameterizations for the TFO
subnetwork, since only Clb2 parameter modifications are necessary to
induce phenotypic changes.

We observed that when using Nrm1 proxy sets, the DRC phenotype
was not supported at any DSGRN parameter in the network model. This
finding indicates that the model lacks important regulatory elements
that are necessary for the DRC when considering Nrm1 as a proxy
in the network. We hypothesize that distinguishing between SBF and
MBF in the SCC network may help rectify this issue. Current mod-
els like the network seen in [17] define MBF and SBF as the same
node, yet results from [45,46] indicate a mechanism for DRC arrest
dependent solely on MBF activity. Given replication stress, the protein
Rad53p inactivates the MBF co-repressor Nrm1. This activation of MBF
induces up-regulation of G1/S genes within S-phase. As a result of this
MBF pathway being activated, the DRC is initiated. We suggest that
enlarging the SCC network to include MBF and Rad53p may permit
consistency with the DRC phenotype.

There is another network enhancement that our work suggests. We
showed that SAC arrest is supported in the network model by only
modifying the parameterization of Clb2, suggesting the presence of a
regulatory element controlled by the SAC mechanism that impinges
solely on Clb2. One of the activities of the SAC is to inhibit APC/Cdc20
activity. Because APC/Cdc20 drives the degradation of Clb2, the out-
come of SAC activation is the stabilization of Clb2 degradation [47].
In [48] it was seen that the rapid degradation of Cdc20 is necessary for
SAC arrest. Using ordinary nonlinear differential equations and spatial
simulations, the authors of [49] were able to identify a SAC mechanism
that acts to fully sequester Cdc20 and inhibit APC activity. It was also
suggested within [48] that there is potential for indirect regulation of
Cdc20 through substrates of APC, such as Clb2 and Clb5. By expanding
the SCC network to include feedback with APC/Cdc20, we can test
the hypothesis that APC and Cdc20 interaction can initiate the Clb2
parameter change required to transition from WT cycling to SAC.

In its original implementation, DSGRN does not differentiate be-
tween transcriptional regulation vs protein modifications such as phos-
phorylation or ubiquitination, although these generalizations are newly
available [41], as well as modeling transport across the nuclear mem-
brane [50]. In this manuscript the original DSGRN package was used,
and as a consequence transcriptional interactions and post-transcript
ional modifications were not distinguished in the modeling of the SCC
network in Fig. 1 (Right). This means that we used mRNA expression
levels of Clb2 as a substitute for protein levels and activity. Protein and
RNA levels are certainly correlated at least under some conditions [42].
An obvious next step is to expand the SCC network to model post-
transcriptional modifications, as well as to incorporate other regulators.
We are currently in the midst of an effort to explore the endocycling
phenomenon in a larger network using the new methodology from [41].

There are also further analysis tools that are being developed in
generality to leverage the computational methodology that we have
presented here. We have shown that for fixed parameters of the TFO
subnetwork, there can be two distinct dynamical behaviors for varying
Clb2 parameters. The length of the path between these parameters
can indicate how much perturbation in a control point is required to
induce dynamical changes. Moreover, the path between the parameters
predicts intermediate dynamics that might be revealed if the action of
the control point is halted prematurely.

Another rich area for future research is the prediction of ‘‘exotic
states’’ in a network model that may indicate novel cellular phenomena.
For example, consider the 3575 TFO parameters identified in Section 3.4
that could match the Swi5-Nrm1 proxy set data for WT, the four types
of mutant cycling, and the SAC phenotype, and therefore comprise
the best hypothesis for biologically relevant parameters. Searching all
DSGRN parameters associated to these TFO parameters reveals that
monostable oscillations and fixed points dominate the dynamics. How-
ever, there are a substantial number of instances of bistable, tristable,
and even quadrastable dynamics. What do these states represent? Are
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Fig. 7. The percentage of WT TFO parameters that also are predicted to show behavior consistent with a dataset associated to dynamical phenotype II after relaxing the
phenotype-permissible restriction. Similar to the results from dynamical phenotype II with the phenotype-permissible restriction, all percentages are nonzero except for the Clb2
INT-H and INT-L transcriptional phenotypes for the Ace2 proxy groups.

they physiologically relevant? Can they be recovered through targeted
experiments? These and other questions are raised by the predictive
power of network models.

The results in this paper highlight the flexibility of dynamical be-
havior that a single network is capable of producing. We conclude that
the SCC network is controllable, in the sense that a large number of dy-
namical phenotypes are accessible via parameter perturbation, and that
the region of wild-type behavior is relatively small within parameter
space. In contrast, a network might instead be robust, wherein wild-
type behavior is prevalent across parameter space, making it difficult to
push network behavior into a different dynamical regime. Even though
in relative terms the simplified yeast cell-cycle GRN model is more
controllable than robust, in absolute terms there remains a large region
of parameter space that cannot be excluded as biologically reasonable.
This idea makes intuitive sense, since the yeast cell cycle must operate
under large array of environmental conditions and implies that any
model of the cell-cycle GRN should incorporate some level of non-
identifiability, so that parameters disrupted by some environmental
conditions still result in the same qualitative dynamics. That is, non-
identifiability may be a desirable feature of a model, and not always
an obstacle to be overcome.

5. Methods

In this section, we discuss the basic properties of DSGRN
[26–28,30] that are used when interpreting WT and mutant transcrip-
tional phenotypes as DSGRN dynamical phenotypes. We discuss in
detail how the dynamical phenotypes are constructed and interpreted
with respect to the data.

DSGRN comprehensively computes coarse features of the dynamical
behavior of a genetic regulatory network over a combinatorial repre-
sentation of parameter space that is finite [27]. These coarse features
include oscillatory behavior with stereotyped orders of maximum and
minimum concentrations of gene products, and the number and type of

Fig. 8. Left: The two-node toggle switch where X1 represses X2 and X2 represses
X1. Right: An example three-node network, where X represses Y , Y activates X and
represses Z, and Z represses X.

equilibria. DSGRN uses techniques from ordinary differential equations
and graph theory to compute these behaviors.

Four kinds of graphs provide a framework for understanding DS-
GRN. A gene regulatory network (GRN) is the input to DSGRN and
an undirected parameter graph (PG) is the basic structure of DSGRN.
The output of DSGRN is a collection of directed state transition graphs
(STGs) and their corresponding directed Morse graphs (MGs), one for
each node in the parameter graph. As defined earlier a GRN is a system
of interacting gene products that inhibit or activate one another. The
GRN modeled in this paper is in Fig. 1 (Right), which is built as a
directed graph. As a running example for explaining DSGRN compu-
tations in this section we will be talking about the simpler networks
in Fig. 8. On the left, node X1 inhibits node X2 and X2 inhibits X1,
otherwise known as the ‘‘toggle switch’’ [30]. On the right, we see
a three-node network that exhibits more complex dynamical behavior
than the toggle switch, but remains amenable to manual construction
of the various DSGRN graphs.

5.1. Switching systems and DSGRN parameters

DSGRN is, at its heart, a rigorous connection between Boolean
modeling and ordinary differential equation (ODE) modeling. It can
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equivalently be viewed as an asynchronous multi-level Boolean mod-
eling approach [25] or as a dynamical systems approach [27]. In this
exposition, we will introduce DSGRN using the formalism of dynamical
systems.

A GRN can be modeled using a system of discontinuous ODEs
called a switching system [51–55], where each node in the network
is modeled by an ODE of the form:
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tory targets is distinct and therefore totally ordered. For example, the
thresholds on the two out-edges from Y in Fig. 8 (Right) are required
to be different; however there are no requirements on the relationship
between any other pair of thresholds.

A DSGRN parameter is a collection of inequalities governing the
relationship of the low, high, and threshold values for each node within
the network. Each DSGRN parameter consists of two parts for each
node in the network: a logic parameter and an order parameter [27].
A key observation is that the logic and order parameters for a node
are independent of all other nodes in the network, and therefore may
be chosen independently. An order parameter defines the order of the
threshold values for a node. For example, the Y node in Fig. 8 (Right)
has two threshold values due to its two out-edges, ✓
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. There

are then two order parameters for Y: ✓
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. All
other nodes in our examples have a single out-edge and are trivially
ordered.

The number of thresholds associated to each node determines the
discretization of the corresponding gene product’s expression level.
Considering the node Y above, the two thresholds mean that Y has
three discrete expression levels, 0, 1, and 2 (low, intermediate, and
high), where the integer indicates how many thresholds the value of
Y exceeds; i.e., Y < ✓

X,Y
, ✓

Z,Y
corresponds to 0, and so forth. The

consequence is that nodes in a GRN can have, and generally do have,
different discretization levels. In the SCC network, Swi4 and Clb2
each have 3 out-edges and therefore 4 states (low, intermediate low,
intermediate high, and high); Ndd1 has 2 out-edges and therefore 3
states (low, intermediate, and high); and Nrm1/Yox1 and Swi5/Ace2
each have 1 out-edge and therefore the Boolean states 0 and 1 (low
and high).

The logic parameter for each node within the network orders the
input values to the node with respect to the output thresholds of the
node. For example, the X node in Fig. 8 (Right) has two in-edges, one
from Y and one from Z. Therefore, it has four possible input values:

l
X,Y

l
X,Z

< {l
X,Y

h
X,Z

, h
X,Y

l
X,Z

} < h
X,Y

h
X,Z

that are partially ordered due to the constraint that 0 < l < h. In
particular, notice that the input values l

X,Y
h
X,Z

and h
X,Y

l
X,Z

cannot
have a determined order until real values are assigned to l and h. The
node X has a single out-edge to node Y , giving it one threshold ✓

Y ,X
. A

logic parameter is the insertion of this threshold into the partial order
of inputs. For X, there are six possible logic parameters, since there are
six possible ways to insert the threshold into the partial order:

l
X,Y

l
X,Z

< {l
X,Y

h
X,Z

, h
X,Y

l
X,Z

} < h
X,Y

h
X,Z

< ✓
Y ,X

l
X,Y

l
X,Z

< {l
X,Y

h
X,Z

, h
X,Y

l
X,Z

} < ✓
Y ,X

< h
X,Y

h
X,Z

l
X,Y

l
X,Z

< l
X,Y

h
X,Z

< ✓
Y ,X

< h
X,Y

l
X,Z

< h
X,Y

h
X,Z

l
X,Y

l
X,Z

< h
X,Y

l
X,Z

< ✓
Y ,X

< l
X,Y

h
X,Z

< h
X,Y

h
X,Z

l
X,Y

l
X,Z

< ✓
Y ,X

< {l
X,Y

h
X,Z

, h
X,Y

l
X,Z

} < h
X,Y

h
X,Z

✓
Y ,X

< l
X,Y

l
X,Z

< {l
X,Y

h
X,Z

, h
X,Y

l
X,Z

} < h
X,Y

h
X,Z

A DSGRN parameter is a collection of inequalities: a choice of one
order parameter and one logic parameter for each node in the network.
We will call the inequalities for node i a factor parameter for i. Since
DSGRN parameters correspond to sets of inequalities, they represent
connected regions within real-valued parameter space. These regions
can be sampled to parameterize the switching system, or a smooth
approximation such as the Hill model simulations in Figs. 3, 5, and 6.

A logic parameter for node i determines whether or not every
input edge to i can have a nontrivial impact on the dynamics of i,
and whether or not i can have a nontrivial impact on its downstream
targets. For example, consider the logic parameter

l
X,Y

l
X,Z

< h
X,Y

l
X,Z

< ✓
Y ,X

< l
X,Y

h
X,Z

< h
X,Y

h
X,Z

for node X in Fig. 8 (Right). This logic parameter is one at which the
input Y is an ineffective activator of X. To see why, notice that when
the activator Y is missing and the repressor Z is present, the abundance
of node X is given by its lowest possible value, l

X,Y
l
X,Z

. If the activator
Y then becomes abundant, the abundance of X is given by h

X,Y
l
X,Z

.
However, from the logic parameter we have that h

X,Y
l
X,Z

< ✓
Y ,X

, so
that the abundance of X is still not high enough to repress its target
Y . If X is to have an effect on Y , then its repressor Z must be absent.
The presence or absence of Y does not make a difference. We say that
the edge Y ô X is ‘‘input inessential.’’ Similarly, consider the logic
parameter

l
X,Y

l
X,Z

< {l
X,Y

h
X,Z

, h
X,Y

l
X,Z

} < h
X,Y

h
X,Z

< ✓
Y ,X

.

In this case, no combination of inputs can induce node X to exceed
the threshold ✓

Y ,X
and therefore repress Y . We say the edge X  Y is

‘‘output inessential.’’ A logic parameter that describes at least one input
or output inessential edge is itself called inessential. A logic parameter
is essential otherwise, and describes a situation where every input to
node i is an effective regulator, and where there are combinations of
inputs to node i that are above and below each one of the output
thresholds of i.

We remark that the number of DSGRN parameters scales poorly
with the number of edges in a network. As the number of in-edges
to a node grows, the size of the partial order grows exponentially.
As the number of out-edges from a node grows, the number of order
parameters grows factorially. Additionally, the complexity of inserting
multiple thresholds into the partial order causes a large increase in the
number of logic parameters.

5.2. Parameter graph and remainder parameter

An important element of this work is the transition between WT and
mutant dynamical phenotypes in parameter space. The following two
sections explain the details of this transition.

The collection of all possible factor parameters for i can be repre-
sented as an undirected graph, called the factor graph for node i. These
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Fig. 9. The factor graph for the Y node in Fig. 8 (Right), showing its two isomorphic logic graphs, one for each possible threshold ordering for Y . The threshold ordering can
be seen above the corresponding logic graph of the factor graph.

factor graphs have nodes representing each factor parameter and the
edges between these nodes represent a single change in an inequality.

Each factor graph for a node i is composed of M isomorphic logic
graphs. The nodes of a logic graph are the collection of all logic
parameters for i, and an edge exists between two logic graph nodes
when there is a single change in a logic parameter inequality (for a fixed
order parameter). The number of logic graphs M in the factor graph is
the number of order parameters for node i. Connections between logic
graphs exist whenever there is a single change in the order parameter
while the logic parameter remains the same, provided that the two
swapped thresholds in the order parameter have no intervening logic
value. This is most easily seen by an example.

Let us now construct the factor graph for Y from the three-node
network in Fig. 8 (Right). Node Y has a single in-edge and two out-
edges, meaning that two thresholds are inserted between the low and
high production rates of Y : 0 < l

Y ,X
< h

Y ,X
. This results in six logic

parameters for Y :

1 : l
Y ,X

< h
Y ,X

< ✓1 < ✓2

2 : l
Y ,X

< ✓1 < h
Y ,X

< ✓2

3 : l
Y ,X

< ✓1 < ✓2 < h
Y ,X

4 : ✓1 < l
Y ,X

< h
Y ,X

< ✓2

5 : ✓1 < l
Y ,X

< ✓2 < h
Y ,X

6 : ✓1 < ✓2 < l
Y ,X

< h
Y ,X

where ✓1 < ✓2 is some ordering of the two thresholds of Y , ✓X,Y
and

✓
Z,Y

. These six inequalities are the nodes of the logic graph of Y . Due
to the two order parameters of Y , there are two copies of this logic
graph, one for each ordering, as shown in Fig. 9. The numbering of
the logic parameters above is associated to the logic graph left of the
dashed line, which is associated to order parameter ✓

X,Y
< ✓

Z,Y
. The

isomorphic logic graph for order parameter ✓
Z,Y

< ✓
X,Y

is on the right.
Edges only exist between the two logic graphs when there is a single
inequality change in the order parameter between thresholds that are
adjacent in the logic parameter. An example of this type of edge can
be seen in red in Fig. 9.

For a GRNN with nodes i = 1,… , n, the product of the factor graphs
FG(i) is the DSGRN parameter graph PG(N):
n«
i=1

FG(i) = PG(N).

The parameter graph contains all possible DSGRN parameters as nodes
and encodes adjacency between real-valued parameter regions as
edges [27].

As an example, the DSGRN parameter graph for the three-node
network in Fig. 8 (Right) is shown in Fig. 10. Each choice of a node
from FG(X), a node from FG(Y ), and a node from FG(Z) is a DSGRN
parameter node. Two such DSGRN parameter nodes are shown in red in
the top and bottom panels in Fig. 10. By examining the factor graphs,

we see that the DSGRN parameter graph for the three-node network
has a size of 6 ù 12 ù 3 = 216.

Consider a node x
i
that is expected to undergo multiple perturba-

tions, such as knockouts or up-regulations, modeled by variability in the
factor parameter of x

i
. The combination of the factor parameters for all

of the remaining nodes form a remainder parameter. We demonstrate the
idea of a remainder parameter using Fig. 10 by allowing the parameter
node of Z to vary while those of X and Y remain fixed. In this case
we have the remainder parameter composed of the X and Y factor
parameters marked in red as Z varies from its highest parameter to
its lowest. The high and low Z factor parameters could represent an
up-regulation or knock-out of a gene in a biological scenario. In the
first case, Z is continuously expressed at its highest level while in the
second, it is expressed at its lowest level, possibly zero.

5.3. Application to the SCC network

Recall from Fig. 1 (Right) that Clb2 has one in-edge and three
out-edges. This means it has 3! = 6 order parameters and ten logic
parameters (see Fig. 11). Four of the ten logic parameters are taken to
be representative of various Clb2 mutants (see the caption of Fig. 11).
We propose that the WT phenotype is associated to one of the logic
parameters in black. Notice that each of the logic parameters that
denote the state of a Clb2 mutant (inequalities in color) have both
the low and high values l

Clb2,SFF
and h

Clb2,SFF
together between

thresholds. In other words, the model of Clb2 activity implies that even
if the molecular concentration is not perfectly constant, there will never
be a sufficiently large change in concentration to trigger a change in
regulation at downstream genes. In contrast, the logic parameters for
Clb2 WT ensures that changes in Clb2 concentration will impact at
least one downstream target. We do not require regulatory activity at
all downstream nodes, because the only information provided by the
data is that Clb2 has noticeable oscillations. The DSGRN parameters
at which we see consistency with the experimental data can give us
guidance in assessing which Clb2 interactions may be important in the
WT phenotype.

Dynamical phenotypes II and III involve transitions in the Clb2 logic
graph from WT to mutant parameters that exhibit consistency with the
corresponding mutant time series when the remainder parameter (re-
ferred to as the TFO subnetwork parameter) is constant. As an example,
consider the Clb2 ON transcriptional phenotype. A match according
to dynamical phenotype II is a single TFO subnetwork parameter that
exhibits (1) mutant cycling consistent with the cdc20� dataset at the
phenotype-permissible green node at the top of the Clb2 logic graph as
well as (2) WT cycling at any one of the six black nodes in the Clb2
logic graph.

Notice that the Clb2 logic parameter graph includes both essential
and inessential logic parameters (see the end of Section 5.1). The results
in this manuscript assume that only Clb2 may assume inessential logic
parameters. The TFO subnetwork parameters are always essential.
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Fig. 10. Two copies of the DSGRN parameter graph PG of the three-node network in Fig. 8 (Right), each one showing a different DSGRN parameter in red. PG is the product
of three factor graphs corresponding to the nodes X, Y , and Z. The example X, Y , Z triples of red factor parameters (top panel and bottom panel) correspond to two different
DSGRN parameters for the network. The fixed X, Y factor parameters together form a remainder parameter that is fixed as the factor parameter of Z varies. The inequalities for
the two different factor parameters for Z are shown to the left.

Fig. 11. One of the six logic parameter graphs corresponding to the Clb2 node from the SCC network in Fig. 1 (Right), where the thresholds ✓1 , ✓2 , ✓3 are associated to the targets
SBF, SFF, and Swi5 via some fixed mapping. The Clb2 ON logic parameter is represented in green at the top of the factor graph. The Clb2 OFF logic parameter is represented in
red at the bottom of the factor graph. The Clb2 INT-H logic parameter in blue is two steps up from the Clb2 INT-L logic parameter in violet. The WT logic parameters are the
remaining black inequalities. The checkpoint phenotypes are not restricted to any particular Clb2 logic parameter.

5.4. State transition graphs and Morse graphs

Each DSGRN parameter has a corresponding state transition graph
(STG) that graphically represents the dynamics of the network at that
DSGRN parameter. For ODE systems, the dynamics of a network are
described by time-dependent trajectories in phase space in which all
gene products associated to the network are changing concentration.
Phase space is the N-dimensional real-valued and positive space where
each coordinate represents a node in the GRN. DSGRN does not concern
itself with these trajectories but instead looks at directional flow across
thresholds and considers paths through an STG.

An example phase space for the toggle switch from Fig. 8 (Left)
is shown in Fig. 12. We discretize phase space by dividing it up into
rectangular boxes called domains using the collection of thresholds for
the switching system; these are the dotted lines in Fig. 12, showing
the division of the positive plane into four domains. Each domain
corresponds to a level of X1 and X2 where 1 indicates above-threshold
values and 0 indicates below-threshold values. As an example the
domain labeled (01) corresponds to high X2 and low X1. We say that
(01) is the state corresponding to the upper left domain.

We can define flow across the boundaries of the domains by speci-
fying a DSGRN parameter. In Fig. 12, we use

DSGRN parameter : (4)

X1 : l1,2 < ✓2,1 < h1,2

X2 : l2,1 < h2,1 < ✓1,2

to determine the arrows. For example, the top arrow pointing left
and the right arrow pointing down are determined by considering the
starting domain, where X1 and X2 have high concentrations. In this
case, the concentrations of X1 and X2 are both decreasing since the
nodes are effective in repressing each other. However, note that X2 is
always decreasing. This happens because of the DSGRN parameter for
X2. Regardless of the presence or absence of X1, X2 will never increase
across its threshold ✓1,2 since its high concentration is still below ✓1,2.
There is also a DSGRN parameter where X2 (or symmetrically X1) is
always increasing, indicating that one or both nodes are ineffective
repressors.

The STG for the toggle switch is superposed on phase space in
Fig. 12. The nodes of the STG correspond to the states of the domains
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Fig. 12. (Left) The STG superposed over the rectangular domains dividing phase space for the toggle switch with the DSGRN parameter in (4). (Right) The corresponding MG.

Table 5
The order of the nodes for the checkpoint phenotype FPs is Swi4, which has activity
levels in the range 0–3, Nrm1/Yox1, which has levels 0–1, Ndd1, which has levels 0–2,
Clb2, which has levels 0–3, and Swi5/Ace2, which has levels 0–1, dependent on the
number of out-edges from each node in the SCC network shown in Fig. 1 (Right) (see
Section 5.1 for details).
Checkpoint FPs: FP(Swi4, Nrm1/Yox1, Ndd1, Swi5/Ace2, Clb2)

SAC FPs: All proxies:
FP(0, 0, 2, 1, 1)
FP(0, 0, 2, 1, 2)
FP(0, 0, 2, 1, 3)

DRC FPs: Yox1 proxies:
FP(0, 0, 2, 1, 1)
FP(0, 0, 2, 1, 2)
FP(0, 0, 2, 1, 3)

Nrm1 Proxies:
FP(0, 1, 2, 1, 1)
FP(0, 1, 2, 1, 2)
FP(0, 1, 2, 1, 3)

and the directed edges between states generally correspond to the flow
across the intervening boundary. The one exception is that self-edges
are added whenever it is not possible to leave that domain because all
of the flow points inward; see the lower right domain in Fig. 12.

The size of the STG grows with the size of the GRN, since the
addition of a node to the GRN adds another dimension to phase space
and the addition of an edge, or threshold value, adds another set
of domains to an existing dimension of phase space. Both of these
mechanisms increase the number of nodes in the STG, which rapidly
becomes large and difficult to interpret. It is therefore useful for clarity
to examine a summary of the STG called a Morse graph (MG) [27]. We
build the MG from the recurrent components of the STG. A recurrent
component R, or Morse set, is a maximal set of nodes in the STG that
induces a subgraph containing a path from any node u to any other
node v for all u, v À R. In particular, a recurrent component is a strongly
connected component with at least one edge. Each of these Morse sets
are represented in the MG as Morse nodes, where an edge between
Morse nodes indicates that there is a path between some node u1 in
Morse set 1 to some node u2 in Morse set 2.

Each Morse node in the MG has an annotation indicating the dynam-
ics in the associated Morse set. The annotations consist of the labels full
cycle (FC), partial cycle (PC), and fixed point (FP). The FC annotation
indicates a Morse set in which there is a recurrent component in the
STG such that every node x

i
changes its integer state at least once.

For example, if a Morse node for some parameter of the SCC network
was annotated FC, then all nodes SBF, SFF, Nrm1/Yox1, Swi5/Ace2,
and Clb2 would have to change state from, e.g., 1 to 0, etc. The PC
annotation indicates a recurrent component in which only a subset of
the x

i
change state. The FP annotation indicates a Morse set consisting

of a single state with a self-edge. The Morse graph for the toggle switch
is the FP with state coordinates (10), denoted FP(10); see Fig. 12. The
SAC and DRC FPs for the SCC network that are shown qualitatively in
Table 3 are represented by the state coordinates shown in Table 5.

The Morse graph also encodes the stability of a Morse set. Stability
in the sense of dynamical systems roughly means that trajectories
close to a stable manifold in phase space will approach that manifold
asymptotically over time. Stability of a Morse node in the Morse graph,
whether a fixed point or a cycle, is identified with having no possible
exit from a Morse set once a path enters the Morse set; i.e., a Morse
node is stable if and only if it has no out-edges in the MG. Morse nodes
with out-edges are unstable, since there are potential exit paths from
the associated Morse set. In the SCC network model, wild-type cycling
is evaluated within stable FCs, mutant cycling is evaluated in stable
PCs where Clb2 is in a fixed state and the TFO subnetwork nodes are
oscillating, and checkpoints are evaluated as FPs, which are always
stable in this formulation.

In order to understand the implications of the different dynamic
phenomena described above, we will analyze by hand the example 3-
node network seen on the right in Fig. 8, which exhibits all possible
annotations. We will be looking at three different DSGRN parameters
that give rise to three different Morse graphs. Since this network has
three nodes, phase space will have three dimensions where the states
are represented in the order (XYZ); for example, (010), (110), etc. The
X and Z dimensions are divided into two domains each since they have
only one out-edge apiece. The Y dimension contains three domains
since there are two out-edges. This means that instead of two states,
0 and 1, Y has three states, 0, 1, and 2, representing the three possible
positions with respect to two distinct thresholds.

The first example DSGRN parameter we will investigate gives rise
to an MG containing a stable FC. The corresponding STG and DSGRN
parameter can be seen in Fig. 13. The nodes have been arranged in the
same spatial order as the rectangular domains in phase space. The red
arrows and nodes indicate the path that contains the FC. It can be seen
through inspection of the STG that starting anywhere within the STG
leads to this stable cycle, in which there are state changes in all three
directions.

The second example DSGRN parameter contains both a stable and
an unstable PC in the variables X and Y . The STG and DSGRN pa-
rameter inequalities are shown in Fig. 14. Again the stable cycle is
represented by the red arrows and nodes while the unstable cycle is
represented in the blue arrows and nodes. Through inspection of the
STG it is easily seen that the blue cycle can be exited and the red cycle
cannot. Unlike the FC parameter we only see oscillations in a subset of
gene product concentrations in the GRN, seen because the cycle only
moves through two of the three dimensions. In particular, the stable
cycle exists when Z has state 0 and the unstable cycle exists when Z

has state 1.
The last DSGRN parameter we will look at in this network exhibits

an FP. The corresponding STG and inequalities can be seen in Fig. 15.
The FP for this DSGRN parameter can be seen as the single red node
with a self-edge within the STG, FP(100). Similar to the last example,
there exists an unstable PC{X, Y } that is represented with blue nodes
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Fig. 13. An example STG (Left) and MG (Right) computed from the given DSGRN parameter (Bottom) for the 3-node network in Fig. 8. The STG exhibits a stable full cycle shown
by the red nodes and edges. The dashed lines are for visual effect only. They represent edges on the ‘‘back’’ of the cubes.

Fig. 14. An example STG (Left) and MG (Right) computed from the given DSGRN parameter (Bottom) for the 3-node network in Fig. 8. The STG exhibits a stable partial cycle
in the variables X and Y (red) and an unstable partial cycle in X and Y (blue).

and arrows. Through inspection it can be seen that the (100) domain
has no out-edges and therefore must be an FP. Also notice that once
the unstable cycle is exited one can never return to that cycle and will
eventually end up at FP(100).

5.5. Time series discretization

To evaluate DSGRN network model consistency with a dataset
exhibiting oscillations, we need to extract the sequence of maxima and
minima (together called extrema) from a time series dataset. We briefly
discuss the methodology from [56], in which for each extremum, a time
interval is assigned representing experimental uncertainty in the timing
of extrema. The idea is that at a specified noise level, an extremum
can occur anywhere within the assigned time interval, perhaps due to
sparse temporal sampling and/or measurement error. Since the time
intervals assigned to different extrema may overlap, the ordering of
some extrema with respect to others is indeterminate. However, within
any single time series the order of extrema is known.

Fig. 16 schematically shows the process for assigning a time interval
for an extremum. The example shown is the gene expression level for
Ndd1 in the WT dataset. The blue line is the collected data (with linear

interpolation) and the orange and green lines are the original curve
±10% of the difference between the global maximum and global min-
imum. This is called a 10% noise level of the Ndd1 data. The purpose
of choosing a noise level is to smooth out small, spurious extrema and
also account for imprecision in the timing of large extrema.

The example computation in Fig. 16 assigns a time interval to the
second minimum in the time series which occurs at 158 min, called
an extremal interval, by locating a region of the graph around the
minimum that is below the + 10% curve and above the *10% curve.
It was proven in [57] that any perturbation of the original data that is
bounded within ±✏ curves for some noise level ✏ is guaranteed to have
a minimum located within the extremal interval. That is, the existence
of the minimum is robust within the extremal interval. The extremal
interval for a maximum is recovered in a similar manner.

This procedure is repeated for every local extremum in every time
series, where an extremum is identified as either an endpoint of the
time series, or a point such that the nearest neighbors on either side
are both higher or both lower than the point in question. The end
result is a collection of time intervals, and the intervals across time
series are compared to see if they are overlapping. When two intervals
overlap, it is possible for the extrema associated to the intervals to occur
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Fig. 15. An example STG (Left) and MG (Right) computed from the given DSGRN parameter (Bottom) for the 3-node network in Fig. 8. The STG exhibits an unstable partial
cycle and a fixed point.

Fig. 16. The time interval corresponding to a 10% noise level at the second minimum
within the wild-type Ndd1 time series. The red line indicates the size of the time
interval.

in either order in time. In other words, the ordering of the extrema
is indeterminate and the extrema are called incomparable. However,
when intervals are non-overlapping, then the order between the two
extrema is known, and they are called comparable.

A pattern diagram is a discrete, graphical representation of all the
comparability relationships between extremal intervals. This is known
mathematically as the Hasse diagram of a partially ordered set. In the
most straightforward case, all extrema of a dataset are comparable and
form a linear sequence of events in time. This is true for any single time
series. However, for more than one time series this never happens, since
the start of every time series co-occurs and the concentrations for each
node are either at a maximum or a minimum.

Fig. 17 shows the pattern diagram for the WT data (Fig. 2b) for the
nodes in the SCC network. The time intervals for each extremum were
computed at 10% noise, as were all time series discretizations in this
manuscript. Each node in the pattern diagram is a type of extremum,
with nodes at the top occurring at the beginning of the time series.
A directed arrow between a source node and target node means that
the source extremum is known to occur earlier in time than the target
extremum. If there is no path between two nodes, then the associated
extrema are incomparable.

5.6. Pattern matching

Pattern diagrams are the basis for testing DSGRN network model
consistency with oscillating time series data. While the technical details
differ [57], a straightforward demonstration of pattern matching can be
done by labeling the edges of a DSGRN state transition graph with the
extrema labels that occur in the nodes of the pattern diagram. We begin
our example of pattern matching by discussing how to use the pattern
diagram, and then proceed to the labeling of the STG.

The key idea is that of a linear extension of the pattern diagram. A
linear extension is any sequence of all the nodes in a pattern diagram
that does not contradict any arrows in the pattern diagram. For exam-
ple, in Fig. 17, the top two nodes Clb2 min and Swi5 max may occur
in either order in a linear extension because they are incomparable.
However, the arrow from Clb2 min to Clb2 max enforces that in any
linear extension, Clb2 min occurs before Clb2 max. We claim that
any of the linear extensions arising from a pattern diagram might
be the ‘‘true’’ sequence of extrema in the biological system given the
measurement error and sampling density of the data.

Continuing our example of the three-node network in Fig. 8, we
have constructed two example pattern diagrams that could have arisen
from two different datasets of nodes X and Y (top row of Fig. 18),
with the idea of checking if a pattern match exists between either of
these datasets and the unstable partial cycle in Fig. 14 (blue nodes).
Via inspection of the two example pattern diagrams it can be seen
which extrema are comparable and incomparable. In the first pattern
diagram on the left, the node X

min
is comparable with any other node

in the pattern diagram, but X
max

and Y
max

are not comparable with
each other. For the pattern diagram on the right, we see a shift in the
ordering of the extrema where X

max
and Y

min
are incomparable. Each

pattern diagram has two linear extensions (bottom row of Fig. 18). To
construct the linear extensions for the left pattern diagram a decision is
made that defines the ordering of the two incomparable extrema X

max

and Y
max

. Similarly for the poset on the right, the decision is between
the order of Y

min
and X

max
.

The nodes of an STG can be labeled with information about whether
a node concentration is increasing (I), decreasing (D), or both (<)
within the corresponding domain in phase space. This information is
readily extracted from the arrows in the state transition graph (and the
knowledge that the dissipativity of the switching system means that
the long term dynamics lies in a compact region of phase space). For
example, in Fig. 15, the leftward-going arrows on the front face of the
cube indicate that Y is decreasing in the domains corresponding to 111
and 110. If the Y direction contained arrows that are both increasing
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Fig. 17. The pattern diagram for the WT dataset in Fig. 2(b) at a noise level of 10%.

Fig. 18. Two example pattern diagrams corresponding to two hypothetical datasets (top row) and their corresponding collections of linear extensions (bottom row). The linear
extension in blue is a pattern match to the unstable partial cycle in Fig. 14, as seen by the labeling of the STG in Fig. 19.
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Fig. 19. The part of the STG in Fig. 14 corresponding to the unstable partial cycle.
Node labels indicate whether node concentrations are increasing or decreasing within
the corresponding domains in phase space. Edge labels indicate when an extremum
between domains can be inferred. Notice that an extremum does not necessarily need
to occur between two domains in phase space.

and decreasing at a domain, then the label on the node of the STG
would be <. This latter case is possible when Y is self-regulating, or
when the corresponding domain in phase space is unbounded. For
a detailed description of the labeling procedure, see [57]. From this
information, edge labels in the STG can be deduced that describe which
extremum could occur between any two neighboring domains.

To continue our example, Fig. 19 contains the unstable PC from
Fig. 14 along with the I , D, and < labels on each node in the order
(XYZ). Consider the edge going from the node labeled (DDD) to the
node labeled (< ID). In the first domain, Y is decreasing and in the
second domain, it is increasing. Therefore Y had to undergo a minimum
on the edge between the two. Continuing to the node labeled (I <D),
we note that we are moving along the Y axis. Y does not regulate itself,
and therefore we know that starting from node (< ID) means Y must
continue to increase. Therefore, no extremum may occur in Y on the
arrow from (< ID) to (I <D). However, on the next edge to (< DD), Y
transitions from increasing to decreasing, therefore must have achieved
a maximum. Similar arguments allow the assignment of the other edge
labels.

To continue with pattern matching, we compare the sequence of
extrema in the STG to the linear extensions in Fig. 18. It can be seen
that within the STG X

min
is followed by Y

max
then X

max
and finally Y

min
.

This is exactly the left-most linear extension in Fig. 18, highlighted in
blue. On the other hand, looking at the rest of the linear extensions
in Fig. 18, it can be seen that none of them match the path through
the STG. We conclude that the three-node network model in Fig. 8
is consistent with the hypothetical dataset that generated the pattern
diagram on the left, but is not consistent with the pattern diagram on
the right.

This pattern matching procedure is conducted analogously for the
WT and mutant datasets against the SCC network model in Section 3.

5.7. Hill models

After locating a region of interest in the TFO subnetwork param-
eters, we parameterized Hill models through real-valued sampling of
DSGRN parameter nodes to recapitulate the experimental data. To
model an activating regulation x ô y, we used a Hill function of the
form:

H
+
y,x

(x) = (h
y,x

* l
y,x

) x
n

✓n
y,x

+ xn
+ l

y,x

where l, h, and ✓ are the switching system parameters introduced in
Section 5.1. Similarly, a repressing regulation x  y is given by:

H
*
y,x

(x) = (h
y,x

* l
y,x

)
✓
n

y,x

✓n
y,x

+ xn
+ l

y,x

We created a Hill model of the SCC network in Fig. 1 (Right) of the
following form:

ÜS = *S +H
*(N)H*(C)H+(S)H+(W )

ÜN = *N +H
+(S)

ÜD = *D +H
+(S)H+(C)

ÜW = *W +H
*(C)H+(D)

ÜC = *C +H
+(N)

where S (Swi4), N (Nrm1), D (Ndd1), W (Swi5), and C (Clb2) rep-
resent expression levels of the corresponding mRNA. The subscripts on
the Hill functions have been suppressed for clarity.

The parameters for the simulations in Figs. 3, 5, and 6 are provided
in a public code repository (see Data Availability). The Hill exponent
n was taken to be 10 in all simulations. Time series were constrained
to have a minimum absolute fold change of 2 between extrema for all
oscillating variables.
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