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ON THE CROSS-PRODUCT CONJECTURE FOR
THE NUMBER OF LINEAR EXTENSIONS

SWEE HONG CHAN* |, IGOR PAK® , AND GRETA PANOVA®

ABSTRACT. We prove a weak version of the cross—product conjecture: F(k + 1,)F(k, ¢+ 1) >
(3+¢)F(k, ) F(k+1,0+1), where F(k, £) is the number of linear extensions for which the values
at fixed elements x,y, z are k and ¢ apart, respectively, and where ¢ > 0 depends on the poset.
We also prove the converse inequality and disprove the generalized cross—product conjecture. The
proofs use geometric inequalities for mixed volumes and combinatorics of words.

1. INTRODUCTION

This paper is centered around the cross—product conjecture (CPP) by Brightwell, Felsner and

Trotter that gives the best known bound for the celebrated -2 Conjecture [BFT95, Thm 1.3].

Here we prove several weak versions of the conjecture, and disprove a stronger version we conjec-
tured earlier in [CPP22].

Let P = (X,<) be a poset with |X| = n elements. A linear extension of P is a bijection
L:X —[n]={1,...,n}, such that L(z) < L(y) for all  <y. Denote by £(P) the set of linear
extensions of P. Fix distinct elements x,y,z € X. For k, ¢ > 1, let

F(h,0) == {Le&(P): Liy) — L) = k, L(z) ~ L(y) = ¢},
and let F(k,0) == |F(k,0)|.
Conjecture 1.1 (Cross-—product conjecture [BET95, Conj. 3.1]). We have:
(CPC) F(k+1,0)F(k,t+1) > F(k,)F(k+1,0+1).
The CPC was proved in [BFT95, Thm 3.2] for k = ¢ =1, and in [CPP22, Thm 1.4] for posets

of width two. We also show in [CPP22, §3|, that both the Kahn—-Saks and the Graham—Yao—Yao
inequalities follow from (CPC).

Theorem 1.2 (Main theorem). Let P = (X, <) be a poset on |X| = n elements. Fiz distinct
elements x,y,z € X. Suppose that F(k,{ + 2)F(k +2,¢) > 0. Then:

(1.1) Flk+1,0F(k,(+1) > (% + MIW) F(k,O)F(k + 1,0+ 1).

Suppose that F(k,0+2) =0 and F(k+2,¢) > 0. Then:

(1.2) Flk+1LOFFkL+1) > (5 + ope) FBOF(k+1,041).

Suppose that F(k+2,) =0 and F(k,0+2) > 0. Then:

(1.3) Flk+1LOFFk L+1) > (5 + 15o2y) F(k, O F(k+1,0+1).

Finally, suppose that F(k,0+2) = F(k+2,0) =0 and F(k,{)F(k+ 1,0+ 1) > 0. Then:
(1.4) Fk+1,0F(k,(+1) = F(k, ) F(k+1,6+1).
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When F(k,0)F(k+ 1,0+ 1) = 0, the inequality (CPC) holds trivially. Curiously, the equality
(1.4) does not hold in that case since the LHS can be strictly positive (Example 4.5). Except
for the natural symmetry between (1.3) and (1.2), the proof of remaining three cases are quite
different and occupies much of the paper.

Note that computing the number e(P) of linear extensions of P is #P-complete [BW91], even
for posets of height two or dimension two [DP18]. Still, the vanishing assumptions which distin-
guish the cases in the Main Theorem 1.2, can be decided in polynomial time (see Theorem 4.2).

The proof of the Main Theorem 1.2 is a combination of geometric and combinatorial arguments.
The former are fairly standard in the area, and used largely as a black box. The combinatorial
part is where the paper becomes technical, as the translation of geometric ratios into the language
of posets (following Stanley’s pioneering approach in [Sta81]) leads to bounds on ratios of linear
extensions that have not been investigated until now. Here we employ the combinatorics of words
technology following our previous work [CPP22, CPP23a, CPP23b] (cf. §8.7)

Let us emphasize that getting an explicit constant above % in the RHS is the main difficulty in
the proof, as the % constant is relatively straightforward to obtain from Favard’s inequality. This
was noticed independently by Yair Shenfeld who derived it from Theorem 2.4 in the same way we
did in the proof of Theorem 3.1.! In another independent development, Julius Ross, Hendrik Siiss
and Thomas Wannerer gave a proof of the same % lower bound using the technology of Lorentzian

polynomials [BH20] combined with a technical result from [BLP23].2

Our combinatorial tools also allow us to inch closer to the CPC for two classes of posets. Fix a
subset A C X. We say that a poset P = (X, <) is t-thin with respect to A, if for every u € X \ A
there are at most ¢ elements incomparable to u. For A = @&, such posets are a subclass of posets
of width ¢. This class is a generalization of ¢-thin posets (the case of A = X), studied in the
context of the -2 Conjecture [BW92, Pec08].

Similarly, we say that a poset P = (X, <) is t-flat with respect to A, if for every u € A there are
at most ¢ elements comparable to u. For A = X, such posets are a subclass of posets of height ¢.
Examples include incidence posets (see e.g. [Tro95, §10]), defined as follows. Let G = (V, E) be a
simple graph, let X =V UE, and let v < e for all e = (v,w) € E. For A C E, the corresponding
poset P is 2-flat with respect to A. For A CV and G is d-regular, the corresponding poset P is
d-flat with respect to A.

Theorem 1.3. Let P = (X, <) be a finite poset. Fiz distinct elements x,y,z € X, and let
A = {z,y,z}. Suppose that P is either t-thin with respect to A, or t-flat with respect to A.
Then:

(1.5) F(k+1L,0OFk,(+1) > (5 + ) FEOF(k+ 1,0+ 1).

Note that the constant in the RHS of (1.5) depends only on ¢, and thus holds for posets of
arbitrary large size n, see also §8.3. We also have the following counterpart to the CPC.

Theorem 1.4 (Converse cross—product inequality). Suppose that F(k,0)F(k+1,0+1) > 0. Then:
Flk+1,0)F(k, 0+ 1) < 2kf(min{k,l} + 1)n - F(k,0)F(k+ 1,0+ 1).

Note that the inequality in the theorem is asymptotically tight, see Proposition 7.5. On the
other hand, originally we believed in the following stronger version of the CPC:

Conjecture 1.5 (Generalized cross—product conjecture [CPP22, Conj. 3.2]). We have:
(GCPC) F(k,0)F(p,q) < F(p,0)F(k,q) forall k<p,l<gq.

Lyair Shenfeld, personal communication (May 2, 2021).
2Julius Ross, personal communication (May 31, 2023).
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For p=k+1 and ¢ = £+ 1, where k,¢ > 1, this gives (CPC). In [CPP22, Thm. 3.3], the
inequality (GCPC) was proved for posets of width two. However, here we show that it fails in full
generality:

Theorem 1.6. The inequality (GCPC) fails for an infinite family of posets of width three.

Our final result further confirms that CPC is somehow special among similar families of in-
equalities. While these other inequalities are not always true, they are not simultaneously too far
off in the following sense.

Theorem 1.7. For every P = (X, <), every distinct z,y,z € X, and every k,{ > 1, at least two
of the inequalities (CPC), (CPC1) and (CPC2) are true, where

(CPC1) Fk+2,0F(k (+1) < Fk+1,0F(k+1,0+1),
(CPC2) F(k,0+2)F(k+1,0) < F(k, 0+ 1)F(k+1,0+1).

We prove that inequalities (CPC1) and (CPC2) hold for posets of width two (Corollary 7.3).
However, they are false on infinite families of counterexamples (Proposition 7.1). By Theorem 1.7,
this means that the CPC holds in all these cases.

Paper structure. We start with a short background Section 2 on mixed volumes and variations
on the Alexandrov—Fenchel inequalities. This section is self-contained in presentation, and uses
several well-known results as a black box. In a lengthy Section 3 we show how cross product
inequalities arise as mixed volume, and make some useful calculations. We also prove Theorem 1.7.

We begin our combinatorial study of linear extensions in Section 4, where we give explicit
conditions for vanishing of F(k,¢), and explore the consequences which include the equality (1.4).
In Sections 5 and 6, we prove different cross product inequalities in the nonvanishing and vanishing
case, respectively. We conclude with explicit examples (Section 7) and final remarks (Section 8).

2. MIXED VOLUME INEQUALITIES

2.1. Alexandrov—Fenchel inequalities. Fix n > 1. For two sets A, B C R" and constants
a,b > 0, denote by

aA+bB = {ax+by X €EAyE B}
the Minkowski sum of these sets. For a convex body A C R"™ with affine dimension d, denote
by Voli(A) the volume of A. One of the basic result in convex geometry is Minkowski’s theorem
that the volume of convex bodies with affine dimension d behaves as a homogeneous polynomial
of degree d with nonnegative coefficients:

Theorem 2.1 (Minkowski, see e.g. [BuZ88, §19.1]). For all convex bodies Ai,...,A, CR" and
Ay ey Ap >0, we have:

(2.1) VOld()\lAl—i-...—i-)\rAr) = Z V(Aip---aAid) )‘il "‘/\id,
1<it, ... ig<r

where the functions V(-) are nonnegative and symmetric, and where d is the affine dimension of
AMAT + ...+ N A, (which does not depend on the choice of \i,...,A\r).

The coefficients V(A;,,...,A;,) are called mized volumes of A;,...,A;,. We use d :=
d(Aq,...,A,) to denote the affine dimension of the Minkowski sum Aj + ...+ A,.

There are many classical inequalities concerning mixed volumes, and here we list those that
will be used in this paper. Let A,B,C, Q,...,Q4_o be convex bodies in R". We denote

Q=(Q,...,Qq_o) and use Vq(-,-) as a shorthand for V(-,-,Qy,...,Qq_o)-
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Theorem 2.2 (Alexandrov—Fenchel inequality, see e.g. [BuZ88, §20]).
(AF) Vq(A,B)? > Vq(A,A) Vq(B,B).
The following technical result generalizes Theorem 2.2 to inequalities involving differences
in (AF); see e.g. [Sch14, §7.4].
Theorem 2.3 (see e.g. [Sch14, Lemma 7.4.1]). We have
(Va(A,C)* = Vq(A,A) Vq(C,0)) (V(B.C)* - Vq(B,B) Vq(C, C))

(2.2) 2
> (VQ(A,C)VQ(B,C) — VQ(A,B)VQ(C,C)) .

2.2. Favard’s inequality for the cross-ratio. Towards proving the Main Theorem 1.2, we are
most interested in bounds on the cross-ratio

Va(4,C) Vq(B,C)
Vq(A,B)Vq(C,C)

We start with the following well-known result which goes back to Favard (see §8.2).

Tq(A,B,C) =

Theorem 2.4 (Favard’s inequality, see e.g. [BGL18, Lemma 5.1]). Suppose we have
Vq(A,B)Vq(C,C) > 0.

Then:

Vq(A, C) V(B, €)

2.3 1
(2:3) Vq(A,B)Vq(C,C) = 2°

In the next section, we use order polytopes to write the cross product ratio in (CPC) into the
cross-ratio Y. Then Favard’s inequality (2.3) T > % easily gives the constant % in the inequalities
in the Main Theorem 1.2 (see Theorem 3.1). To move beyond % we need to strengthen (2.3), see
below.

Remark 2.5. From geometric point of view, the constant % in the inequality (2.3) is sharp. For

example, take A and B non-collinear line segments, and C = A + B, see e.g. [AFO14, Prop. 5.1]
and [SZ16, Thm 6.1]. However, for various families of convex bodies, it is possible to improve the
constant perhaps, although not to 1 as one would wish. For example, when C is a unit ball in R?
the constant can be improved to % [AFO14, Prop. 5.3].

2.3. Better cross-ratio inequalities. The following two results follow from (2.2) by elementary
arguments. They are variations on inequalities that are already known in the literature. We
include simple proofs for completeness.

Proposition 2.6. Suppose that Vq(A,B)Vq(C,C) > 0. Then:

Vq(A,C)Vq(B,0) 1 ( V' Va(A,A)Vq(B, B)>.

(24) V(A B)Vq(C,C) = 2 Va(A,B)

Proof. Let aq, ag, B1, B2 be nonnegative real numbers given by

- Va(A, C) = Va(B,©)

' VoA B)VQ(C.O) T NQ(AB)Vq(C.0)’
_ VqA,A) _ Vq(B,B)

T ValA B 7 VoaB)
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Note that §182 <1 by (AF). By perturbing the convex bodies again if necessary, we can without
loss of generality assume that 818y < 1.
In this notation, we can rewrite (2.2) as

(araz —1)* < (af = B1) (a3 — Ba).
Rearranging the terms, this gives:

1 1 1
(2.5) aap 2 o+ g (afB2+ a3B1) — §5lﬁ2-

By applying the AM—GM inequality to the terms (a%ﬁz + a%ﬁl) , we get

—_

1
arar > = + ajoey/ PP — 55152-

Rearranging the terms, this gives:

(1 = V/BiB2) crae > = (1= Bifa).

Since 182 < 1, we can divide both side of the inequality above by (1 — Vb 52) and get

\)

N |

—

g > 5(1+ B12).

This gives the desired (2.4). O

We now present a variant of Proposition 2.6 in a degenerate case.

Proposition 2.7. Suppose that Vq(A,B)Vq(C,C) >0 and Vq(B,B) =0. Then:

(2.6) V(A O)Vq(B,C) (H\/l_VQ(A,A)VQ(C,C))l.

Vq(A,B)Vq(C,C) Vq(A,C)?

Proof. First note that (2.2) gives:

o (Va(A,©)Va(B,C) — Vq(A,B)Vq(C,0))"
' < (VQ(Aa 0)2 _VQ(A7A) VQ(C,C)) VQ(B’C)Q-

We assume without loss of generality that
(2.8) VqQ(A,C)Vq(B,C) < Vq(A,B)Vq(C,C).

In fact, otherwise, since the right side of (2.6) is at most 1 we immediately have (2.6).
Now note that Vq(A,C)Vq(B,C) > 0 by (2.3) and by the assumption of the theorem. Taking
the square root of (2.7) using (2.8), and then dividing by Vq(A,C)Vq(B,C), we get:

VQ(A,B)Vo(C,O) | _ \/1_VQ(A,A)VQ(C,C)
Vaq(A,C)Vq(B,C) N Va(A, €)?

This is equivalent to (2.6). O
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3. POSET INEQUALITIES VIA MIXED VOLUMES

3.1. Definitions and notation. We refer to [Tro95] for some standard posets notation. Let
P = (X,<) be a poset with |X| = n elements. A dual poset is a poset P* = (X, <*), where
x <*y if and only if y < z.

We somewhat change the notation and fix distinct elements 21,290,235 € X which we use
throughout the paper. As in the introduction, for k,¢ > 1 let

f(k,g) = {L S E(P) : L(ZQ) — L(Zl) =k, L(Zg) — L(ZQ) = 6}7
and let F(k,0) := ‘]—"(kz,ﬁ)‘. We will write Fp_, ., .,(k,¢) in place of F(k,¢) when there is a
potential ambiguity in regards to the underlying poset P and the elements 21, 22,23 € X.

3.2. Half CPC. We first prove that (CPC) holds up to a factor of 2. Formally, start with the
following weak version of the Main Theorem 1.2:

Theorem 3.1. For ecvery k,f > 1, we have:

(half-CPC) Fk,O)F(k+1,0+1) < 2F(k+ 1,0)F(k,0+1).

To prove Theorem 3.1, we will first interpret the quantity F(k,¢) as in the language of mixed
volumes. Here we follow Stanley’s approach in [Sta81] (see also [KS84]).

Fix a poset P = (X, <), and let R¥ be the space of real vectors v that are indexed by elements

x € X. Throughout this section, the entries of the vector v that corresponds to x € X will be
denoted by v(z), to maintain legibility when x are substituted with elements z;. The order
polytope K := K(P) C RY is defined as follows:
K:={veR¥ : v(@)<v(y) forall z <y, z,y€ X, and 0<v(z)<1 forall z€X}.
Let Ky, Ko, K3 C K be the slices of the order polytope defined as follows:

Ki == {veK:v(z)—v(z1) =1, v(z3) —v(22) =0},
(3.1) Ko := {veK:v(z)—v(z1) =0, v(z3) —v(z2) = 1},

Ks := {veK: v(z)—v(z1) = v(z3) —v(22) = 0}.
Note that all Minkowski sums of these three polytopes have affine dimension d =n — 2.
Lemma 3.2. Let £,/ > 1, k+/{<n. We have:

(3.2) F(k,0) = (n—2)! V(Ky,...,K1,Ks,...,Ko,Ks,...,Ks).
k—1 /-1 n—k—~¢

This lemma follows by a variation on the argument in the proof of [Sta81, Thm 3.2] and [KS84,
Thm 2.5].
Proof. For 0 < s,t <1, 0 < s+t <1, define
K& = [ veK : v(z) —v(z1) = s, v(z3) —v(z) = t}.
Note that K&t = sK; + tKs + (1 —s—1t)Ks. Let us now compute the volume of Kb
For every L € £(P) we denote by Ay C K& the polytope
Ap = {veKO) | v(z) < v(y) whenever L(z) < L(y)}.

Note that K is the union of Ay’s over all linear extensions L such that L(z1) < L(z2) < L(z3),
and furthermore all Aj’s have pairwise disjoint interiors. Hence it remains to compute the volume
of Ar’s.

Let L € F(k,£) for some k,£ > 1, let h:= L(z1), and let x; (i € {1,...,n}) be the i-th smallest
element under the total order of L. Note that z; = xp, 220 = T4k, and 23 = Tpypre. Then Ap
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consists of v € RX that satisfies these three inequalities: 0 < v(zy) < v(ze) < ... <v(x,) <1,
V(zhgr) = v(zp)+s, V(Zhirse) = v(zp)+5+t. Denote by ® : R — R¥ the (volume preserving)
transformation defined as follows: ®(v) = w, where

w(z;) = v(zg) if ¢ < h,

w(z;) = v(zi) — v(zp) if h<i<h+k,

w(z;) = v(zi)—v(zp) —s if h+k <i<h+k+,
w(z;) = v(x) —s—t if h+k+0<i<n.

Then the image ®(Ay) is the set of w € R¥ that satisfies

0 <w(xy) <... <w(zp) < WThthtor1) < ... <w(zy) <1-s—t,
0 < w(zpt1) < ... < w(xpyr) = s, and
0 < W(@hirs1) < o0 < W(Tpgrge) = .
This set is the direct product of three simplices and has volume
Sk—l tZ—l (1 —s— t)n—k—é

Pt = G X o Y k=)

It follows from here that

V) - Y Y VA - Y Y

kt>1 LeF(kkL) kt>1 LeF (kL)

_ n—2 (ks 0) 1,01 o \n—k—
= Z<n—k—z,k—1,£—1>(n—2)!8 (L —s =)

E0>1

Since the choice of s, is arbitrary, equation (3.2) follows from the Minkowski Theorem 2.1. [

Proof of Theorem 3.1. Let d =n — 2, and let A,B,C, Q,...,Q,_o C K be given by
A+ Ky, B+ Ky, C <+ K3, and
(3.3) Qpy- s Qug +— Ky, .. K1, Ko, ... Ko, K3, ... K3
k—1 (-1 n—k—~¢

The theorem now follows by applying Lemma 3.2 into Theorem 2.4. 0

3.3. Applications to cross products. We now quickly derive the key applications of mixed
volume cross-ratio inequalities for the cross product inequalities.

Proposition 3.3. Suppose that F(k,¢)F(k+1,£+1) > 0. Then:

Fk+1,0F(k(+1) _ 1 N VF(k, 0+ 2)F(k+2,0)
F(k, )F(k+1,0+1) — 2 2F(k+1,0+1)

Proof. Let d =n—2, and let A,B,C, Qy,...,Q4_2 C K be given by (3.3). The conclusion of the
proposition now follows from Lemma 3.2 and Proposition 2.6. U

Proposition 3.4. Suppose that F(k,0)F(k+1,{+1) >0 and F(k,{+2)=0. Then:
-1
B(h+ LOF(k (41 <1 . \/1 _ F(k,OF(k +2,0) >

F(k+ 1,0+ 1)F(k,¢) F(k+1,0)2
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Proof. Let d =n—2,and let A,B,C, Q,...,Q _o C K be given by (3.3). The conclusion of the
proposition now follows from Lemma 3.2 and Proposition 2.7. O

3.4. More half-CPC inequalities. We start with the following half-versions of (CPC1) and
(CPC2). The proofs follow the proof of Theorem 3.1 given above.

Lemma 3.5. For every k,f > 1, we have:
(half-CPC1) F(k+2,0)F(k,t+1)
(half-CPC2) F(k, 0 +2)F(k+1,¢)

< 2F(k+ 1L,OF(k+1,0+1),
< 2F(k, 0+ 1)F(k+1,041).

Proof. We again let d = n — 2 and let Qq,...,Qyz_o C K be given by (3.3). Then (half-CPC1)
follows by applying Lemma 3.2 into Theorem 2.4, with the choice

A+ Kz, B+ Ky and C «+ K;j.
Similarly, (half-CPC2) follows from the choice
A+ Ks, B+« Ky and C + Kj.

This completes the proof. O

Note that (CPC1) is a dual inequality to (CPC2) in the following sense. Let P* := (X, <*)
be the dual poset of P, ie. = <* y if and only if = > y. Let 2] := 23, 25 := 22, 23 = 21.
Then Fpy zz5(k,€) = Fps o1 o5 ox(£, k) by the maps that send linear extensions of P to linear
extensions of P* by reversing the total order.

On the other hand, one can think of (CPC1) and (CPC2) as negative variants of (CPC), in the
following sense. Let 2] := 29, 2} := 21, 2} := 23, and we write F = Fp,, ,, ., and F' = Fpar o
Then, for every integer k,/,

F(k,0) = {L€&(P) : L(z) — L(z1) = k, L(z3) — L(22) = (}|
= {Le€&(P): L(z1) — L(22) = —k, L(23) — L(21) = { + k}|
= F'(~k, 0+ k).
Let k' := —k — 1 and ¢ := ¢ + k. Under this change of variable, (CPC) then becomes
F'(+1,0)F (K, 0 +2) < FHE O+ DF K +1,0 +1),

which coincides with (CPC2) in this case.

Note, however, that (CPC) does not imply (CPC1) and vice versa, since k' are necessarily
negative under this transformation. In fact, as mentioned in the introduction, we will present
counterexamples to (CPC1) in §7.2.

3.5. Variations on the theme. The following three inequalities are variations on (CPC).

Lemma 3.6. For every k,£ > 1 we have:

(LogC-1) Flk+1,0+1)?2 > F(k+2,0)F(k,{+2),
(LogC-2) F(k,0+1)* > F(k,0)F(k,{+2),
(LogC-3) F(k+1,0)% > F(k,0)F(k+2,70).
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Proof. Let d =n — 2, and let A;B,C, Q;,...,Q4_o C K be given by (3.3). It follows from the
Alexandrov—Fenchel inequality (AF) that

Vq )2 V(A,A) V(B,B),

VQ )2 > V(BaB) V(Cv C)7

VQ(A,C)? > V(A,A) V(C,0).

By applying Lemma 3.2, we get the desired inequalities. O

v

(A, B
(B, C
A,C

Remark 3.7. The inequalities (LogC-1), (LogC-2) and (LogC-3) can be viewed as extensions of
Stanley’s and Kahn-Saks inequalities, cf. [CPP22, CPP23b].

Corollary 3.8. Suppose that F(k,¢)F(k+ 1,0+ 1) > 0. Then we have:
F(k+1,0)F(k,t+1) - F(k+2,0)F(k,{+2)
Fk,OF(k+1,011) =  Fk+1,0+1)?

In particular, if (LogC-1) is an equality, then the inequality (CPC) holds.

Proof. Taking the product of (LogC-1), (LogC-2) and (LogC-3), we have:
F(k+ 1,0 F(k, ¢+ 1) F(k+1,6+1) > F(k,0)F(k +2,0)F(k, +2).

By the assumptions, this implies the result.? O

Proof of Theorem 1.7. First, assume that both (CPC1) and (CPC2) are false:
F(k+2,0)F(k,+1) > F(k+1,0)F(k+1,/+1) and
F(k,t+2)F(k+1,¢4) > F(k,{+1)F(k+1,0+1).

Taking the product of both inequalities, we then get

F(k+2,0)F(k,0+2) > F(k+ 1,0+ 1)

which contradicts (LogC-1). The proofs for the other cases are analogous. U

4. VANISHING OF POSET INEQUALITIES

4.1. Poset parameters. For an element =z € X, let B(x) := {y eX :y<x :c} denote the lower
order ideal generated by x, and let b(x) := |B(z)|. Similarly, let B*(z) := {y € X : y = z}
denote the upper order ideal generated by x, and let b*(x) := |B*(z)|.

By analogy, let B(z,y) = {z € X : © < z < y} be the interval between x and y, and let
b(xz,y) = |B(z,y)|. Without loss of generality we can always assume that z; < z3 < z3, since
otherwise these relations can be added to the poset. We then have b(z1, z2), b(22, 2z3) > 2.

Let z,y € X be two incomparable elements in P, write y||z. Define
Uz,y) = {z€X : z|ly, 25z} and u(z,y) = |[U(z,y)|
Similarly, define
Uz,y) == {z€X : 2|y, z=x} and u*(z,y) = |U"(z,y)l.
Finally, let
t(z) == max{u(z,y) : y€ X, yl[lz} and t*(z) := max{u*(z,y) : y€ X, y|x},

?’Alternatively7 the corollary follows immediately from Proposition 3.3.
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and we define t(z) := 1, t*(x) := 1 if every element y € X is comparable to z. Clearly, ¢(z) < b(x)
and t*(x) < b*(x), by definition.

In this notation, recall that a poset P = (X, <) is t-thin with respect to A, if for every u € X\ A
we have n — b(u) — b*(u) < t — 1. Similarly, recall that a poset P = (X, <) is t-flat with respect
to A, if for every uw € A we have b(u) + b*(u) <t + 1. Note that t(u),t*(u) <t in either case.

4.2. Vanishing conditions. Recall the following conditions for existence of restricted linear
extensions.

Theorem 4.1 ([CPP23a, Thm 1.12]). Let P = (X, <) be a poset with |X| = n elements, and
let z1,...,2, € X be distinct elements such that z1 < 290 < --- < z. . Fix integers 1 < a1 < as <
-+ < apr <n. Then there exists a linear extension L € E(P) with L(z;) = a; forall 1 <i<r

if and only if

(4.1) {b(z,) < a;, b(z)<n—a;+1 forall 1 <i<r, and

a; —a; > b(z;,25) =1 forall 1 <i<j <.
We apply this result to determine the vanishing conditions for F(k,?).

Theorem 4.2. Let P = (X, <) be a poset with |X| = n elements, and let z1 < zo < z3 be
distinct elements in X. Then F(k,£) >0 if and only if

b(z1,229) —1 <k < n+1-=>5b(z)—b"(22),
b(Zz, 23) -1 < Y4 < n+ 1-— b*(23) — b(22)7
b(Zl,Zg)—l < k+ ¢ < 7’L+1—b*(23)—b(21).

Note that conditions in the theorem can be viewed as 6 linear inequalities for (k,¢) € N2. These
inequalities determine a convex polygon in R? (see below).

Proof. We have that F(k,¢) > 0 if and only if there exists an integer a, such that the conditions
of Theorem 4.1 are satisfied for the elements z; < 29 < 23 with a1 = a,a0 = a+k,a3 =a+ k+ /.
Rewriting the inequalities we obtain the following conditions

b(z1,22) <k+1, b(z2,23) <Ll+1, b(z1,23) <k+{+1 and
max{b(z1),b(z2) — k,b(23) —k — ¢} <a <n+1—max{b*(z1),k+b"(22),k +{+b"(23)}
The integer a exists if and only if the last inequalities are consistent, which leads to
b(z1,220) + 1 <k, b(z,23)+1<¥l, blz1,23)+1<k+/¢ and
max{b(z1),b(z2) — k,b(z3) — k — £} + max{b*(z1),k + 0" (22),k + L+ b"(23)} <n+1

Noting that b(z;) + b*(z;) < n + 1 for all 4, the second inequality translates to 6 unconditional
linear inequalities for k and £, which can be written as

b(z2) +b"(z1) —n—1 < k< n+1-=0bz21)—0b"(z2),

b*(z2) +b(z3) —m—1 </ n+1—b"(z3) — b(z2),

b*(z1) +b(z3) —n—1 < k+/¢ n+1—>0"(z3) — b(z1).
Finally, since |X| = n, we also have:

b(zi) +b"(z5) —n < b(zj,2) forall 1<j<i<3.

<
<

Combining with the previous inequalities, we obtain the desired conditions. O

Corollary 4.3. Suppose that F(k+ 1,0)F(k,0+ 1) =0. Then F(k,{)F(k+1,+1)=0.
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Proof. Let S := {(k,) € N* : F(k,¢) > 0} denote the support of F(-,-). By Theorem 4.2 we
have S is a (possibly degenerate) hexagon with sides parallel to the axis and the line k + ¢ = 0.
Observe that if (k,¢), (k+1,£+ 1) € S, then we also have (k+ 1,¢), (k,{+ 1) € S. In other
words, if F(k,0)F(k+1,¢+ 1) =0, then we also have F(k+ 1,¢)F(k,{ + 1) =0, as desired. O

4.3. Cross product equality in the vanishing case. We are now ready to prove (1.4) in the
main theorem.

Lemma 4.4. Let P = (X, <) be a finite poset, and let z1 < zo < z3 be three distinct elements
in X. Suppose that F(k,0+2) =F(k+2,0) =0 and F(k,{)F(k+1,(+1) > 0. Then
Fk,t+1)F(k+1,¢) = F(k+1,£+1)F(k,?).

Proof. As in the proof of Corollary 4.3, let S := {(k;,ﬁ) e N2 : F(k,{) > 0} denote the support
of F(-,-). By the assumption, we have (k,¢+2),(k+2,¢) ¢ S and (k,¢),(k+1,0+1) € S.
Theorem 4.2 then gives:

E+1<n+1-0b(2)—>0"(22) and k+2 > n+1-—>5b(z)—b"(22),

C+1 < n+1—->b(z)—>0"(z3) and £+2 > n+1—>b(z2) — b*(z3).
Together these imply

(%) E=mn—0(z)—0"(22) and ¢ = n—>b(z)—b"(23).
Theorem 4.2 also gives

E+0+42 < n+1->5"(z3)—b(z1).
Substituting (*) into this inequality, we get:
n—0b(z1) —b"(z2) +n —b(22) —b"(23) < n—1—"0"(z3) — b(21).

This simplifies to n+ 1 < b(z2) + b*(22) and implies that all elements in X are comparable to za.

Let S = B(z2) — 22 and T = B*(z2) — z2 be the lower set and upper sets of zy, respectively.
Denote s := |S| = b(z2) — 1 and t := |T| = b*(22) — 1. Note that X = S UT U {29} by the
argument above.

Let 1 < r < n. Consider a subposet (S,<) of P = (X, <) and denote by N, the number
of linear extensions L of (5, <) such that L(z1) = r. Similarly, consider a subposet (T, <) of
P = (X, <) and denote by N/ the number of linear extensions L of (S, <) such that L(z3) = r.

Since z1 < z9 < 23, we have z1 € S and z3 € T. Therefore, for all p,q > 1 we have:

F(p,q) = No_py1 N
This implies that
F(k,0+1)F(k+1,0) = Ny_jy1 Nj Ny N}
= Nyp Ny  Ngpt1 Ny = F(k+ 1,04 1)F(k, 0),
as desired. ]

Example 4.5. For k.0 > 1, let X :={x1,..., 2101, 21, 22, 23}. Consider a poset P = (X, <),
where A :={x1,...,21s—1,22} is an antichain, and z; < A < z3. Observe that

F(k,0) =F(k+1,0+1)=F(k,0+2) =F(k+2,0) =0,

F(k,0+1) = (*M5Y and F(k+1,0) = ().

Then we have:
Fk,(+D)F(k+1,0) = 5N > Fk+ 1,0+ 1) F(k, ) = 0.

This shows that the nonvanishing assumption F(k,¢)F(k+1,/+1) > 0 in Lemma 4.4 cannot be
dropped.
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5. CROSS PRODUCT INEQUALITIES IN THE NONVANISHING CASE

5.1. Algebraic setup. We employ the algebraic framework from [CPP23b, §6]. With every
linear extension L € £(P) we associate a word xy, = z1...x, € X*, such that L(x;) =i for all
1 < i < n. In the notation of the previous section, this says that X = {x1,...,z,} is a natural
labeling corresponding to L.

We can now define the following action of the group G, on &(P) as the right action on the
words xp, L € E(P). For ¢ = x1...x, as above, let

Ti...T if x; <x;
(5.1) (21...¢0)73 = ¢ ™ oo
L1 - Li41Lj .- Ty if xi||xi+1.

5.2. Single element ratio bounds. Let P = (X, <) be a poset with |X| = n elements, and
fix an element a € X of the poset. Let N be the set of linear extensions L € £(P) such that
L(a) =k, and let N := | Ny ]|.

Lemma 5.1. We have:

N

k < t(a) if Np_1 >0, and
Ni—1

N

£ < t*(a) if Npp >0
Nig+1

The idea and basic setup of the proof will be used throughout.

Proof. Consider the first inequality. The main idea is to construct an explicit injection ¢ : N —
N1 xI, where I :={1,...,t(a)}. This will show that Ny = | N} | < |Ng_1 xI| = Ny_1t(a).

We identify a linear extension L where L(a) = k with a word & € Ny where xp = a. Let x;
be the last element in & appearing before a which is incomparable to a, that is set i := max{i :
i <k, x; £ xr}. Such element exists because Ni_;1 > 0 implies that b(a) < k — 1 and so among
x1,...,TL—1 there is at least one x; A a. Moreover, since ¢ is maximal, we must have x; < x
for j € [i + 1,k]. Also, for j € [i + 1,k] we must have z;|z;, as otherwise we would have
x; < x; < ) = a. Thus, we have x; € U(a,z;) for i < j < kandso 1 <k —i<t(a).

We now define ¢(x) := (x7; - 7%—1,k — ). Since x;||x; for j € [i +1,...,k] we have that z;
is transposed consecutively with ;y1,...,2k, SO T Th—1 = T1 ... Tj—1Tj41 .. ThTiThtl .. €
N_1. We record the original position of z; via k — 1.

To see this is an injection we construct ¢!, if it exists. Namely, ¢~!(’,7) moves the element
z, after ), = a forward by r = (k — ) positions as long as z} ||z; for j € [k —r,k — 1]. This
completes the proof of the first inequality. The second inequality follows by applying the same
argument to the dual poset P*. O

Corollary 5.2. We have:

N
o< k—1 if Ngy1>0, and
Ni—1
N
P < n—k if Ngy >0
Niy1

Note that the inequalities in the corollary are tight, see Proposition 7.4.

Proof. Observe that t(a) < k—1 since there are at most (k— 1) elements less than or equal to a
by the assumption that Ni_; > 0. Similarly, observe that t*(a) < n — k since there are at most
(n — k) elements greater than or equal to a by the assumption that Ny > 0. These imply the
result. O
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5.3. Double element ratio bounds. We now give bounds for nonzero ratios of F(k,¢). For the
degenerate case, see Section 4.

Lemma 5.3. Suppose that F(k,¢+2) > 0. Then we have:

F(k+1,041 ' ' * *

(F(k:,£+2)) < min{t(z2), k} + min {b(21, 22) — 2,t"(21) } - (t"(23) +t(22)).
Similarly, suppose that F(k+2,¢) > 0. Then we have:

Flh+1,041) . . ‘ *

CF(k+2,0) < min {t*(22), ¢} + min {b(22,23) — 2,t(23)} - (t(21) + t*(22)).

Proof. For the first inequality, we construct an injection ¢ : F(k+ 1,4+ 1) — I x F(k + 2,¢),
where I = I U Iy U I3 and I; are intervals of lengths given by the RHS (see below). We use
notation [p,q] ={i € N : p <i < g} to denote the integer interval.

Let * € F(k+ 1,£+ 1) be a word, such that x; = z1, ;jyp+1 = 22 and ;110 = 23. We
consider several cases.

Case 1: Suppose there exists an element x; A 2z for some j € [i + 1,7 + k]. Let j be the
maximal such index. Then for every r € [j 4+ 1,7 + k] we have that =, € U(22,2;). Set ¢(x) =
(x7j - Tigk, i+k+1—7), i.e. ¥ moves z; to the position after zg, so that 25 is now in position i+k.
Observe that the inverse of 1 exists for all y € F(k,? + 2), since y;+r = 22||yi+k+1. Note that
i+k+1—j <min{u(zs,x;), k}. Thus, we can record the value (i+k+1—j) in the first interval
I = [1, min{t(z2), k}].
Case 2: Suppose that we have z; < zp for all j € [i,i+k]. Then there exists an element z; % 21.
Indeed, otherwise z; € B(z1,22) for all j € [i,i+k+1], which gives k42 < |B(z1, 22)| and implies
F(k,£+2) =0 contradicting the assumption. As above, let j be the smallest possible index such
that x;||z1, so we can move z; in front of z;. Note that j —i < min{b(z1, z2) — 2, u* (21, 2;)}. We
now have a word &’ € F(k,¢ + 1). We split this case into two subcases.
Subcase 2.1: Suppose there exists x, # 23 for r > i+ k + ¢ + 2. Let r be the minimal such
index, and move z, in front of 23, creating a word x” € F(k,{+2). Note that r— (k+£+2+1i) <
u*(z3,2,). Thus, we can record the value (j —i,r — (k + ¢+ 2+ 7)) in the second interval
Is = [1, min{b(z1, z2) — 2,t*(21) }t*(23)].
Subcase 2.2: Suppose xs = z3 for all s > i+ k+ ¢+ 2. Then, since F(k,¢+2) # 0, there must
be some x5 £ 29, for s < i+ k + 1. Since we are in Case 2, we have s < i. Let s be the largest
such index. Thus xs41,...,%i1k < Titk+1 = 22. We can then move x; past all these entries to
right past zo and obtain a word in F(k, ¢+ 2). Note that i — s < u(z2,xs). Thus, we can record
the value (j — 4,7 — s) in the third interval I3 = [min{b(z1, z2) — 2,t*(21) }t(22)].

Gathering these cases, and noting that ¢(z) > u(z,y) and t*(z) > u*(z,y) for all x,y € X, we
obtain the desired first inequality. For the second inequality, we apply the analogous argument to
the dual poset P*. O

5.4. Bounds on cross product ratios. We can now bound the cross product ratios in the
nonvanishing case.

Corollary 5.4. Let P = (X, <) be either a t-thin or t-flat poset with respect to {z1,z2,23}.
Suppose that F(k,{+2) > 0. Then we have:

F(k+1,041) < F(k,+2) - min {k(2t +1),2t* + t}.
Similarly, suppose that F(k + 2,¢) > 0. Then we have:
F(k+1,041) < F(k+2,¢) - min {£(2t + 1),2t* + t}.
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Proof. These inequalities come from different choices in the minima on the RHS of inequalities in
Lemma 5.3. O

Theorem 5.5. Let P = (X, <) be either a t-thin or t-flat poset with respect to {z1,z2,23}.
Suppose also that F(k, L+ 2)F(k +2,¢) > 0. Then:

Nk+L@F@J+1)> mm{1% 1 1%7 1 }

F(k, OF(k+1,0+1) ~ 2 oVEO(2t+1) 2 2022 +1) )

Proof. These inequalities follow from Proposition 3.3 and the inequalities in Corollary 5.4. O

Theorem 5.6. Suppose that F(k,0+2)F(k+2,¢) > 0. Then:

1 1
Fw+¢¢ﬂmhe+1)ZF@JﬂNk+L£+U<2+ %Amm_Qn_k+2me_2n_€+m).

Proof. 1t follows from the definition that ¢(z),t*(z) <n — 1 for every € X. The nonvanishing
condition in the assumption, combined with Theorem 4.2 implies that b(z1,22) < k+ 1 and
b(z2,23) < £+ 1. Tt then follows from Lemma 5.3 that

Fk+1,0+1)
—= < k k—1)(2t) < k k—1)2n—2) = 2nk —2n—k+ 2.
P i S koD@ <kt (E-1)@n-2) = k- 2n -k
Similarly, we have:
Flk+1,0+1)
— < 2nf —2 1.
Flero = oot
The theorem now follows from Proposition 3.3. O

6. CROSS PRODUCT INEQUALITIES IN THE VANISHING CASE

6.1. Double element ratio bounds. As before, let P = (X, <) be a poset with |X| = n
elements, and let z; < z9 < z3 be distinct elements in X. The following are the counterparts of
the cross product inequalities in §5.3.

Lemma 6.1. Suppose that F(k,¢) > 0. Then:
F(k+1,0)

F(k,¢)
+ min{b(z1, z2) — 1,t(22)} (min{¢ — 1,¢(23)} + min{¢ — 1,¢*(z1) — 1}).

< min{k,t"(21)} + min{k,t(z3) — 1} +

Note that the nonvanishing condition implies that b(z1,22) < k+ 1 and b(z2,23) < £+ 1.

Proof. We proceed as in the proof of Lemma 5.3, constructing an injection ¢ : F(k + 1,¢) —
I x F(k,?), where I = I, U151, are intervals of lengths specified by the RHS, each of them
given in the corresponding case below.

Let € F(k + 1,¢) be a word (corresponding to a linear extension) with x; = 21, ;111 = 22
and x;1k1¢r1 = 23. We consider several independent cases, which correspond to different parts
of the interval I:

Case 1: Suppose that there exists ||z with j € [i + 1,7+ k] and let j be the minimal such
index. Then {z;,...,zj_1} C U*(z1,2;) and j —i < min{k,t*(21)}. Take x7j_1---7;, which
moves x; to position ¢ and z; to position ¢ + 1. Then the resulting word is in F(k, /), and we
record the value (j —14) in the first interval 1 = [1, min{k,t*(21)}].
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Case 2: Suppose that x; > 2z for all j € [i + 1,7 + k]. Furthermore, suppose that z, > z;
and z, < z3 for all r € [i +k + 2,0 + k + ¢]. These assumptions imply that there exists
J € [i+1,i+k] such that z;|| 23, as otherwise we have {z;, ..., zi1r1e11} € B(21, 23), contradicting
the assumption that F(k,¢) > 0. Assume that j is the maximal such index j. It then follows
that {zj41,..., Zitk+e+1} € U(zs, x;). This implies that ¢+ k+ ¢+ 1 — j < t(23), which in turn
implies that i +k+ 1 —j < t(z3) — £ < t(z3) — 1. Then we take &' = ©7j- - Tjypye41 € F(k,0)
and record the value (i + k+ 1 — j) in the second interval Iy = [1, min{k,t(z3) — 1}].

Case 3: Suppose again that z; > z; for all j € [i + 1,7 + k], but now that there exists
r € [i+k+2,i+ k+{] such that either x| z; or x| z3. The first condition implies that there
exists xj||z2 with j € [i+1,i+ k]|, as otherwise we would have F(k,¢) = 0. Let j be the maximal
such index. Then {xji1,...,zitp+1} € B(21,22) — 21, and thus i+ k+1—j < b(z1,22) — 1. Also
note that {xj1,...,Zitk+1} € U(22,x;), and thus i + k41— j < t(z2). Move x; right past 2o
via @7j---Titp+1 and record that move with s =i+ k+1—j < min{b(21,22) — 1,t(22)}. We
now consider the new word z’ € F(k,¢+ 1). We split this case into two subcases.

Subcase 3.1: Suppose that there exists an element z] = z, |23 for some r € [i+k+2,i+k+/).
Let 7 be the maximal such index. Then {x].,y,..., 2} ;. 1} CU(z3,2;) and i +k+L+1—7r <
t(z3). We then create the word @'7, -+ 711011 € F(k,£) where x] is moved past z3. We record
the pair (s,i+k+ ¢+ 1 —r) in the product of intervals I3 = [1,min{b(z1,22) — 1,t(22)}] %
[1, min{¢ — 1,t(z3)}].

Subcase 3.2: Suppose that there exists a] = z,||z1 for r € [i + k+ 2,i + k + ¢]. We take
the minimal such 7. Then {af,...,z/_;} C U*(z1,2]) and thus r —i < t*(z1). This in turn
implies that » —i —k —1 < t*(21) —k — 1 < t*(21) — 1. Take a word &” € F(k,{) by moving
x]. to the position before z; and record the pair (s,r —i — k — 1) in the product of intervals
Iy = [1,min{b(z1, 22) — 1,%(22)}] x [1,min{f — 1,t*(z;) — 1}].

Gathering these cases we obtain the desired inequality in the lemma. O

Lemma 6.2. Suppose that F(k +2,£) > 0. Then:

F(k+1,)

Flht2.0) = t(z1) + (t*(22) — 1) + min {€ — 1,¢*(22) } t*(23).

Proof. We proceed as in the proof of Lemma 5.3, constructing an injection v : F(k + 1,¢) —
Ix F(k+2,¢), where I = I U515 are intervals of lengths specified by the RHS corresponding
to each case below.

Let € F(k+1,¢) be a word (corresponding to a linear extension) with z; = 21, ;1541 = 22
and T;4p+e+1 = 23. We consider three independent cases, which correspond to different intervals I;
(see below).

Case 1: Suppose that there exists x;||z; with j € [1,i—1], and let j be the maximal such index.
Then {zjq1,...,2;} C U(z1,2;) and so ¢ —j < t(21). We take @7;---7;_1, which moves z; to
position ¢ and z; to position ¢ — 1. Then the resulting word is in F(k + 2,¢), and we record the
value (i — j) in the first interval I; = [1,¢(z1)].

Case 2: Suppose that x; < z; for all j € [1,i —1]. Since F(k+ 2,£) > 0, there exists z;| 22
with j € [i + k4 2,n]. Let j be the minimal such index. Then {z;1511,...,2;-1} C U*(22,x;),
and thus j —7 —k —1 < t*(22). Move z; to the front of zp via @7j_1 - - Tj1x41 to get a new
word x’. We split this case into two subcases:

Subcase 2.1: Suppose that j € [i + k + ¢+ 2,n]. Then =’ € F(k + 2,¢). Also note that
j—i—k—0—1<1t*(z2) — € < t"(z2) — 1. We then record the value (j —i—k — ¢ —1) in the
second interval I = [1,t*(22) — 1].
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Subcase 2.2: Suppose that j € [i+k+2,i+k+/¢]. Then ¢’ € F(k+2,/—1). By the assumption
of Case 2 and the fact that F(k + 2,¢) > 0, there exists r € [i + k + £ + 2,n] such that 2| zs.

Assume that r is the minimal such index. It then follows that {2}, ,. ..., 2. 1} C U*(23, ;).

This implies that (r —i —k — ¢ — 1) < t*(z3). Move ] to the front of 23 to obtain a new word
" € F(k+2,0), and we record the value (j—i—k—1,7r—i—k—{¢—1) to the product of intervals
Is = [1,min{l — 1,t*(z2)}] x [1,t*(23)].

Gathering these cases we obtain the desired inequality in the lemma. O

6.2. Bounds on cross product ratios. We are now ready to obtain bounds on the cross product
ratios in the vanishing case.
Proposition 6.3. Suppose that F(k,0)F(k+2,£) > 0. Then
F(k,0)F(k+2,¢) S 1
Flk+1,02 = 2nlk
Proof. First, observe that b(z1,22) < k+1 and t(z1)+t*(22) < b(21) +b*(22) < n. We then have:
min{b(z1, z2) — 1,t(22)} (min{ﬁ —1,t(23)} + min{l — 1,t%(21) — 1})
+ min{k, t"(z1)} + min{k,t(z3) — 1} < k(20—2)+2k = 2k¢

(6.1)

and
(6.2) t(z1) + (t*(22) = 1) + min {£ — 1,¢*(22) } t*(23) < n—14 ({—1)(n—1) < nl.
Lemmas 6.1 and 6.2 now give:
F(k,0)F(k+2,0) S <1> . <1>
F(k+1,¢0)2 - \n/ 2kt )’

as desired. O

We also need the following variation on this proposition.

Proposition 6.4. Let P = (X, <) be either a t-thin or t-flat poset with respect to {z1,z2,23}.
Suppose also that F(k,¢)F(k+2,¢) > 0. Then we have:
F(k,0)F(k+2,0) 1 1
max , )
F(k+1,¢0)? - 2k0(0+ 1)t 7 2t(t+1)3
Proof. We follow the proof of the proposition above with the following adjustments. For the first
inequality in the maximum, we replace the bound (6.2) with the following:
(6.3)  t(z1) + (t*(22) = 1) + min {€ — 1,t%(29) } t*(23) < 2t —1 + ({=1)(t —1) < (£ + 1)t.

Now the first inequality follows from Lemmas 6.1 and 6.2, with the parameters bounded by (6.1)
and (6.3).

For the second inequality in the maximum, we replace the bound (6.1) and (6.2) with the
following:

min{b(z1, z2) — 1,t(22)} (min{ﬁ —1,t(23)} + min{l — 1,t%(21) — 1})

(64) + min{k,t*(21)} + min{k,t(z3) — 1} < t(2t —1)+t+ (t—1) < 2t(t+1)

and

(6.5) t(z1) + (t*(22) — 1) + min {€ — 1,¢*(20) } t*(23) < 2t—1+¢* < (t+1)%

Now the second inequality follows from Lemmas 6.1 and 6.2, with the parameters bounded by
(6.4) and (6.5). O
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Theorem 6.5. Suppose that F(k+2,£) >0 and F(k,{+2) =0. Then we have:

F(k+1,0)F(k,t+1) > F(k,0)F(k+1,0+1) (1 + 16nlke2>

Proof. We can assume that F(k,¢)F(k+1,£+1) > 0 as otherwise the result is trivial. Proposi-
tions 3.4 and 6.3 then give:

F(k+1,0)F(k, £ +1) 1\t 1 1
> (1 1— —— > - 4 ———
Fht L+ DRk = U N "2z ) = 27 Tonk
1.

+% for0<a<

where the last inequality follows from 1 > % O

1+v1—-«

Theorem 6.6. Let P = (X,<) be either a t-thin or t-flat poset with respect to {z1,z2,23}.
Suppose also that F(k,{+2) =0 and F(k+2,¢) > 0. Then we have:

1 1 1 1
Flk+1.0F(k t+1) > FlOF(k+1.0+1 - - U
(k+1OFEC+1) > F(kOF(k+1,£+ )max{ 16K0(0 + 1)t +16t(t+1)3}

Proof. The proof follows the same argument as in Theorem 6.5, where Proposition 6.4 is used in
place of Proposition 6.3. O

6.3. Putting everything together. We can now combine the results to finish the proofs.

Proof of Main Theorem 1.2. The first inequality (1.1) follows immediately from Theorem 5.6.
The second inequality (1.2) follows immediately from Theorem 6.5. The third inequality (1.3)
follows by the symmetry P <> P*, z; <> z3 and k <> {. Finally, the equality (1.4) is the equality
in Lemma 4.4. O

Proof of Theorem 1.3. The proof of (1.5) follows the previous proof. The result is trivial in
the case F(k,¢)F(k+ 1,/ + 1) = 0. In the vanishing case F(k,{+2) = F(k +2,¢) = 0 and
F(k,0)F(k+ 1, +1) > 0 the result follows from the equality in Lemma 4.4. In the case when
only one of the terms is vanishing: F(k,¢ +2) = 0 and F(k + 2,¢) > 0, the result is given by
Theorem 6.6. The case F(k +2,¢) =0 and F(k,¢+ 2) > 0 follows via poset duality as in the
proof above. Finally, the nonvanishing case F(k,¢ + 2) = F(k 4+ 2,¢) > 0 is given by the second
inequality in Theorem 5.5. 0

Proof of Theorem 1.4. Lemma 6.1 combined with (6.1), gives
F(k+1,¢)

< 2k¢.
F(k,0) —
Similarly, Lemma 6.2 for ¥’ =k — 1 and ¢ = ¢+ 1, combined with (6.2), gives:
F(k,0+1)  F( +1,0)

= 0 =nl+1).
Flh+1,0+1) ~ Fw+2,0) =" =t

Multiplying these inequalities, we obtain the first term in the minimum of the desired upper
bound. Via poset duality, see the proof of Theorem 1.2 above, we can exchange the k and £ terms
and obtain the other inequality. O
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7. EXAMPLES AND COUNTEREXAMPLES

7.1. Inequalities (CPC1) and (CPC2). Recall that by Theorem 1.7 at least one of these two
inequalities must hold. We now show that for some posets (CPC2) does not hold. By the poset
duality, the inequality (CPC1) also does not hold.

Proposition 7.1. The inequality (CPC2) fails for an infinite family of posets of width three.
Proof. Fix k>1 and ¢ > 2, and let P := (X, <) be the poset given by

X = A{x1,. oy} U Ay, -yt U {21, 20,230 U {u,v,w},

21 R X1 R Xy X o R Tl =22 <Yy Yz < - < Y—9 < 23,

Tl <U < Y1, U= 22, W= 23.

Note that this is a poset of width three. Let us now compute all four terms in (CPC2):

First, observe that L € F(k,¢+ 2) if and only if L(22) < L(u) < L(y1) and L(v), L(w) <
L(z3). Thus, there is a bijection between these linear extensions and the pairs (i,7) satisfying
1 <i# j<{+1, through the map L — (L(v) — L(22), L(w) — L(22)). Therefore, we have
Fk,{+2) = (£ + 1)L.

Second, observe that L € F(k + 1,¢) if and only if L(zx—1) < L(u) < L(z2), and either
L(v) < L(z3) < L(w) or L(w) < L(z3) < L(v). Note that there is a bijection between those
linear extensions satisfying L(v) < L(z3) < L(w) and the integers in [1,¢ — 1], through the map
L — L(v) — L(z2). Therefore, we have F(k +1,¢) =2(¢ —1).

Third, observe that L € F(k,¢+ 1) if and only if L(z9) < L(u) < L(y1), and either L(v) <
L(z3) < L(w) or L(w) < L(z3) < L(v). Note that there is a bijection between those linear
extensions satisfying L(v) < L(z3) < L(w) and the integers in [1,/], through the map L —
L(v) — L(z2). Therefore, we have F(k,¢+ 1) = 2¢.

Fourth, observe that L € F(k + 1,/ + 1) if and only if L(xp_1) < L(u) < L(z2) and
L(v), L(w) < L(z3). Note that there is a bijection between these linear extensions and pairs
(i,7) satisfying 1 <i # j < {. Therefore, we have F(k+ 1,0+ 1) =/¢(¢ —1).

Combining these observations, we obtain:

F(k 0+ DFE(R+10+1)
F(k,+2)F(k+1,0)  (+1 '
This contradicts (CPC2), as desired. O

7.2. Counterexamples to the generalized CPC. We now show that the examples in proof
of Proposition 7.2 are also counterexamples to Conjecture 1.5, thus proving Theorem 1.6.

Proposition 7.2. Inequality (GCPC) implies (CPC2).

Proof. Suppose (CPC2) fails for a poset P = (X, <), elements z1,z29,23 € X, and integers
k0> 1.
Let 2] := 29, 2} := 21, and 2} := 23. To avoid the clash of notation, let F'(k,¢) be defined by

F'(k,0) = |[{Le€&P) : L(zy) — L(z) = k, L(23) — L(z5) = £ }|.
By definition, we have
F'(a,b) = F(—a,a+Db).
Now let a:= —k—1 and b:= £+ k+ 1. Note aside that a < 0 for all £ > 0. It then follows that
F'(a,b) = F(—a,a+0b) = F(k+1,0),
Flla+1,b+1) = F(—a—1,a+b+2) = F(k,{+2),
F(a,b+1) = F(—a,a+b+1) = F(k+ 1,0+ 1),
Fl(a+1,0) = F(~a—1l,a+b+1) = F(k,£+1).
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In the new notation, the inequality (CPC2) is equivalent to
F(a,)F'(a+1,b+1) < F(a,b+1)F'(a+1,b),

and note that a < 0, b > 0 whenever k,¢ > 0. This shows that a counterexample for (CPC2) is
also a counterexample to (GCPC). O

Corollary 7.3. Inequalities (CPC1) and (CPC2) hold for posets of width two.

This follows from Proposition 7.2 and Theorem 3.3 in [CPP22] which proves (GCPC) for posets
of width two.

7.3. Stanley ratio. It follows from Corollary 5.2, the following bound on the Stanley ratio:
Ni
—= < (k—=1)(n—k),
Ni—1 N1 — ( ) )
whenever the LHS is well defined. The following example shows that both the inequality (7.1)
and Corollary 5.2 are tight.
In the notation of §5.2, fix 1 <k <n. Let Py := (X, <) be the width two poset given by
X = {xla s ,l’k_Q} U {yh SER) yn—k—l} U {(Z,U, 'LU},
T < T2 <0 N T2 R4 <Y1 Y2 < < Yn—k—1,

(7.1)

v <Y, W>T, UV < W.

Proposition 7.4. For posets Py defined above the inequality (7.1) is an equality.

Proof. Note that for all linear extensions L € N1, we have L(a) < L(v) = k < L(w), where
k+1 < L(w) < n. Similarly, for all linear extensions L € N, we have L(v) < L(a) < L(w),
where 1 < L(v) <k —1 and k+ 1 < L(w) < n. Finally, for all linear extensions L € Ny, we
have L(v) < L(w) =k < L(a), where 1 < L(v) < k — 1. These three observation imply thati

N1 = n—k, N = (k—1)(n—k), Nip1 = k—1.
Thus, for posets Py the inequality (7.1) is an equality. O

7.4. Converse cross product ratio. The following example shows that Theorem 1.4 is essen-
tially tight, up to a multiplicative factor of 2¢. Fix k > 2, £ > 1, and denote m :=n —k — ¢ — 3.
Let Py g := (X, <) be the poset given by

X = {a1,...,ap—2} U {b1,...;bp—1} U {c1,...,em} U {z1,29,23} U {u,v,w},

21 < a1 < o < Ap_g < 20 by < - b1 R2z3<c1 << O,

U < 29, Qp_9 <V < 23, W= b1, u<v < w.

Proposition 7.5. Fiz k> 2, { > 1. For posets Py defined above, we have:

F(k, ¢+ 1) F(k+1,0)
F(k,€) F(k +1,0+1)

(7.2) = kln(1+0(1)) as n— occ.

Proof. Note that for every linear extension L € £(Py ), we have:
(73) L(ZQ) —L(Zl) Z ’B(Zl,ZQ) - 2’1| = ‘{al,...,ak_z,zg}’ = k- 1,
(7.4) L(Zg) —L(ZQ) > ’B(ZQ,ZB) - 2’2| = ‘{bl,...,bg_1,23}| = /.
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Note also that

(7.5) either L(u)=1 or L(z)< L(u) < L(z2),
(7.6) either L(v) = L(z2) —1 or L(z2) < L(v) < L(z3),
(7.7) either L(w)=L(z3) —1 or L(w)> L(z3).

We now compute the cross-product ratio of P, consider the following four cases.
Case 1. Let L € F(k,¢). Since L(z3) — L(22) = ¢, it then follows from (7.4) that both L(v)
and L(w) are not contained in the interval [L(z2),L(z3)]. It then follows from (7.6) and (7.7)
that L(v) = L(z2) —1 and L(w) > L(z3), respectively. Now, since L(z2) — L(z1) = k and
L(v) € [L(z1),L(22)], it then follows from (7.3) that L(u) is not contained in the interval
[L(z1), L(z2)]. It then follows from (7.5) that L(u) = 1 which in turn implies that L(z;) = 2. We
conclude that L € F(k,{) satisfy:

L(Zl):27 L(Z2)2k+27 L(Z3):k+£+27
L(u)=1, LMw)=k+1, L(w)elk+¢+3,n].
This implies that F(k,¢) =n —k — ¢ — 2, as desired.
Case 2. Let L € F(k+ 1,¢). Since L(z3) — L(2z2) = ¢, it then follows from (7.4) that both
L(v) and L(w) are not contained in the interval [L(z2),L(z3)]. It then follows from (7.6) and
(7.7) that L(v) = L(22) — 1 and L(w) > L(z3), respectively. Now, since L(z2) — L(2z1) =k + 1
and L(v) € [L(z1),L(22)], it then follows from (7.3) that L(u) is contained in the interval
[L(z1), L(22)]. It then follows that L(z1) = 1. We conclude that L € F(k + 1,¢) satisfy:
L(z) =1, L(z) =k+2, L(z3)=k+(+2,
Lw) € 2K, L) =k+1, L(w)e[k+L+3n]
This implies that F(k+1,) = (k—1)(n—k —{—2).
Case 3. We have F(k,0+1) =1+ (k—1)¢(n —k — ¢ —2) by the following argument. Let
L e F(k,£+1). By (7.5) either L(u) =1 or L(u) € [L(z1), L(22)].
Case 3.1 Assume that L(u) = 1. This implies that L(z1) = 2. Since L(u) ¢ [L(z1), L(z2)], it then
follows from L(z2) — L(21) = k and (7.3) that L(v) is contained in the interval [L(z1), L(z2)].
It then follows from (7.6) that L(v) = L(z2) — 1. Since L(z3) — L(22) = £+ 1 and L(v) ¢
[L(22), L(z3)], it then follows from (7.4) that L(w) is contained in the interval [L(z2), L(z3)]. By
(7.7), this implies that L(w) = L(z3) — 1. We conclude:
L(Zl) =2, L(z2) =k+2, L(Z3) =k+{+3,
Lu)=1, LMw)=k+1, Lw)=k+{+2.
Thus, there is exactly one such linear extension.
Case 3.2 Assume that L(u) € [L(21), L(z2)]. This implies that L(z;) = 1. Since L(z2)— L(z1) =
k and L(u) € [L(z1), L(z2)], it then follows from (7.3) that L(v) is not contained in the interval
[L(z1), L(22)]. By (7.6), this implies that L(v) is contained in the interval [L(z2),L(z3)]. Since
L(z3) — L(z2) = €+ 1, it then follows from (7.4) that L(w) is not contained in the interval
[L(22), L(z3)]. By (7.7), this implies that L(w) > L(z3). We conclude:
L) =1, Lizm)=k+1, L(zg) = k+0+2,
L(u) € 2,k], L(v)e[k+2,k+L+1], L(w)e€k+{+3,n].
Thus, there are exactly (k— 1)¢(n —k — ¢ — 2) such linear extensions.

Case 4. Let L € F(k+ 1,0+ 1). Since L(z2) — L(z1) = k + 1, it follows from (7.3) that both
L(u) and L(v) are contained in the interval [L(z1),L(z2)]. This implies that L(z1) = 1. Since
L(v) € [L(z1), L(z2)], it then follows from (7.6) that L(v) = L(z2)—1. Now, since L(z3)—L(z2) =
¢+ 1 and L(v) ¢ [L(22), L(z3)], it then follows from (7.4) that L(w) is contained in the interval
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[L(22), L(z3)]. By (7.7) this implies that L(w) = L(z3) —1. We conclude that L € F(k+1,£+1)
satisfy:
L) =1, L(z)=k+2, L(z)=k+0+3,
L(u) € 2,k], L(v)=k+1, Lw)=k+0+2.
This implies that F(k+ 1, +1) =k — 1.
In summary, for the poset P o, we have:
F(k,t+1)F(k+1,¢)
F(k,0)F(k+1,0+1)
as desired. g

=1+ (k-1Dln—k—0—-2) = kfn(l+40(1)) as n — oo,

8. FINAL REMARKS

8.1. The cross-product conjecture (Conjecture 1.1) has been a major open problem in the area
for the past three decades, albeit with relatively little progress to show for it, see [CP23b] for the
background. The following quote about a closely related problem seems applicable:

“As sometimes happens, we cannot point to written evidence that the
problem has received much attention; we can only say that a number of
conversations over the last 10 years suggest that the absence of progress
on the problem was not due to absence of effort.” [KY98, p. 87]

8.2. Theorem 2.4 is well-known in the area and can be traced back to the works of Jean Favard
in the early 1930s.* Of course, this is not the only Favard’s inequality known in the literature. In
fact, Theorem 2.3 which goes back to Matsumura (1932) and Fenchel (1936), seem to also have
been inspired by Favard’s work.? In a closely related context of Lorentzian polynomials, Favard’s
inequality appears in [BH20, Prop. 2.17]. For more on Theorem 2.3, see [BF87, §51] and references
therein.

8.3.  As we mentioned in the introduction, the T > % lower bound derived from Favard’s inequal-
ity (Theorem 2.4) easily implies the % lower bound on the cross product. Given the straightforward
nature of this implication, one can think of this paper as the first attempt to finding the best
€ > 0, such that
F(k+1,0)F(k,t+1) 1
F(k,O)F(k+1,0+1) 2

In this notation, the CPC states that ¢ = % Our Main Theorem 1.2 and especially the “t-thin
or t-flat” Theorem 1.3 are the first effective bounds for € > 0. More precisely, here we prove
€= Q(%) for all posets, and a constant lower bound on ¢ for posets with bounded parameter ¢.
Improving these bounds seems an interesting challenging problem even if the CPC ultimately
fails.

> €.

8.4. The constant % in Favard’s inequality has the same nature as the constant 2 in [RSW23,
Cor. 1.5] which also follows from Favard’s inequality written in terms of the Lorentzian polynomials
technology. The relationships to the constant 2 in [CP22b, Thm 1.1] and [HSW22, Thm 5] are
more distant, but fundamentally of the same nature. While in the former case it is tight, in the

latter is likely much smaller, see [Huh18, §2.3].

4Ramon van Handel, personal communication (May 3, 2021).
5Ramon van Handel, personal communication (June 12, 2023).
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8.5. The reader might find surprising the discrepancy between the vanishing and the nonvanish-
ing cases in the Main Theorem 1.2. Note that the vanishing case actually implies a worse bound
(1.2) compared to the bound (1.1) in the nonvanishing case, instead of making things simpler.
This is an artifact of the mixed volume inequalities and combinatorial ratios. Proposition 6.3
gives a better bound than Proposition 6.4 simply because the ratio of F(-,-)’s in the former is
under a square root which decreases the order. However, these combinatorial bounds can only be
applied when the corresponding terms are nonzero.

Clearly, there is no way to justify this discrepancy, as otherwise we would know how to disprove
the CPC. Still, one can ask if there is another approach to the vanishing case which would improve
the bound? We caution the reader that sometimes nonvanishing does indeed make a difference
(see e.g. Example 4.5).

8.6. Theorem 4.1 gives the vanishing conditions for the generalized Stanley inequalities. It was
first stated without a proof in [DD85, Thm 8.2], and it seems the authors were aware of a combi-
natorial proof by analogy with their proof of the corresponding results for the order polynomial.
The theorem was rediscovered in [CPP23a, Thm 1.12], where it was proved via combinatorics of
words. Independently, it was also proved in [MS24, Thm 5.3] by a geometric argument.

8.7. There is a large literature on the negative dependence in a combinatorial context, see e.g.
[BBL09, Huh18, Pem00], and in the context of linear extensions [KY98, She82]. When it comes to
correlation inequalities for linear extensions of posets, this paper can be viewed as the third in a
series after [CP22b] and [CP23a] by the first two authors. These papers differ by the tools involved.
In [CP22Db], we use the combinatorial atlas technology (see [CP21, CP22a]), while in [CP23a] we
use the FKG-type inequalities.

The idea of this paper was to use geometric inequalities for mixed volumes, to obtain new cross
product type inequalities. As we mentioned in the introduction, it transfers the difficulty to the
combinatorics of words. This is the approach introduced in [Hai92, MR94] (see also [Sta09]), and
advanced in [CPP22, CPP23a, CPP23b] in a closely related context.

8.8. Despite the apparent symmetry between the ¢-thin and t-flat notions, there is a fundamental
difference between them. For posets P = (X, <) which are t-thin with respect to a set A of
bounded size, the number e(P) of linear extension can be computed in polynomial time, since
P’ := (X \ A, <) has width at most ¢. On the other hand, for posets which have bounded height,
computing e(P) is #P-complete [BW91, DP18], and the same holds for posets which are ¢-flat
with respect to a set of bounded size.
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