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ABsSTRACT. We study a Wiener process that is conditioned to pass through a
finite set of points and consider the dynamics generated by iterating a sample
path from this process. Using topological techniques we are able to characterize
the global dynamics and deduce the existence, structure and approximate loca-
tion of invariant sets. Most importantly, we compute the probability that this
characterization is correct. This work is probabilistic in nature and intended
to provide a theoretical foundation for the statistical analysis of dynamical
systems which can only be queried via finite samples.

1. Introduction. Motivated by [2], in this paper we identify the dynamics gen-
erated by sample paths of a Gaussian process f = {f(z)},cy conditioned to pass

through a set of data points 7 = {(xn,yn)}gzo where X = [xo,zn] (we specify
the mean and covariance of this process in Section 2). More precisely, we provide a
characterization of local and global dynamics on X and an exact probability that
this description is valid for a random sample path from f.

Although for the sake of simplicity we remain in a probabilistic setting, and
avoid describing any sampling procedures, we are motivated by the problem of
understanding a dynamical system that we are able to access only through finite
samples of the same form as 7. To understand the significance of our results (and
those of [2]) let us first consider a typical approach to this problem. Given the
data set T, a variety of well-known techniques are available to generate a surrogate
function f [8]. If f is accepted as the model, then the standard theoretical and
computational techniques of nonlinear dynamics can be applied. However, because
dynamical systems are subject to bifurcations, it is not clear that the dynamics
generated by f and the true dynamics that generated the data are the same, i.e.,
conjugate. In fact, the behavior of nonlinear dynamics is sufficiently rich that
distinguishing conjugacy classes requires uncountably many invariants [6] and thus
identifying the conjugacy class is impossible with finite data.

With this in mind we propose to characterize the dynamics via the concept of a
Morse tiling [12].
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Definition 1.1. Let ¢ : Y — Y be a continuous function on a compact metric
space Y and Q a finite partially ordered set with partial order <. A Morse tiling
of Y for g is a decomposition of Y into a collection

M={M(q) | qcQ}

of regular closed sets with disjoint interiors with the following property. Let y € Y.
If g"(y) € M(p), g™ (y) € M(q), and n < m, then ¢ < p.

The sets M(q) are Morse tiles for g and the partially ordered set Q is a Morse
graph for g.

The partial order on Q implies that if the trajectory leaves a Morse tile, then it
cannot return. Therefore, recurrent dynamics of g occurs within individual Morse
tiles. This provides a global decomposition of the dynamics where the gradient-like
behavior is characterized by the Morse graph.

As is described in Section 4 an algebraic topological invariant, the Conley index,
can be assigned to each Morse tile. The significance of this is that the Conley index
can be used to deduce the existence of interesting invariant sets for g such as fixed
points, periodic orbits, heteroclinic orbits, bistability, and chaotic dynamics [13].

The main result of this paper (see Theorem 5.5 for the technical details) is that we
can produce a Morse tiling (as well as the associated Conley indices) and provide
an exact formula for the probability that this Morse tiling is valid for a random
sample path from f. There is an important caveat: our Gaussian process f is a
sequence of Brownian bridges with variance parameter o2 interpolating the set 7.

An outline of the paper is as follows. In Section 2 we state all of our probabilistic
assumptions along with a simple proposition that is necessary for our computations.
For the convenience of the reader we recall in Section 3 basic definitions and con-
cepts from order theory. In Section 4 we recall basic ideas from dynamical systems
and combinatorial Conley theory. The main results of the paper are presented in
Section 5. Section 6 covers several examples designed to illustrate the techniques
used in this paper. Finally, we provide some concluding remarks and comment on
future directions in Section 7.

2. Brownian Paths and Excursion Bounds. In this section we state our basic
probabilistic assumptions and a proposition that will be used extensively throughout
the article. We begin by recalling the definitions of some simple Gaussian processes.
A Gaussian process is uniquely specified by its mean and covariance func-
tion [1]. The Gaussian process W = {W(x)}, -, such that E(W(z)) = 0 and
Cov(W (x), W(2")) = min(z,2’) is called the standard Wiener process or stan-
dard Brownian motion. More generally, if x,, Tp, Yo, ¥ € R and z, < z; then the
Gaussian process Z = {Z(2)},¢(,, »,) With E(Z(2)) = yo and Cov(Z(z), Z(2')) =
o? min(z, 2') for all v, 2’ € [x4, 23], where o > 0, is the Wiener process (or Brow-
nian motion) on the interval [z,, x|, starting at (x,,y,), with variance pa-
rameter 0. A Brownian bridge B = {B(@)},elp, 2y from (za,Ya) to (zs,yp)
with variance parameter o2 has the law of Z conditioned to take the value g
when & = x3,. Then B is a Gaussian process satisfying E(B(x)) = y,+ ;b*_f;a (Yo—Ya)
for all x € [z4,zp] and Cov(B(z), B(z')) = 02%(?’7:”/) for z, <z <2’ <uxy.
With these definitions in mind we discuss the Gaussian process f that we study
in this paper. We begin with a collection of N +1 points, T = {(z, yn)}szo, where
we assume that z,, < x,, for n < m; recall that we have defined X := [z¢,zy]. For
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simplicity of exposition we also assume that
T < yp < zy for 0 <n < N.

As indicated in the introduction, we will assume that f is Brownian motion with
variance parameter o2 conditioned on the events {f(x,) = yn}nNzo. More specif-
ically, f = {f(%)},cx is the Gaussian process with mean u(x) := E(f(z)) and
covariance k(x,z") := Cov(f(x), f(z')) given by

T—Tn—1

o u(z) =yp_1+ m(yn Yn—1) for all z € [z,—1,2,] and

o r(z,a) = not i
0, otherwise

Note that we can think of this process as a sequence of N independent Brownian
bridges B,, from (2,,_1,Yn_1) t0 (Zn,yn) With variance parameter o2.

Our ultimate goal is to characterize the dynamics of f on X. In order to do so
we will need to know the probability that f stays between two particular threshold
values on various combinations of intervals. That is, we are interested in computing

the probabilities of events

Sp(a, B) == {f(z) € (o, B) |z € [wn—1,20]}.
Because the process f may be considered a sequence of independent Brownian
bridges, this probability is equivalent to P(B,(z) € (a, )|z € [¥n—1,zy]). We
can obtain this value exactly, which is a key motivation for our choice of Gaussian
process.
In order to obtain P(S,(«a,3)) we will make use of the function 7= : R* — R
defined by

m(a,b,c,d) Zexp( 2[m*ab + (m — 1)*cd + m(m — 1)(ad + cb)])
—l—exp( 2[( )2ab+ m?ed + m(m — 1)(ad + cb)])

—exp (—2[m ab+cd)+m( —1)ad—|—m(m—|—l)b)

b

]
— exp (—2[m®(ab + cd) +m(m + 1)ad + m(m — 1)cb]

)-

Lemma 2.1 ([5], (4.3)). Let a,c >0 and b,d > 0. Then
P [ sup {W(z)—(az+b)}>00R inf {W(x)+cr+d}< O} = m(a,b,c,d).
0<zr<oo 0<z<oo

Using Lemma 2.1 we are able to derive the following equation.

Proposition 2.2. Assume that o < min(yp—1,yn) < max(yYn—1,yn) < 8. Then

P (Sn (e, B)) = 1—7 ( (B —yn) (B~ Yn-1) (Y — ) (Yn_1 — @) ) .

ONTn — Tn-1 O\/Tn, — Tn-1 O\/Tp — Tp-1 O\/Tp — Tp_1

Notice that if either « or § is in the interval [min(y,—_1, y»), max(yn—1,yn)] then
the probability is trivially zero.

Proof. In order to simplify the notation we will prove the result for a Brownian
bridge B with variance o2 from (0,p) to (T, q); no generality is lost with this shift.
It is straightforward to verify that B may be represented as

B(z) = TJT%—W (T”ix> +p+x(q;p>
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X

with B(T') = q. We will use the transformation s = Thus we see the following:

Tz
z€[0,T) zcjo,r)y VT T—z T
-, () woree s 5 (1)

From this characterization we see that the following events are equivalent.

(oVT s(q—p)
Lo Bla<f = (H) Wis)+p+ = 7| <6
(oVT s(q —p)
— ses[ggo) _<1+8> W(s)+(p—ﬂ)+ﬁ <0
— sw [(oVT)W(s)+ (- B)(1+5) +sa—p)| <0
s€[0,00) -
= swp [(oVT)W(s) = (s(8-a)+ (B—p)| <0
s€[0,00)
- o (B=9  B=p
= se[o,lio> [W() ( oVT - oVT ﬂ =0

Similarly, we get that

R M LCHC S 9D

The result then follows from Lemma 2.1.
O

3. Order Theory. In this section we recall some basic definitions and notations
from order theory that are used in the following section on computational Conley
theory. For a more complete introduction the reader is referred to [3].

Definition 3.1. A lattice L is a set with the commutative and associative binary
operations A,V : L x L — L which satisfy the following absorption axiom for all
a,b,c e L:

aN(aVb)=a=aV(aADb)
A lattice is distributive if for each a, b, c € L it also satisfies the additional axiom

aV(bAc)=(aVDd)A(aVec).

A lattice is bounded if there exist neutral elements 0,1 € L with the property
that

OANa=0, OVa=a, 1ANa=a, 1Va=1
for all a € L.
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All lattices used in this paper are both bounded and distributive.
In the introduction we described our main results using the idea of a poset. We
formally record the definition of this object here.

Definition 3.2. A partially ordered set or poset Q is a set with an order
relation < satisfying the three properties:

1. Reflexivity: a < a

2. Transitivity: a <bandb<c¢c = a<c

3. Anti-symmetry: a <bandb<a = a=0

Given ¢ € Q the downset of ¢ is defined as | (¢) :={¢' € Q| ¢ < q}.

An element c of a lattice L is join-irreducible if ¢ # 0 and ¢ = a V b implies
that ¢ = a or ¢ = b for all a,b € L. We denote the set of join-irreducible elements
of L by J(L).

Any lattice L has a naturally induced partial order relation <; for any a,b € L,

a<b << aAb=a.

Since J(L) C L it inherits the partial order relation on L. Furthermore, an element
c € L is join-irreducible if and only if there exists a unique element ‘¢ € L such that
¢ < c and there is no a € L with a #* ‘¢ such that ¢ < a < ¢; the element ¢ € L
is called the immediate predecessor of ¢ € J(L).

Before closing this section let us specify some notation. Given any lattice L, the
notation L’ < L will indicate that L’ is a sublattice of L; that is, L’ is a subset of
L, L’ is itself a lattice and there is an inclusion morphism from L’ to L. We will
further assume that any sublattice L’ < L introduced in this paper contains the
same neutral elements 0 and 1 that bounded the original lattice L.

4. Conley Theory. Conley theory has two components: (i) a framework for global
decompositions of dynamics, and (ii) algebraic topological tools for reconstructing
dynamics. For this paper the first is represented by the Morse tiling and the second
by the Conley index. For the sake of simplicity we present this theory in the setting
of one-dimensional maps where the starting point is the set of data points T (see
[2] for a more general dimension independent discussion).

As indicated in the introduction given the set of points 7 = {(xn,yn)}fl\;o we
define the phase space of interest to be X = [xg,zn]. We decompose X as a
simplicial complex X = X(7) with vertices X(© := {xn}fj:o and edges XV :=
{[xn_l,xn}}ivzl. Viewing the face relation as a partial order | ([zn—1,2,]) =
{[xn—la 'TTLL Tn—1, In}

We use combinatorial multivalued maps to model the dynamics. In particular
for the dynamics computations we use F*P: X1 = X1 a set valued function
Ftor(g) ¢ XM, To simplify the discussion concerning the Conley index we restrict
our attention to interval valued maps, i.e., for each interval & € X, Fror(¢) =
U_, [#s, 2i1], ie., the image of F'P(€) is an interval. In order to perform the
algebraic topological computations that determine the Conley index we extend JF*°P
to F: X = X by setting

F([zn-1,20]) = Ftop([xnfl,wn])
Flon) = (}—top([xnflaxnb U}—top([xnvmwrl]))

A combinatorial multivalued map F*°P: X = X is an outer approzimation
of g: X — X if g(z) € int(F*°P(¢)) for x € &.
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To tie these combinatorial multivalued maps to the information provided by 7T
we make use of the surrogate map p and define

Fier(e)={¢ e 2D | n () #0}. (1)

As is shown in [9] F/°P is an outer approximation of . Note that any enclosure of
Fiep e, Frop: XM = X such that FioP € FoP(€) for every £ € X, is an
outer approximation of p.

Remark 4.1. For the remainder of this paper we restrict our attention to multivalued
maps F'°P that are enclosures of F,°P.

To see how these combinatorial constructions relate to continuous dynamics,
recall that a closed set K C Y is an attractor block for a continuous function
g:Y = Yif

g(K) C int(K)
where int(K) denotes the interior of K. The set of all attractor blocks for g forms
a bounded and distributive lattice [10] and is denoted by ABlock(g). The bounding
elements of ABlock(g) are 1 =Y and 0 = ().

Given F*P: X = XM define Invset™ (F*oP) := {S c xW | Ftop(S) C S};
software which computes Invset(F'*P) is available [7]. We leave it to the reader to
check that if 7*°P is an enclosure of F'°P, then Invset™ (F*°P) — Invset™ (F'°P). As
is shown in [11], Invset™ (Ft°P) is bounded distributive lattice with A =N, vV = U,
0 =0 and 1 = X. Of fundamental importance, as it leads to Proposition 4.2, is

the following result of [11]: if F*°P is an outer approximation of g: X — X, then
Invset™ (Ft°P) < ABlock(g).

Proposition 4.2. Given data set T = {(mn,yn)}fj:o, simplicial complex X (T),

and combinatorial multivalued map FP: X1 = XM that is an enclosure of]:ft"p,
consider a lattice K such that K < Invset™ (F'P) — Invset™ (F°P) — ABlock(y).
For each K € J(K), define

M(K) = (K \ ) 2)
and further let
M(K) :={M(K) | K € J(K)}. (3)
If FP is an outer approzimation of g: X — X, then M(K) is a Morse tiling for g
with Morse graph J(K).

For a proof of Proposition 4.2 in a more general setting see [12]. However, the
intuition behind the result is simple. Let © € X. Then z € M(K) for some K €
J(K). This implies that € K € ABlock(g). Let n > 0 and assume ¢"(z) € M(K").
If K # K’, then K’ C K and hence K/ < K.

We now turn to the Conley index and again begin our discussion on the purely
combinatorial level. We assume that we are given K < Invset ™ (F*°P). We define an
index pair for F*P to be a pair K = (K, Ky) where K1, K¢ € Invset™ (F*°P) and
Ky C K;. Then F induces a map on homology, F. : H.( (K1),) (Ko)) = H.({
(K1),4 (Ko)). We define the Conley index of I to be the shift equivalence class
of F, and denote it by Con,(K) [14]. In particular we can identify each K € J(K)

with the index pair (K, ?), and so we declare the Conley index of M (K) to be
Con, (M(K)) == Con.(} (K), | (). (4)
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Turning to continuous dynamics consider a continuous map g: X — X. Given
N C X, the maximal invariant set contained in N is given by

Inv(N,g) :={x € N |3v:Z — N such that v(0) = z and
v(k+1) = g(v(k)) for all k € Z}.

A compact set N C X is an isolating neighborhood if Inv(N, g) C int(N). If N
is an isolating neighborhood, then the homology Conley index Con,(Inv(N,g)) is
well defined [13].

To tie together the combinatorial and continuous theory we note that if FtP
is an outer approximation of g: X — X, then K,[? € ABlock(g). Therefore,
g: (K,%) - (K, ?) and (K, K) is an index pair for the classical Conley theory
[13]. Finally, . : Ha(L (K1), | (o)) — Hu(L (K1), L (Ko)) and g, HL (K, )
H,.(K, K) are shift equivalent. Thus we obtain the following result.

Proposition 4.3. Con.(M(K)) is shift equivalent to Con,(Inv(M(K),g)).

5. Results. Our construction of a Morse tiling of X for a function g : X — X
relied on a lattice of attractor blocks K for g. Since we are interested in obtaining
a Morse tiling of X for a sample path from f we would therefore like to know
the probability that a finite sublattice K < ABlock(u) is also a lattice of attractor
blocks for f.

Remark 5.1. Since attractor blocks are defined for f only if f € C(X,X), we are
interested in the event

(feC(X, X)N(f(K)cInt(K)VK € K)
that for the sake of simplicity we denote by (K < ABlock(f)). Since ABlock(u) is
bounded from above by 1 = X, and we have assumed that all sublattices will be
bounded by the same elements as the original lattice, we have that 1 = X € K.

Thus the event (f(K) C Int(K)V K € K) implies the event (f(z) € XVz € X).
Therefore, since f is continuous with probability 1,

P(K < ABlock(f)) = P((f(K) C Int(K)V K € K)).

Let K — Invset*(fffp) — ABlock(u); our goal is to compute P(K < ABlock(f)).
‘We need notation to describe the elements of K in terms of the edges in X'. Thus,
for fixed K € K we write K = U%ﬁl m where the

Jm = [.Tim,ZEjm]
are disjoint closed intervals.  Define the indexing sets Z,,(K) = Z,, =
{n]im<n<jn}tfor 1l < m < Mg. By assumption K is an attractor block
for p, and therefore for each m there is some unique 7(m) € {1,--- , Mk} such that
M(Jm) - int(J,,.(m)).

Let Z(K) = UM%, 7, and define the maps ag : Z(K) — R and Bk : Z(K) — R
as follows.

If n € Z,, then ax(n) =, and Bx(n) :=z; .. (5)

Notice that ax(n) (resp. Bk (n)) is simply the minimum (resp. maximum) of the
connected component of K which contains y,_1, yn.

The event that K is an attracting block for f is equivalent to
Nnez(r) Snlok (n), Bi (n)). Therefore we have the following result.
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Proposition 5.2.
P(f(K) Cint(K)) = [[ P(Sulax(n),Bx(n)) (6)

neZ(K)

We now aim to extend Proposition 5.2 to all of K simultaneously. Let Z :=
{1,..., N} and define the map v:Z — K by

v(n) :=min{K € K|n € Z(K)}

where the minimum is taken with respect to the partial order of K. Note that this
minimum is well-defined because if n € Z(K) and n € Z(K’) then K N K’ € K and
neI(KnK').

Observe that the event S,(aym)(n),Bym)(n)) implies the event
Sp(ak(n), Bx(n)) for all K such that n € Z(K); this statement holds because
n € Z(K)NZI(K') and K < K’ implies that ax/(n) < ax(n) < Br(n) < fg/(n).
Finally, we define the maps a:Z — R and 5:Z — R by

a(n) = Qy(n) (n)7 B(n) = 57(71) (n)
With this notation introduced we may now state one of the key results of this paper.

Theorem 5.3. Let K be a sublattice of Invset™ (F). The probability that K is a
lattice of attractor blocks for f is given by the following equation.

P(K — ABlock(f)) = [ ] B(Su(a(n), 5(n))) (7)

neZl

Proof. Recall that the lattice K is naturally imbued with a partial order <.
Choose a linear extension <’ of the partial order <. This allows us to write
K = {K;|1<'q¢<'Q} where the labelling of the sets K, respects the partial
order of K; that is, if K, C K, then p <g.

For each 1 < ¢ < @ and each n € Z, define SZ to be the event f([z,_1,%,]) C
(ak,(n), Bk, (n)). Let V; be the event that K, € ABlock(f); then V; = Ny,ez(x,) S5
Our goal is to compute

P(K < ABlock(f)) = P(N¢,Vy) = PV)P(Va[Vi)P(Va[Vi N Va) - - B(Vi| NG5 V).

In order to compute that value we will use the following intermediary step for any
1< P<Q.

P(Vp| ﬁf;t):11 Vy) = P(ﬁnez(Kp)Sﬂ 05;11 (Nnez(x,)St)
= P(QREI(KP)S’5| ﬂne(Uf;fZ(Kp)) Sn(a(n), /B(”)))
= P(Mezrepn\ 751205, )
= P(ﬂnez(Kp)\(uﬁ;llz(xp))sn(a(n)7 B(n)))

II P(Sn(a(n), B(n)))

nEI(KP)\(U;j;llI(Kp))

The result then follows from this computation:

P(N_,V,) = P(V1)P(Va|V1)P(V3[Va N VA) - P(Vo| N2 V)
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Q
“II I ESlam.sm)

=1 neZ(Kq)\(VIZ1Z(Kp))

— [ P(Sn(an), B(n)))

nel

O

As indicated in Section 4, knowing a lattice of attractor blocks K for a function
allows us to determine a Morse tiling of the domain for that function. In order
to compute the Conley index of each of the associated Morse tiles, however, we
must have an outer approximation of the function of interest; therefore we will now
construct a combinatorial multivalued map F : XM = XM that is an outer
approximation of f whenever K < ABlock(f).

In fact, ]-'&OP is essentially defined by the construction used in Theorem 5.3. For
each &, = [zp_1,2,] € XD let

FP(€n) = [a(n), B(n)]. (8)

Proposition 5.4. Let K < Invset™ (F,) and define Fx by Equation (8). The
following properties hold.

1. .7:&0]0 is an enclosure of ]-"Z"p.
2. K < Invsett (F°P)
3. FP is an outer approzimation of f if and only if (K < ABlock(f)).

Proof. Properties 1 and 2 follow directly from the construction of }"&Op and The-
orem 5.3. Further, if F;*P is an outer approximation of f then Invset™ (Fx) «
ABlock(f) [11] and so K < Invsett(Fx) < ABlock(f). Therefore it remains
only to show that K < ABlock(f) implies that f,t(Op is an outer approximation
for f; we prove this by the contrapositive and assume that ]-'f(Op is not an outer
approximation for f. Then there exists = such that f(z) ¢ int(FxP(&,)) where
x € &, = [Tp—_1,Zn]. Consider v(n) € K and write y(n) = Ufﬁ? Jm- Let m’ be the
integer such that &, C J,,/. By construction ]-'&Op is constant on each .J,,, and hence
f(@) & int(FP () = int(FP(£n)). Again by construction F™P (Jmr) = Jr(mr
and so f(x) € int(J;(y); thus f(Jp) € int(Jr(m)) and so f(K) ¢ int(K) (here
we use the fact that the J,, are disjoint intervals, and so f(K) C int(K) only if
each of these intervals map into the interior of another one). O

We now obtain the main result of this paper as a direct consequence of Theo-
rem 5.3 and Propositions 4.2, 4.3, and 5.4.

Theorem 5.5. Let K — Invset+(]:,’i°p) and define M(K) and Con,(M(K)) for
each K € J(K) by Equations (2) and (4) respectively. Then with probability

[T B(Su(a(n). B(n)))
nel

MK) ={M(K) | K € J(K)} is a Morse tiling of X for f and Con,(M(K)) is the
Conley index of each Morse tile.
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6. Examples. This section contains three examples that help to explain the results
of Section 5. In each example we plot the mean p of the Gaussian process f as well
as a random sample path from f. The sample path plotted does not come into our
analysis of the examples in any way and is merely included in order to illustrate the
ideas at play.

In this first example we begin with an attractor block identified for the mean p
that is a single closed interval; a single closed interval is the simplest form of an
attractor block possible. We will apply Proposition 5.2 and give the probability
that this interval is an attractor block for the Gaussian process of interest.

Example 6.1. Consider

T= {(xn,yn) | Tn = n/lo}iozo
= {(0,.4509), (.1, .4999), (.2, .4613), (.3, .455), (.4, .5185),
(.5,.4987), (.6,.5398), (.7,.5147), (.8, .5397), (.9, .5221), (1, .5331)}.

We will let f be Brownian motion with variance parameter o2 = 1 conditioned
to pass through 7. The mean function of f, u, is the piecewise linear function
indicated in blue, shown in Figure 1. The combinatorial multivalued map ]-'ZOP
is shown in Figure la; K := X = [0,1] is an element of Invset+(]~'ft°p) and hence
K € ABlock(y). More directly, we can see that K is an attractor block for pu
precisely because 0 < f(x,) < 1 for all n € {0,---,10}, and the piecewise linearity
of p then implies that 0 < f(z) < 1 for all x € [0,1].

— posterior mean sample patn
101 « datapoints 10 1 — posterior mean
*  datapoints

—k

(A) The combinatorial multivalued map  (B) The interval [0, 1] is an attracting block

]—"ffp is shown above. Cells on the horizon-  for the sample path because the sample

tal axis map to the collection of cells on the  path lies entirely between 0 and 1 on the

vertical axis that indicated by the grey col-  interval [0,1]. The colored region defines
. top

oring. F b

FIGURE 1

In this case, ak(n) is identically « := 0, and S (n) is identically 8 := 1. By
Proposition 5.2 the probability that K € ABlock(f) is

ﬁl_ﬂ( B-y)  _(B-yn1) _ (ya—0) <yn_1—a>>z0.8586.

O\/Tp — Tp—1 O\Ty — Tn—1 O\/Tn — Tp—1 O\ Ty — Tp_1
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Alternatively, we can view the set K = {(), K = X} as a lattice of attractor blocks
for p and apply Theorem 5.3 to determine that P(K < ABlock(f)) = 0.8586 as well.

In this example the Morse tiling of X is trivial and M(K) = {M(K) = X}. Also,
id ifk=0
0 otherwise

Cony (M (K)) = {

which implies the existence of a fixed point [15, 4].

In this next example we consider a larger lattice of sets and use Theorem 5.3
in order to identify the probability that this lattice is made up of attractor blocks
for f. While the probabilistic ideas are not really any different from the preceding
example, the indexing required to keep track of this more sophisticated structure is
more complicated. We remark that this example demonstrates how the techniques
developed in this paper may be used to identify bistability in a system.

Example 6.2. We consider the set

T = {(@nyn) | 20 = /10,2,
= {(0,.2005), (.1,.225), (.2, .2057), (.3,.2025), (.4, .2343),
(.5,.5243), (.6, .8449), (.7,.8324), (.8, .8448), (.9, .8361), (1,.8416)}
shown in Figure 2, and let f be Brownian motion with variance parameter o2 = 1/16
conditioned to pass through 7. We err on the side of verbosity in analyzing this
data in order to be totally clear how the indexing works when dealing with a general
lattice of attracting blocks.

Using }_ZOP, shown in Figure 2a, we identify five attracting blocks for the posterior
mean g which form a lattice K:

Ko =0,K = [zo, z4], K2 = [x6, 210, K3 = K1 U Ko, K4 = |21, Z10]

Note that Ko C K1 C K3 C K4y and Ky C K1 C Ky C K4, but K; and K, are
incomparable.
The indexing sets are

I(Kq1) =1{1,2,3,4},
I(K5) ={7,8,9,10},
I(K3)=1{1,2,3,4,7,8,9,10},
T(K4) ={1,2,3,---,9,10} .
For ¢ # 3, each component K, consists only of a single connected component and
thus the maps ag, : Z(K,) — R, Bk, : Z(Ky) — R are constant maps:
oK, = 20,0k, =Ta
oK, = Tg, Br, = T10
K, = %0, Pk, = T10
The maps ax, and Sx, are slightly more complicated since K3 has two connected

components, but we do not need to describe them because y(n) # K3 for any n € Z.
We do need to know 7(n) for each n € Z:

Kl, n EI(K1>
y(n) =4 Ky, neI(Ky)
K4, otherwise
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sample path
— posaterior mean
* data points

0o 01 02 03 04 [ 06 07 08 09 10

(B) K is a lattice of attracting blocks for
(A) The combinatorial multivalued map  the sample path shown because the path
Frov. remains in the colored regions; these regions
define F;°P.

FIGURE 2

With this information we are able to calculate P(K < ABlock(f)):

[[t-= < (B(n) —yn) (B() —yn—1) (yn—a(n)) (yn—1 —a(n))

=~ 0.9989
ONTn, — Tn—1 O[Ty — Tn_1 O\/Tn — Tn-1 O\/Tn — Tn_1 )

nez
Having determined the probability that K is a lattice of attractor blocks for f we
now provide the associated Morse tiling and Conley indices and discuss what these
features indicate about the dynamics of f.
The lattice K gives the Morse tiling

M(K) = {M(K1) = K1, M(K2) = K2, M(Ky) = cl(K4 \ K3)
| M(K4) > M(K1), M(Kyq) > M(K2)}
The Conley indices of these Morse tiles are
id ifk=0

Cony, (M (K1)) = Cong (M (K3)) = {0 otherwise

and
id ifk=1
0 otherwise.

Conk(M(K4)) = {

This Morse tiling indicates that the dynamical system is bistable, with attractors
that contain at least one fixed point in K; and K» [15, 4]. Moreover, there is a
non-trivial invariant set in (x4, xg) with the Conley index of a repelling fixed point.
By Theorem 5.5, all of this information is valid for f with probability 0.9989.

Before beginning this final example we make a more general comment. Given
a dynamical system g : Y — Y and a subset Y’ C Y such that g(Y’) C Y, the
function gy : Y/ — Y’ defines a dynamical system. Such a restricted system is
sometimes of interest when one is concerned only with the local dynamics in the
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region Y’. These local dynamics can also be understood using Conley theory and
the probabilistic techniques that we develop in this paper. In particular, if one is
interested only in understanding the dynamics of f|x/, where X' =, ./ [Tn—1, 2]
for 7/ C {1,--- , N}, then we can analyze the dynamics of X’ in the same manner
as we analyze the dynamics of X. That is, if we let X’ be a simplicial complex with
vertices X' := {x,}, , and edges X' := {[z,,_1,2,]}, 7, and for F = F,
or Fk we define the combinatorial multivalued map F' : X' =2 X’ by F'(§) =
F(&) N X', then we are able to give a Morse tiling of X’ for f|xs using the same
methodology as we did for X and f.

In this final example we exploit this perspective. We begin by analyzing the
dynamics of a Gaussian process defined on the interval X = [0, 1]. We will see that
the lattice of attractor blocks K identified for the mean p that we define has a fairly
low probability of being a lattice of attractor blocks for f. However, we will then
note that if we restrict our view to a more local perspective, and instead analyze the
same system on the interval X’ = [0.2,0.8], we have a reasonably high probability
that f|x: contains a periodic orbit. Hopefully this example demonstrates how an
individual who is interested only in certain local information—in this case, a periodic
orbit—may increase the probability of seeing the dynamics of interest by restricting
their view to a smaller region of phase space.

Example 6.3. Consider the set

T = {(@n,yn) | 20 = n/10}1,
={(0,.03),(.1,.07), (.2, .6853), (.3,.6999), (.4, .6884),
(.5,.501), (.6,.255), (.7,.3185), (.8, .2987), (.9,.95), (1,.97)},

shown in Figure 3. Let f be Brownian motion on X = [0,1] with vari-
ance parameter 02 = 1/16 conditioned to interpolate 7. The mean function
u of f is the piecewise linear function indicated in blue. The lattice K =
{Ko=0,K; =10.2,0.4]U[0.6,0.8], Ky = [0,2,0.8], K3 = X} is a lattice of attrac-
tor blocks for p; we determine this information because K — Invset+(]-",5°p), where
]—":LOP is shown in Figure 3a. We observe that Kj contains a periodic orbit for u
and K5 \ K; contains a repelling fixed point. Our goal in this example is to show
that there is a relatively high probability that f has a periodic orbit and an isolated
invariant with the index of an unstable fixed points in these same regions.

For each of the connected intervals K, the maps ax, and Sk, are constant maps
whose images are, respectively, the left and right endpoints of K,. However, for K;
the situation is somewhat more complicated. Note that 1([0.2,0.4]) C (0.6,0.8) and
1([0.6,0.8]) C (0.2,0.4). Thus

0.6, n=34
ax (M) =005 _7g

and

Therefore we have that
0, n=1,2,910
a(n) =406, n=34
0.2, n=25,6,7,8
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and
1, n=1,2910
Bn)=408, n=3,4,56
04, n=17,8

With these maps defined we are able to use Theorem 5.3 to compute

P(K < ABlock(f)) ~ 0.1199.

This probability is relatively low, but we observe that a sample path is most likely
to leave the necessary bounds on K4\ K»; for instance, P(S10((10), 5(10)) = 0.3812.
Because we are not concerned with the behavior of f in this region we restrict our
view to the domain X’ := K5. For this domain, the lattice K' = {Ky = 0, K1, K2}
is a full lattice, bounded from above by the domain itself. Now Theorem 5.3 implies
that

P(K' < ABlock(f|x/)) ~ 0.6283.

sample path
—— posterior mean
» data points

— K1
— posterior mean 094 k3
+ data points K2

T N B B A (B) The colored regions define F®. Note
o . hat FoP imati
(A) The combinatorial multivalued map that J,™ is not an outer apprOﬂI;l?tlon
Ftop for the sample path shown, but 7,/ is an
WP

outer approximation of the sample path re-
stricted to K2 = [0.2,0.8].

FIGURE 3. Note that K is not a lattice of attracting blocks for the
sample path shown because the path leaves the required bounds.
However, K7 and K are both attractor blocks for the sample path.
We conclude that the sample path contains a periodic orbit in K4
and an isolated invariant set with the Conley index of an unstable
fixed point; the same is true of f with probability 0.6283.

The Morse tiling associated with K’ is
M(K') = {M (K1) = K1, M(K3) = cl(Kz \ K1) | M(K2) > M (K1)}
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by Theorem 5.5, this M(K’) is a Morse tiling for f with probability 0.6283. Using
FiP, we are able to compute the Conley indices

R T
Cony (M (K1) =4 |1 0
0 otherwise
and
—id ifk=1
C M(K3)) = '
ong (M (K2)) {0 otherwise.

These indices imply the existence of a periodic orbit for f in the interior of K;
whenever F%P is an outer approximation of f |k, [15, 4]; thus we conclude that f
has a periodic orbit with at least probability 0.6283. Therefore, while we cannot
make particularly strong claims about the global dynamics of f all of X, we are able
to identify interesting features of the dynamics on X’ = [0.2,0.8] with a reasonable
probability.

7. Future Directions and Comparisons to Other Approaches. We begin
this section by comparing our results to those found in [2]. The spirit of both papers
is the same. In each of them, combinatorial Conley index theory and Gaussian
processes are combined in order to identify dynamics with rigorous probabilities.
However, there are two key differences between these, reflecting a trade-off between
the methods used in each case.

The first difference is that the results of [2] apply to a larger set of Gaussian
processes. The dynamics of any Gaussian process with a covariance kernel that is
at least four times differentiable may be studied using the results of that paper.
This requirement means that the Gaussian process f that is analyzed in this paper
cannot be studied using the methods of [2], but the majority of Gaussian processes
used in applications—including any process using the squared exponential covariance
kernel-can be analyzed using those methods.

On the other hand, the results of [2] are asymptotic. In that paper, the set of
points 7 that is used to condition the Gaussian process represents sampled data.
The main theorem establishes a procedure that characterizes dynamics where, given
a fixed confidence level ¢ € (0, 1), it is proven that for a large enough sample 7 the
characterization is accurate with confidence level §. However, for any single fixed
sample 7, the method cannot rigorously identify the confidence that the charac-
terization is accurate. By contrast, this work can identify the probability that the
provided characterization of dynamics is accurate for a fixed 7 and the Gaussian
process f interpolating 7.

Future work should focus on extending the techniques from this paper to higher
dimensional data and more general covariance structures. In order to replicate the
results of this paper for more general Gaussian process requires obtaining some
understanding of the events S, in this more general setting. One natural approach
to addressing this problem would be to use the maxima and minima of a Gaussian
process in order to estimate the probability of S,,. That is, for a general Gaussian

process G with parameter space R, if we let U, (8) = {supwe[ij] G(z) < B} and
Lo(B) = {infrefs, r,) G(2) = a}, then P(Su(a,f)) = 1 = P(Un(B)) — P(Ln(a));
therefore if we can know (or bound) these probabilities we should be able to obtain
lower bounds on the probability that a lattice of attractor blocks identified for the
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mean of the Gaussian process is also a lattice of attractor blocks for the true map.
One possible route to obtain such bounds would be through Rice’s formula [1].

Extending the results to higher dimensional data sets again requires obtaining
(or bounding) probabilities like S,,. As mentioned earlier, a closed set K is an
attractor block for a map g if g(K) C int(K); this characterization does not depend
on the dimension. We should be able to give a bound on the probability of such
events in any finite dimension d if we can bound the probability that hypercubes
map into other hypercubes. That is, we would like to know or estimate

d

d
P(f(] Jlar: bx]) [T lek, Bi))-
k=1 k=1
While this cubical approach will not allow us to perfectly represent any attractor
block in higher dimensions (which have no geometric constraints in general) if we
can obtain formulas like this then we will likely be able to extend the results of this
paper to higher dimensions with a reasonable level of generality.

Finally, we note that one obvious extension of this work is to develop a sta-
tistical procedure which allows us to analyze data sets of the same form as
T = {(xn,yn)}fj:o. While we worked in a purely probabilistic setting here, we
remarked in the introduction that such analysis is our ultimate motivation, and
thus future work should attempt to make this generalization.

Acknowledgments. The authors would like to thank Harry van Zanten, Ying
Hung, and Kasper Larsen; our conversations on Gaussian processes were very valu-
able in crafting this paper.

C.T. was partially supported by HDR TRIPODS award CCF-1934924. K.M.
was partially supported by the National Science Foundation under awards DMS-
1839294 and HDR TRIPODS award CCF-1934924, DARPA contract HR0011-16-
2-0033, and NTH 5R01GM126555-01. K.M. was also supported by a grant from the
Simons Foundation.

REFERENCES

[1] R. J. Adler and J. E. Taylor. Random fields and geometry. Springer Monographs in Mathe-
matics. Springer, New York, 2007.

[2] B. Batko, M. Gameiro, Y. Hung, W. Kalies, K. Mischaikow, and E. Vieira. Identifying non-
linear dynamics with high confidence from sparse data, 2022.

[3] B. Davey and H. Priestley. Introduction to Lattices and Order. Cambridge University Press,
pages xii+298, 2002.

[4] S. Day, R. Frongillo, and R. Trevifio. Algorithms for rigorous entropy bounds and symbolic
dynamics. SIAM J. Appl. Dyn. Syst., 7(4):1477-1506, 2008.

[5] J. L. Doob. Heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Statistics,
20:393-403, 1949.

[6] M. Foreman, D. J. Rudolph, and B. Weiss. The conjugacy problem in ergodic theory. Ann.
of Math. (2), 173(3):1529-1586, 2011.

[7] M. Gameiro and S. Harker. CMGDB: Conley Morse Graph Database. https://github.com/
marciogameiro/CMGDB, 2022.

[8] R. B. Gramacy. Surrogates—Gaussian process modeling, design, and optimization for the
applied sciences. Chapman & Hall/CRC Texts in Statistical Science Series. CRC Press, Boca
Raton, FL, [2020] (©)2020.

[9] W. D. Kalies, K. Mischaikow, and R. C. A. M. VanderVorst. An algorithmic approach to
chain recurrence. Found. Comput. Math., 5(4):409-449, 2005.

[10] W. D. Kalies, K. Mischaikow, and R. C. A. M. Vandervorst. Lattice structures for attractors
I. J. Comput. Dyn., 1(2):307-338, 2014.



DYNAMICS OF CONDITIONED WIENER PROCESSES 17

[11] W. D. Kalies, K. Mischaikow, and R. C. A. M. Vandervorst. Lattice structures for attractors
II. Found. Comput. Math., 16(5):1151-1191, 2016.

[12] W. D. Kalies, K. Mischaikow, and R. C. A. M. Vandervorst. Lattice structures for attractors
II1. J. Dynam. Differential Equations, 34(3):1729-1768, 2022.

[13] K. Mischaikow and M. Mrozek. Conley index. In Handbook of dynamical systems, Vol. 2,
pages 393-460. North-Holland, Amsterdam, 2002.

[14] K. Mischaikow and C. Weibel. Conley index and shift equivalence calculations, 2022.

[15] A. Szymczak. The Conley index and symbolic dynamics. Topology, 35(2):287-299, 1996.

Received xxxx 20xx; revised xxxx 20xx; early access xxxx 20xx.



	1. Introduction
	2. Brownian Paths and Excursion Bounds
	3. Order Theory
	4. Conley Theory
	5. Results
	6. Examples
	7. Future Directions and Comparisons to Other Approaches
	Acknowledgments
	REFERENCES

