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operational risk could be attributed to human operator errors, natural disasters, and acts of
physical sabotage. However, with the rapid integration of physical and cyber-security processes
and increased reliance on internet-based networks, CPS is now vulnerable to sophisticated cyber
attacks that can result in signi�cant equipment damage, service disruptions, and potential loss
of life. These attacks vary in severity and application; well-known examples include the StuxNet
attack [37] on supervisory control and data acquisition (SCADA) systems, the German steel
mill attack [38] caused by advanced persistent threats (APTs), the Ukrainian grid attack [60]
via Denial of service (DOS) tactics and derailment of trams [39] using basic network access
methods. In each instance, strategic threat actors used a sequence of atomic attack actions
to exploit known vulnerabilities in both the cyber and physical layers of the system. MITRE
ATT&CK framework is a continuously growing database of such atomic actions corresponding to
speci�c goals on di�erent platforms, primarily used to characterize post-compromise adversarial
behavior in cybersecurity and in Industrial Control System (ICS) [5].
The core challenge in CPS security is the tight (often nebulous) integration of the cyber, phys-

ical, and computational elements. Such an integration, which can expand the CPS to arbitrary
dimensions proportional to the complexity of the real-world system, necessitates a scalable frame-
work for developing defense policies. Riding on recent successes,Machine Learning (ML)-based
methods use parametric representations to create computational models to represent multi-level
abstraction from data. ML has replaced hand-engineered tasks with computational models that
o�er high accuracy and performance. Although ML is being increasingly used in speci�c aspects
of CPS security, such as anomaly detection [35], malware detection, intrusion detection [16], pre-
vention of blackouts, attacks, and destruction [73], the explicit consideration of the hybrid dynamics

governing a CPS is relatively unexplored.
This article proposes a general framework for modeling and uncovering an adversary’s move-

ments using a hybrid attack graph (HAG) and relating the security status of the cyber with the
physical layer, while e�ectively con�guring the HAG to ensure resilient operation of the CPS. The
proposed framework has two components: (a) an adversary’s model and policy and (b) a defender’s
network hardening policy. The adversary’s movement is modeled using aMarkov Decision Pro-

cess (MDP) on the HAG, while the policy is determined using an ML method. The defender eval-
uates the security of the CPS using partial observations of the HAG. The security of the CPS is
quanti�ed by the adversary’s movements and disruption in some measurable services of the phys-
ical processes. The defender uses partial observations to reason about the security of the CPS and
to balance recon�guring the HAG via network hardening and the corresponding costs. This arti-
cle extends the linear parameterized ML method, introduced in our preliminary work [14], with a
defender using Bayesian optimization (BO) to achieve successful network hardening. The pro-
posed framework can be applied to a wide range of CPS and enhances the security of the system
by preventing attacks and ensuring resilient operation.

1.1 Literature Review

There is a large body of work on securing CPS from an attack prevention perspective in the cy-
ber layer, categorized broadly into (a) resilience-by-design and (b) resilience-by-reaction [18]. To
position our work in literature, we organize the literature in appropriate categories as below.

Control-Theoretic Methods: The use of control theory for securing CPS has been extensively
studied in the literature. For instance, [50] proposes a sampling-based worst-case design approach
to overcome observation challenges and develop corresponding policies. Similarly, thework in [51]
proposes a system identi�cation and control-theoretical framework to ensure safety-critical oper-
ations in CPS. Extensive surveys of control-theoretic methods used for securing CPS are presented
in [24] and [44]. Recently, [48] developed a model to explicitly links the security status between
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the cyber and physical layers to design an intrusion response system (IRS). However, all of these
approaches require knowledge of the systemmodel at the cyber or at the physical level or both, making

them challenging to apply in scenarios where the system model is unknown.
Attack-Graphs: Attack graphs are commonly used to model the movement of adversaries in a

cyber environment, allowing for the quanti�cation of attack path vulnerabilities using a common

vulnerability scoring system (CVSS), designed by [72]. In [78], Bayesian attack graph are used
to determine the cyber attack scenarios on SCADA and energy management system (EMS) of
wind farms. Petri nets, with their increased �exibility and resolution compared with attack graphs,
have been a long standing tool for a range of application, including modeling cyber attacks, as
demonstrated in References. [19, 46].
Adversarial Identi�cation Frameworks: The MITRE Adversarial Tactics, Techniques,

and Common Knowledge (ATT&CK) [1] framework provides a knowledge database to charac-
terize post-compromise detection of an adversary targeting a given platform. TheMITREATT&CK
has recently been extended for Industrial Control System (ICS) [5]. Using MITRE ATT&CK
framework, a cyber kill chain (CKC) has been developed and evaluated to determine the re-
siliency of Distributed Energy Resouces (DER) [2, 55]. Similar models characterizing the se-
curity attributes of a CPS are presented in [9] using a post-compromise database, like MITRE
ATT&CK.

Attack Detection via Machine Learning:ML methods have shown signi�cant success in en-
hancing the security of CPS in various applications [73]. Some of these methods include attack
detection, which have been used in Reference [47] to detect false data injection attacks. To cap-
ture the temporal and spatial structure of an anomaly, convolutional and memory based encoder-
decoder models are used in Reference [45]. A survey on ML based attack detectors can be found
in Reference [54]. However, these methods are only used for detecting attacks and lack a defense
mechanism to counteract an attack on the system.
Defense Mechanism via Reinforcement Learning: Reinforcement learning (RL), a sub-

�eld of ML, has been used to develop a variety of defense mechanism in CPS [40, 52]. For instance,
RL has been used to develop anti-jamming [21], and anti-spoo�ng policies, such as the use of dy-
namic threshold hypothesis testing for authentic user veri�cation in References. [41, 74]. Moreover,
RL methods have also been used to indentify vulnerabilities in smart grid CPS [20, 76]. However,
the described RL methods assume a �xed policy for the CPS or the adversary, and do not account
for any deviation while identifying system vulnerability or developing a defense mechanism.
Game-Theoretic Methods and Network Hardening: Game-theoretic formulation in con-

junction with RL have been used in Reference [53], where an adversary-defender zero-sum dy-
namic game is formulated to determine an optimal actions for damaging (resp. protecting) trans-
mission lines in smart grids. Two-player games have been used to model the security policies
of CPS in Vehicular ad-hoc networks (VANETs) [43] that are vulnerable to jamming attacks.
Game theory has been used to model preemptive defender measures (e.g., anti-virus software or
honeypot mechanisms [26]) to secure the IT systems before allowing access to potential users. Fur-
thermore, game theory has been used in analyzing APTs [62, 64–66], where a defender can resort
toDynamic Information Flow Tracking (DIFT)—a mechanism developed to dynamically track
the usage of information �ows during program executions [69].
In addition to game theory, network hardening techniques have been used to secure CPS. How-

ever, the problem of network hardening has been shown to be NP-hard [67] and only resorting to
heuristic solutions. Identifying system vulnerability along with attack graph-based hardening is
proposed in [63], and o�er e�cient algorithms with provable guarantees along with the tradeo�s
between hardening cost and damages in�icted on the system. In this article, we present a novel
approach to securing CPS through a non-zero-sum game between an adversary and a defender.
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The adversary’s policy is dynamic in nature and is determined using a RL agent, while the de-
fender’s policy is static and chooses to sequentially harden the network. For a principled approach
to updating the defender actions, we resort to BO methods [68].

Blackbox Optimization: Blackbox (particularly, Bayesian) optimization has its roots in early
methods such as Taguchi techniques [8, 29]. Techniques for blackbox optimization can be clas-
si�ed into two categories, deterministic [11–13] and stochastic. Among stochastic approaches to
blackbox optimization, a popular approach is based on the assumption that the unknown function
can be represented as a Gaussian process [68]. Recent research has applied BO to compute approx-
imate Nash equilibria of general sum games with continuous action spaces [3, 58] or potential
games [7].

1.2 Contributions

This article presents a framework to design network hardening strategies for CPS by integrating a
learning-based adversarial attack modeling approach [14] with the defense planning process. The
contributions of this work are three-fold.
# 1 – A game-theoretic formulation under information asymmetry and partial system

observability: This work presents a game-theoretic formulation for a CPS using an HAG model
to capture probabilistic transitions of the adversary. We assume the defender does not have direct
access to the adversary’s actions (policy) and rewards during an attack, and operate solely on
a belief of the cyber layer security status and some measurable attributes in the physical layer
(e.g., temperature measurements in smart buildings). The interaction between the adversary and
the defender is modeled as a non-zero-sum game, where the goal is to �nd a defense strategy
solely based on appropriately modeled reward/cost functions. By formulating the adversary’s and
defender’s problems as an MDP [14] with cyber (discrete) and physical (continuous) states, the
defender’s actions correspond to hardening the network, i.e., to impact the success probabilities
on the cyber exploits. The solution concept that we seek is that of a Nash equilibrium, i.e., a pair
of policies from which neither player has any incentive to deviate.

# 2 – Data-driven adversarial network hardening: Our work starts by demonstrating that
the network hardening problem is equivalent to designing a slow absorbing Markov chain

(AMC) that represents the progression of an attack in any CPS. Such a slow AMC design is cast
into a constrained optimization problem, which is non-convex, and hence, a global solution is not
guaranteed using standard optimization methods. To address this, we propose a data-driven ap-
proach to compute a best response for each player iteratively, and then �nd an approximate NE
using the best iterated response.
Given a security policy of the defender, we adapt anActorCritic (AC) algorithm—anRLmethod

to solve the adversary’s problem and extract the corresponding policy. To solve for the defender’s
best response, BO is used given the adversary’s policy. Neither the AC nor the BO require explicit
knowledge of the underlying dynamics of the physical or cyber processes, making them attractive
for joint attack and defense planning (referred to as purple teaming) of any complex CPS.

# 3 – Evaluation on a smart building case-study:We evaluate our proposed approach on a
smart building system, where the dynamics of the physical process were obtained from a highly
accurate truncated model based on real-world measurements. The cyber layer of the CPS is mod-
eled as a truncated version of a ransomware graph, created using an information �ow graph [65].
The simulation results demonstrate the e�ectiveness of our approach in hardening the network,
while also characterizing a tradeo� between hardening costs and security status of the CPS. Fur-
thermore, we observe that the adversary and defender objectives exhibit a diminishing marginal

improvement with increasing number of iterations of our approach, suggesting proximity to an
approximate NE of the game.
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Fig. 1. A hybrid a�ack graph for a single-zone building with four cyber nodes (in red) and one physical node

(in blue) [14]. An adversary infiltrates the leaf node (node 1) and progressively secures additional security

a�ributes (nodes 2–4) before a�acking the zone temperature controller by perturbing sensor measurements

at the root node 5.

1.3 Outline

The article is organized as follows. The model formulation of the HAG describing the dynam-
ics of cyber (discrete) and physical (continuous) components and their interactions are presented
along in Section 2. Solution approaches for the adversary and defender problems are described in
Section 3. Numerical experiments with the description of the cyber layer, physical layer, defense
layer and results of proposed approaches in a smart building case-study in presented in Section 4.
Finally, we conclude this article and outline future directions in Section 5.

2 MODEL FORMULATION

In this section, we present our adversarial threat model that characterizes the cross-layer coupling
between the cyber and physical vulnerabilities in a CPS using an HAG [6, 14, 31, 33, 36, 42, 49]. An
HAG is a directed acyclic graph, which represent exploitable security attributes and physical pro-
cesses as nodes, and adversarial exploits (or actions) as edges. The leaf nodes represent exploitable
cyber attributes as an attack entry-point (e.g., malware download into a local workstation), while
root nodes denote an adversary’s target set of physical-layer attributes (e.g., energy consumption,
thermal comfort, tra�c-lane assist). An HAGmodels the space of all possible attack paths available
to a strategic adversary aiming to compromise cyber and physical components. Figure 1 illustrates
a representative HAG used in Reference [14] to model cross-layer sensor-deception attacks in
buildings.
The success probability of each cyber exploit along the edge of an HAG is dependent on the de-

fense con�guration. For example, the probability of detecting adversarial activity (equivalent to an
unsuccessful attack action) is a function of the number of honeypots installed in the network [32].
The cyber exploits are represented using techniques from the MITRE ATT&CK framework for ICS,
as done in previous works such as References. [5, 22]. The authors in Reference [22] developed an
automated attack sequence generator represented as a hidden Markov model (HMM) using the
same framework, with transition probabilities between tactics (nodes) and emission probabilities
from tactics to a techniques. In our work, we use similar representations, i.e., the nodes can be
presented as equivalent tactics and exploitable edges as techniques. Once a root node is breached,
every attack action in the physical system is assumed to be successful with probability 1, and the
adversary earns a corresponding reward. The adversary’s objective is to progressively learn the
best attack path(s) in the HAG to reach the target root node and maximize the cumulative rewards
earned over a �nite attack horizon. This learning problem is posed as a MDP. On the other hand,
the defender’s objective is to preemptively minimize any costs incurred due to the adversary com-
promising any physical attributes at the root node(s), such as any disruption of physical processes
and the cost of network hardening. This is achieved by selecting the success probabilities on the
cyber exploits appropriately. Next, we present the modeling assumptions in our problem setup.
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2.1 Modeling Assumptions

Assumption 1. The adversary has full knowledge of the HAG topology but has limited (no) knowl-

edge of the success probabilities (set by the defender) at the onset of an attack.

Assumption 2. The defender has complete knowledge of the cyber exploits (edges in the HAG) and

can allocate resources to harden the cyber network but not at the physical layer.

Assumption 3. The defender cannot observe the adversary’s sequence of actions and rewards while
the system is under attack.1

Assumption 4. The HAG exhibits the well-known monotonicity property, which states that an

adversary never willingly relinquish attributes once obtained [49]. This simpli�es our analysis by

avoiding any attack paths with self-loops.

In what follows, G = (N ,E) is used to denote an HAG, whereN and E are the set of nodes and
edges in G, respectively. For notational clarity, we assume that G has only one root node; however,
this assumption can be relaxed. Next, we discuss the preliminaries for the adversary’s MDP model.

2.2 Preliminaries

States, Actions, and Rewards. We de�ne Φ as the set of attack success probabilities over all edges
of G. The success probability of a cyber exploit e ∈ E, conditioned on the adversary using e is
denoted by Φe ∈ Φ, and is given by

Φe
.
= αewe ,

where αe ∈ [α , 1] is chosen by the defender, α ∈ (0, 1) is a positive lower bound on αe , and we

is a default (nominal) value. The defender can adjust αe to control the success probability of e; as
αe increases, so does the success probability of e . Note that, α > 0 ensures that an exploit e is not
made redundant by assigning a zero success probability. Let

α = (αe : e ∈ E)

be the tuple of all defender-assigned weights in G; henceforth, we will refer to α as the defender’s
policy. Note that α is set prior to the onset of an attack and is constant over the attack horizon.
Hardening an exploitable edge corresponds to improving defense mechanisms over the techniques
(MITRE ATT&CK for ICS) used by the adversary. For instance, a cyber node such as impair process

control (a tactic) can be hardened over exploitable techniques such as alarm suppression, denial of

service, and others that require corresponding costs. Let T = {1, 2, . . . ,T } be a �nite attack horizon.
The security state of the CPS at time t is denoted by a hybrid state variable st = (γt ,xt ), where (a)
γt ∈ {0, 1} |N | is the discrete security state describing the current state of compromise of each node
(1 means node is compromised and 0 means otherwise), and (b) xt ∈ R

m is the continuous state of
the physical process at the root node. The set of available attack actions in the cyber and physical
layers at time t is denoted by A(st ). Let Υ be the total number of root nodes in G, and γt = γroot,i ,

for any i ∈ {1, 2, . . . ,Υ} represent the breach of the ith physical node. Let a(st ) ∈ A(st ) denote
an attack action taken in state st for a given defense policy α . Then, we denote the adversary’s
instantaneous net reward at time t by r (st ,a(st ),α ) ∈ R. Note that the net reward includes the cost
incurred to launch an exploit, irrespective of whether it is successful or not.

1Under full information scenario between the adversary and defender, the defender’s cost and adversary’s net reward

would be interchangeable.
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CPS State Transitions. Suppose a non-root node n is compromised at time t , and there are En,n′

exploits available to compromise a neighboring node n′. Assuming independence between di�er-
ent exploits, the probability that n′ is compromised at time t + 1 is given by 1 −

∏
e ∈En,n′ (1 − Φe ).

Such transitions represent various techniques from MITRE ATT&CK [4], and the graph nodes N
represent equivalent tactics. For instance, an entry leaf node can be represented as an initial access
(tactic), connected to lateral movement (another tactic) via cyber exploits (techniques), such as de-
fault credentials, I/O module discovery, and so on. Thus, the success probabilities Φ (or equivalently
the defender policyα ) in�uence the probabilistic evolution of the discrete stateγt ; this dependence
is compactly expressed as

γt+1 = дcyb(γt ,a(st ),α ), (1)

where дcyb is an appropriate probability transition kernel. Moreover, the physical-process dynam-
ics at the root node is represented using a state-space model (SSM) of the form:

xt+1 = дphy(xt ,ut ,wt ,a(st )), (2)

yt = H (xt ,wt ,a(st ),α ), (3)

where дphy is the state transition function,yt is the measurements,H is the measurement function,
ut is a suitably designed control, and wt is the disturbance. Note that the attack term a(st ) in
Equations (1) and (2) accounts for the attack impact on the root (physical) node, only after the
root node is compromised. Combining Equations (1) and (2), the security state st transition can be
compactly denoted as

st+1 = д(st ,a(st ),α ), (4)

where д comprises дcyb and дphy. A detailed version of the HAG and its components are described
in Reference [14]. Next, we formally present the adversary’s MDP model.

2.3 Adversary’s Learning Problem

Let π (st ) denote a stationary attack policy that assigns a probability to each action in the setA(st )
for a given state st and a defender’s policyα . If st is the physical node, then π is a distribution over
a �nite set of actions on the physical dynamics. Let Π be the space of all feasible attack policies.
Starting from an initial state s0 ∈ S and for a given defender policyα , the adversary seeks a policy
π ∗ ∈ Π that maximizes the objective function Jatt comprising the cumulative net reward over the
attack horizon T ,

Jatt(s0,π ,α ) := E

[∑
t ∈T

r (st ,π ,α )

]
, (5)

π ∗(s0,α ) ∈ argmax
π ∈Π

Jatt(s0,π ,α ), (6)

where the expectation is taken with respect to the transition kernel that de�nes the evolution in
Equation (4).

2.4 Defender’s Cyber Network Hardening Problem

The defender’s objective is to minimize the combined impact of cyber attacks on the CPS and the
cost of network hardening by choosing its actions ααα . Let cd (s,π (s),α ) be the cost incurred by the
defender under an attack policy π (.) for a given choice of defense action ααα . The cost may depend
on the cyber states and/or physical layer attributes (discomfort or temperature �uctuations). Given
a tuple of non-negative weights ααα , the network hardening cost is computed as

h(ααα ) =
∑
e ∈E

de

(
1 − αe

αe

)
, (7)
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where de is a hardening cost factor, which will be studied in Section 4. If a cyber exploit e is not
hardened, then the corresponding cost is zero, i.e., αe = 1.
We seek to minimize the defender’s objective Jdef over the attack horizon T , given any initial

state s0 ∈ S and an attack policy π ∈ Π. The objective function is de�ned as follows:

Jdef(s0,π ,α ) := E

[∑
t ∈T

cd (st ,π (st ),α )

]
+ h(ααα ), (8)

ααα∗(s0,π ) ∈ argmin
ααα ∈[α,1]|E |

Jdef(s0,π ,α ), (9)

where the expectation is taken with respect to the transition kernel in Equation (4).
Using Equations (4), (5), and (8), we de�ne a non-zero-sum stochastic game being played between

the defender and the adversary. The desired solution concept is that of an open-loop Nash equilib-

rium [10], , where we �nd a pair of attack-defense policies {π ∗,ααα∗} that are best-responses to each
other, i.e, for which Equations (6) and (9) hold simultaneously, given any s0. We identify su�cient
conditions such as the stochastic game being zero-sum or having a speci�c structure (such as ad-
ditive rewards for one player while the transitions are controlled by the other [34]) that guarantee
the existence of Nash equilibrium policies. In particular, we adopt an iterative approach to �nd
the best response of one player by �xing the policy of the other. We formally characterize tech-
nical conditions on the cost functions that ensures our proposed approach converges to a Nash
equilibrium in a zero-sum and non zero-sum settings.
The defender’s and adversary’s objectives are interdependent through each other’s policy, cre-

ating a paradox for solving either of the problems. For a non-zero-sum game, the defender’s and
adversary’s objectives should be evaluated and optimized simultaneously. Since simultaneously
solving non-zero-sum games is challenging, we propose an iterative approach to tackle the joint
problem, i.e., by �xing the policy of a player �rst (e.g., the defender), solving for an optimal attack
policy, then optimizing over the defender’s policies. We numerically investigate the convergence
of this approach on a CPS example in Section 4.

2.5 Computational Challenges

We elaborate on the major challenges in solving both, the adversary’s and defender’s problems.
The adversary’s problem focuses on solving the MDP (5). Traditional dynamic programming algo-
rithms, such as value-iteration and policy-iteration [70], are infeasible for solving the optimality
equation in each state due to the uncountable hybrid state space S. Moreover, these methods as-
sume perfect knowledge of the system and transition probabilities. However, an adversary usually
has limited knowledge of the dynamics in Equation (2) and the attack success probabilities.
Similarly, the defender’s objective is to solve Equation (9) using the HAG and adversary’s policy.

However, the defender also lacks explicit knowledge of the dynamics in the HAG and adversary’s
policy. This motivates the need for an automated purple teaming process, wherein both players
solve their respective problems sequentially, until an equilibrium is reached or a speci�ed num-
ber of iterations have been completed. In the next section, we discuss how an AC RL algorithm
is used to approximately solve the adversary’s problem Equation (5), as also described in our re-
cent work [14]. For the defender’s problem, we propose the use of BO to e�ciently explore the
defender’s search space and identify a potential solution.

3 SOLUTION APPROACHES

In this section, we will begin by deriving an analytical expression for the expected time re-
quired by the adversary to reach the physical node(s), utilizing the properties of Markov chains.
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The expected time to reach the physical node(s) is a function of the cyber exploits, meaning hard-
ening the network results in a longer expected time to reach. However, we will see that the under-
lying problem of network hardening is non-convex, which necessitates the use of e�cient search
methods, such as BO, for the defender.

3.1 Markov Chain Hardening Using Expected Time

The attributes of the HAG namely, (a) directed acyclic nature of the de�ned attack graph, (b) the
presence of leaf and root node acting as source (cyber) and sink (physical) nodes, respectively, and
(c) a probabilistic distribution over the cyber exploits, make it ideal for modeling as an AMC. Using
the defender’s actions ααα and the adversary’s policy π , we determine the transition probabilities
of the AMC states. We elaborate the components of the AMC and how the network hardening is
posed as a constrained optimization problem.
GivenN nodes and E edges in anHAG,we de�ne aMarkov chainM with a transition probability

matrix P̃ ∈ [0, 1] |N |×|N | . The Markov chain M de�ned by дcyb is naturally absorbing due to the

presence of sink nodes (physical nodes). Let S̃ ⊆ N be the set of absorbing states, and T̃ ⊆ N be

the set of transient states, such thatN = S̃ ∪ T̃ . The canonical form of the transition probability P̃
is given by

P̃ =

(
Q̃ 0

R̃ I

)
, (10)

where Q̃ ∈ R |T̃ |× |T̃ | , is the matrix corresponding to the transient states, R̃ ∈ R |S̃ |× |T̃ | is the matrix

corresponding to the absorbing states, 0 ∈ R |T̃ |× |S̃ | zero matrix, and I ∈ R |S̃ |× |S̃ | identity matrix
corresponding to the absorbing states.
Let ζ0 ∈ Γ be the initial state distribution of the Markov chain. Note that ζ0 only contains the

cyber state and represents a distribution over the transient states. For the transition probability P̃ ,
the expected absorption time [27] starting at the state ζ0 is given by

E[tabsorb (̃P)] = JAMC(Q̃, ζ0) := 1T (I − Q̃)−1ζ0. (11)

The expected time governs how quickly the adversary can reach the physical node(s). The work
in Reference [27] focuses on designing fast AMCs, such that the absorbing state is reached as

soon as possible. However, hardening the network requires designing the matrix Q̃ to deter the

adversary from reaching the sink node. The optimization problem for modifying the matrix Q̃
through the defender actions ααα is given by

max
ααα

JAMC(Q̃(ααα ), ζ0) = 1T (I − Q̃(ααα ))−1ζ0 (12a)

s.t. ααα ∈ [α , 1] |E |, (12b)

where 1 > α > 0 is a user-de�ned lower bound for the cyber exploit cost. The directed acyclic

structure of HAGmakes the transition matrix P̃ a block lower triangular, column stochastic matrix.

The elements of the fundamental matrix JFM := (I − Q̃(ααα ))−1 are given by

JFM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
j,∀(j,1)∈E

α j,1pj,1 0 . . . 0

−α2,1p2,1 . . . . . . . . .

. . . . . .
∑

j,∀(j,i )∈E
α j,ipj,i . . .

. . . . . . . . . . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

. (13)
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Equation (12a) can be re-expressed as

JAMC(ααα ) = 1T
adj(I − Q̃(ααα ))

det(I − Q̃(ααα ))
ζ0, (14)

where det(A) and adj(A) corresponds to the determinant and adjugate of the matrixA, respectively.

Since Q̃ is a�ne in ααα , we can express Equation (14) as the ratio of two polynomials in the entries
of ααα given by

JAMC(ααα ) =
P |N |−1(ααα )

P |N |(ααα )
, (15)

whereP |N |−1(x ) is a polynomial in x of degree at most |N |−1. Note that the denominator has at
least one more degree than the numerator, so JAMC tends to in�nity if and only if αe approaches
zero for all e ∈ E. This leads to a solution to make all the cyber exploit weights αe set to zero.
However, setting αe to zero in practice can disconnect di�erent components of a CPS, rendering
the problem infeasible. Moreover, the optimization problem under constraints (12b) is non-convex,
and hence, a global solution is not guaranteed.

Proposition 1 (Convexity of Cost). Suppose all entries in ααα are identical, i.e., αe = αa ,∀e ∈ E.

Then,

(1) JAMC(αa ) is convex in αa ,∀αa ∈ [α , 1];
(2) the optimizer of (12a) lies on the constraint boundary.

Proof. Under the assumption of αe = αa ,∀e ∈ E, (15) changes from a ratio of polynomial in αa
to a monomial in αa , given as

JAMC(αa ) =
k1α

|N |−1
a + k2α

|N |−2
a + · · · + k |N |

q1α
|N |
a

, (16)

where ki , i ∈ 1, 2, . . . , |N | and q1 are positive coe�cients. Since
1
αka
is convex for k ≥ 1 and αa > 0,

JAMC is a sum of convex functions and therefore, is convex. The second part follows from the fact
that the maximizer of a convex function always lies at the boundary of the domain. �

Observe that we are yet to include an additional or marginal cost for hardening the network in
the formulation. Under the assumption αe = αa ,∀e ∈ E, we add an additional cost to harden the
network to obtain the hardening Markov chain objective JHMC given by

JHMC(αa )
.
= JAMC(αa ) + h(αa ), (17)

where h(αa ) is the cost of hardening. If h(αa ) is also convex, then JHMC remains convex over αe .
Therefore, by Proposition 1, the solution will always lie at the boundary, i.e., for a given topology
and costs, it will choose the cyber exploits αe to either completely harden or not harden at all.
In order to model more general reward functions that also include the physical attributes, we

present the use of BO for e�ciently searching for non-trivial solutions. However, before we de-
scribe the approach, we brie�y review the technique used to compute the optimal attack policy.

3.2 Model-Free Reinforcement Learning for Adversarial Policy Learning

AC is a model-free RL approach that learns an agent’s (in this case, the adversary) policy without
explicit knowledge of the probabilistic dynamics of the system (2), even for hybrid MDP state
spaces. AC concurrently trains two models (called the actor and the critic) to learn a parametric
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form of a policy in an interactive setting with the environment (HAG). Let θ ∈ Θ be a vector used
to represent a parameterized value function of the form

V ∗(st ,α ) = max
π ∈Π
E [r (st ,π (st ),α ) +V

∗(st+1,α )] , (18)

where V ∗(st ,ααα ) is the optimal value function for the state st and Θ has much lower dimensions
as compared to S. The AC aims to learn θ ∗ ∈ Θ such that ∀s ∈ S, |V ∗(s,ααα ) − Jatt(s,ααα ;θ

∗)|< ϵ ,
where Jatt(s,ααα ;θ ) is a parametrized value function, and ϵ > 0 is an error tolerance. Analogous to
the parameterized value function, let π (s,ααα ;ψ ) denote a parameterized stochastic policy byψ ∈ Ψ.
At each time step, the critic updates the value-function parameters θ using sampled actions and
successor states, while the actor updates the policy parameters ψ in a direction suggested by the
critic. The parametersψ and θ are updated using a stochastic gradient scheme of the form

θ ← θ + βθ (rt + ηJatt(s
′,ααα ;θ ) − Jatt(s,ααα ;θ )) ∇θ , (19a)

ψ ← ψ + βψ (rt + ηJatt(s
′,ααα ;θ ) − Jatt(s,ααα ;θ )) ∇ψ lnπ (s,ααα ;ψ ), (19b)

where βψ > 0 and βθ > 0 are step-sizes for the actor and critic, respectively, that vary over the
iterations, and ∇θ is the gradient of Jatt with respect to θ evaluated at (s,ααα ,θ ), η is the discount
factor, and s ′ is the next state. The process is repeated until θ converges or a prescribed number of
iterations is completed. To apply the AC algorithm in the MDP Equation (5) with discrete actions,
we use an exponential softmax distribution

π (s,ααα ;ψ ) =
eh(s,a,ψ )∑

b ∈At (s ) e
h(s,b,ψ )

, ∀a ∈ At (s), (20)

where e is the Euler constant. Here, the function h(s,a,ψ ) denotes a real-valued parametric prefer-
ence de�ned for each state-action pair, which can be determined using tile coding or deep neural
networks. The complete steps of various AC algorithms are described in Reference [70]. To imple-
ment the AC algorithm, we use an on-policy linear function approximation [70].We use tile coding
to represent multi-dimensional continuous state space, where the receptive �elds of the features
are grouped into partitions of state space. The convergence of temporal di�erence (TD) (λ) with
probability 1 when the learning rates follow certain properties was demonstrated in Reference [23].
Similarly, the author in Reference [15] proved the convergence of on-line TD(0) with probability 1
while using a linear function approximator. Reference [71] introduced fast convergence algorithms
for both on-line and o�ine policy training with linear function approximation. A comprehensive
list of RL using function approximation and its convergence were reported in Reference [75]. We
use the policy obtained from AC algorithm to determine an e�ective sequence of attacks to even-
tually reach the physical node(s) causing damage or disruption in service. Next, we present the
solution to the defender’s problem while keeping the obtained adversary policy �xed.

3.3 Bayesian Optimization for Network Hardening

Recall that our best-response based solution approach is iterative in nature: We begin with a de-
fender policy, compute the optimal policy for the adversary (using the AC algorithm in Section
3.2), update the defender policy and repeat the process. Due to lack of knowledge of the underly-
ing physical dynamics Equation (2) along with requiring multiple evaluations (expected value), we
treat the problem as a black box and use BO [56] to solve the defender’s problem. To account for
the computational complexity of the defender’s problem using BO, we evaluate the expectation
with limited samples, to average out any measurement noise.
We initialize the defender’s policies with αe = 1,∀e ∈ E, and train the adversary’s policy using

AC algorithm with weights θ andψ . Once we learn an attack policy, we determine the defender’s
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ALGORITHM 1: Adversarial Network Hardening

Input: HAG, T (Time horizon), {we },∀e ∈ E (default success probabilities), K (Hardening
iteration)

Result: Attack policy π ∗, Defender’s actions α∗α∗α∗

Initialize ααα1 (αe := 1,∀e ∈ E)
for k ← 1 to K : do
# Actor Critic for adversary
Initialize Actor Critic weights;
# Number of episodes of the attack

for episode← 1 to N : do
Initialize s0 ∈ S

for t ← 1 to T : do
at ∼ πk (st ;ψ )
st+1 = д(st ,at )
Update θ andψ

end

end

# Bayesian optimization for defender
Initialize surrogate model parameters: μ0(·),σ0(·),k(·, ·), ρ, D0 = ∅

for b ← 1 to B: do
Obtain ξb = F (αααk,b ,πk )
Augment data, Db = Db−1 ∪ {αααk,b , ξb }

Update the GP parameters μb (·),σb (·) using (22)
Choose α k,b+1 ∈ argminα q(ααα |Db ),

end

Choose αααk+1 = argmin q(ααα |DB )
end

Output: π ∗ = πK ,ααα
∗ = αααK+1

best response with respect to each exploit using BO. The goal of a BO process is to minimize an
unknown function given by Equation (7) expressed by

F (ααα ,π ) = E

[∑
t ∈T

cd (st ,π (st ),α )

]
+ h(ααα ). (21)

At each BO iteration b we select a tuple αααk,b and evaluate the corresponding function value
F (αααk,b,πk ), where πk is the attack policy for the kth hardening epoch. The main idea behind BO
is to maintain a surrogate function of F , such as a Gaussian process,2 which is updated with noisy
observations ξ := [ξ1, . . . , ξB]

′ of F at the set AB := {αααk,1, . . . ,αααk,B } using an acquisition function

q(ααα ). The posterior over F is a Gaussian distribution with mean μB (ααα ) and covariance kB (ααα ,ααα
′)

given by

μB (ααα ) = kB (ααα )
T (KB + ρI )

−1ξ ,

kB (ααα ,ααα
′) = k(ααα ,ααα ′) − kB (ααα )

T (KB + ρI )
−1kB (ααα

′),

σB (ααα )
2 = kB (ααα ,ααα

′), (22)

2AGaussian process is a stochastic process, i.e., random variables indexed by space and time, such that any �nite collection

of those random variables has a multivariate normal distribution.
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where k : A × A → R≥0 is the kernel function, the vector kB (ααα ) := [k(αααk,1,ααα ) . . .k(αααk,B ,ααα )]
T ,

KB is the positive semi-de�nite kernel matrix [k(ααα ,ααα
′)]ααα,ααα ′∈An , ρ ≥ 0, and σB (ααα ) is the stan-

dard deviation of the Gaussian measurement noise for the samples ξ . In this work, we use
the expected improvement as the acquisition function, which is de�ned by Equation (23). Let
F ′
B (ααα ) := minm≤B F (αααk,m ) represent the minimal observed value of F () at the current iterate B,
then expected improvement is de�ned as

q(ααα ) = EIB (ααα ) := E
[ (
F ′
B (ααα ) − F (ααα )

)+ ���αααk,1:B , ξ1:B ] , (23)

where x+
.
= max{x , 0}. To obtain theoretical guarantees on the suboptimality of α after B iterations,

we also use the upper con�dence bound (UCB) [68], which is given by

qB (α ) := μB (α ) +
√
βBσB (α ),

where, for a discrete choice of α , βB := 2 ln(|α |ξB/υ) with an user-de�ned υ ∈ (0, 1) , and ξk is a
sequence such that

∑∞
k=1

ξ−1
k
= 1.

The BO algorithm in conjunction with AC is summarized in Algorithm 1, where K is the total
number of BO iterations, N is the total number of episodes of the AC algorithm and T is total
time duration for the system. At each BO iteration k , we return the updated cyber exploits which
are used to re-train the adversary’s policy with the new set of success probabilities and repeat the
same process for the de�ned number of iterations K . Once this process terminates, we obtain the
best set of defender’s actions (non-negative weights) α∗

e ,∀e ∈ E and the corresponding adversary
policy π ∗.

3.4 Analytic Properties for Zero-Sum Games

We provide analytical guarantees for our proposed approach, which involves analyzing Algorithm
1 in a zero-sum scenario by considering a �nite set of pure policies for each player. For the zero-
sum analysis, we swap theminimizer andmaximizer. In particular, the adversary (minimizer) picks
out of the set {π1,π2, . . . ,πm} and the defender (maximizer) picks out of the set {α1α1α1,α2α2α2, . . . ,αnαnαn}.
The cost of player policy πi against ααα j equals Mi j (s0), where M(s0) ∈ Rm×n is the cost/payo�
matrix. In what follows, we will drop the explicit dependence ofM on s0 for ease of notation.
Any Hannan consistent algorithm has properties of (i) time-average convergence to the best

response policy, and (ii) 2ε− approximate Nash equilibrium with ε ≥ 0 when both players update
their policy using a Hannan consistent algorithm [30]. As such, our proposed approach employs a
single-agent RL (adversary) to determine Nash equilibria for such repeated zero-sum games [77].
Assuming K iterations of Algorithm 1, we will leverage the following properties :

Proposition 2 ([17] Theorem 4.1 and 7.2). Given K as the number of iterations of Algorithm 1,

and let {P1, . . . , PK } and {j1, . . . , jK } be the possibly mixed adversary policies and pure defender poli-

cies at the corresponding iterations, respectively. Then, the adversary algorithm satis�es the following

inequality

1

K

K∑
k=1

PTk Mejk ≤
1

K
min
P̄ ∈∆m

P̄T
K∑
k=1

Mejk + δ (m,K ),

where ejk is the jk th basis vector inR
n ,∆m is the probability simplex inm dimensions, δ (m,K ) ≥ 0 is a

Hannan consistent regret that depends on the number of adversary actionsm and number of iterations

K , obtained using any �xed distribution P̄ . δ (m,K ) ≥ 0 corresponds to regret when the adversary uses
a Hannan consistent [30] algorithm to update its policy every iteration.

There exist many Hannan consistent algorithms, such as exponential weighted average [17] or

multiplicative weight update [28], where δ (m,K ) = O(
√
log(m)/K ). Before we proceed with the

defender’s analysis, we need to make the following assumption on the entries ofM .
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Assumption 5. Each row of M is assumed to be drawn out of a Gaussian process with a given

mean (typically equal to zero) and prior covariance de�ned by a kernel matrix K i (j, �) ≥ 0, for the
ith row.

Note that this assumption automatically implies that any linear combination of the rows is also
a sample of a Gaussian process with a mean and a linear combination of the kernel matrices.

Proposition 3 ([68] Theorem 1 and Lemma 7.6). Suppose that Assumption 5 holds. Then, against

any attack distribution Pk , BO yields a pure policy ejk , such that

max
α

PTk Mααα ≤ PTk Mejk + ϵk ,

with probability of at least 1 − υ, where

ϵk ∈ O
���
√
γB (P

T
k
M)βB (n)

B

���
.

Recall that βB (n) = 2 ln(nξB/υ), where the sequence ξk is such that
∑∞

k=1
ξ−1
k
= 1. The information

gain γB (P
T
k
M) := 0.5/(1− 1/e) maxд1, ...,дk

∑B
�=1
log(1+σ−2д�λ�), where λ’s are the eigenvalues of the

kernel matrix of the weighted rows PT
k
M , and σ is the variance of the noise in obtaining the payo�.

We are now ready to state and prove a convergence result for the zero-sum setting.

Proposition 4. Consider the average of the attack distributions produced by Algorithm 1, P̂K :=
1
K

∑K
k=1

Pk . This distribution satis�es

max
α

P̂TKMααα ≤ min
P ∈∆m

max
ααα

PTMα︸���������������︷︷���������������︸
Value of the matrix game M

+
1

K

K∑
k=1

ϵk + δ (m,K ),

with probability of at least 1 − Kυ.

Proof. We start with

max
α

P̂TKMααα =
1

K
max
ααα

K∑
k=1

PTk Mα ≤
1

K

K∑
k=1

max
ααα

PTk Mα

≤
1

K

K∑
k=1

(PTk Mejk + ϵk ) Using Prop. 3 with prob. at least 1 − Kυ,

≤
1

K

K∑
k=1

(P̄TMejk + ϵk ) + δ (m,K ) using Prop. 2,

= min
P̄ ∈∆m

P̄T
1

K

K∑
k=1

Mejk +
1

K

K∑
k=1

ϵk + δ (m,K )

≤ max
ααα

P̄TMα +
1

K

K∑
k=1

ϵk + δ (m,K ).

Since this holds for any �xed distribution P̄ , one such particular choice is a saddle-point policy for
the adversary. This completes the proof. �

Remark 1. Proposition 4 quanti�es the proximity of the outcome of Algorithm 1 to the saddle-
point value (i.e., the Nash equilibrium) of the matrix gameM with high probability, under certain
technical assumptions on the entries of the payo� matrix. Furthermore, the error in the outcome
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depends logarithmically on the number of rows m and columns n of the payo� matrix M . This
means that one can use a large number of pure policies while incurring only a modest increase in
the error bound.

3.5 Analytic Properties of the Non Zero-Sum Set-Up

In this subsection, we derive analytical properties of the non-zero-sum game under some assump-
tions. Consider a two-player stochastic game with a �nite state space s ∈ S, having �nite action
spaces π (s) andα for the adversary and defender, respectively, in each state s . We denote this game
by

Γ = {S,π (s),α , r̂ ,p}, (24)

where r̂ := {r̂1, r̂2} is a vector-valued function for the defender and adversary, respectively, in the
domain

Z = {(s,π (s),α ); s ∈ S,π (s) ∈ Π,α ∈ [α , 1] |E |}.

In particular, r̂ := {r̂1 := c
d (s,π ,α ), r̂2 := r (s,π ,α )} for the described problem Equations (9) and (6),

respectively. Lastly, the state transition probability is given by

p = {p(z |s,π (s),α );z ∈ S, (s,π (s),α ) ∈ Z},

where p(z |s,π (s),α ) denotes the probability that the state moves from state s to z when the actions
π (s) andα are taken in the state s . The state transition probabilities satisfy the following properties,

p(z |s,π (s),α ) ≥ 0, and
∑
z∈S

p(z |s,π (s),α ) = 1.

De�nition 1 (Additive reward (AR) and additive transition (AT) game (ARAT game) [61]). The
game Γ Equation (24) possesses an additive rewards property, if for all (s,π (s),α ) ∈ Z,

cd (s,π ,α ) = cd1 (s,α ) + c
d
2 (s,π ),

r (s,π ,α ) = r1(s,α ) + r2(s,π ),

for appropriate functions cd1 , c
d
2 , r1 and r2 on the domain. The game Γ Equation (24) simpli�es to a

controlling game if the states can be partitioned into two sets S1 and S2 such that

∀s ∈ S1, p(z |s,π (s),α ) = p1(z |s,α )

∀s ∈ S2, p(z |s,π (s),α ) = p2(z |s,π (s)).

The partitioning of states enables the game Γ Equation (24) to possess additive transitions for all
(s,π (s),α ) ∈ Z of the form

p(z |s,π (s),α ) = p1(z |s,α ) + p2(z |s,π (s))

Assumption 6 (“Switching control graphs”). The graph G satis�es the following properties:

(1) There are no self loops,
(2) the defense policy α is such that for every cyber node with a single outgoing edge e , αe �= 1,
(3) for every other edge, αe = 1, and
(4) the game is played over an in�nite horizon in a discounted setting

A line graph represents one such example. Figure 2 shows a non-trivial example of a switching
control graph. Then, the following is a property of the game described in Sections 4.2 and 4.3.

Proposition 5 (ARAT Game with Switching Control Graphs). Under Assumption 6, the

stochastic game Γ de�ned by Equation (24) is an ARAT game.
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Fig. 2. Switching control graph with nodes 1, 4, and 6 representing adversary control, and nodes 2, 3, and 5

representing defender control.

Proof. We will verify that the cyber rewards Equation (25) and physical rewards Equation (27)
satisfy the AR property, and the state transitions satisfy the AT properties. Under Assumption 6,
the expected cyber rewards are partitioned as

r (st ,π ,α ) =

{
r1(st ,α ) := αewe − c, st ∈ S1,

r2(st ,π ) := πe (st )we − c(πe (st )), st ∈ S2,

where c corresponds to the cyber cost for all the states belonging to the set S1, i.e., states under
defender’s control.
Note that when the adversary reaches the physical state st = {γroot,xt } the defender’s action

has no impact on the reward obtained by the adversary. The state transitions under Assumption 6
are of the form

p1(z |st ,α ) = αewe ,∀st ∈ S1,

p2(z |st ,α ) = πe (st )we ,∀st ∈ S2.

Therefore, we satisfy both ARAT property for the stochastic game Γ Equation (24). �

Using Theorem 3.1 fromReference [61], we conclude that the ARAT game Γ Equation (24) admits
a Nash equilibrium in stationary strategies which uses at most two pure actions for each player
in each state. This result will allow us to signi�cantly prune down the adversary edges of a large
graph that satis�es Assumption 6.

4 NUMERICAL EXPERIMENTS

We now demonstrate the e�ectiveness of our proposed network hardening algorithm on a smart
building case-study with a cyber layer inspired by a ransomware attack graph and the physical
layer obtained from a truncated model identi�ed using real-world experiments.

4.1 Case-Study: Sensor Deception A�acks on Building

In this use case, the adversary aims to maximize the occupant discomfort of a single zone in the
given building over a de�ned time horizon, while the defender seeks to minimize a combination of
the discomfort and the hardening cost. The building’s air-handling unit (AHU) performs stan-
dard operations by reconditioning ambient air and return air to a speci�c supply-air temperature
and then supplying it to various building zones using a supply fan. The adversary aims to ma-
nipulate temperature measurements from various zone-level sensors to deceive the AHU control
system and send poorly conditioned air into various zones, causing comfort-bound violations over
time. However, to gain access to the temperature sensors at various zones, the adversary has to
penetrate the sensor unit via a set of cyber exploits present on di�erent components of a Build-
ing Automation System (BAS), such as IoT devices (e.g., IP cameras and smart thermostats),
building-management workstations, and programmable logic controllers (PLC).
For the cyber layer, we use a pruned version of a ransomware attack graph [65] created using

information �ow. The original graph represents multiple stages of an attack progression: (a) a
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Fig. 3. (a) An HAG inspired from a ransomware a�ack graph [65]. The source node 1 is represented by the

dashed circle and the physical node (sink node) 9 is represented by concentric circles. (b) Trajectories of Zone

1 temperature (Zone 1) along with the outside air temperature (Outside T) over a year with upper (T max)

and lower temperature (T min) comfort bounds.

privilege escalation stage, (b) lateral movement over the cyber nodes, and (c) reaching the goal
node. We use a HAG to represent these speci�c stages, as shown in Figure 3(a). Similar attack
graphs for BAS were used in [25], where the attack paths involved executing a subset of tactics
de�ned in popular attack frameworks, such as MITRE’s ATT&CK [1].
The reward functions used for an adversary in the cyber and physical layer of a CPS is usu-

ally system-speci�c and depends on the system’s overall security objective and speci�cations. For
instance, the cyber reward at a certain node in a HAG can be set equal to the loss a defender
or system administrator would incur in case an adversary were to successfully access the corre-
sponding node. For this case study, we set the cyber reward to a positive value that incentivizes
a resource- and/or time-constrained adversary to reach the physical node as quickly as possible.
However, other cyber-layer reward speci�cations can be easily integrated in our framework. On
the other hand, reward in the physical layer is generally associated with a metric that corresponds
to loss in physical-system performance due to the adversary’s actions. Examples include power,
energy, e�ciency or deviation of performance beyond a speci�ed bound. It is also important to
note that probability of transitions between di�erent nodes in a HAG is usually determined from
related attack-incident reports in the literature (see Reference [22] for more details). However, we
use synthetic transition-probability values in the ransomware attack graph for demonstrative pur-
poses only. Next, we elaborate the cyber and physical layer components of the proposed HAG
using notation described in Section 2.

4.2 Cyber Layer

The HAG consists of eight cyber vertices with the associated cyber exploits also known as tactics
from MITRE ATT&CK framework. The physical node is represented via concentric blue circles
(node 9 in Figure 3(a)). Each vertex (tactic) and its corresponding edge (technique) are shown in
Table 1. A user can generate such attack graphs and models using the framework in Reference
[22]. The success probability of any of the cyber exploit is independently sampled from a uniform
distribution, U ∼ [0.5, 1). For an attack action at ∼ π (st ,ααα ;ψ ) on the cyber layer, the adversary
incurs a cost c(at ) of 0.1 and a nominal reward of 1 if an exploit is successful, while the reward for
doing nothing is assigned a value of 0. The reward from the cyber layer to the adversary is given
by

r (st ,π ,α ) =

{
1 − c(πe (st )), with probability αeweπe (st ),

−c(πe (st )), with probability 1 − αeweπe (st ),
(25)
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Table 1. Cyber Exploits and their Corresponding Probability of Success

Node Tactic Edge Transition Probability Node Tactic Edge Transition Probability Node Tactic Edge Transition Probability

1
Initial
access

(1,2)

0.82 (Internet
Accessible
Device)

4 Evasion
(4,5)

0.56 (Utilize/Change
operating module) 6

Lateral
movement

(6,8)
0.87 (Remote File

Copy)

2 Execution
(2,3)

0.63 (Execution
through
API)

(4,6) 0.94 (Rootkit) (6,9)
0.78 (Program

Organization Units)

(2,4)
0.88 (Man in
the middle)

5 Discovery (5,6)
0.97 (Control Device
Identi�cation)

7
Inhibit response
function

(7,8)
0.87 (Block serial

COM)

3 Persistence (3,4)
0.89 (Module
Firmware)

6
Lateral
movement

(6,7)
0.59 (External Remote

Services)
8

Impair process
control

(8,9)
0.50 (Change Program

State)

Table 2. Description of the Variables in the Building Model

Variable Description Unit

xt Building envelope states ◦C

yt Zone temperature measurements ◦C

ut Amount of heating or cooling (control inputs) ◦C kg s−1

wt Ambient temperature (disturbance) ◦C

where πe (st ) denotes the adversary’s probability of choosing exploit e while in the state st . Then,
the expected reward until the root (physical) node is not compromised is given by

E[r (st ,π ,α )] = αeweπe (st ) − c(πe (st )),

subject to the dynamics in Equation (4). Note that each exploit has a positive expected net reward,
which incentivizes the adversary to reach the root node as quickly as possible.

4.3 Physical Layer

We consider a multi-zone residential building with a single �oor as our representative building,
which is based on the setup described in Reference [57]. The building has six conditioning zones
and a central AHU that sends thermally conditioned air to each zone using a supply-air fan. The
AHU unit uses an absorption chiller for conventional cooling and a backup boiler for emergency
heating during very low ambient temperatures. Conventional heating is provided byVariable Air
Volume (VAV) terminal units with reheat coils that regulate the temperature and �ow-rate of the
air entering each zone.
To accurately model the building dynamics, a linearized, time-invariant, discrete-time, reduced-

order SSM can be used, as discussed in Reference [57]. We use the RenoLight SSM as part of the
Python Systems Library (PSL) [59] to simulate the dynamics of our representative building. The
RenoLight model consists of 250 states (building envelope variables), 6 control inputs (amount of
heating or cooling for each zone) and 6 observations (zone temperatures). The sampling frequency
of the model is set to 15 minutes. Notation and description of the di�erent components of the
SSM are reported in Table 2. We use a rule-based controller to provide occupant thermal comfort
by maintaining zone temperature in each zone within speci�ed comfort bounds. Speci�cally, the
amount of heating or cooling at time t in zone i was set according to

uit =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−umaxmin
{
yi
t
−ymax+δ

ϵ̃
, 1
}
, if yit > ymax − o,

−umaxmin
{
−yi

t
+ymin+δ

ϵ̃
, 1
}
, if yit ≤ ymin + o,

0, otherwise,

where ymin and ymax are the prescribed lower and upper comfort bounds, o is hysteresis parameter,
ϵ̃ is proportional gain and umax is the maximum heating or cooling capacity of the controller. For
our experiments, we setymin = 23

◦C andymax = 25
◦C, respectively. Figure 3(b) shows the nominal
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Fig. 4. (a) Defender’s (Jdef) and A�acker’s (Ja�) objective with a hardening cost factor de := 0.1, wheremin(i)

is defined as the ith argument minimum of Jdef/a�. (b) Defender’s (Jdef) and A�acker’s (Ja�) objective with

a hardening cost factor of de := 0.5. (c) Defender’s (Jdef) and A�acker’s (Ja�) objective with a hardening cost

factor de := 1.

annual performance of the rule-based controller (under no attacks), which clearly shows that the
zone temperatures stay within the comfort bounds with high probability.
On acquiring access to a zone temperature sensor, the adversary can perturb the sensor mea-

surements to cause occupant discomfort in that zone. With a slight abuse of notation, let at be the
adversarial temperature perturbation at time t . For demonstrative purposes, only the temperatures
in zone 1 are allowed to be perturbed; henceforth, we drop the zone superscripts. The perturbed
zone temperaturemeasurement at time t changes toyt = xt +at . The adversary’s reward for execut-
ing the action at when the physical state is st = {γt ,xt } = {γroot ,xt }, denoted by r (st ,at ), equals

r (st ,at ) = (ymin − yt )
+ + (yt − ymax)

+ − ca2t . (26)

For u ∈ R, the �rst (resp. second) term is the thermal discomfort caused by temperature deviation
from the lower (resp. upper) comfort bound. The cost for executing an action at is scaled by a
proportional term c . Since at takes values in a discrete set, the expected reward is given by

E[r (st ,πt )] =
∑

at ∈A(st )

πat (st )
(
(ymin − yt )

+ + (yt − ymax)
+ − ca2t

)
.

Note that based on the action and the state, the adversary will either observe the cyber or the
physical reward.
Once the root node is compromised, the defender can only measure the discomfort caused by

the adversary’s perturbation in any zone. The expected return incurred under a set of defenses
and adversary policy in state st equals

cd (st ,π ) = −E [r (st ,π )] . (27)

Since the defender’s actions are purely on the cyber layer, once an adversary reaches a root node,
the return cd is invariant of the defender policy α .

Network Hardening

We numerically demonstrate the outcome of Algorithm 1 with the following parameters, (a) time
horizon T = 48, (b) hardening iteration K = 100, (c) AC episodes N = 30, 000 and (d) lower bound
for hardeningα = 0.1. Figure 4 illustrates the defender’s and adversary’s objectives at the end of the
hardening iteration for di�erent values of the hardening cost factor de = 0.1, 0.5, and 1. As shown
in Figures 4(a), 4(b), and 4(c), increasing values ofde lead to higher objectives for both the adversary
and defender. The adversary’s and defender’s objectives show diminishing marginal improvement
with an increasing number of iterations of the approach, suggesting proximity to an approximate
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Fig. 5. (a) Average time steps required to reach the physical node for the adversary for the hardening factor

of de := 0.1. (b) Average time steps to reach the physical node with de := 0.5 (c) Average time steps to reach

the physical node with de := 1.0.

Fig. 6. (a) Cyber exploits weights obtained from the result of Algorithm 1 with a cyber cost factor of de =

0.1, 0.5 and 1.0. (b) Time to reach the physical node 9 for varying hardening cost factor and compared with

the expected time to reach (JAMC) obtained from (11).

NE of the game. But since this is a non-zero-sum game, characterizing additional properties such as
the price of anarchy and convergence to an NEwill require additional assumptions on the structure
of the players’ objectives, and is a topic of future investigation.
We quantify the e�ectiveness of Algorithm 1, by measuring the average time taken by the ad-

versary to reach the physical node during the BO process for di�erent values of de , as shown
in Figures 5(a), 5(b) and 5(c). We observe that as de increases, the average time taken to reach
the physical node decreases. Furthermore, we compared the distribution of the time required to
reach the physical node for the corresponding values of de against the expected absorption time in
Equation (11) as shown in Figure 6(b).We observe that the expected absorption time JAMC is greater
than the median value of the empirically determined time. This result justi�es the use of the pro-
posed approach over standard optimization methods for optimizing JAMC
Next, we visualize the defender policy ααα for the three values of de shown in Figure 6(a). We

observe that a majority of the weights are hardened for smaller values of de , indicating the e�ec-
tiveness of our approach in balancing between the cost of hardening and the cost of securing the
CPS. We demonstrate a sample node trajectory for the corresponding values of de shown in Fig-
ures 7(a), 7(b) and 7(c). As expected, the adversary takes signi�cantly longer to reach the physical
node with de = 0.1 as compared to de = 1.0. Finally, as the defender can only observe the discom-
fort in HAG, we evaluated the same for the prior de�ned values of de using the obtained policies
of {π ∗,α ∗} shown in Figure 8(a), 8(b) and 8(c). The results show a decrease in discomfort for the
lowest value of de := 0.1.
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Fig. 7. Sample node trajectory obtained from an a�ack policy with a hardening cost factor of (a) de = 1.0,

(b)de = 0.5, and (c) de = 0.1, where with null action corresponding to no action taken by the adversary.

Fig. 8. Discomfort corresponding under the optimal policy {π ∗,α ∗} for the hardening cost factor (a)de := 1.0,

(b) de := 0.5, and (c) de := 0.1.

Our approach to adversarial network hardening provides a principled defense planning solution
in the presence of an adversary. Despite the defender’s limited knowledge of the adversary’s move-
ments and only being able to measure physical attributes, our approach prevents the adversary
from gaining privileges in the HAG. Our framework optimizes network hardening and adversary
cost simultaneously, resulting in robust policies for both players, leading to an approximate best-
response pair for the non-zero-sum game. This approach o�ers a promising defense mechanism
against adversarial attacks.

5 CONCLUSION AND FUTURE DIRECTIONS

This article developed a domain-aware framework for automated adversarial defense planning,
accounting for cross-layer interaction between the cyber and physical components of a CPS. Our
approach leveraged anMDPwith a hybrid state representing the cyber (discrete) and physical (con-
tinuous) state of the system to capture the adversary’s progression over the HAG. We formulated
the automated defense planning as a non-zero-sum game between an adversary and a defender.We
used AC, a RL method, and BO to iteratively solve the adversary’s and defender’s problem, respec-
tively. Finally, we demonstrated the e�ectiveness of our proposed framework on a ransomware
inspired graph in conjunction with smart building dynamics. The obtained results show a hard-
ened network for varying hardening costs along with diminishing marginal improvement for both
players.
Future work will focus on studying the convergence properties of our proposed approach.

Additionally, integrating an Intrusion Detection System (IDS) and an IRS on the cyber layer
would enable a more informed and active defender. We also plan to extend the defender’s policy
from a static network hardening approach to an active network recon�guration with one or
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multiple adversaries in the HAG. Exploring zero-day exploits and preemptive defense mechanisms
within the framework is another area of interest. Finally, we will investigate the strategic use
of backup systems and their interaction within the CPS. These backup systems could represent
hidden parts of the HAG, and the defender may choose to activate them to improve the current
system’s performance.
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