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Abstract—Safely controlling unknown dynamical
systems is one of the biggest challenges in the field of
control systems. Oftentimes, an approximate model of
a system’s dynamics exists which provides beneficial
information for control design. However, differences
between the approximate and true systems present
challenges as well as safety concerns. We propose an
algorithm called SAFESLOPE to safely evaluate points
from a Gaussian process model of a function when its
Lipschitz constant is unknown. We establish theoretical
guarantees for the performance of SAFESLOPE and quan-
tify how multi-fidelity modeling improves the algorithm’s
performance. Finally, we present a case where SAFESLOPE
achieves lower cumulative regret than a naive sampling
method by applying it to find the control gains of a linear
time-invariant system.

Index Terms—Machine learning,
stochastic systems.

uncertain systems,

[. INTRODUCTION

N THE realm of control systems, there exist many instances

in which the dynamics are not fully modeled. While an
approximation of the dynamics may exist, variations in the
system’s components or environment may cause the system to
deviate from the design model. For example, consider off-the-
shelf robotics kits. Though identically designed, each robot
possesses variations that cause its performance to vary from
the design model. In this case, we can consider each robot
to be a black-box system, possessing accessible input-output
data but inaccessible exact dynamics. We study how the true
system output can be used with a design or simulated model
to create an improved model of the true dynamical system.

Gaussian process (GP) regression is a popular non-
parametric technique for optimizing unknown or difficult-to-
evaluate cost functions. The upper confidence bound (UCB)
algorithm [1] guarantees asymptotic zero regret when itera-
tively sampling a GP. Multi-fidelity Gaussian processes (MF-
GPs) predict a distribution from multiple correlated inputs.
The linear auto-regressive (AR-1) model is an MF-GP that
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uses a cheaper model to assist in evaluating a more com-
plex model [2]. The AR-1 model’s recursive structure allows
it to effectively model correlated processes while its decou-
pled form enables computationally efficient parameter learn-
ing. Analytical guarantees have also been established when
applying Bayesian optimization to MF-GPs [3], [4].

Recently, GPs have been explored for control design. GPs
and MF-GPs have been applied to finding ideal control gains
for linear time-invariant (LTI) systems [5], [6]. MF-GPs have
also been applied to falsification frameworks for testing system
safety [7]. However, these papers primarily contain experi-
mental results, without any mathematical guarantees for the
approach.

Other data-driven methods have been proposed to con-
trol LTI systems. Model-based approaches reconstruct a
model of the system dynamics from trajectories of similar
systems [8], [9] and have been studied for robustness [10].
When data is abundant, model predictive control may be used
to find an ideal control strategy [11]. Model-free approaches
aim to directly control a system without learning the system
dynamics [12], [13], [14].

Whether model-based or model-free, a critical aspect of
controller design is safety. A recent review of safe learning
in control classifies approaches based on the strength of the
safety guarantee and the required knowledge of the system’s
dynamics [15]. An ideal approach ensures strict constraints are
met for a system with unknown dynamics. Despite proposed
solutions, there is a gap in work involving using GPs for safe
control design.

We consider a data-driven Bayesian optimization approach
to find optimal controllers of black-box systems. The following
are our main contributions:

1) We establish SAFESLOPE, a safe exploration algorithm
with analytical bounds when the Lipschitz constant of a black-
box cost function is unknown. Unlike SAFEOPT [16], which
relies on a known Lipschitz constant, we upper bound the
slope using the posterior distribution of the GP.

2) We formalize how an AR-1 model can improve the
choice of inputs. In particular, we show how its conditional
covariance matrix can be used to reduce the upper bound
on the information gain. We also numerically compare the
performance of an AR-1 model to a single-fidelity GP.

Il. PROBLEM OVERVIEW
A. Motivating Scenario

For this problem, we model a true system with LTI
dynamics, zj| = Az; + Buj, where z € R" is the state, u € R?
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is the input, and A € R"*", B € R"*? are the system matrices.
Under feedback control, the system input is u; = —Kz;, where
K € RP*" ig the control gain. Given an initial state zo and
weighting matrices Q and R, the system’s infinite-horizon LQR
cost for a set of gains K is

J(K)=Y " z;(A—BK)"[Q+K"RK)(A—BKYzo. (1)
=0

Our goal is to minimize (1) by finding the ideal gain K*.!

When A and B are unknown, determining an ideal K*
becomes more challenging. We consider a situation in which a
design model of the system has the evolution z;| = Az, —i—Bu i
and associated cost j, with A € R B € R"™P_ The design
model has the same dimension as the true system, but its
entries differ from those in the true system. We aim to leverage
the design model to quickly find an ideal K* while avoiding
gains that cause instability.

We propose using an MF-GP framework that only requires
the input-output data from the auxiliary and the true systems.
Here, the input is the choice of gain K, gnd the output is J(K).
We apply an AR-1 model by treating (A, B) and (A, B) as the
low- and high-fidelity models, respectively. By using a search
algorithm that guarantees safety, we seek to avoid sampling
unstable controller gains.

B. Multi-Fidelity Gaussian Processes (MF-GPs)

A Gaussian process is a collection of random variables such
that every finite set of random variables has a multi-variate
Gaussian distribution [17]. A GP is defined over a space X C
R” by its mean function i : X — R and its covariance (kernel)
function k : X x X — R.

Given a set of points X, = {x,...,x;}, we create a
covariance matrix k(X;, X;) = [k(x;, xj)];:;zl, which is always
positive definite. The covariance between a point and a set
of points yields a covariance vector k(x) = k(X;x) =
k(xy,x) ... k(e x)]7.

Let f be a sample from a GP with mean p and kernel k.
Suppose we have prior data X; and Y; = {y1, ..., y:}, where
yi = f(x;) + n has measurement noise n ~ N(O, 52). Then the
posterior distribution of f at x is a normally distributed ran-
dom variable with mean i ;4 1, covariance kf ;. 1, and standard
deviation oy ;11 given by

1t .1 () = kT (0)[k(X,, Xp) + E2117'Y, 2)
kf 10, X7) = ke (e, ') —kT (o) [k(X;, X)+E211 7k (x)

of 1+1(X) = ki (x, x). €))

To incorporate data from multiple sources, we use an
AR-1 model, which models f as a linear combination of a
low-fidelity GP f7(x) and an error GP §(x) according to

J@) = pfr(x) +5(x), “4)

where p is a scaling constant [2]. In general, an AR-1 model
is beneficial when the low-fidelity observations X are more
abundant than the high-fidelity observations Xg.

IWe demonstrate the algorithm on an LTI system with a quadratic cost for
simplicity’s sake. However, our algorithm may also be applied to any system
possessing a parameterized controller with a measurable performance metric.

Let kD denote the kernel of fi(x) and k® denote the kernel
of §(x). Then, letting X = [X, Xg], the covariance matrix of
the AR-1 model has the form

(MF) kiLZ Pk(LLI)V
"X, X) = 7 D e | (%)
Py 0°Kip + iy

where kiLL is shorthand notation for the single-fidelity covari-

ance mat’rix kD X, Xp).

C. Problem Statement

Consider a finite domain X C R”, with x = (x, ..., x,) €
X. Let f : X - R be an unknown realization of a GP and
let x* be a minimizer of f. Given a safety barrier 2 € R and
precision € > 0, our goal is to design a sequence {x;};en such
that for some sufficiently large r*,

fx) <f(x*) +e€, Ve>1"; and f(x;) <hVieN.

We develop an iterative algorithm to design such a sequence
{x/}ren. We apply this framework to the multi-fidelity case
when an approximation of f(x) is available.

[1l. ALGORITHMS AND MAIN RESULTS

In this section, we first review the SAFEOPT algo-
rithm, which forms the framework of SAFESLOPE. Next,
we introduce SAFESLOPE and describe how it deviates from
SAFEOPT. We then discuss how SAFESLOPE applies to MF-
GPs, then discuss the theoretical properties of this algorithm.

A. The SAFeOPT Algorithm [16]

SAFEOPT is an exploration algorithm that uses the Lipschitz
constant L of a function f to avoid searching in an unsafe
domain. To accomplish this, SAFEOPT uses the predictive
confidence interval

0.0 = | 07,0, 0, (©)

where Q}%t(x) = pp—1(x) £ ﬁ;y/tzqf,t_l(x) and fBr; is a
parameter which controls exploration.

Step 1: Given an initial safe set So, we define Cro(x) =
[, 00), Vx € Sy and R otherwise. Then, the nested confidence
interval Cr ;(x) = Cy;—1(x)NQr ((x) is used to define the upper
and lower confidence bounds of f as

uy ¢(x) :=max Cr (x) and £ ;(x) := min Cy ,(x). @)

Step 2: These confidence bounds are used to establish the
subsequent safe sets S; according to

Si= | ¥ e X lup,(x) + Ld(x. ¥') < b},
xeS,,l

where d(x, x) is the distance between x and x’.
Step 3: Two subsets of S; guide the search process. The set
of points that potentially minimize f is given by

M,={x€S,

£¢,+(x) < min uf,t(x’)}.
x'eS;

Step 4: Meanwhile, the set of points that potentially increase
the size of S; is given by

Gr = {x € §g:(x) > 0},
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where g;(x) is the cardinality of the set of points that sampling
at x could add to S;, defined by

&m:ﬂweXWAqyyumegﬂy

Step 5: From the union of M; and G;, SAFEOPT selects
points using the width of the confidence interval w;(x) =
ug +(x) — £r 4(x) according to the function

®)

x; € argmax wy(x).
xeM;UG;

B. The SareSLoPe Algorithm

The SAFESLOPE algorithm is an adaptation of SAFEOPT
with the following modification: we assume the global
Lipschitz constant is unknown and instead use local slope
predictions to avoid searching beyond the safety limit.

To do so, we model the slopes of f as GPs. For ease of
presentation, we organize X into a hypercube with " points.
Along each axis i € {1, ..., n}, we create an incidence matrix
W; with size (r — 1)/"~! x /. Each W; corresponds to the
union of directed line graphs along the i-th axis. Then, at
iteration f, we represent the slopes between adjacent points
along the i-th axis using m; € RC=D"" " Each m; 1s a
realization of a GP with mean and covariance

By = Wi s (X)), Ky = Wy - kg (X) - W]

Essentially, the elements of m; consist of evaluations of
mi(x,x") = [ur@') — up@)]/d(x', x),

where x and x” are adjacent points along the i-th axis, x} > x;,
and d(x’, x) is the distance between x and x’.

Step 1: We preserve the format of SAFEOPT's safety con-
dition by using the magnitude of the slope. Here, we use the
greatest magnitude of the confidence bounds, defined by

Gm;,1(x, x'):=max{abs(Q,, ,(x,x)), abs(Qy, ,(x.x)}, (9)
where
OF [, X) = -1 (6, X)) £ B Oy 1—1 (6, X)),

Then, we replace L with the nested upper bound on the slope

ljtmi,t(xa x/) = min{qm,’,t(xv x/)7 ﬁmi,tfl (xv x/)}v (10)
where iy, 0 = 00.
Step 2: We now redefine the safe set as
ss=1J U (Feviwls@x)<hn, an

xeS,_1i=1,..,n
where
st(, X') = up 1 (%) + ;1 (x, x7) - d(x, )
and the vicinity V; of x is given by
Vi(x) = {x" € X|x/, x are adjacent and x| = x;}.

Steps 3 and 4: The definitions of M; and G; are the same
as those in SAFE-OPT, but the growth criterion becomes

810) = [ € ViS4 6) + 1w, ') < B}

Step 5: Similar to SAFEOPT, points are sampled using the
redefined M, and G; according to (8).

C. Multi-Fidelity Extension of SAFESLOPE

We can use SAFESLOPE to sample points from the highest
fidelity of an MF-GP. Consider an AR-1 GP with fideli-
ties, fi and f. We evaluate f; at every x € X to construct
a data set (Y, Xr). We also evaluate f at a starting point
xo = argmin f7(x). Then, with xo as So, SAFESLOPE is used

xeX
to explore the AR-1 GP and find x*.

D. Reachability

Similar to SAFEOPT, the theoretical guarantees of
SAFESLOPE rely on the reachability operator. Define &, =
[im, 05 -- -, zftmmo]T. Then the reachability operator at time ¢ is
the set of points given by

Re,ﬁ, O))

. / IxeS, Jie{l,...,n},x €Vix),
=S5y {x € Ylre + Uy 1 (0, %) - d(x,x') +€ <h |

where i, ((x,x") is the upper bound on the slope between
x and x" at time ¢. Given the current set of safe points, the
reachability operator provides the total collection of points that
could be sampled as f is learned within S.

The T-step reachability operator is defined by

RI(S) = ReayRe iy, - - - (Re iy ().

By taking the limit, we obtain the closure set R.(S) :=
limT_,ooRZ(S). Because SAFESLOPE never explores outside
R<(Sp) with probability 1, we modify our optimization goal
from Section II-C to take the equivalent form,

ff= min f(x).

x€eR(So)

(12)

E. Theoretical Results

For Bayesian approaches, we measure the information gain
after sampling a set of points A € X as I(y4;f4) = Hy,) —
H(y,lf), where y, is a random vector of noisy observations
of f evaluated at every point in A, f, is the vector of true
values of f at every point in A, and H is the entropy of the
vector. The maximum information gain after 7' evaluations of
f is given by

max I(ya;fa)-

13
ACX |A|=T (13)

Yr =
A bound on the yr can be found in [1, eq. (8)]. With the
information gain defined, we now move to the main theorem.
Theorem 1 (Single-Fidelity =~ SAFESLOPE  Guarantees):
Define X; := argminyeg, ur,;(x). Select 8,8, € (0,1). Set
Bri = 2log(|X|m:/8f) and By, = 2log(|X|nm;/d,,), where
I nt_l = 1 with 7; > 0. Given an initial safe set Sy # &,
with f(x) < h for each x € Sp, let r* be the smallest positive
integer satisfying

r* - Ci(IRo(So)| + 1)
Ve Bre €2

’

where C; = 8v?/log(1+v*&~2), v? is the kernel variance, and
|e| denotes cardinality. Then, for any € > 0, using SAFESLOPE
with B, and B, ; results in the following.

o With probability at least 1 — 87 — &,

Vi=1, f(x) <h.
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« With probability at least 1 — &y,
Vi> 1, f&) <ff +e

The first point of Theorem 1 states that with high
probability, SAFESLOPE will sample points under a threshold
h. This probability is directly tied to B; and B, parameters
that quantify the algorithm’s tendency to explore points in
unexplored regions. The second point states that with high
probability, after time 7*, the minimum yielded by SAFESLOPE
will fall within an e-neighborhood of f. This value of r*
scales intuitively with the information gain y+, since more
information to learn requires a greater search iteration count.
Because yy+ lacks a closed-form solution, a bound on y is
typically used instead.

Our second main result is an extension of Theorem 1 to an
AR-1 model. But first, we establish an upper bound on the
information gain yr for an AR-1 model.

Theorem 2 (Information Gain Bound for an AR-1 GP):
Consider the information gain yr from (13). For a linear
auto-regressive GP with noise-free (& L2 = 0) low-fidelity obser-
vations at X; and high-fidelity observations at Xy € X, the
information gain yr is upper bounded by

12 ’
Pro= max Zlog(l + E_zmtkt(a)), (14)
nr =1

1 —e !l mpom

where ZIT:] m; =T and At(s) are the eigenvalues of the error

covariance matrix ky .

Proof: Suppose we have the high- and low-fidelity input
points Xy and X;, where Xy € X, X = X \Xpy, and
each entry of Xy is unique. Then, X; = Xy U Xy. Since the
covariance matrix is always positive definite, k;Lz is invertible,
and the covariance of the high-fidelity data conditioned on the
low-fidelity data is given by

k(fuXn), fu XL XL) =y, faXa) =yg)
= Pl i~ PR

21 (©)) 2| (L) (L)
=pkyy thkyy—p [kH,H/ kH,H]

w L0 7o
o | T Kipa | | R | _
k(L) — “H,H’

05 (L
H,H' kH,H kH,H

where the last line is obtained using properties of block matrix
inversion. In words, the conditional covariance is simply the
covariance of the error GP §(x). By applying the above result
to [1, eq. (8)], we complete the proof. |

Remark 1: As the quality of a low-fidelity model improves,
the variance of the error GP approaches 0. Since the eigen-
values of a covariance matrix are directly proportional to the
kernel’s variance, Theorem 2 shows that improving the low-
fidelity quality decreases the eigenvalues of k}_f}H, thereby
decreasing the information gain.

Theorem 3 (Multi-Fidelity = SAFESLOPE  Guarantees):
Assume f is an AR-1 GP with the structure given in (4).
Consider X, 8¢, 8m, Br.t, Bms» 7, and Sp as defined in
Theorem 1. Let fy, denote the smallest positive integer
satisfying

G Ci(IRo(So)l +1)

Y . - 2
Veiar B e €

)

where 7: is defined by (14), C1 = 8vj;z/log(1 + vy & ~2),
and VJZWF is the variance of the AR-1 GP, given by V12v1F =
,ov% + v(%. Then, for any € > 0, using SAFESLOPE with B,
and B, ;, with probability at least 1 — &y,

Vi = typ, fG) <fE e

This theorem indicates that the quality of a multi-fidelity
model impacts the time 73, to identify an optimal X. In par-
ticular, improving the quality of the low-fidelity model lowers
the information gain bound J7t}T/IF’ thereby decreasing the time
to find an optimal X.

IV. NUMERICAL RESULTS

We now apply SAFESLOPE to our motivating scenario, in
which we try to find the best controller for a system when an
approximate model of the system exists.

For the motivating scenario from Section II-A, consider a
2 x 2 LTI system. For the true system, we let

[0.785  —0.260] [1.4757

A=1-0260 0315 | 0.607 |

B= (15)

By applying system identification [18] to (15) with Ny = 12
snapshots, we obtain the approximate model,

[ 0.700 —0.306] [1.5437

A=1-0306 0342 | 0.524 "

, B= (16)

Since unstable controllers result in extremely large costs,
we modify the cost functions to be

f@x) =log(J(x)), fi(x) =log(J(x)),

where J and J are approximated by a 20-step horizon quadratic
cost with Q = I, R = 1 and x now represents the choice of
controller gains. Gaussian noise with variance £2 = 107 and
éLz = 1073 is added to evaluations of f and f;, to ensure kernel
matrices are well-conditioned.

Our goal is to find the controller gains x* = [x] x3] such
that (17) is minimized. First, we set a search domain X" and
select an initial safe set So. In practice, input constraints and
low-fidelity data could guide the choice of X and Sy. Here,
we set x; € [—0.5,4.5], x, € [—3.5,1.5], and resolution
r = 26. Matérn kernels are used to correlate points for each
fidelity [17]. For 10 different Sy’s of three points each, we
observe the safety and regret of SAFESLOPE with parameters
h=0,é =015, =01, and 7w, = t2n2/6. We compare
SAFESLOPE to SAFEUCB, a naive approach that solely relies
on uy ;(x) for safety and selects points according to

a7

Xx; = arg max w(x;), where S; = {x € X|uf,,(x) < h}
xeS;

We use SAFEUCB with & =0, §; = 0.1, and 7, = 1?72 /6.
To compare SAFESLOPE to SAFEUCB, we use the cumu-
lative regret up to time 7, given by Ry = Zszo(f (x) — ).
Fig. 1 plots the cumulative regret and cumulative number
of unsafe samples over 150 iterations. We see that in this
example the multi-fidelity SAFESLOPE algorithm performs the
best, with a plateau in regret after 25 iterations. In general,
SAFESLOPE obtains better cumulative regret than SAFEUCB
at higher iteration counts. By limiting evaluations to growth
or minimizer points, SAFESLOPE eliminates non-ideal points
in fewer trials. This differs from SAFEUCB, which seeks to
limit uncertainty across all safe points, rather than growth and
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= MF SAFE-SLOPE i Then, P[AS] < |X|- e Pnt/2. By applying DeMorgan’s laws
21004 . S ,,;.’--'- """ and the union bound, we obtain P[ N; A;] > 1 — | X|ne Pmi/2,
< © SFSAFEUCB . The remainder of the proof is identical to the proof of
£ - 9,,«\“" [1, Lemma 5.1]. [ ]
E 501 /,/1".7 We now establish properties of sets used in SAFESLOPE.
3 // Lemma 3: The following properties hold for all 7 > 1.

0 = T T T T (a) 1) SI-‘rl 2 St 2 SO'
0 25 50 75 100 125 150 2) SCD = Ife,a,(S) g_ Re,a,(D)~
® 3) SCD = R(S) S Re(D).
g%’_ 4 o ——————— e - Proof: (i? Frqm [16, Lemma 2], we know that (1) ho.lds
£5 [ ettt when the Lipschitz constant L of f(-) is known. By replacing
29 /e L with i, (x,x), it follows that for every r > 1 and given
Eo 2 0 L R
38 S any x, x/,
c /K
> J/ b / ’
0 e : . : — ) f 11 (6) + By 14106, %) - d(x, x7)
0 25 50 75 100 125 150 ~ / /
lteration ¢ < up 1 () + (X, X7) - d(x, x°) < h.

Fig. 1. (a) Cumulative regret and (b) the cumulative number of unsafe lilrom lt)he C(lleﬁmtlon Of. Uf.1 .and Umj,s 1L fo%lows chat

samples using SAFESLOPE and SAFEUCB, averaged across 10 trials, (eS¢ bounds are non-increasing over time, for all x.

Error bars indicate one standard deviation. The second inequality follows from (11). Therefore,

minimizer points only. We also see both algorithms sample
fewer unsafe points on MF models, with MF SAFESLOPE
sampling the fewest unsafe points on average.

V. CONCLUSION

We propose SAFESLOPE, a safe exploration algorithm that
leverages a function’s posterior mean to predict its slopes.
We preserve the safety result from SAFEOPT with a reduc-
tion in probability. By applying SAFESLOPE to an AR-1 GP,
we show the search time for an optimal point corresponds
to the quality of the low-fidelity approximation. Finally, we
examine SAFESLOPE‘s performance by comparing it to a
naive approach applied to single- and multi-fidelity models.
We observe that applying SAFESLOPE to an MF-GP achieves
lower cumulative regret while sampling fewer unsafe points.

Future research includes applying SAFESLOPE to nonlin-
ear systems, LTI systems with disturbances, or experimental
robotic applications. Another direction is designing a search
algorithm which can select either fidelity for evaluation.

APPENDIX

The following steps compose the proof of Theorem 1.
We start by restating the upper confidence bound from
[1, Lemma 5.1].

Lemma 1 (UCB Bound): Let f be a function sampled from
a GP. For all t > 1 and By, = 2log(|X|m/8r) with probability
1 -4,

abs[f (x) — 7.1 (0)] < By 07, (x), ¥x € X

Next, we show that even though multiple GPs are used to
model the slopes, the UCB bound still applies.

Lemma 2: Suppose we have n GPs m; over X'. For all t > 1
and B, = 2log(|X|nm;/8,) with probablhty at least 1 — &,
the following holds for all i =1, .

abs[fi(x) — pm;, (x)] < ,Bm,z Omi,1(X), Vx € X.
Proof: Let A; be the event

Ai = {abs[mi(x) — sy ()] < Byl 1 Oms /(X)X € X}

SH—I 25 2 So.

(ii) Let x € R 3, (S). By definition of the reachability set,
Jx’ € S such that f(x') + by, ;- d(x,x') +€ < h. As S C D,
this implies x" € D, which implies x € R ;,.

(iii) This directly follows from repeatedly applying part (ii).
Each reachability step is a union of two subsets of X, so the
union is bounded by & and the limit exists. |

Next, we show that the width w(x) is bounded by some
€ > 0 using upper confidence bounds. Unlike [1], [16], we
consider a non-unit variance for the kernel function k.

Lemma 4: Given a kernel with variance v> and measure-
ment noise & 2 for each ¢t > 1, define 7, as the smallest positive

integer satisfying m > % where C; = 8v?/log(l +

V2ETD)IF Si+1, =S4, then for any x € Gy1, UM;47,, it holds
that w47, (x) <e.

The proof follows the same steps as [16, Lemma 5] and
[1, Lemma 5.4] with the difference of a non-unit kernel
variance. The complete proof is provided in [19].

In the following lemmas, we assume C; and 7; are defined
as in Lemma 4. We next establish guarantees on how S;
evolves with time using the reachability operator.

Lemma 5: For any t > 1, if R.(Sp)\S; # <&, then with
probability at least 1 — &y,

St+1, 2 51 (18)

Proof: We prove this by contradiction. First, for any ¢ > 1,
if Re(S)\S; # 9, then R, ;,(S)\S: # @ (by following steps
identical to those in the proof of [16, Lemma 6]). By the
definition of R ; (S;), we know that (a) ' € Re 7, (SH\S; and
(b) Ix € S; so that

S @) + €+l 1 (x, %) - d(x, x) < h. (19)

Now, assume that contrary to (18), Si47, = S;. This implies
that ' € V(Sit1)\Sitr, and x € S;17,. As a result, with
probability at least 1 — &y,

Of 147, (X) + Gy g7, (X, X7) - d(x, x7)

<) + tpy 47,0, X") - d(x, x") by Lemma 1
< f@) + 1 (x, x7) - d(x, x") by (10)
<f®x)+ €+ iy (x,x") - dx,x") <h by (19).
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Therefore, g;+7,(x) > 0 and x € G;41,. Since we assumed
that S.y7, = S; with x € Gy1r,, we have

Up 7, X) 4 Gy 147, (6, X7) - d(x, x7)
uf 7, (X) 4 iy 1 (x, x7) - d(x, x7)
us 41,(x) — f(x) — € + h by
Wi, (X) —€+h <h

IA

by (10)
(19)
by Lemmas 1, 4.

IA

IA

Eq. (11) implies x' € Sy7,. This contradicts our assumption
that x” € V(S)\S;+7,. Therefore, S;41, 2 S:. [ ]
Lemma 6: For any t > 1, if S;y7, = §;, then with

probability at least 1 — dr,

f@rr) < min f(x) +e.
X€Re(So)

Proof: By solving a minimization rather than
a maximization, the first part of the proof of
[16, Lemma 8] shows that f(¥.y7,) < f(x*) + €, where
x* 1= argmaxyes,,r, f(x). Then, since Si7, = S;, Lemma 5
implies that Re(Sg) C S, = St+1,. Therefore,

min f(x) +€ > n;in fx)+€

XER(Sp) XES1+1;

=f(x") +€ = fRe1)- ]

Corollary 1: For any t > 1, if S;i7, = S;, then with
probability at least 1 — &y,

V! = 0,fRiir,40) < min f(x) +e.
X€ERe(So)

Similar to the proof of [16, Corollary 3], this directly follows
from Lemma 6.

Having analyzed the evolution of the S;, we now bound the
time it takes to achieve the optimization goal.

Lemma 7: Let t* be the smallest integer resulting in
t* > |Ro(So)|T+. Then, there exists a fp < * such that
Sto+T,0 = St()-

The proof of this lemma is similar to the proofs of

[16, Lemmas 9 and 10], with the key difference of R depend-
ing on the upper bound of i instead of a global constant L.
Complete proof provided in [19].

Corollary 2: Let 1* be the smallest integer resulting in

r_ > C‘(IRO(}%)‘H). Then, there exists a #p < t* so that
ﬂf,z*yt €

10+Ty, = St()-

The proof results directly from Lemmas 4 and 7.

Proof of Theorem 1: For the first point of Theorem 1, the
steps are similar to the proof of [16, Lemma 11]. For the
induction step, assume f(x) < h for some ¢+ > 1 and any
x € S;_1. Then, for any x € S;, Ix’ € S;_| along some axis i
so that h > us (X') + l, (X', x) - d(x', ).

With probability at least 1 — e b o’

h > f&xX') + i, (X, x) - dx', %) by Lemma 1.

With probability at least 1 — e_%ﬁ"”,

> f(xX)+m@',x)-dx, x),
> f),

by Lemma 2
by the definition of m.

By applying the union bound across |X’| realizations of x, the
resulting inequality holds with probability 1 — 8y — §y,.
The second point results from Corollaries 1 and 2. |
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