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Abstract. We introduce a novel procedure that, given sparse data generated from a stationary deterministic
nonlinear dynamical system, can characterize specific local and/or global dynamic behavior with
rigorous probability guarantees. More precisely, the sparse data is used to construct a statistical
surrogate model based on a Gaussian process (GP). The dynamics of the surrogate model is interro-
gated using combinatorial methods and characterized using algebraic topological invariants (Conley
index). The GP predictive distribution provides a lower bound on the confidence that these topo-
logical invariants, and hence the characterized dynamics, apply to the unknown dynamical system
(assumed to be a sample path of the GP). The focus of this paper is on explaining the ideas, thus
we restrict our examples to one-dimensional systems and show how to capture the existence of fixed
points, periodic orbits, connecting orbits, bistability, and chaotic dynamics.
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1. Introduction. We propose a novel framework, combining topological dynamics and
statistical surrogate modeling with uncertainty quantification, through which it is possible to
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characterize local and global dynamics from data with probability guarantees. Given a data
set T = {(xn, Yn) € R? x R? In=1,... ,N}, where it is assumed that the data is generated by
a continuous dynamical system on a compact set X C R?, we give rigorous bounds on the
probability that the characterization of the dynamics is correct.

To put our results into context, we recall that given a continuous function f:X — X the
traditional focus of dynamical systems has been on understanding the structure of invariant
sets, i.e., subsets S C X such that f(S) =5, for which fixed points and periodic orbits are
simple examples. On a global level, this is equivalent to understanding the conjugacy classes
of f, i.e., the set of g: Y — Y such that ho f = g o h for some homeomorphism h: X — Y.
This is impossible in general [9]. Even in more restrictive settings, correctly capturing the
invariant sets may require correctly identifying the nonlinearity to an extremely high order
of precision, which is often impossible from a given finite data set. The logistic map and the
associated cascade of period doublings is an archetypal example.

For this reason our approach focuses on coarsely characterizing dynamics rather than
identifying the underlying nonlinearity. Our characterization is done via the Conley index, an
algebraic topological invariant, from which one can induce the existence of invariant sets and
dynamic structure of invariant sets, e.g., existence of fixed points, periodic orbits, heteroclinic
orbits, and chaotic dynamics [21].

In essence, the strategy that we propose is straightforward. It involves a fundamental
assumption and the three steps encapsulated in Figure 1.
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Figure 1. In both subfigures, elements of T are indicated in red, the mean function p is shown in black,
and G is shown in blue. The region G is composed of squares of width 27%length(X). The Morse graphs
are indicated at the top left, and the corresponding (color coded) regions of phase space v(-) are indicated at
the bottom of each subfigure. (a) The Morse graph and the Conley indices of the invariant sets in v(M(0))
and v(M(1))—the blue and red regions on the x-azis correspond to the Morse nodes 0 (blue) and 1 (red)—
indicate that bistability is exhibited with 95% confidence. (b) The invariant set in v(M(4))—the orange region
on the x-axis corresponds to Morse node 4—exhibits chaotic dynamics with positive topological entropy with
95% confidence.
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A. Assume the observed data is T = {(zn,yn) | yn = f(zn) + €}, where f is an unknown
continuous function. Assume also that there is a Gaussian process (GP) with a prespec-
ified semipositive kernel k(-, -; 6), where 6 is a vector of unknown parameters associated
with the kernel and € arises from random Gaussian noise, such that f is a realization
of this Gaussian process for some value of 6.
Step 1. Given the data set 7T, estimate the unknown parameters and construct a GP
surrogate model (see section 2).

Step 2. Choose a finite cell complex X' [20] whose geometric realization as a regular CW-
complex [15] is X. Construct a closed set G C X x X with the following property:
G is the geometric realization of products of cells from X', and each fiber G, :=
GN({z} xX), z € X, is nonempty and contractible. Use the combinatorial
representation of GG to identify potential dynamics and compute their associated
Conley indexes (see section 3).

The set G above represents a (coarse) combinatorial representation of the dynamics as
follows: given a pair of cells £ x £’ € X x X whose geometric realization is contained in G, we
say that & maps to & under the combinatorial dynamics (see sections 3 and 4).

Given a GP g, we denote its graph by G(g) := {(z,9(z)) | x € X}. The Gaussian predictive
distribution determines P(G(g) C G). It is worth emphasizing that g is the Gaussian process
(a random variable) and is not a realization of the Gaussian process. A sample path (or a
realization) of the GP ¢ is a function h: X — R that is obtained as a realization of g as a
random variable (a value of the random variable g). Our goal is to compute dynamics which
is valid for all sample paths whose graphs are contained in G, that is, for all functions in the
set

H:={h: X - R?| his a sample path of g and G(h) C G}.

We denote P(H) by P(G(g) C G). Since the dynamics is computed using the combinatorial
representation of G, and the Conley index only depends on G, the dynamics computed is
valid for all functions in H, and P(G(g) C G) provides a lower bound on the probability that
the dynamics identified in Step 2 occurs for the GP ¢. From the discussion in section 3, in
general, fibers G, with smaller diameters lead to a greater potential for identifying dynamics.

For many applications, the focus is on particular dynamics and/or specific lower bounds
on the confidence of the occurrence of the dynamics. Thus, we introduce a third step.

Step 3. Modify G C X x X to both preserve the dynamics of interest and maximize P(G(g) C
G).

In this paper we construct G as described in section 4. In this case, the probability
P(G(g) C G) provides a confidence level that the computed dynamics is valid.

Figure 1 is meant to provide geometric intuition of Steps 1-3. In particular, in Figure 1(a),
for any sample path A whose graph lies in the blue region, we can conclude that the global
dynamics generated by h exhibits bistability as well as the existence of at least three fixed
points. For Figure 1(b) we can conclude the existence of chaotic dynamics. In both cases,
because of the application of Step 3 we can conclude that the abovementioned dynamics occurs
with a confidence of at least 95%.

There are three natural questions concerning convergence that arise from the success
claimed in Figure 1. Recall that f is the unknown continuous function that is assumed to be
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a realization of the GP and to have generated the data. The first question is, What dynamics
of a given function can be identified via the approximation methods (briefly described in
section 3) of Step 27 A precise answer (see [16, Theorem 1.3]) goes beyond the scope of this
paper. An imprecise answer is that for many applications, most invariant sets of practical
interest are identifiable. The second and third questions are intertwined and address the level
of confidence to which our claims on the dynamics can be accepted. That is, how large can
we make P(G(g) C G) in Step 3, and to what level of confidence can we approximate f from
data? Theorem 4.1 of this paper indicates that the confidence level for both questions can be
made arbitrarily large simultaneously, assuming that 7 contains sufficiently many data points
and that the diameter of the elements of geometric realization of X are sufficiently small.

As indicated above, the novelty of our approach arises from the combination of GP sur-
rogate modeling and Conley theory. While each of these topics is well developed, there does
not seem to be much overlap of the associated research communities. With this in mind we
provide a minimal description of surrogate modeling by GP (section 2) and combinatorial
Conley theory (section 3) in the context of maps on R?. However, the examples are given
using maps on R, as this allows us to demonstrate the results using simple figures.

2. Surrogate modeling by Gaussian processes. A GP model (Step 1 in our process),
also called kriging in geostatistics, is a widely used surrogate model because of its flexibil-
ity, nonlinearity, and capability to perform uncertainty quantification through the predictive
distribution [22, 13].

Recall that our data T is generated by the unknown realization f of the GP in assumption
A with random Gaussian noise so that y, = f(z,) + €. Let fy denote the fth component of f
for /=1,...,d. Then

(2.1) Jo(x) ~ GP(Be, 07 k(x,2";6r)),

where 5, and a% are the unknown mean and variance, and the correlation is defined by the
kernel k(z,2';0p) = Corr(fo(z), fo(2');6,) with k(z,2';0,) = k(2',2;6;) for x,2' € X. For
simplicity of exposition, we assume the data is noise-free and therefore that k(z,z;6;) = 1.
The results in this paper can be easily extended to noisy data by incorporating nugget effects
in the kernel function [13]. There are extensive discussions on correlation functions in the
literature [23]. The mean function 8 can be further extended to include regression terms in
the mean function, which is known as universal kriging [23, 5].

Based on (2.1), the maximum likelihood estimators (MLEs) for gy, at?, and 6, can be
obtained by

TR
1

; ‘
Be= ,
17K~

Aﬁ)y oL 5 T 15 T _ A
ég)l Op = N (Ye 5@) K (98) (Ye /3£>,
and

0 = argmin{N log(57) +log | (00)[},

where yp:= (f¢(x1),..., fe(xn)), 1 is a column of 1’s with length N, K () is an N x N correla-
tion matrix with elements k(z;,z;;6) for 1 <i,j <N, and |K ()| is the determinant of K (0).
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Other estimation approaches, such as the restricted maximum likelihood (REML) method and
estimations by cross validation, are also applicable [5, 22]. Alternatively, assumption A can
be regarded as a Bayesian prior on the unknown function f, and a fully Bayesian approach
can be applied to perform estimation and prediction [22, 13]. In this paper, the parameters
are estimated by the MLEs.

In Step 1, the prediction for an untried x € X can be obtained by a d-dimensional mul-
tivariate normal distribution, M N (u(x),>¥(z)), where p(x) = (u1(x),...,nq(x)) is the best
linear unbiased predictor (BLUP) with

(@) = E(fe(@)T) = Be+ k(a3 607K 00) (v7 = ) |
and the covariance matrix ¥(z) has diagonal elements
Var(fo(@)|T) =62 (1= k(w; 00T K " Bk(2:6,))

where k(ar,é) is the correlation between the new observation and the existing data, i.e.,
k(z;0) = (k(z,21:0),. .., k(z,zx;0)), and K(0) is an N x N correlation matrix with elements
k(zi, 253 é) for 1 <i,7 < N. The off-diagonal elements in ¥(z) are zeros if the d-dimensional
outputs are assumed to be independent. By further assuming some correlation structures
among outputs through the kernel function k, the off-diagonal elements can be estimated by
techniques such as cokriging [10]. Note that, using different kernel functions, the correla-
tion structure between the d-dimensional outputs can be captured [10, 18], and nugget effects
[19, 13] can be included in the kernel function to estimate the sampling error or extrinsic noise
associated with the observations.

Recall that for any random variable Z ~ M N(m,A), the squared Mahalanobis distance
PA(Zm) = (Z —m)TA"N(Z —m)

has x2-distribution with d degrees of freedom [22].

Note that if g is a GP on a parameter space X, then the above applies to g(z) at each point
x € X. Let u and X denote the predictive mean and covariance functions of g, respectively.
Accordingly, for any 6 € (0,1) and any fixed z € X, we have

P (g(.%') € EE(:L‘) (:U’(x)’X?l(l - 5))) =1- 6’

where Ex ) (p(r),c):={y€ X | pzz(m)(y,,u(:v)) < c} is the confidence ellipsoid, x%(1—09) stands
for a x? quantile of order 1 — & with d degrees of freedom, and 1 — § is the confidence level.
More generally, if S C X is finite and § € (0,1), then there exists a function r : S — (0,00)
such that

(2.2) P (g(v) € Es)(p(v),r(v)) Vo€ S) > 1 —4.

Observe that the function r is not unique.
To illustrate the aforementioned procedure we present a simple one-dimensional (d = 1)
example. Figure 2 shows a GP model constructed from five noise-free observations indicated
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predictive distribution

Figure 2. Based on five observations, illustrated by solid dots, a one-dimensional GP model is fitted. The
black curve is the best linear unbiased predictor, and the red bars are the pointwise 95% confidence intervals
calculated at 20 untried points.

by the solid dots. By utilizing a squared exponential kernel we obtain the BLUP pu(x),
depicted as the black curve, which interpolates the observed data. Additionally, the red bars
represent the pointwise 95% confidence intervals (§ = 0.05) evaluated at 20 untried points.
These confidence intervals quantify the pointwise prediction uncertainty, which decreases to
zero when predicting the observed inputs.

In light of Step 3, to provide a lower bound on the confidence of our characterization of
dynamics, it is reasonable to make use of the pointwise bounds of (2.2) and insist that G
satisfies the property that {y € X | pQE(x) (y,pu(v)) < r(v)} C G, for each v € S. To obtain
appropriate conditions on G, for x € X \ S, in this paper we restrict our attention to kernel
functions that are differentiable up to order four, e.g., the squared exponential covariance
function or the Matérn kernels with v > 2 [23], in which case there exist Ly > 0 and constants
a,b> 0 such that for any L > Lg we have

L\2 d2
(2.3) P(Va1, 22 € X |lg(a1) — g(@)|| < L]zt — 22]) > (1 ) )

(cf. [12, Theorem 5]).

3. Combinatorial Conley theory and the characterization of dynamics. There are three
essential components of combinatorial Conley theory: a finite combinatorial representation
of phase space via a cell complex, a combinatorial representation of dynamics via a directed
graph, and homological computations. As described at the end of this section, the combi-
natorial theory is used to characterize the dynamics generated by continuous functions that
are sample paths of the GP. To instantiate these ideas throughout this section we describe a
particularly simple example that leads to bistability.

Recall [20] that a cell complex X = (X,<,dim, k) is a finite partially ordered set (poset)
(X, <), where the partial order < indicates the face relation, together with two associated
functions, dimension, dim: X — N, and incidence, k: X x X — F, where F is a principal ideal
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domain, subject to the following conditions for all £,&’, ¢ € X: (i) £ <& implies dim ¢ < dim¢’,
(i) k(&',€) # 0 implies ¢’ < ¢ and dim(§) = dim(¢’') + 1, and (iii) Zg’ex k(& EkR(E ) =0.
A cell complex generates a chain complex that we denote by Cy(X;F). An element £ € X
is called a cell, and we denote the maximal elements of X by X'P. Given & € X*P, define
L&) ={¢ e x|¢ <E}. Note that given any subset A C X*P | (A) generates a chain complex
Ci(A;F).

Ezample 3.1. Consider X ={v; | i=-2,-1,0,1,2} U{e; | i =—2,—1,0,1}, where we define
dim(v;) =0 and dim(e;) =1, i.e., v; is a vertex and e; is an edge (see Figure 3). We set v; <e;
ifi=jori=j+1. We assume that F is the field Zy and set x(v;,e;) =1 if and only if v; <e;.
This gives rise to the chain complexes Co(X;Z9) = 73 and Cy(X;Zs) = Z3, with a boundary
operator 0y : C1(X;Z) — Cy(X;Zs) given by the matrix with entries x(v;,e;).

We represent dynamics using a combinatorial multivalued map F : X*°P = X'°P i.e., for
each £ € X'°P F(£) C X%P. A combinatorial multivalued map is equivalent to a directed
graph with vertices X*P and edges £ — ¢ if £ € F(£). To identify the potential recurrent
and gradient-like structure of F, we make use of the condensation graph of F obtained by
identifying each strongly connected component of F to a single vertex [4]. As this is a directed
acyclic graph, it can be viewed as a poset that we denote by SC(F). A recurrent component
is a strongly connected component that contains at least one edge. The Morse graph of F,
denoted by M(F), is the subposet of recurrent components of SC(F). We typically display
the Morse graph via the Haase diagram of M(F). Observe that the order relation on M(F)
provides a combinatorial description of the structure of the gradient-like dynamics.

AN\ N O

(a) / 2 e, 1 €4 0 € 1 € 2
11 /
(b)

> ol a0 /S
NI ./
| C@( )@D (d)

-2 -1 0 1 2
X

Figure 3. Simple example exhibiting bistability. (a) The map f : [—2,2] — [2,2] given by f(z) = 2 arctan(z)
is plotted in red. The domain X = [—2,2] is decomposed into unit intervals [i,i + 1], i = —2,—1,0,1, and
the graph of f is covered by products of these intervals. (b) The covering of the graph of f in (a) can be
represented by a (multivalued) cell mapping F on the set of edges {e_2,e_1,e0,e1}, where the edge e; represents
the interval [i,i + 1]. (c) Directed graph representation of the multivalued map F. The nontrivial strongly
connected components (recurrent components) of this graph give the nodes of the Morse graph Mo = {e—2},

My ={e1}, and Mz ={e_1,e0}. (d) Morse graph with the Conley index of each node.
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Ezample 3.2. Continuing with Example 3.1, X%*P = {¢; |i=—2,-1,0,1}. Set F: X'"P =
X%P to be

Fle—o)={e—2}, Fle_1)={e—2,e_1,e0}, Fleg)={e_1,e0,e1}, and F(e1)={ei}.

The strongly connected components are Mgy = {e_2}, My = {e1}, and Ma = {e_1,e9}. The
condensation graph has edges My — Mg and Mo — M. This is an acyclic directed graph
and thus can be thought of as a poset with relations Mg < Ms and M1 < Ms. Note that each
strongly connected component has at least one edge, and therefore each strongly connected
component is a recurrent component. Thus the Morse graph M(F) is the poset with elements
{Mo, M1, Ms3}. The dynamics interpretation is that one can move from state My to state
My or to state My, but one cannot move from state Mg or state M; to any other state.

An alternative perspective for characterizing the dynamics associated with F is to consider
its attractors defined by Att(F) := {AC X*P | F(A)=A}. The equivalence arises from the
fact that, as shown in [16], Att(F) is a bounded distributive lattice where the partial order
is inclusion. More precisely, if we let J(Att(F)) denote the set of join irreducible elements
of Att(F), i.e., those elements of Att(F) that have a unique immediate predecessor under
inclusion, then there exists a poset isomorphism v : M(F) — J(Att(F)) [17].

Ezample 3.3. Continuing with Example 3.2,

Att(f) = {Q), {6_2} , {61} , {6_2, 61} s {6_2, €_1,€Q, 61}} .

Observe that J(Att(F)) = {{e_2},{e1},{e—2,e_1,€e0,e1}}, and, using inclusion to define the
partial order, we obtain a poset that is isomorphic to M(F). In this case the poset isomorphism
v:M(F) — J(Att(F)) satisfies v(My) ={e_2}, v(M1) ={e1}, and v(Ms) ={e_2,e_1,€0,€1}.

We use the first perspective (associated with posets, e.g., Morse graphs) for efficient com-
putations and to organize the global information, and use the second perspective (associate
with lattices, e.g., attractors) to identify the homological computations that recover nontrivial
information about the structure of the dynamics exhibited by the continuous function.

For the sake of simplicity we define an index pair for F to be a pair A = (A1, 4g) where
Ai, Ay € Att(F) and Ay C A;. Observe that F(A;) C A;, @ = 0,1. Under rather weak
conditions [14] (we return to this point below) F induces a map on homology, i.e.,

Fioi Hy (L(A1),L(A0); F) = Ho(L(A1), L(Ao); F).

The Conley index of A, denoted by Con, (A;F), is defined to be the shift equivalence class of F
(if F is a field, then this is equivalent to the rational canonical form of the linear map Fi [3]).
In particular, we can assign a Conley index to each M € M(F) by declaring Con, (M;F) =
Con, (}(1(M)), L(¥V (M));F), where ¥ (M) is the unique immediate predecessor of v(M).
Given X and F there exists software [11] to compute M(F), Att(F), and Con,(M;F) (for
this paper we take F = Zs). This software is based on what are essentially combinatorial
algorithms and as a consequence are extremely efficient.

Ezample 3.4. Continuing with Example 3.3, the set of index pairs is
({6—2}7@)7 ({61}7@)) and ({6—276—1)60761}7{6—2761})‘
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The attractors are defined in terms of elements of X*°?. To compute homology we need to
work with the chain complexes associated with the attractors, i.e.,

Me—2}) ={e—2,v2,01}, {({e1})={er,v1,v2}, and |({e—2,e_1,e0,€1})=X.
The relative homology of these index pairs is

Zo if k=0,

0 otherwise

Hi(L({e-2}),0:F) = Hi(L({e1}), 0;F) = {

and

Hiy(J({e—2,e-1,e0,e1}),d({e—2,e1});F) = Hy({e-1,e0,v0} , 0; F)

N ~ ZQ lszly
= Hi({e—1},0:;F) = {0 otherwise

The induced maps on homology are the identity maps, and thus the rational canonical
forms of (Fp, F1) are (x —1,0), (z —1,0), and (0,2 — 1), respectively. These are the Conley
indices of the elements Mg, M1, and My of the Morse graph, respectively.

Before relating the abovementioned combinatorial framework to continuous dynamics we
recall the following concepts. Let g: X — X be a continuous map on a compact space. Given
N C X, the mazimal invariant set contained in NN is given by

Inv(N,g):={zx€ N|30:Z— N such that ¢(0) =z and o(n+1)=g(o(n)) ¥ n € Z}.

A compact set N C X is an attracting block if g(N') C int(IN) and an isolating neighborhood if
Inv(N,g) Cint(N). It is easily checked that an attracting block is an isolating neighborhood.

As suggested above, the phase space X for the dynamics generated by g is represented by
the cell complex X'. In particular, we assume that X is a regular CW complex [15, 16], and we
use the map |-|: X = X to identify how the cell complex X realizes the regular CW complex
X, i.e., given £ € X, if dim(§) =n, then |{| represents the corresponding regular closed cell in
the n-skeleton of X and |X| = X. In applications, we start with the space X and choose a
decomposition X. We define G = Jecx [§] % | F(€)]-

FEzample 3.5. Returning to Example 3.1, note that X represents a decomposition of the
interval [—2,2] C R where |v;| = i and |e;| = [i,7 4+ 1] for all 7. This in turn implies (see
Example 3.2) that

G=[-2,—1] x [-2,—-1]U[-1,0] x [-2,1] U [0,1] x [-1,2] U[1,2] x [1,2] C [-2,2]*.

Since each vertical fiber of G is an interval, F is acyclic for each &.

To relate the combinatorial multivalued map JF : X*°P = X*°P with the continuous function
g: X — X, we make two assumptions. First, we assume that F is an outer approrimation of
g, that is, g(|¢]) C int(|F(€)]) for all £ € X™P. Second, if we extend F to all of X' by setting
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F&) =L({F()|gextr, ¢<¢'}), then F(E) is acyclic, ie., Hi(L(F(E)) = 0, where H

denotes reduced homology. In this case we say that F an acyclic outer approximation of g.

Example 3.6. Consider f:[—2,2] — [—2,2] defined by f(z) = 3 arctan(z). Returning to
Example 3.5, we let the reader check that (see Figure 3)

G(f)={(z, f(z) | -2 <z <2} Cint(G) C [-2,2]%.

This implies that F is an acyclic outer approximation of f.

Under these assumptions, if M € M(F), then
(3.1) Con, (Tnv (J(M) \ 7(M)], 6) :F) ~ Con, (M; F)

where Con, on the left denotes the classical homology Conley index for maps [21], and Con,
on the right is the Conley index defined above. As indicated in the introduction, knowledge
of the Conley index provides information about the structure of the dynamics of

Inv (jv(M)\ 7 (M)],g),

i.e., the computations outlined in this section provide information about the invariant dynam-

ics contained in (M) == [v(M)\ T (M)].

Ezample 3.7. Combining the information from the previous examples, we have derived the
following information concerning the global structure of the dynamics generated by the map
f:[-2,2] = [—2,2]. The fact that the Conley indices of M; are not trivial (Example 3.4)
implies that Inv(o(Moy), f) = Inv([-2,—1], f) # 0, Inv(z(M4), f) = Inv([1,2], f) # 0, and
Inv(v(Mas), f) =Inv([—1,1], f) # 0. Furthermore, the fact that the Conley index is the identity
map on a one-dimensional vector space implies that each of these invariant sets contains a
fixed point. Finally, the dynamics of f exhibits bistability since the poset structure on the
Morse graph implies that if x € [-2,—1], then f"(z) € [-2,—1] for all n > 1, and similarly if
z €[1,2], then f"(x) € [1,2] for all n > 1.

Remark 3.8. The presentation of Examples 3.1-3.7 clearly was chosen to follow (and
hopefully shed light on) the curt review of combinatorial Conley theory. In practice, e.g.,
in the examples of section 5, the order of development is different (see Figure 3). The first
steps involve the choice of the phase space X and the identification of a surrogate model. For
this paper, we restrict our attention to X C R (see [25] for applications of these ideas in
the context of robotic control where X C R"™ with n > 1). Furthermore, unlike our choice in
Example 3.1 of X*P consisting of four elements, in the examples of section 5 we choose X'*P
containing at least 2'0 elements. In this setting an explicit list of the rectangular regions that
make up the region G C X x X is meaningless; thus we plot G in blue (see Figure 1). We
also present the M(F) as a graph where the relative ordering decreases as one goes from top
to bottom, i.e., minimal elements are at the bottom, and we indicate the Conley index within
each node.

4. Probabilistic bounds using Gaussian process surrogates. Let X C R? be a compact
regular CW complex indexed by a cell complex X, i.e., if £ € X and dim(§) = ¢, then [£|

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/26/24 to 128.6.45.205 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NONLINEAR DYNAMICS FROM SPARSE DATA 393

is the closure of the /-dimensional cell in X. We assume that Step 1 and Step 2 have been
completed, which implies that we have obtained a predictive mean u: X — R and a predictive
covariance function ¥ based on the GP, and have identified dynamics via Conley theory. We
adopt the approach where we are only interested in dynamics in X that can be obtained with
a given amount of confidence quantified by 0 < 4§ < 1.

Let S =X where X denotes the set of vertices of X. Choose r(v) > 0 for v € S such
that (2.2) is satisfied. We emphasize that there is considerable freedom in the choice of the
individual values of r(v). In particular, when r(v) = x3((1 — 6)"/#%) for each v € S we say
that we are choosing pointwise equal confidence.

To define F : X = X we make use of the following notation. Let diam A = SUP, /e 4 ||x—a'|]
for AC X. Given £ € X, set diam & = diam |£| and diam X' = supgcy diam§. Moreover, given
U cCR% let B,(U) = {z € R? | infuep ||z — ul| < 2}. Choose L > 0 sufficiently large (see
Lemma 4.3). If £ € X*°P set

(4.1) Q€)= () Brdiame (Bxw)(u(v),r(v)))

v<§&,vES

and define F : X% = X°P by F(&):={& € X | |¢|NQ(£) #0}. Define

(4.2) G=Gr,= |J [EIx|FOIcX xX
gexror
and
(4.3) G=GCGr,=Gr,U| |J [&IxQ©) | cX xR,
gexror

where, when convenient, we drop the explicit dependence on L and r. Note that G is a cover
by cells of the cell decomposition of X x X of the confidence sets given by (4.1) restricted to
X x X, while G includes the portions of these confidence sets that are not in X x X, and
G=GN(X xX).

Theorem 4.1. Let T be a data set that satisfies assumption A where {z,|n=1,...,N}
are chosen to be i.i.d. from a uniform distribution, and assume the kernel k satisfies the
conditions for (2.3). Let a >0 and § € (0,1). There exist £g >0 and ng € N such that the set
G given by (4.3) satisfies

(4.4) P <sup diam(G,) < a> >1-6 and P(G(g)cG)>1-46
zeX
provided that N > ng, g is a GP constructed as in Step 1, and as in Step 2, X C R? is a

compact reqular CW complex indexed by a cell complex X with diam(X) < ey, where the top
dimensional cells X°P are d-dimensional.

Remark 4.2. Note that G C X x X is defined in terms of the map F, and so the computed
dynamics is valid for all sample paths whose graphs are in G, and P(G(g) C G) gives the
confidence level on the dynamics. However, we can only estimate P(G(g) C G), by Theorem
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4.1, and hence we adopt the following strategy: If G € X x X, and hence G = G, then we
have the confidence level P(G(g) C G) = P(G(g) € G) > 1 — ¢ on the dynamics. If, on the
other hand, G ¢ X x X, then we cannot estimate the confidence level P(G(g) C @), and so
we declare failure in identifying the dynamics with confidence level 1 — §, since in this case
P(G(g) € G) <P(G(g) C G), and hence the confidence level may be less than 1 — é.

Notice that Theorem 4.1 indicates that if f(X) C int(X), then we should have G C X x X
as long as we have enough data points and the grid is sufficiently fine. Therefore a failure
suggests that it may be necessary to choose a larger domain X, more data points, or a smaller
confidence level 1 — 4.

Theorem 4.1 implies that with sufficient data and sufficient computational effort we can

obtain the following two fundamental results:
1. Detailed dynamics can be extracted from G via the Conley theory computations, since
the sizes of the fibers of G are bounded above by an arbitrarily chosen «: with confidence
1-6.
2. The dynamics identified via G occurs since a given realization h of the GP model is a
selector of G, that is, G(h) C G, with probability 1 — 4. Furthermore, this dynamics is
valid with confidence greater than 1 — 4.
In the computations in section 5 we fix the data size N, and hence we only give the confidence
level of the correctness of the dynamics (item 2 above).

To prove Theorem 4.1 we begin by recalling and establishing the necessary notation, and
then we prove a series of lemmas that are used in the proof.

For the remainder of this section we assume that X C R? is a compact set that is the
regular CW complex realization of a cell complex X where the top dimensional cells X*°P are
d-dimensional.

We assume that 7 = {(zn,yn) |[n=1,..., N} is a data set that satisfies assumption A, the
kernel k satisfies the conditions for (2.3), g is a GP constructed as in Step 1, and G= CNJL,T C
X x R is constructed according to (4.3), where the conditions on L and r are as described in
what follows.

Recall that G(g) denotes the graph of g. We use the following lemma to quantify the
confidence that the graph of the GP g lies in G.

For Theorem 4.1 and Lemma 4.5 we need the assumption that S =X (©); however, for the
next two lemmas, we have more flexibility on the choice of S as stated. Note that Lemma 4.3
gives the confidence level for our computations.

Lemma 4.3. Fiz 6 € (0,1), and let S € X©) be such that for each ¢ € thp, there exists
v € S such that v <&. Then, there exist 7:S — (0,00) that satisfies (2.2) and L >0 such that
L > L implies that

(4.5) P (G(g) c GL> >1-6.

Proof. Let Lg,a,b > 0 be as in (2.3~), and let § = §; + d2 with &1,d2 > 0. Choose L > Ly
such that 1 —ae~ (/0" >1—-4§, for L > L. By (2.3) with probability greater than 1 — ae~(L/b)?
we have

(4.6) lg(@) — 9@l <Ll - y|| ¥ 2,y € X.
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Let X be a cell complex decomposition of X. According to (2.2) we can pick r: .S — (0,00)
such that with probability greater than 1 — do we have

(47) 9(0) € By (u(v), r(0)) ¥ v €S,

It follows that g satisfies (4.6) and (4.7) with probability greater than 1 — 4.

Now it suffices to show that if g satisfies (4.6) and (4.7), then G(g) C Gp,. If z € X,
then z € [¢] for some £ € X*P. Let v € S such that v < £ Then, |g(z) — g(v)|| < L||z —
v|| < Ldiam(¢). This, along with (4.7), shows that g(2) € Brdiam(e) (EZ(U) (1(v),r(v))) and
therefore, (z,g(x)) € G, [ ]

We remark that Lemma 4.3 does not depend on the choice of cell complex X. Thus we
exploit the size of the geometric representation of cells to control the size of G. Set

e:=diam(X) and ¢:=max {diam(Ey)(u(v),r(v))) |ve S}.

Given € € X*P let Q(¢) := [F(€)|UQ() = [{&' € X*P[|¢'[ N Q&) # 0} U Q(E).

Lemma 4.4. Let S C X be such that for each § € XP  there exists v € S such that v <&,
and let L be chosen as in Lemma 4.3 and L > L. If £ € X°P, then

diam(Q(§)) < £+ 2Le + 2e.

Proof. Let £ € X*°P. Fix vy € S such that vy < £ and observe that, by (4.1),

dlam(Q(f)) =diam ﬂ BLdiam£ (EE(U) (,LL(’U), 7’(’0)))
v<§,veS

< diam (BLdiamf (EZ(UO)(M(UQ), 7'(’[)0)))) < {+2Le.
The result follows from the fact that F(&) is obtained by covering Q(§) N X by elements of
xtop, [ |
For the remainder of this section we assume the that S = X0,
Lemma 4.5. Let L be chosen as in Lemma 4.3 and L > f/, and let G = GL,T be defined as
in (4.3). Then,

diam(G,) < 2(€ + 2Le + 2¢).

Proof. Note that G, = J{{z} x Q(&) |z € |¢|,£ € X™°P}. If there is only one £ € X*P
such that = € [¢], then the result follows from Lemma 4.4. So assume that there are multiple
€ € X% for which = € |¢]. Let (x,9),(z,') € G, Then there exists & & € X*P such that
zelE|n|E], ye (), and i € Q(&'). Since || N|E'| # 0, it follows that there exists vy € X'©)
such that v < & and vy < £’. Then, from the definition of Q we have that u(vy) € Q(€)NQ(&')
and hence that Q(£) N Q(¢") # 0. Therefore it follows from Lemma 4.4 that

ly — /|| < diam(Q(£)) + diam(Q(&')) < 2(£ + 2Le + 2¢),

from which the result follows. [ |
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Up to this point the construction is valid for any data set 7 that satisfies assumption
A. To control the size of the fibers of G we recall [8, Proposition 1] that if a kernel k of a
1-dimensional Gaussian process is four times differentiable on the diagonal, and if we sample
densely enough, then the posterior predictive variance o2 is uniformly bounded from above.
More precisely, if the set of sample points is a y-cover of X, then there exists a constant
Q* <supy 020;k(x,y)|x—y such that

2
(4.8) supo(z) < Q—’y
zeX 4

For d-dimensional outputs, by vectorizing the outputs and having a prespecified kernel
function k for the Gaussian process, the prediction for an untried point can be obtained by
a d-dimensional normal distribution with mean p(z) and a covariance matrix 3(z). The
maximum eigenvalue of ¥ (x) is bounded by trace(X(x)) which is equals to the summation
of the variances in each dimension, so the result in (4.8) can be applied to each dimension.
Therefore, given v > 0 and a set of sample points that is a y-cover of X, there exists a constant
C' = C(~) such that

(4.9) sup {A\(z) a maximal eigenvalue of X(z) | z € X} < C(v).
Moreover,
(4.10) lim C(v) =0.

y—0

Proof of Theorem 4.1. Fix L > L, where L satisfies the conditions in Lemma 4.3. Fix
£o > 0 such that

(4.11) 4(L+1)eg < /2.
Consider X a CW structure on X with diam(X') =e < ep and a map r: S — (0,00) as in
Lemma 4.3. Set R:=max{r(v)|veS}. By (4.10) we can choose 7 > 0 such that
o
64R

By [1, Theorem 3.7] there exists an Ny € N such that any sample of size N > Nj is a
~vo-cover of X with probability greater than 1 — §. Thus, we assume that N, the number of
data points in 7, satisfies IV > Nj.

Let G be defined as in (4.3). Note that the high probability inclusion (4.5) follows from
Lemma 4.3. We conclude the proof by verifying

(4.12) C(v0) <

P <Sup diam(G,) < oz) >1-04.
rzeX

With probability at least 1 — 4, T is a ~p-cover of X. Therefore, by Lemma 4.5 and (4.9),
diam(G,) <20+ 4(L + 1)e <4y/C(y0)R+4(L+1)e < a,
where the last inequality follows from (4.12) and (4.11). [ ]
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5. Examples. We conclude with examples demonstrating that our approach is capable of
identifying with high levels of confidence a broad range of dynamics from relatively few data
points.

As discussed at the end of section 3, the Conley index computed via the multivalued map
F is valid for any dynamical system for which F is an outer approximation. Hence the results
presented in this section about fixed points, periodic orbits, connecting orbits, and chaotic
dynamics occur for any dynamical system for which F is an outer approximation; that is, the
results of each example are valid for any sample path h of the Gaussian process whose graph
lies inside the region G defined by (4.2) in terms of F.

As indicated in section 3, the Conley index of M € M(F) in dimension n is the rational
canonical form of the linear map

Fot Hy (Lw(M)), LV (M));F) = Hy (L(M)), (T (M));F).

Since we are working with 1-dimensional complexes F,, = 0 for all n > 2—, we can express the
Conley index of M as

Cony (M;F) = (po(x),p1(z)),

where p,(z) is a monic polynomial [3]. For the remainder of this discussion, F = Zs (this
allows us to distinguish whether the dynamics is orientation preserving or reversing).

We briefly mention a few standard results about the Conley index (see [21] for more
details). A trivial Conley index in the ith dimension takes the form p;(z) = z* for some
k € N. However, to emphasize the triviality in the figures of this paper we write p;(x) =0. If
the Conley index is not trivial, i.e., p;(z) # ¥, then the maximal invariant set in |v(M)] is
nonempty (the converse is not true in general). In the examples of this paper we make use of
the following facts. If the Conley index has the form (x+1,0) or (0,2 £ 1), then the maximal
invariant set in |v(M)| contains a fixed point. If the Conley index has the form (x? £ 1,0)
or (0,27 1), then the maximal invariant set in |v(M)| contains a periodic orbit of period
T. Let M; and M1 be nodes in a Morse graph, and assume that with respect to the poset
order, M, covers M;. If

Con, (L(¥(Mit1)), LV (My));F)
2 Con, (L((Mi1)), LT (Mis1));F) @ Con, (L((M;)), (7 (My)); F)

then there exists a connecting orbit from M;;1 to M;.

As indicated above, the goal of this section is to show via examples that our approach can
identify, with high probability, interesting dynamics based on relatively few data points. To do
this we pick a smooth function f defined on an interval X C R that we know produces dynamics
of interest, e.g., fixed points, periodic orbits, and chaotic dynamics. We then randomly
(in an i.i.d. way with respect to the uniform measure on X) generate data points T =
{(zn, f(zp)) | n=1,...,N}. In line with the fact that f is smooth, we have chosen to use a
smooth kernel, the squared exponential kernel k(z,z’) = exp (—|ac —z'|?/ 9), and we assume
that the function f is a sample path of the GP obtained from the data using MLE to estimate 6.

For the examples in this section, we know the function f from which the data is sampled.
Therefore, we can verify that indeed G(f) C G. As a consequence, the dynamics that we
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report is valid for f. Of course, in applications we do not expect to be able to perform this
explicit validation. We can only claim that if the Lipschitz constant L used is large enough
(see below), and if we assume that f is a sample path of the GP obtained from the data, then
we have provided a lower bound on the confidence level that the dynamics identified via the
homological calculations is valid for f. Without the assumption that f is a sample path of
the GP, we can only claim that we have provided a lower bound on the probability that a
dynamical system generated by a sample path of the obtained GP will exhibit the dynamics
identified by our method.

Our method requires knowledge of the data set 7 and the assumption that our choice
of L provides a bound for the Lipschitz constant of the unknown function f with confidence
1—4/2; that is, we assume that the probability in (2.3) is at least 1 — /2. We then select the
set S and construct the function r such that the probability in (2.2) is also at least 1 — /2.
Then we construct the set G in Theorem 4.1 satisfying P(G(g) C G) >1—0 (see Lemma 4.3).
Hence the extracted dynamics has a confidence level of at least 1 — 6.

Although the function f does not need to be specified for our method, in the examples
we indicate f to illustrate the fact that, at least in these cases, we can recover the dynamics
of f with very few data points. Since we do not know the values of Lg, a, and b necessary
for (2.3), in the examples we take L to be at least twice the Lipschitz constant of f. For all
the examples presented here we used L =8. The cell complex X is obtained by considering a
uniform decomposition of the interval X into 27 subintervals.

For the results presented here, our primary concern in the choice of G, which, given a cell
complex X', is equivalent to a choice of F: X = X, is to emphasize our ability to characterize
dynamics with high levels of confidence. Thus, we impose a small § in (2.2) on S. Unless
otherwise stated, we use 6 =0.05, and hence we obtain a 0.95 (or 95%) confidence level.

Bistability. To demonstrate that bistability can be identified via the Morse graph, we turn
to Figure 1(a) that was generated using N =8 data points sampled on the interval X = [0, 1]
for the function f(z) = 0.3arctan(8z —4) + 0.5. The set G was constructed using pointwise
equal confidence intervals with B =9 and 6 = 0.05. Observe that the Morse graph has two
minimal nodes M(0) and M(2). Under the poset isomorphism, v(M(0)) and v(M(2)) are
disjoint attracting blocks. Therefore the dynamics of any function h with G(h) C G exhibits
at least bistability (it is possible that for a given h there are additional attractors within
v(M(0)) and/or v(M(2)).

The Conley indices for the bistability example are presented in Figure 1(a). The intervals
defining the Morse sets are

lv(Mo)| = [0.09179688, 0.27929688],
lv(My)| = [0.76171875,0.94140625),
lv(Mz)| = ]
lv(Ms)| = ]

0.75976562,0.76171875|,
0.50976562,0.51171875|,

and

|v(My)] =[0.49023438,0.49218750] U [0.49414062, 0.49609375]U
[0.49804688, 0.50390625] U [0.50585938, 0.50781250].
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Periodic orbit. As indicated in section 1, the Conley index can be used to identify periodic
orbits of a given period. To demonstrate this, and to emphasize the importance of being able
to choose G, we consider the logistic map f(z) = 3.15xz(1 — x). The global dynamics for f
is well understood. The points x¢g = 0 and z1 ~ 0.68 are unstable fixed points, and all other
initial conditions in (0, 1) limit to a stable period-2 orbit ~.

To apply our techniques, set X =[0,1], N =4, B =10, and § = 0.05 (see Figure 4(a)).
Choosing pointwise equal confidence intervals for this value of § leads to a Morse graph
M(F) ={ Mg, M1, Ma | My < M1 < Ms}, where xg € |v(Ms)| and |v(My)| contains both zq
and . The Conley index of M, identifies the existence of a fixed point. Since § = 0.05, this
description of the dynamics is valid with at least 95% confidence.

What is missing from this description is the identification of a period-2 orbit. Motivated
by Theorem 4.1, we repeated the computations with B = 11 and detected the existence of
a periodic orbit with at least 95% confidence (see Figure 4(b)). We can also become more
ambitious and seek a confidence level of 97.5%, i.e., setting 6 = 0.025. For B = 11 we fail to
identify the periodic orbit (see Figure 4(c)). Rather than increase the subdivision, we choose
nonuniform confidence intervals, where we make the images of F(&) smaller if || C |v(M))|
and larger elsewhere (see Figure 4 (d)). The resulting Morse graph contains eight nodes where
xo € |[v(M7)], z1 € |v(Mg)|, and the Conley index of M indicates the existence of a period-2
orbit.

The Conley indices for the period-2 orbit example are presented in Figure 4. The intervals
defining the Morse sets are as follows: For Figure 4(a),

|v(Mp)| = [0.45800781,0.80078125),
lv(M;)| = [0.03613281,0.03710938),

and

|v(Mz)| = [0.00000000, 0.03320312] U [0.03417969, 0.03515625];
for Figure 4(b),

Iv(Mo)| = [0.46972656,0.58056641] U [0.76269531,0.79638672),

lv(M;)| = [0.58056641, 0.58105469] U [0.58154297, 0.58203125] U [0.58251953,0.58300781]U
[0.58349609, 0.58398438] U [0.58447266, 0.53496094] U [0.58544922, 0.76074219]U
[0.76123047,0.76171875] U [0.76220703, 0.76269531]

and
|v(Ms)| = [0.00000000,0.03808594] U [0.03857422, 0.03906250];
for Figure 4(c),

v(My)| = [0.46728516,0.79687500]
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Figure 4. In all subfigures, elements of T are indicated in red, the mean function p is shown in black, and
G is shown in blue. The Morse graphs are indicated on the figures, and the corresponding (color coded) regions
of phase space U(-) are indicated at the bottom of each figure. (a) The region G is composed of squares of width
27 %ength(X). The Conley index for Mo identifies the existence of a fived point with 95% confidence. (b) The
region G is composed of squares of width 2~ length(X). The Conley index for My indicates the existence of
a period-2 orbit with 95% confidence. (c¢) The region G is composed of squares of width 27" length(X), and in
this case the Conley index for Mo identifies the existence of a fized point with 97.5% confidence, but we do not
detect the periodic orbit. (d) The region G is composed of squares of width 2~ length(X). The Conley index
for Mo indicate the existence of a period-2 orbit with 97.5% confidence.

and

|v(My)| = [0.00000000, 0.04199219] U [0.04248047,0.04296875];
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for Figure 4(d),
Iv(Mo)| = [0.47021484,0.57666016] U [0.76464844, 0.79638672],
(M) = [0.57666016,0.57714844] U [0.57763672, 0.57812500] U [0.76416016, 0.76464844],
|v(Ma2)| =[0.57861328,0.57910156] U [0.57958984, 0.58007812] U [0.76318359, 0.76367188],
v(M3)| = [0.58056641, 0.58105469] U [0.76220703, 0.76269531],
|v(My)| = [0.58154297,0.58203125] U [0.58251953,0.58300781] U [0.76123047,0.76171875],

lv(Ms)| = [0.58349609, 0.58398438] U [0.58447266, 0.58496094] U [0.58544922, 0.58593750]U
[0.75927734,0.75976562] U [0.76025391,0.76074219)],

lv(Mg)| = [0.58642578, 0.58691406] U [0.58740234, 0.58789062] U [0.58837891,0.58886719]U
[0.58935547,0.58984375] U [0.59033203, 0.59082031] U [0.59130859, 0.75683594] U
[0.75732422,0.75781250] U [0.75830078, 0.75878906],

and
|v(M7)| = [0.00000000, 0.07812500].

Connecting orbits. Consider again the logistic map f(z)=3.5z(1 —x), X =[0,1], N =8,
B = 15, and 6 = 0.05. Using pointwise equal confidence intervals, we obtain the Morse
graph in Figure 5. The Conley indices for M; and Mj indicated the existence of period-2 and
period-4 orbits, respectively, with at least 95% confidence. The Conley index also indicates
the existence of a fixed point for M3 and a connecting orbit from M3 to M;.

The Conley indices for the period-4 orbit and connecting orbit example are presented in
Figure 5. The intervals defining the Morse sets are

|v(Mp)| = [0.38165283,0.38403320] U [0.49774170,0.50427246]U
[0.82553101,0.82818604] U [0.87463379,0.87533569],

lv(M7)] = [0.42437744,0.42440796] U [0.42443848, 0.42446899] U [0.42449951, 0.42453003]U
[0.42456055,0.42459106] U [0.42462158, 0.42465210] U [0.42468262, 0.42471313]U
[0.42474365,0.42477417] U [0.42480469, 0.43246460] U [0.43249512, 0.43252563]U
[0.43255615,0.43258667] U [0.43261719,0.43264771] U [0.43267822, 0.43270874]U
[0.43273926,0.43276978] U [0.43280029, 0.43283081] U [0.43286133, 0.43289185]U
[0.43292236, 0.43295288] U [0.85528564, 0.85531616] U [0.85534668, 0.85885620]U
[0.85888672,0.85891724],

|v(Msy)| = [0.71362305,0.71365356] U [0.71490479,0.71493530],

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/26/24 to 128.6.45.205 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

402 BATKO, GAMEIRO, HUNG, KALIES, MISCHAIKOW, VIEIRA

1.04

0.8
06{
0.41

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
X

Figure 5. In the subfigure, elements of T are indicated in red, the mean function p is shown in black, and G
is shown in blue, where the width of G is approxzimately similar to the graphical representation of u. The Morse
graphs are indicated on the figure, and the corresponding (color coded) regions of phase space v(-) are indicated

at the bottom of the figure. The region G is composed of squares of width 27° length(X). The Conley indices
for My and My indicated the existence of period-2 and period-4 orbits, respectively, with 95% confidence.

and

v(Ms)| = [0.71368408, 0.71371460] U [0.71374512,0.71377563] U [0.71380615, 0.71475220]U
[0.71478271,0.71481323] U [0.71484375,0.71487427).

The direct sum of the Conley indices of v(M3) and v(M;),
Con,. (L(1(M3)), LV (M3)); F) @ Con,. (4(v(M1)), LV (M1)); F),

can be represented by

-1 0 0
0 0 -1
0 1 0

The Conley index of the connecting orbit set
Con, (L(v(Ms3)), L(V(M1)); F)

can be represented by
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From these computations,

Con, (L(v(Ms)), (¥ (My));F)
% Con, (L(v(M3)), LT (Ms));F) & Con, (L(v(My)), (¥ (M1));F),

which indicates the existence of a connecting orbit from the Morse set in |v(M3)| to the Morse
set in |v(My)].

Chaotic dynamics. Consider the function f(z) = 2¢~°@=1* X = [-0.2,2.3], N = 10,
B =10, and § =0.05. Using pointwise equal confidence intervals, as indicated in Figure 1(b),
we obtain a Morse graph with five nodes. While the Conley index of M(4) is trivial, it
consists of multiple disjoint intervals, and the index map F, : H,(v(M(4)), 7 (M(4)); Zs) —
H,.(v(M(4)), 7 (M(4)); Zs) can be used to capture the chaotic dynamics (cf. [6] and references
therein).

The Conley indices for the chaotic dynamics example are presented in Figure 1 (b). In
this case the Conley index of v(M(4)) is trivial; however, the index map

Fi: Hy (v(M(4)), ¥ (M(4)): Zs) = Hi(v(M(4)), ¥ (M(4)): Zs)
represented by

o100 O OOOOUO -1 0O0O0OO0OO0ODO0OO0OO0O O
o100 O OOOOO -1 0O0O0OO0OO0OO0OO0OO0OO0
0O 0 0 o0 0 0 O0O0O0 O o 00 0 0O 001 0 -1
o100 O OOTOOO -1 0O0O0OO0OO0OO0OO0OO0OO0
o0 o0 o0 0 0 O0O0O0 o0 o 0 0 0 0 0010 -1
o001 0 o0ooO0OO0O-1 0 O0O0O0OO0ODWO0OO0OO0OO0OO0
00 00 O 0 O0O0O0 O0 o 000 0 0 01 0 -1
o001 0 o0oO0OO0O-1 0 0O0O0OO0OO0OO0OO0OOODO
00 00 O 0 O0O0O0 O0 o 00 0 0 001 0 -1
o0 o0 o0 0 0 O0O0O0 o0 o 0 0 0 0O 0010 -1
00 00 O 0 O0O0UO0 o0 o 00 0 0 0 01 0 -1
00 0 o0 0O 0 O0O0O0 o0 O 00 0 0O O0O0O1T 0 -1
00 00 -1 0 010 O o 00 0 0 0 00O 0 o0
00 00 -1 0010 O o 0 0 0 0 0 0 0 o0 O
o0 o0 o0 -1 0 01 0 O O 0 0 0 O 0 0 0 0 o
00 00 O 0 O0O0O0 o0 o 001 0 0 0O0O0 -1
o0 o0 o0 -1 0 01 0 O O 0 0 0 0O 0 0 0 0 o
00 00 -1 0 010 O o 00 0 0 0 0 O0O0 O
00 00 -1 0010 O o 0 0 0 0 0 0 0 0 O
L 00 00 O 0 O0O0UO0 o0 o 001 0 0 O0O0O0 -1 i
indicates the existence of chaotic dynamics (see [6] and references therein).
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The intervals defining the Morse sets are

|v(Mp)| = [~0.01933594,0.10517578),
|v(M;)| = [0.10517578,0.10761719),
|v(My)| = [0.11005859, 0.11250000),
lv(Ms)| = [0.43232422, 0.43476562],

and

lv(My)| = [0.43720703, 0.43964844] U [0.44208984, 0.47871094] U [0.48115234, 0.50312500]U
[0.52509766,0.52753906] U [0.52998047, 0.57148437] U [0.67158203, 0.67402344]U
[0.67646484,0.71796875] U [0.72041016, 0.72285156] U [0.73017578, 0.73261719]U
[0.73505859, 0.78144531] U [0.78388672, 0.78632812] U [1.19404297, 1.19648437]U
[1.19892578,1.33320312] U [1.42353516, 1.42597656] U [1.42841797,1.46992187]U
[1.47236328,1.47480469] U [1.49189453, 1.49433594] U [1.49677734,1.51875000]U
[1.52119141,1.55781250] U [1.56025391, 1.56269531].

6. Construction of G for examples in section 5. For the sake of clarity, the discussions
of Conley theory in section 3 and the probabilistic bounds in section 4 avoided options that
can improve computational efficacy. Turning to the details of the computations for the results
reported in section 5, we take explicit advantage of some of these options, and we exploit the
fact that we are working with one-dimensional dynamics to pictorially explain the computa-
tional enhancements. As a starting point, see Figure 6 where the dashed curve indicates u.

Throughout this discussion, X = [a, f] C R. To avoid cumbersome notation we identify
the cellular complex X' with a uniform discretization of [, 3] into 27 subintervals. We denote
the vertices of X by X(© = {vi |i=0,..., 23} and the edges by

X(l) g {ei: [’l}i7’l}i+1] ’ZZO,,QB - 1} .
The set of midpoints of the odd intervals is denoted by
S = {mQH_l = (’1)21'_4_1 + 1)22'4_2)/2 | 1=0,... ,2B_1 — 1} .

The length of each interval is ¢ := 275(3—a). The cubical grid on a subportion of [, 5] x [a, A]
is indicated via the dotted lines in Figure 6.

Fix 6 € (0,1). As discussed in section 2, choose r: .S — (0,00) such that (2.2) is satisfied
for all m; € S. For notational convenience we set

Wo; 1 = N(m2i+1) - T(m2i+1)0(m21+1) and  Wa;y1 = ,U(m2i+1) + T(m2i+1)a(m2i+1)-

We construct a multivalued map F : X*P = AP in two steps. Note that AP = x(1) in
the settings of this section.
1 _ , o B—1 _ (1) , 1)
Step 1. Let X4 = {eglﬂ |[i=0,...,2 1} C X', For each eg;11 € X, define

f(€2i+1) = {6 € xm | en [M2i+1,w2i+l] # V)} .
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V2i—3 V2i—2 V2i—1 V24 V2i+1 V242 V2443  V2i44

Figure 6. Construction of F. The dashed line represents u(z) derived from the data T. The dotted lines
indicate the cell complex X X X. The solid dark lines indicate the confidence intervals at the midpoints for the
odd numbered intervals. The blue regions indicate the value of F on odd numbered edges. The red rays have
slope =L and represent high probability Lipschitz bounds on sample paths. The teal regions indicate the value
of F on even numbered edges.

In Figure 6 the black lines are used to indicate [wy;, 1,W2i4+1], and the light blue shaded regions
designate F(egi+1)-

Step 2. Observe that we are guaranteed with probability at least 1 — 0 that g(mg;41) will
lie in the black lines and hence blue regions of Figure 6. To gain control of G(g) over X \ S,
make use of the bound given by (2.3). As stated in section 5, we assume that L is large enough
so that the probability given in (2.3) is at least (1 — &)'/2. We also assume that L is large
enough so that the rays defined below intersect. For each point mo; 11 we consider the four
rays
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(6.1) Piagi1(8) = (Mais1, Wair1) + s(1, L) and Ty 1(s) = (May1, Waig1) + s(—1, L)

and
(6.2)  h3;y1(s) = (mair1,wy;,1) +s(1,—L) and  hy; () = (maiy1,we; 1) +s(—1,—L)

parameterized by s > 0. These are shown as red lines in Figure 6.
Observe that the rays h;_l and hy, | intersect at

—+ W41 — W2i—1 — W1 — Woi—1

W41 — W2—1 _ Woi41 — w2i—1>
)

= (in—l +e+ Y7 ,Wai—1 + €L+ 5

and the rays @;71 and ho, 41 Intersect at

Wojt1 — Wai—1 - Wajt1 — Wai—1
hg; (6 - Z2Ll> =hgia <6+ 12L1>

Wojy1 — Woi—q Wojpy — Wo—1
= (m21_1+6_2‘L,w211_6L+2 .

For ¢ > 0 define

Q(e2) = [in—l —eL+ =2 2L g g el +

Wji+1 — W2i—1
2

2

and
Flea) = {ee XV |enQ(ex) £0}.

For ¢ =0 define
3 3
Q(eo) = [Uh - §€L,@1 + QGL}
and
Fleo)={eex® enQes) £ 0},

where w; — 3/2¢L and w; + 3/2¢L are the second components of the intersections of the line
x = v with the rays hy (s) and h; (s), respectively. The teal regions in Figure 6 indicate
F (621) .

Remark. As a consequence of Steps 1 and 2 we have defined the acyclic multivalued map
F : X%P = X%P that is used to identify the Morse graphs and the lattices of attractors and
to compute Conley indices.

In the spirit of section 3, define

G= U exFle)c X xX
ecX )
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and

é:Gu( U er(e)> CX xR,

ee X (M)
where Q(e) is defined in Step 2 for e € Xé&,ﬁn, and for eg;11 € Xo(cllzi we define

1 1
Q(eziq1) := |:w21'+1 - §6L7@2¢+1 + ZGL] ,

where wy; | — %eL and Wa;4+1 + %eL are the second components of the intersections of the rays
with the lines = vo;41 and = = v9;41, respectively.
Observe that by (2.2) and (2.3) and an argument analogous to the proof of Lemma 4.3,

P(G(g)c G)>1—26.

As can be seen from Figure 6, F is not an outer approximation for every ¢ such that
G(g) C G (this could be achieved by enlarging the images of F(eg;41) but at the risk of losing
information about the structure of the dynamics). However, we note that if (x,y) € G, then
(x,y) is within distance €/2 from G. Therefore, we can apply the results of [2, section 5] to
conclude that the Conley index implications about the dynamics computed using F are valid
for a sample path h: X — X if G(h) C G.

7. Concluding remarks. As is indicated in section 5, our framework is capable of identi-
fying the fundamental building blocks of traditional nonlinear dynamical systems with high
levels of confidence based on a few data points. The most obvious criticism is that we re-
stricted our examples to one-dimensional dynamics. This was for the sake of clarity; the results
described in sections 2-4 are dimension independent. Computations of the type described in
section 3 using cubical complexes can be done routinely in systems of four dimensions or
less [24]. They have also been used for the rigorous analysis of infinite-dimensional systems
[7], indicating that, at least conceptually, it is the intrinsic, as opposed to extrinsic dimension,
of the dynamics that determines computability.

There are a variety of closely related open problems that arise from our approach. The
geometry of isolating blocks in one dimension is reasonably simple: a finite collection of closed
intervals. In higher dimensions the geometry can be much more complicated, which raises
the question of estimates relating the dynamics, the number of data points, and uncertainty
bounds. Even heuristics for optimal sampling methods to identify attractor block lattices is
not obvious.

Data availability. The code to perform the computations and generate the figures is avail-
able at https://github.com/marciogameiro/ GP_MorseGraph.
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