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Abstract— This paper proposes an integration of surrogate
modeling and topology to significantly reduce the amount of
data required to describe the underlying global dynamics of
robot controllers, including closed-box ones. A Gaussian Process
(GP), trained with randomized short trajectories over the state-
space, acts as a surrogate model for the underlying dynamical
system. Then, a combinatorial representation is built and used
to describe the dynamics in the form of a directed acyclic
graph, known as Morse graph. The Morse graph is able to
describe the system’s attractors and their corresponding regions
of attraction (RoA). Furthermore, a pointwise confidence level
of the global dynamics estimation over the entire state space is
provided. In contrast to alternatives, the framework does not
require estimation of Lyapunov functions, alleviating the need
for high prediction accuracy of the GP. The framework is suit-
able for data-driven controllers that do not expose an analytical
model as long as Lipschitz-continuity is satisfied. The method
is compared against established analytical and recent machine
learning alternatives for estimating RoAs, outperforming them
in data efficiency without sacrificing accuracy. Link to code:
https://go.rutgers.edu/49hy35en

I. INTRODUCTION

Multiple tools have been developed to estimate the region

of attraction (RoA) of a dynamical system [1]–[3]. These

tools are useful for understanding the conditions under which

a controller can be safely applied to solve a task. Finding the

true RoA of a controlled system is challenging. Thus, many

efforts try to estimate the largest possible set contained in the

true RoA. For closed-box systems, such as learned controllers

that do not provide an analytical expression, it is impractical

to apply Lyapunov methods directly. Many non-Lyapunov

methods often have significant data requirements so as to

estimate RoAs effectively.

This paper addresses the problem of finding RoAs of

controllers with unknown dynamics by proposing an efficient

way to use data. It explores surrogate modeling together with

topological tools not only to identify the RoA for a specific

goal region but also to describe the global dynamics. This

also includes data-driven controllers, where a key challenge

in their application is verification, i.e. explaining when the

controller works and when it fails. To achieve this objective,

this work uses Gaussian Processes (GPs) as surrogate models
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Fig. 1. Overview of the proposed framework: 1) initial data collection; 2)
a Gaussian Process (GP) is trained as a surrogate model; 3) computation of
Morse Graph and the Region of Attraction (RoA) for verification. For an
optional refinement, steps 1-3 can be repeated as necessary.

to compute a Morse graph, which constructs a finite, com-

binatorial representation of the state space given access to a

discrete-time representation of the dynamics. It achieves data

efficiency and improved accuracy relative to alternatives that

are either analytical tools (and can only be used for analytical

systems) or learning-based frameworks. Fig. 1 highlights the

iterative nature of the approach.

In particular, the key contribution of this work is the use

of GPs as a statistical surrogate model of the underlying

controlled system, alongside the Morse Graphs framework

to compactly describe the global dynamics. The integration

results in data efficiency: significantly fewer samples of

the underlying dynamics are necessary for an informative

representation of the global dynamics. Data efficiency in sur-

rogate modeling is achieved by leveraging the effectiveness

of Morse Graphs, alleviating the high prediction accuracy

requirements typically required for this purpose.

Furthermore, this integration allows working with trajec-

tories that may not uniformly cover the state space of the

underlying system. Prior efforts with topological tools and

combinatorial decompositions of the underlying state space

required sampling the dynamics uniformly over a grid-based

discretization of the state space. One of the benefits of GP

based learning approach is that it can characterize uncer-

tainty. So the sampling points can be carefully selected to

minimize the uncertainty about the global dynamics and the

region of attractions. Additionally, GPs provide confidence
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levels on the accuracy of the results at each subset of the

state space.

II. RELATED WORK

Numerical methods that estimate the RoA given a closed-

form expression of the system dynamics include maximal

Lyapunov functions (LFs) and linear matrix inequalities

(LMIs). Ellipsoidal RoA approximation via LMIs [4], [5] has

been used for mobile robots [6], [7], and LMI relaxations can

also approximate the RoA of polynomial systems [8]. LFs

constructed by restricting them to be sum-of-squares (SoS)

polynomials [9] have been used in building randomized trees

with LQR feedback [10], funnel libraries [11] and stability

certificates for rigid bodies [12].

Reachability analysis [3], i.e., computing a backward

reachable tube to obtain the RoA without shape imposition,

for computing RoAs of dynamical walkers [13], has been

combined with machine learning to maintain safety over

a given horizon [14]. GPs can learn barrier functions for

ensuring the safety of unknown dynamical systems [15].

Similarly, barrier certificates (BCs) can identify areas for

exploration to expand the safe set [16].

Machine learning can learn LFs by alternating between

a learner and a verifier [17], [18], or via stable data-driven

Koopman operators [19]. Rectified Linear Unit (ReLU) acti-

vated neural networks can learn robust LFs for approximated

dynamics [20]. The Lyapunov Neural Network [21] can

incrementally adapt the RoA’s shape given an initial safe set.

As an alternative, GPs can obtain a Lyapunov-like function

[22], or an LF can be synthesized to provide guarantee’s on

a controller’s stability while training [23].

GPs are a popular choice to reduce data requirements

while modeling dynamical systems [24]. Some of their

applications in robotics include model-based policy search

[25], modeling non-smooth dynamics of robots with contacts

[26], and stabilizing controllers for control-affine systems

[27]. For RoA estimation problems, given an initial safe set

computed using a Lyapunov function, a GP can approximate

the model uncertainties on a discrete set of sampling points

from the safe region while expanding it [28].

Topology has multiple applications in robotics, such as

deformable manipulation and others [29]–[34]. Morse theory

can help incrementally build local minima trees for multi-

robot planning [35] and finds paths to cover 2D or 3D

spaces [36]. In recent work [37], Morse graphs are shown

to be effective in compactly describing the global dynamics

of a control system without an analytical expression of

its dynamics. To the best of the authors’ knowledge, the

current work is the first to apply surrogate modeling with

uncertainty quantification in conjunction with topological

tools to identify the global dynamics of robot controllers.

III. PROBLEM SETUP

This work aims to provide a data-efficient framework for

the analysis of global dynamics of robot controllers based on

combinatorial dynamics and order theory [37]–[40]. Consider

a non-linear, continuous-time control system:

ẋ = f(x, u), (1)

where x(t) 2 X ✓ R
M is the state at time t, X is a compact

set, u : X 7! U ✓ R
M is a Lipschitz-continuous control

as defined by a deterministic control policy u(x), and f :
X ⇥ U 7! R

M is a Lipschitz-continuous function. Neither

f(·) nor u = u(x) are necessarily known analytically. For

a given time ⌧ > 0, let �⌧ : X ! X denote the function

obtained by solving Eq. (1) forward in time for duration ⌧

from everywhere in X . A trajectory (or an orbit) is defined

as a sequence of states obtained by integrating Eq. 1 forward

in time.

The analysis of the global dynamics can reveal the sys-

tem’s attractors, which include fixed points, such as a state

that the control law manages to bring the system to; or limit

cycles, such as a periodic behavior of the system. It will also

reveal a Region of Attraction (RoA) which is a subset of the

basin of attraction of an attractor A. The basin of attraction

is the largest set of points whose forward orbits converge to

A, or more formally, the maximal set B that has the property:

A = !(B) :=
\

n2Z+

cl

 

1
[

k=n

�k
⌧ (B)

!

where �k
⌧ is the composition �⌧ � · · · � �⌧ (k times) and cl

is topological closure.

Since f and u are Lipschitz-continuous, �⌧ is too; fur-

thermore any RoA of Eq. (1) is an RoA under �⌧ . Hence, it

is possible to study Eq. (1) by analyzing the behavior of the

dynamics according to �⌧ , which is not assumed, however,

to be computable and available.

IV. TOPOLOGICAL FRAMEWORK AND UNCERTAINTY

QUANTIFICATION VIA GPS

There are two key components for capturing meaningful

conditions of the dynamics according to �⌧ . First, identifying

effective combinatorial representations of the attractors and

maximal RoAs. And second, to achieve data efficiency by

employing GP-based surrogate modeling with uncertainty

quantification.

Morse Graphs for Understanding Global Dynamics:

Fig. 2(left) is used as a running 1-dim. example. The function

�⌧ is first approximated by decomposing the state space X
into a collection of regions X , for instance, by defining

a grid. Fig. 2(left) shows a grid on the interval [�3, 3]
decomposed into sub-intervals a through e. Given a region

⇠ 2 X (a cell), the system is forward propagated for

multiple initial states within ⇠ for a time ⌧ to identify regions

reachable from ⇠. Consider, for example, the sub-interval b

as such a cell ⇠ in Fig. 2(left). The arrows from the boundary

of b depict the forward propagation of the dynamics where

b maps to itself given the underlying dynamics

Then, a directed graph representation F stores each region

in ⇠ 2 X as a vertex and edges pointing from ⇠ to each

region reachable from ⇠. In Fig. 2(left), F is the graph

containing nodes given by the grid cells a to e. Each edge

represents a pair given by a cell and its image according

to the dynamics. For instance, (b,b) and (b, c) are two

edges added since b both maps to itself and also maps to c.

3066

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on January 27,2024 at 02:19:51 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. (Left) 1D dynamics example y = φτ (x) = arctan(x) is decomposed in cells [a, e]. Forward propagation of b is depicted by arrows from
its boundary. F is a directed graph capturing reachable vertices (regions) from other vertices. Strongly connected components of F result in CG(F).
Finally, the Morse Graph MG(F) (nodes {b, c, d}) contains the attractors of interest. (Center) Proposed Method (initial step) for Pendulum (LQR).
Data collected; heat map of initial GP; MG and RoAs of the initial GP. (Right) Proposed method (refinement step) for Pendulum (LQR). Few new samples
focused on the desired RoA are collected; retrained GP has lower uncertainty; MG and RoAs of the retrained GP.

Condensing all the nodes belonging to a strongly connected

components (SCCs) of F into a single node, results in the

condensation graph CG(F). Then, edges on CG(F) reflect

reachability according to a topological sorting of F . In Fig.

2(left), CG(F) is the subgraph with nodes a to e and all

non-self edges, i.e., CG(F) has no cycles.

Since CG(F) is a directed acyclic graph, it is also a

partially ordered set (i.e., a poset). A recurrent set is an

SCC that contains at least one edge. Finally, the Morse

graph of F , denoted by MG(F), is the subposet of recur-

rent set of CG(F) (excluding single-node SCCs). In Fig.

2(left), MG(F) is the graph with nodes b, c and d and

the corresponding edges between them. The Morse graph

MG(F) captures the recurrent and non-recurrent dynamics

by representing the recurrent sets of F as vertices and whose

edges reflect reachability between these sets. The nodes of

Morse graphs can contain attractors of interest.

In summary, Morse graphs and RoAs are obtained by

a four step procedure. 1) State space decomposition and

generation of input to represent �⌧ . 2) Construction of the

combinatorial representation F of the dynamics given an

outer approximation of �⌧ . 3) Compute the Condensation

Graph CG(F) and Morse Graph MG(F) by identifying

recurrent sets/SCCs of F and topological sort. 4) Derive

RoAs for the recurrent sets given the reachability of CG(F).
The state space decomposition is an orthotope X =

Qn
i=1[ai, bi] (i.e., generalization of a rectangle for high-

dim.), allowing for periodic boundary conditions. More

specifically, a uniform discretization of X is applied based

on 2ki subdivisions in the i-th component resulting in a

decomposition of the state space into
Qn

i=1 2
ki cubes of

dimension n. X denotes the collection of these cubes.

The input representation of �⌧ is generated by the set

of values of �⌧ at the corner points of cubes in X . More

precisely, let V (X ) denote the set of all corner points of

cubes in X . The method computes the set of ordered pairs

Φ⌧ (X ) := {(v,�⌧ (v)) | v 2 V (X )}, by forward propagating

the dynamics for time ⌧ from all V (X ). Note that, no

analytical version of �⌧ is required, allowing a surrogate

model to generate data Φ⌧ (X ), as proposed in this work.

The combinatorial representation of the dynamics is ap-

proximated by a combinatorial multivalued map F : X ◆ X ,

where vertices are n-cubes ⇠ 2 X . The map F contains

directed edges ⇠ ! ⇠0, 8 ⇠, ⇠0 2 X such that ⇠0 \Φ⌧ (⇠) 6= ;.

The set of cubes identified by F(⇠) are meant to capture the

possible states of �⌧ (⇠). Then, 8⇠ 2 X a multivalued map

F that satisfies:
Fmin(⇠) := {⇠0 2 X | ⇠0 \ �⌧ (⇠) 6= ;} ⇢ F(⇠) (2)

is called an outer approximation of �⌧ . Computation of

Fmin is typically prohibitively expensive. But it is sufficient

to find an outer approximation F , which still leads to

mathematically rigorous results. The flexibility in defining an

outer approximation provides versatility in its construction,

which allows integration with a surrogate model.

Surrogate Modeling and Uncertainty Quantification by

GPs: Assume that there is access to data of the form D =
{(xn, yn) 2 X ⇥ X | yn = �⌧ (x

n) and n = 1, . . . , N},

which may have Gaussian noise. In the pair (xn, yn) 2 D,

xn is an initial state of the system, and yn is the end state

after forward propagating the dynamics (1) from xn for time

⌧ . In Figs 1 and 2(center and right), (xn, yn) are denoted

as red and blue points respectively. Let �⌧,` denote the `-th

component of �⌧ , for ` = 1, . . . ,M and assume that �⌧,` is

the realization of �⌧ from GP:
�⌧,`(x) ⇠ GP (�`,�

2
`k(x, x

0; ✓`)), (3)

where �` and �2
`

are the unknown mean and vari-

ance, and the correlation is defined by the kernel

k(x, x0; ✓`) = Corr(�⌧,`(x),�⌧,`(x
0); ✓`) with k(x, x; ✓`) =

1, k(x, x0; ✓`) = k(x0, x; ✓`) for x, x0 2 X and ✓` is a set of

parameters associated with k.

The prediction for an untried x 2 X can be ob-

tained by a d-dimensional multivariate normal distribution,

MN(µ(x),Σ(x)), where µ = (µ1, · · · , µd), µ`(x) =
E(�⌧,`(x)|D) = �̂` + k(x; ✓̂`)

TK�1(✓̂`)(y
T
`

� �̂`), and

the covariance matrix Σ(x) is a diagonal matrix with ele-

ments �̂2
`

⇣

1� k(x; ✓̂`)
TK�1(✓̂`)k(x; ✓̂`)

⌘

assuming the M -

dimensional outputs are independent, �̂`, �̂`, and ✓̂` are the
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maximum likelihood estimators, k(x; ✓̂) = [k(x, xn; ✓̂), n =
1, · · · , N ], and K(✓̂) is an N ⇥ N matrix with elements

k(xi, xj ; ✓̂) for 1  i, j  N .

V. PROPOSED INTEGRATED SOLUTION

The proposed framework brings together topological tools

for combinatorial dynamics and GPs. GPs are used as

surrogate models to identify the global dynamics and RoAs

of controllers, including data-driven ones without access to

an analytical model. Fig. 2 (center and right) summarizes

the method’s application for a pendulum controlled by a

linear quadratic regulator (LQR). Overall, the method can

be divided into the following steps:
1. Collect data from the system.

2. Apply GP regression to get an initial surrogate model

with predictive mean µ and covariance function Σ.

3. Compute the Morse Graph of the trained GP to obtain,

with a given confidence level, the information about the

global dynamics and the RoAs.

4. (Optional) To increase the confidence level, select state

space points to collect more data as in step 1 to improve

the accuracy of the representation and return to step 2.
Step 1: Data Collection Two procedures for data col-

lection are explored. The first one collects short trajectories

from random initial points in X with a fixed duration of time.

The second option collects time series data in the form of

long trajectories, breaking them into smaller ones. Denote

by D = {(xn, yn) 2 R
M ⇥ R

M | yn = �⌧ (x
n) for n =

1, . . . , N} the robot trajectory data collected.

Step 2: GP regression Given the training data D obtained

in the previous step, a GP model is trained independently

for each output dimension using a zero mean prior and a

Matérn kernel with ⌫ > 1. Learned controllers typically give

Lipschitz-continuous functions, yet, not necessarily smooth.

Hence kernels requiring less smoothness assumptions are

ideal. As such, Matérn kernels provide better performance

than a more common radial basis function kernel.

Let µ and Σ denote the predictive mean and covariance

functions of the GP, respectively. For a confidence level

1 � � and an x 2 R
M , since the GP model is trained

independently for each output dimension, the confidence

ellipsoid is an M -dimensional hypercube E�

Σ(x) :=
QM

n=1 I
↵

n,Σ(x), where ↵ = 1 � (1 � �)1/M , I↵n,Σ(x) =
�

u 2 R | ku� µn(x)k/�(x) < z↵/2
 

is the confidence in-

terval for the n-th output at x, and z↵/2 is the corresponding

critical value of the standard normal distribution.

Fig. 3. Pointwise confidence multi-
valued map Fµ.

Step 3: Confidence

level of Morse Graph

and RoAs Let X be

a discretization of X
into cubes, V (X ) and

C(X ) be the collections

of corner (vertices)

and the center points

of the cubes in X ,

respectively. From a

trained GP with predictive

mean µ and covariance functions Σ generate the set

M(X ) := {(v, µ(v)) | v 2 V (X ) [ C(X )} and let E�

Σ(v)

be the confidence ellipsoid centered at µ(v) for v 2 C(X ).
Note the dependence of E�

Σ(v) on parameter �, which can be

conveniently selected to maximize the confidence level to

provide an accurate representation of the global dynamics.

For a given confidence level 1 � �, define a multivalued

map based on the trained GP as follows:

Fµ(⇠) :=
n

⇠0 | ⇠0 \
⇣

E�

Σ(v) [R(⇠)
⌘

6= ; for v 2 C(⇠)
o

,

where R(⇠) is the smallest box containing {µ(v) | v 2 V (⇠)}
and V (⇠) is the set of corner points (vertices) of ⇠ 2 X , as in

Fig. 3. Fµ is refer as the pointwise confidence multi-valued

map. Note that, for every v 2 C(X ), the map Fµ contains the

confidence ellipsoid centered at µ(v). Therefore, all cubes in

X have a pointwise confidence level of 1�� at their centers.

Finally, use the multivalued map Fµ to compute the Morse

graph, the associated attractors and their RoAs. The CMGDB

library [41] and RoA implement topological computations

of MG and RoAs. In fact, assuming that the unknown �⌧

dynamics is a realization of the GP, the multivalued map Fµ

captures any given realization of GP with a pointwise confi-

dence level of 1-� at the center points of the discretization.

Step 4: Incremental Update After computing the RoAs

and the attractors, the accuracy in estimating the RoAs can

be further improved by iteratively collecting more data and

performing steps 2 and 3 again. The new data can be

randomly selected either in the whole state space or in the

RoA of the interested attractor and it has to be consistent with

the inital choice of the forward time ⌧ . The former results

in a more accurate description of the global dynamics since

it decreases the overall uncertainty. The latter focuses on

increasing the accuracy of the desired RoA.

Properties and Contribution: The theoretical founda-

tions for this line of work can be found in prior publications

[37]–[40], where it is shown that a Morse Graph reflects the

global dynamics of any continuous system under assump-

tions aligned with those of Section III. When the system

dynamics are generated by the (continuous) predicted mean µ
of a GP, it is possible to incorporate the uncertainty estimate

of the GP to obtain confidence levels on the global dynamics

obtained by the Morse Graph [42]. Furthermore, under the

assumption of sufficient data, Fmin(⇠) ⇢ Fµ(⇠) for all

⇠ 2 X . Thus, the global dynamics obtained via Morse Graph

has a pointwise confidence level of 1� � for identifying the

unknown dynamics. Relative to previous theoretical efforts,

this work contributes: a) greater efficiency by using pointwise

confidence guarantees as opposed to a global confidence

level; b) an adaptive strategy for selecting samples guided

by the Morse Graph and the GP; c) an effective solution for

2 to 4-dim. systems (relatively to 1-dim. examples in [42]);

and d) implementation and experiments on models of robotic

systems.

Discussion on Computational Cost: The cost of training

the GP model is O(M4N3), N the size of the dataset and

M the dimension of X . Computing the Morse Graph and

RoAs is O(V + E +G2) with V the number of vertices in
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the directed graph Fµ, E the number of edges, and G the

size of the Morse graph (typically smaller than 32) 1. Thus,

the total computational cost is O((k+1)(M4N3+V +E)),
with k the number of incremental updates performed (Step

4). The memory requirement is O(V + 2(MN)2), where

the predicted mean and variance of the GP model store two

matrices with total entries (MN)2 and the grid size is V .

VI. EXPERIMENTAL EVALUATION

The proposed framework, GPMG, is compared against al-

ternatives from the literature for different dynamical systems

and controllers (Table I). Section VI-A reports the following

metrics for each benchmark: (a) Accuracy of RoA estimation,

and (b) data efficiency, i.e., number of forward propagations

of the true dynamics needed. Section VI-B describes the

global dynamics and RoA discovered by GPMG.

Systems and Controllers: The 1D Quadrotor (Quad)

[45] is stabilized at a given height, generating trajectories

rolled out in the simulator. The Pendulum (Pend) is gov-

erned by m`2✓̈ = mG` sin ✓ � �✓ + u, given mass m,

gravity G, pole length l, and friction coefficient �. The

Mountain Car (Car) is the continuous version of the popular

Reinforcement Learning (RL) benchmark [46]. Ackermann

(Ack) is a forward-only car-like first order system. Lunar

Lander (Land) [47] is governed by ẍ = �kṁ
m � g, with

k > 0 the velocity of exhaust gasses, mass flow rate ṁ  0,

and g = 1.62 moon’s gravity. The Two-link Acrobot (Acro)

[48] is controlled by a single torque between the links.

System X U Controllers

1D-Quadrotor[45] (z,ż) T Learned

Pendulum (θ,θ̇) τ Learned, LQR

Mountain-Car (x,ẋ) τ Learned

Ackermann [49] (x,y,θ) (γ,V )
Learned, LQR,

Corke

Lunar-Lander (h,ḣ,m) ṁ TOC

Acrobot [48] (θ1,θ2,θ̇1,θ̇2) τ2 Hybrid, LQR

TABLE I
SYSTEMS AND CONTROLLERS CONSIDERED IN THE EVALUATION.

LQR linearizes the system to compute a gain k used in the

control law u(xt) = �k·xt. A time-optimal controller (TOC)

for the lunar lander [47] achieves soft landing by having

a free-fall period and then switching to full-thrust until

touchdown. The learned controllers are Soft Actor-Critic

policy networks [50] trained to maximize the expected return

Ex0⇠X [
P⌧

t=0 R(xt)], where the reward function is R : X !
{0,�1}. R(xt) = 0 iff xt is within an ✏ distance from

the goal state and �1 otherwise. A hybrid controller takes

two (analytical or learned) controllers u1(x), u2(x), x 2 X ,

and applies one controller in predetermined subsets of the

state space X1, X2 ⇢ X , i.e.: ẋt+1 = f(xt, u1) if xt 2
X1, and f(xt, u2) if xt 2 X2.

A. Quantitative Results

Comparison Methods: Two lyapunov-based analytical

methods (L-LQR and L-SoS) are used as comparison

(as in [21], [51]). Both use a linearized unconstrained

1A detailed discussion of the computational costs can be found in [37],
[43], [44].

form of the dynamics [52] to obtain a Lyapunov function

(LF). L-LQR uses the solution of the Lyapunov equation

vLQR(x) = xTPx while L-SoS computes the LF as

vsos(x) = m(x)TQm(x) where m(x) are monomials on

x and Q is a positive semidefinite matrix. L-SoS is im-

plemented with SOSTOOLS [52] and SeDuMi [53]. These

methods cannot be used with data-driven controllers (like

Learned) since closed-form expression is required. The

Lyapunov Neural Network (L-NN) [21] is a machine learn-

ing tool for identifying RoAs. The Morse graph (TopMG)

employs the topological tools described but without any use

of a surrogate model, instead it queries the true dynamics at

every vertex of the discretization [37].

RoA Estimations: An approximation of the ground truth

RoA for the goal is computed by considering a very high-

resolution grid over X , and forward propagating for a long

time horizon, or until the goal is reached. Table II presents

the ratio of the ground truth RoA volume identified by each

method for all benchmarks. With the exception of the Land

(TOC) benchmark, GPMG consistently estimates a larger ratio

of the RoA volume compared to alternatives.

Benchmark L-NN L-LQR/SOS TopMG GPMG

Quad (Learned) - N.A. - 1.0

Pend (LQR) 0.98 0.7 / 0.03 0.97 0.91

Car (Learned) - N.A. 1.0 1.0

Land (TOC) - N.A. 1.0 0.79

Ack (Learned) 0.91 N.A. 1.0 1.0

Acro (LQR) 0.89 0.27 / 0.26 0.96 1.0

Acro (Hybrid) 0.14 N.A. 0.99 1.0

TABLE II
ROA RATIOS FOR THE METHODS. BEST VALUES PER ROW IN BOLD.

Estimating larger ratios of the RoA, however, may also

lead to False Positives (FP) – incorrectly identifying a

volume of the state space as being in RoA. The optional

fourth step (Section V) of the proposed framework is crucial

to mitigate FPs. All other methods (L-NN, L-LQR, SOS

and TopMG), which require access to the true dynamics

model, have zero FP. GPMG falsely labels 0% � 2% of X
(Pend (LQR)) and 1%� 22% of X (Land (TOC)) as part of

the RoA. These cases are further discussed in Section VI-B.
Benchmark L-NN TopMG Ours: GPMG Dim

Quad (Learned) - - 25,000 2

Pend (LQR) 667.1M 6.6M 120,000 2

Car (Learned) - 6.6M 3,000 3

Land (TOC) - 1M 300,000 3

Ack (Learned) 704.6M 520M 10,000 3

Acro (LQR) 5.7B 1.1B 100,000 4

Acro (Hybrid) 533M 2.1B 2.5M 4

TABLE III
PROPAGATIONS REQUIRED. BEST VALUES PER ROW IN BOLD.

Data Efficiency: The data efficiency of methods requiring

access to the underlying dynamical system (L-NN, TopMG

and GPMG) is measured using the total propagation steps re-

quired to estimate the RoA (Table III). The data requirements

for GPMG are 2� 4 orders of magnitude less than TopMG

and 3� 5 orders of magnitude less than L-NN. The learned

controllers benefit the most from GPMG, as it provides, in all

cases, a good coverage of the RoA with significantly fewer

propagations and without FP (false positives).
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Fig. 4. (Top) Left to right: Quad (Learned) RoA with confidence 12.5%,
associated Morse Graph, and RoA with confidence 95%. (Bottom) Left to
right: RoA of trained GP for Car, associated Morse graph, and RoA of the
true dynamics.

B. Qualitative case studies

1D Quadrotor: 100 random trajectories (average length

2.5s) that successfully reach the goal are used. To train

the GP, trajectories are decomposed into short segments of

⌧ = 0.3s, giving a dataset D = {(xi, yi) 2 R
M ⇥R

M | yi =
�⌧ (xi)}

800
i=1. For 12.5% and 95% confidence levels, GPMG

outputs an MG with 9 nodes. The attractor discovered by

GPMG shows the whole state space divided into two regions

represented by the left (nodes 1-3) and right (nodes 4-9)

parts of the MG. The trajectories of one region do not visit

the other. These regions represent the system approaching

the goal from above or below it. Node 0 (without leafs) of

MG represents the region (Fig 4, darkest color) where all

trajectories need to stabilize before reaching the goal region.

Pendulum: Initially, 300 random trajectories are used to

train the initial surrogate model. The initial corresponding

MG, RoAs and the � are computed with 12.5% confidence

(Fig 5, left). The initial procedure results in False Postives

(FPs) that correspond to 2% of X . To decrease the number of

FPs, and to improve the accuracy of the estimated MG, Step

4 of the proposed framework is applied. 10 more samples are

randomly selected at the boundary of and inside the RoA of

the attractor of interest. When the procedure is repeated 90

times, a confidence level of 95% is obtained, and all FPs are

completely removed (Fig 5, right).

Mountain Car: GP is trained with 300 randomly sampled

trajectories, each with duration ⌧ = 1s, the predicted � is

small enough to use a confidence level of 95%. The resulting

MG (Fig 4 bottom) has two nodes and describes the expected

global dynamics given by TopMG.

Lander: GPMG relies on the assumption that the under-

lying dynamical system �⌧ can be realized by a GP that

uses traditional stationary kernels (Matérn, Exponential,

and Logistic for the sake of this discussion). The Lander

benchmark violates this assumption since the goal region

is a line {(0, 0,m) | m1  m  m2} and not a system

attractor. When trained with a Matérn kernel, GPMG obtains

FP. Even with additional data, the surrogate model does not

satisfactorily capture the underlying dynamics of the system.

Fig. 5. RoAs, Morse Set and Standard Deviation (left) of the initial surro-
gate model with 12.5% confidence. After sampling 900 more trajectories:
RoAs, Morse Set and Standard Deviation (right) with 95% confidence.

Ackermann: The GP is trained from 1000 randomly

sampled trajectories, each of duration ⌧ = 1s. The pre-

dicted � of the GP is small enough to consider the 95%
confidence level. GPMG outputs an MG with a single node

representing the system’s attractor, which exhibits periodic

behavior, agreeing with the global dynamics captured by

TopMG. Hence, with significantly less data requirements,

GPMG successfully captures the global dynamics information

(a torus-like shaped attractor). If longer trajectories (⌧ =
40s) are used, GPMG outputs a MG with a single node

representing the attractor (0.008% of X by volume) without

periodicity. This corresponds to the learned controller for

Ackermann first performing periodic oscillations around the

goal region before reaching it.

Acrobot: For both the Acro (LQR) and Acro (Hybrid)

benchmarks, the initial data collected used 1000 random

trajectories, each of duration 14s (LQR) and 25s (Hybrid).

In both cases, the MG has a single node, and the identified

attractor is a small set that contains the goal region. When ad-

ditional data is provided, the uncertainty of GPMG decreases,

but the size of the attractor does not change notably, and the

ratio of its volume of X remains unchanged.

VII. DISCUSSION

This work integrates surrogate modeling via GPs with

topology tools, achieving a data-efficient framework for

identifying the global dynamics (attractors and RoAs), even

for closed-box systems. Tests on different benchmarks show

the proposed method consistently identifying attractors with

larger RoA coverage and a significant reduction in data

requirements. A confidence level is also assigned to the

global dynamics representation output. This novel approach

allows the user to either work with a sparse dataset sacrificing

confidence level associated with the Morse Graph; or guide

the process for additional collection, increasing confidence

levels for the Morse Graph by training GPs with low

overall uncertainty. For dynamical systems that cannot be

realized via a GP with a traditional kernel (e.g., Lander),

non-conventional kernels can be explored to accommodate

irregular input domains and non-Gaussian outputs.

On the theoretical side, the rate of convergence of the

Morse Graph to the true dynamical system as a function

of incremental samples is unknown. The decreasing rate

of the overall standard deviation might provide insights to

estimate this rate of convergence. Finally, the application

to large and high-dimensional state spaces may still be

challenging although it is shown to be more data efficient

than alternatives. Possible strategies to mitigate this are non-

uniform state space discretizations, such as adaptive schemes.
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