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The investigation of twisted, stacked few-layer MoS> has revealed novel electronic,
optical, and vibrational properties over an extended period. For the successful
integration of twisted stacked few-layer MoS: into a wide range of applications, it is
crucial to employ a non-invasive, versatile technique for characterizing the layered
architecture of these complex structures. In this work, we introduce a machine learning-
assisted low-frequency Raman spectroscopy method to characterize the twist angle of
few-layer stacked MoS: samples. A feedforward neural network (FNN) is utilized to
analyze the low-frequency breathing mode as a function of the twist angle. Moreover,
using Finite difference method (FDM) and density functional theory (DFT) calculations,
we show that the low frequency Raman spectra of MoS: are mainly influenced by the
effect of the nearest and second nearest layers. A new improved linear chain model (TA-
LCM) with taking the twist angle into the consideration is developed to understand the
interlayer breathing modes of stacked few-layer MoSz. This approach can be extended
to other 2D materials systems and provides an intelligent way to investigate naturally
stacked and twisted interlayer interactions.
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1{INTRODUCTION

Over the past decade, graphene and transition metal dichalcogenides (TMDs) have
attracted significant attention due to their unique properties caused by the reduced
dimension. Many more 2D materials are continuing emerging with a rainbow of
intriguing physical properties including excellent photoluminescence (PL) emission!!]
(e.g., MoS2 and MoSez), superconductivity!®? (e.g., NbS2 and TaS:z), magnetism'**
(e.g. Crlz and NiPS3) and ferroelectricity!”®! (e.g. Culn2PSe). Moreover, stacking these
2D materials in different configurations - vertically or horizontally - leads to the
formation of various homostructures and heterostructures with tunable electronic,
optical, and magnetic properties® 3],

Among the 2D materials, MoS: is one of the most widely studied semiconductors
which shows promising potential in electronic and optoelectronic devices!'*!],
Generally, the number of layers, the stacking order, and stacking twist angle in 2D
layers are critical factors in affecting the band structure!'® and the behavior of
quasiparticles such as excitons!!’"') and some novel meso physical properties such as
magnetism!>>23. For instance, the stacking order significantly affects the second-
harmonic signal (SHG) in stacked MoS:2 due to the net dipole moment induced by
symmetry breaking!?*l; For bilayer graphene with small twist angles, ultraheavy and
ultrarelativistic quasiparticles were predicted from the theoretical works/®’!, and
valleytronics induced by a moiré superlattice existing in twisted WSe: helps to develop
and tune electric devices!?’l. Recently, interfacial ferroelectricity by twisting 2D MoS2
and nanomagnetism by twisting 2D magnetic materials were also reported!?%27],
Therefore, determining the twist angle in these 2D homostructures and heterostructures
is vital for both fundamental study and the relevant applications.

Raman spectroscopy has emerged as an effective, versatile and convenient tool to probe
the number of layers and twist angles in 2D materials and their heterostructures!?$-3%,
Particularly, the low-frequency Raman modes from the interlayer vibrations (usually
below 100 cm™) in the 2D layers are very sensitive to the stacking configurations!®!l,
The number of modes is directly related to the number of layers, and the frequencies of
the modes reflect the interlayer coupling strength which is strongly dependent on the
stacking configurations'*!!. Generally, twist angle affects the Raman shift by modifying
the coupling strength between layers. Stronger coupling leads to a higher frequency of
the modes and thus larger Raman shift. There are two types of interlayer vibrational
modes. One is the breathing mode (BM) due to relative motion of the layers themselves
parallel to their normal and the other is the shear mode (SM) due to the relative motion
in a perpendicular direction to the normal®!l. The relationship between the twist angle
and the low-frequency Raman modes has been investigated intensively 2327331 For
example, Rhea et al. reported that the low-frequency Raman is sensitive to few layered
MoS: stacking configuration between layers!*¥. These studies clearly show the power
of low-frequency Raman spectra in determining the twist angle in 2D layers. However,
relying on the published spectra on limited twist angles will not be able to provide
information with desired accuracy. Moreover, there is still no physical equation to
elaborate the relationship between Raman shift and twist angle. A continuum model¢!
having been developed to assign the SM and BM position from 0° to 20° is limited. To
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address this challenge, we utilized a machine learning approach to map low-frequency
Raman spectra features to the twist angle and developed an improved linear chain
modell®374% that considers the effects of twist angle and near layers. We use a
feedforward neural network (FNN)*!! to obtain a function to describe the relationship
between the low-frequency modes and the twist angle, and then use finite difference
method (FDM)*?! and density functional theory (DFT) calculation to show that the
nearest and second-nearest layer plays the most crucial role in low-frequency modes.
The resulting model can be used to accurately characterize the twist angle in stacked
few-layer MoS: and other 2D systems, providing valuable insights into interlayer
coupling.

2IMATERIALS AND METHODS

2.1|Fabrication of Twisted Bilayer MoS;

Seeding promoter assisted chemical vapor deposition (CVD) was utilized to synthesize
MoS: monolayers*’!. In our synthesis, two crucibles containing the molybdenum
trioxide (MoO3) and sulfur (S) powders as precursors, were separated in a single quartz
tube. A 300 nm Si02/Si substrate was positioned face-down on the crucible loaded with
MoOs, where the seeding promoter, perylene-3,4,9,10-tetracarboxylic acid
tetrapotassium salt (PTAS), was applied on the SiO2/Si substrate surface. The
temperature was increased from room temperature to 620°C in 30 minutes and
maintained at 620°C for 5 minutes in 17 sccm Ar carrier gas flow. The sample was then
cooled down immediately to room temperature in 100 sccm Ar carry gas flow.

We further used dry transfer to stack two MoS2 monolayers together to form the
twist bilayers!*¥. In brief, a monolayer of MoS: synthesized via CVD on a SiO2/Si
substrate is spin-coated with a 20% Polystyrene (PS) toluene solution, followed by
baking at 80 °C for 3 minutes. The sample is then placed in water for 10 minutes,
causing the PS film together with the MoS: monolayer to separate from the substrate
and float on the water surface. Subsequently, a polydimethyl-siloxane (PDMS)
elastomer is used to pick up the film, forming a PDMS-PS-MoS: (PPM) structure. The
top glass slide of the transfer platform is then connected to the PPM and carefully placed
on top of another monolayer of MoS: on a Si/SiO2 substrate. After baking at 90°C for
10 minutes, the top glass slide is carefully lifted, leaving the monolayer MoS: on the
bottom substrate. Because there are multiple monolayers of MoS: triangular domains
on one substrate with different crystal orientation, the resulting stacked MoS:z bilayers
have various twist angles for the study.

To determine the twist angle, we leverage the fact that the side of the triangular
domain aligns with the lattice direction. Thus, by gauging the rotating angle between
two triangular domains under the optical microscopy image, we can measure the twist
angle in the bilayer MoS:.This method provides a precision within 3°.
2.2|Raman spectroscopic characterization
Raman spectroscopy measurements were conducted using a Horiba T64000 triple mode
spectrometer equipped with an 1800 g/mm grating and a liquid nitrogen-cooled CCD
camera for signal detection. A 532 nm laser was used to excite the samples, and Raman
spectra were measured in the range of 12 cm™! to 550 cm™?, which included both low-
frequency (LF) and high-frequency (HF) featured Raman peaks of MoSz. 532nm laser
with 2.33 eV energy is used here because it is the most commonly available laser in
most research laboratories, which makes our results be more applicable and
representative. Additionally, a Raman peak from the Si substrate at 520.7 cm™! was
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also included for the calibration of the spectra.

2.3|Machine Learning Methods

We employed a FNN*] (Fig.2a) with a structure of 187 input nodes, two hidden layers
with 64 and 32 nodes respectively, and one output node. The blue dots represent neurons.
The solid lines connecting the dots represent the flow of information between the
neurons. The weights and biases (not shown here) associated with these connections
determine the strength and offset of the computations performed by the neurons. By
adjusting these weights and biases during training, the network learns to predict twist
angle based on the input Raman spectra. The FNN was trained using a backpropagation
algorithm with a mean squared error (MSE) loss function to model the relationship
between the input low-frequency spectrum and the material property (i.e. twist angle).
In this study, the input nodes are the low frequency Raman spectra and the output is
twist angle (8;). The hidden layers allow the FNN to capture complex nonlinear
relationships between the input parameters and the output property. 50 different Raman
low-frequency spectra are collected as training dataset and 5 more spectra are for test.
We optimize the hyperparameters of the FNN by Adam!*®!, including the number of
nodes in each layer and the learning rate, through a cross-validation procedure to realize
the best performance (See Supporting Materials Section 2). The trained FNN was then
used to predict 0; from the low frequency Raman spectra with high accuracy (margin
of error = 4.7%) and efficiency.

2.4|DFT Calculation Methods

To investigate the vibrational mechanism related to low frequency Raman modes in
few-layer MoS: systems, first-principles calculations based on density functional
theory (DFT) were conducted. The Quantum Espresso package was employed to
perform the DFT calculations with the Perdew-Burke-Ernzerhof (PBE) functional
serving as the exchange-correlation functional. In order to simulate a 2D system, a 15
A vacuum layer was utilized. A uniform 9x9x1 K-point grid was employed for
integration over the Brillouin zone. Systems consisting of 4 layers of 2H-MoS:2 were
investigated. To understand the effect of each layer in a multilayer system on the
targeting layer, finite displacement method (FDM)*?! is used to calculate the spring
constant (Fig.3a). The interlayer spring constant can be obtained by calculating the
force acting on the targeting layer of MoS2 when the other layer is displaced by a small
distance in the direction perpendicular to the layer plane. The interlayer spring constant

can then be calculated as the ratio of the force to the displacement, which is k = Aix,

where k is the spring constant, F is the force, and Ax is the finite small displacement In
this work, we show 5 different small finite displacements of the top layer and calculate
the out-of-plane force operating on each other layer to study the effect of the force in
each layer on the top layer.

3]RESULTS AND DISCUSSION

3.1|Experimental Raman characteristic of twisted bilayer MoS: as training dataset
Figure la shows a typical optical image of the twisted bilayer MoS2, where the
highlighted two triangular domains are stacked and the twist angle is determined to be
9°. Figure 1b illustrate the vibrations for SM and BM in the bilayer. These interlayer
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vibrational modes have been reported at the low-frequency region of the Raman spectra
(<100 cm™)32). In the Raman spectrum of monolayer MoS2, low-frequency peaks are
absent due to the lack of interlayer coupling within the monolayer system. In contrast,
bilayer MoS: exhibits both SM (20 cm™) and BM (38 cm™!) (Fig.1c). The characteristic
high-frequency peaks of MoS2, the E2¢ mode (at 385 cm™?! for monolayer MoS:) and
the Aig mode (at 404 cm™! for monolayer MoSz) are observed in both exfoliated
monolayer and bilayers (Fig.1c). Fig.1d and le show the low-frequency and high-
frequency Raman spectra of bilayer MoS: with various twist angle. It is clear that the
high-frequency modes are not sensitive to the twist angle, however, the low frequency
modes are strongly dependent on the twisted angle, which is consistent with the
phenomenon reported in literature®?!. For example, at §=60° both the SM and BM can
be seemed clearly, at 8=9°, 20°, 29° and 41°, only the BMs are visible. Such high
sensitivity of the interlayer vibrational mode to the twist angle is due to the varying
symmetries at different angles.*?! The monolayer MoS: belongs to the Den point group.
Upon twisting the layers, the symmetry will be reduced to different extend, resulting in
the change of the low-frequency Raman modes.

At specific twist angles, known as commensurate angles!*’!, the lattice of the bilayer
MoS: system exhibits an overall periodicity, leading to a long-range Moiré pattern (See
Supporting Materials Section 1). This pattern can be characterized by a larger supercell
with its own unique symmetry. In such cases, the low-frequency Raman modes are
easier to be observed due to the considerable vibrational modes whose supercell's
symmetry satisfying the Raman selection rules. At the twist angles near 0° and 60°, a
higher prevalence of commensurate angles is observed. As depicted in Fig.1d when the
twist angle approaches 0° and 60°, the SM and BM manifest distinctly. In contrast, at
incommensurate angles, where the Moiré¢ pattern lacks long-range order, the twisted
bilayers result in a breakdown of the original lattice symmetry***!] and the Raman
selection rules become more complicated, leading to the emergence of shift or
disappearance of low-frequency modes. As shown in Fig.1d, when the twist angle is
approaching 30°, the SM and BM tend to merge, resulting in a single broad peak.
Moreover, these modes might become too weak to be observed due to the mismatch of
the lattices leading to weak interlayer coupling!®?l. For example, at 20°, the low-
frequency Raman peaks become weaker than that of other twist angles. Considering the
distinct low-frequency Raman spectra at different twist angles, it is impossible to
measure the Raman spectra for all twisted 2D systems experimentally. Thus, it is often
lack of reference when trying to identify the twist angle from the measured Raman
spectra. In this work, we use the measured 50 low-frequency Raman spectra to train the
FNN to build the relationship with the twist angle.
3.2| FNN to predict twist angle from low frequency spectrum
To determine the relationship R=f(6,) between the low-frequency Raman spectrum (R)
and the twist angle (6;) from 0° to 60° in bilayer MoS2, we employed a designed FNN
model, referred as the twist angle dependent FNN (TA-FNN). Figure 2a illustrates the
TA-FNN architecture, consisting of one input layer, two hidden layers, and one output
layer. The well-trained neural network is capable of predicting the twist angle in bilayer
MoS:2 based on the low-frequency Raman spectra. Figure 2b compares the predicted 8,
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from the model with the real 8,. The solid line along the diagonal is a reference line
where the predictions exactly match with the real value. Due to the inevitable
measurement errors, interlayer impurities, and model robustness, the predictions are
deviates from the reference line. However, all predictions in the test dataset exhibit a
credible 5% error margin, suggesting that the model can predict the twist angle with
high integrity. Therefore, the TA-FNN demonstrates the close relationship between the
Raman spectrum and the twist angle effectively.

To establish R as a function of 8, (R=f (8,)), we first obtain a regression mapping
of 0 to the breathing mode spring constant, which comes from the BM peak position.
In Figure 2c, a function

R=—2.6+10"8x0f +4.6x107°% 07 —3.1+x107* x 0} + 8.9+ 1073 x93 —

11%1071 %02 +3.1%6, + 3.7
is shown as a sixth order polynomial fitting line to visualize the twist angle-dependent
spring constant trend. To obtain a better fit, the data used in the fitting process are often
pre-processed to remove some fluctuations. One common approach*”’ is to calculate
the average value of the data within a specified range, which is then assigned as the
representative data point for that range in the fitting. For instance, in this fitting process,
the average value of the LF peak positions between 10° to 20° is assigned as the
representative value for 15° LF mode position in the fitting. The spring constant is then
calculated from the BM frequency using the linear chain model (see Supporting
Materials Section 3). It is noteworthy that the fitting line exhibits a periodicity of 30°,
which is attributed to the fact that twisted stacking lattices are the same for 8,=0° and
60° (both form 3R and 2H stacking), and they transform into 1T or 3R when the twist
angle is 30° if not considering translational shift’*?). In the final model, this fitting
formula is incorporated to account for the influence of the twist angle.
3.3|Investiagtion of the contribution of near layers to the interlayer coupling
To implement the model in multilayered materials, the coupling strength between layers
should be studied. Theoretically, every two layers have coupling between them.
However, since each layer is at a different distance away from the interested layer, the
intermediate layers screen the Coulomb force, causing the nearest layer from the target
layer to predominantly contribute to the spring constant of target layer. We perform
density functional theory (DFT) calculations and finite difference method (FDM) to
compute the reduced spring constant.

Figure 3a shows a four-layer 2H-MoS: system. From linear chain mode, the system
can be simplified by considering interlayer coupling as a spring constant. The nearest
interlayer spring constant is assigned to ¥, the second nearest interlayer spring constant
is ¥, and the third nearest is y3. Using FDM, we introduce a small vertical displacement
Ax to the top layer and calculate the forces operated on the 2™, 3™ and 4™ layer by DFT,
which reflect operation strength from each layer.

Displacing the top layer with varying distances of 0.027 A, 0.054 A, 0.081 A, 0.108 A,
and 0.135 A is performed. The amplitudes of the atomic displacements are limited to
1%0393, Figure 3b illustrates the force per unit area resulting from different top layer
displacements, denoted by different colored dashed lines. First, larger layer
displacement corresponds to increased forces due to the augmented strain within the
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system. Take nearest layer spring constant for example, when the smallest displacement
0.027A is applied on the top layer, the force on the nearest layer is 3.5x10 *eV/A.
Comparably, the largest displacement 0.135A generate 2.4x1073 eV/A force on the
nearest layer, which is 6.8 times that of previous one. From Hook’s law, force should
be proportional to displacement linearly, hence, it is reasonable when displacement
increase to 5 times large, the force increases to 6.8 times because the vibration of layer
is nonharmonic. Second, we find that the nearest layer contributes to force on the
interested layer by nearly an order of magnitude compared to the second nearest layer,
and two orders of magnitude compared to the third nearest layer for the four larger
displacements. For the smallest displacement of 0.027 A, the force exerted by the
nearest layer is 3.5 X 10™* eV/A, while the second nearest layer exerts a force of
1.9 x 10™* eV/A, approximately half of that by the nearest layer. The force exerted by
the third nearest layer is 1.0 X 107% eV/A, which is much smaller - about 1/350 of the
force generated by the nearest layer. For larger displacement like 0.081A, the nearest
layer force is 1.6X 1073eV/A, and the 2" layer force is 1.0x 10™* eV/A, which is 1/16
of nearest layer. The 3™ layer force is 7x 10~° eV/A, which is 4% of the nearest layer.
Therefore, it’s reasonable to simplify the linear chain model by just considering the
nearest layer and second nearest layer effect. From the force vs layers relationship, the
forces are fluctuating and close to zero for the 3™ nearest layer. This is because the
strong Coulomb screening of the near layers weaken the coupling for the layers far from
it. Therefore, we only considered the nearest and second nearest layer coupling in the
final model.

3.4|Twist Angle Dependent Linear Chain Model for Interlayer Modes

Based on the above analysis, the vibrational modes can be based on the coupling
between layers whose strength is closely related to twist angles. Therefore, a twist angle
dependent linear chain model (TA-LCM) was established in this section to give more
precise low-frequency BM positions. Because SM cannot be observed from 10° to 48°
in twist bilayer MoS: in our experiment, it will be discussed qualitatively in later context.
TA-LCM is based on classical LCM and introduce twist angle dependent spring
constant in the dynamic matrix (See Supporting Materials Section 4). TA-LCM is
visualized in Fig.4a in a 1+1+1 twisted trilayer model system. Nearest layer coupling
depends on twisted angle effect is shown by the clouds between two layers. In the model,
consider y(6;) as the spring constant. The dynamic matrix will be

¥1(01) +v2(03) —¥1(61) —Y2(63)
—¥1(61) ¥1(01) + v1(62) —¥1(62)
—Y2(63) —¥1(02) ¥1(02) +v2(653)

This model can be applied on all twisted stacking system well by changing the matrix
element in the dynamic matrix and calculating the eigenvalues as the vibration
frequencies. Figure 4b shows the optical image of a 1+1+1 twisted trilayer MoS2. A
second dry transfer is implemented here to stack the third MoS: triangle sample
vertically on an existing twist bilayer MoSz. The twist angles 6;, 6, are measured as
42° and 28° for the twist trilayer MoS2 sample in Fig. 4b. Replacing 6,, 6, and 65 with
42°, 28° and 50° (calculated by 120°-(42°+28°)) in previous dynamic matrix, the
calculated BM with lower frequency (BM1) and breathing mode with higher frequency
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(BM2) are 34.5 cm™ ! and 47.0 cm™?. Figure 4c shows the experimental low-frequency
spectrum for the sample in Fig. 4b. Peak BM1 (34.3 cm™1) and peak BM2 (47.1 cm™1)
match the predicted BMs well. For more twisted trilayer samples, please see Supporting
Materials Section 5. Other than BMs, the peak with lowest frequency at 23.9 cm™ is
assigned to a SM because previous work proved that SM is usually not affected by the
twist angle. Here the system containing a 50° twist angle will generate a SM around
28.3 cm™1. Twist angle 28° is not a commensurate angle, so it cannot couple to above
twisted bilayer shearing system. Another evidence is when a lower excitation power

(500 uW) is used, the SM disappears and when a higher power (1 mW) is applied, it

appears clearly. Such power dependence is because the entire MoS: layer needs to
participate to excite SM, thus needs more power. In contrast, exciting BM can be a local
event. This also results in the larger reduced mass of SM than that of BM. From the

most straightforward vibration theory f = \/% , where f is the vibration frequencies, y

is the spring constant and m is the mass, larger mass leads to lower vibrational
frequency. Therefore, the SM usually exhibits lower Raman shift than the BM,
matching well with our assignment.

Furthermore, Fig. 4d shows a contour map of the prediction results of the frequency of
the BMs for twist trilayer MoS2 from our model. 8; and 6, are the two twist angles in
the trilayer ranging from 0° to 60°, from where we predict the BM1 and BM2
frequencies. It is reasonable to see BM1 and BM2 has the similar Raman shift trend
according to twist angles. When 8, and 6, are both around 30°, the Raman shift of
BM1 and BM2 are the largest in the whole (6,,0,) region. When both twist angles are
close to 0° and 60°, the BM1 and BM2 Raman shifts are local maxima compared to
their nearby angles. This is because the coupling around these special angles is stronger.
As commensurate angles appears more around 0° and 60°7), lattice periodicity in
superlattice creates stronger coupling between layers and generates higher vibrational
frequency. Although we demonstrate the application of this model in a twist trilayer
MoS: to predict the mode frequencies from the twist angles, it can be applied to predict
the twist angle from low-frequency Raman modes or obtain low-frequency Raman
information (e.g. mode frequency) from the stacking configuration in other trilayer 2D
materials systems.

4/CONCLUSION

In conclusion, we have successfully applied a machine learning approach to elucidate
the relationship between the spring constant and the twist angle, which then is further
used to predict the twist angle in stacked 2D layers from the measured low-frequency
Raman spectra. Moreover, we performed FDM and DFT calculations to show that only
the nearest layer plays significant role in the linear chain model. Furthermore, we
applied the TA-LCM on a twist (1+1+1) trilayer MoS2 sample to validate the improved
identification of low-frequency Raman BMs from the given twist angles. This
methodology can be extended to investigate other 2D materials with twisted stacking,
thereby enhancing our understanding of low-frequency vibration modes and facilitating
the characterization of these materials' structure and properties.
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Fig.1 (a) Optical image of twisted bilayer MoS2 on 300 nm SiO2/Si substrate. (b) Illustration of the

shear mode and the breathing mode in bilayer MoS:. (¢) Raman spectra of exfoliated monolayer MoS2

and bilayer 2H-MoS:. (d) Low-frequency Raman spectra in bilayer MoS2 with different twist angles
labeled on the spectra. (¢) High-frequency Raman spectra showing the E; 4 and A; 4 modes.
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