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The investigation of twisted, stacked few-layer MoS2 has revealed novel electronic, 

optical, and vibrational properties over an extended period. For the successful 

integration of twisted stacked few-layer MoS2 into a wide range of applications, it is 

crucial to employ a non-invasive, versatile technique for characterizing the layered 

architecture of these complex structures. In this work, we introduce a machine learning-

assisted low-frequency Raman spectroscopy method to characterize the twist angle of 

few-layer stacked MoS2 samples. A feedforward neural network (FNN) is utilized to 

analyze the low-frequency breathing mode as a function of the twist angle. Moreover, 

using Finite difference method (FDM) and density functional theory (DFT) calculations, 

we show that the low frequency Raman spectra of MoS2 are mainly influenced by the 

effect of the nearest and second nearest layers. A new improved linear chain model (TA-

LCM) with taking the twist angle into the consideration is developed to understand the 

interlayer breathing modes of stacked few-layer MoS2. This approach can be extended 

to other 2D materials systems and provides an intelligent way to investigate naturally 

stacked and twisted interlayer interactions. 
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1|INTRODUCTION 

Over the past decade, graphene and transition metal dichalcogenides (TMDs) have 

attracted significant attention due to their unique properties caused by the reduced 

dimension. Many more 2D materials are continuing emerging with a rainbow of 

intriguing physical properties including excellent photoluminescence (PL) emission[1] 

(e.g., MoS2 and MoSe2),  superconductivity[2,3] (e.g., NbS2 and TaS2), magnetism[4–6] 

(e.g. CrI3 and NiPS3) and ferroelectricity[7,8] (e.g. CuIn2PS6). Moreover, stacking these 

2D materials in different configurations - vertically or horizontally - leads to the 

formation of various homostructures and heterostructures with tunable electronic, 

optical, and magnetic properties[9–13]. 

Among the 2D materials, MoS2 is one of the most widely studied semiconductors 

which shows promising potential in electronic and optoelectronic devices[14,15]. 

Generally, the number of layers, the stacking order, and stacking twist angle in 2D 

layers are critical factors in affecting the band structure[16] and the behavior of 

quasiparticles such as excitons[17–19] and some novel meso physical properties such as 

magnetism[20–23]. For instance, the stacking order significantly affects the second-

harmonic signal (SHG) in stacked MoS2 due to the net dipole moment induced by 

symmetry breaking[24]; For bilayer graphene with small twist angles, ultraheavy and 

ultrarelativistic quasiparticles were predicted from the theoretical works[25], and 

valleytronics induced by a moiré superlattice existing in twisted WSe2 helps to develop 

and tune electric devices[26]. Recently, interfacial ferroelectricity by twisting 2D MoS2 

and nanomagnetism by twisting 2D magnetic materials were also reported[20,27]. 

Therefore, determining the twist angle in these 2D homostructures and heterostructures 

is vital for both fundamental study and the relevant applications.  

Raman spectroscopy has emerged as an effective, versatile and convenient tool to probe 

the number of layers and twist angles in 2D materials and their heterostructures[28–30]. 

Particularly, the low-frequency Raman modes from the interlayer vibrations (usually 

below 100 cm-1) in the 2D layers are very sensitive to the stacking configurations[31]. 

The number of modes is directly related to the number of layers, and the frequencies of 

the modes reflect the interlayer coupling strength which is strongly dependent on the 

stacking configurations[31]. Generally, twist angle affects the Raman shift by modifying 

the coupling strength between layers. Stronger coupling leads to a higher frequency of 

the modes and thus larger Raman shift. There are two types of interlayer vibrational 

modes. One is the breathing mode (BM) due to relative motion of the layers themselves 

parallel to their normal and the other is the shear mode (SM) due to the relative motion 

in a perpendicular direction to the normal[31]. The relationship between the twist angle  

and the low-frequency Raman modes has been investigated intensively [20,32–35]. For 

example, Rhea et al. reported that the low-frequency Raman is sensitive to few layered 

MoS2 stacking configuration between layers[34]. These studies clearly show the power 

of low-frequency Raman spectra in determining the twist angle in 2D layers. However, 

relying on the published spectra on limited twist angles will not be able to provide 

information with desired accuracy. Moreover, there is still no physical equation to 

elaborate the relationship between Raman shift and twist angle. A continuum model[36] 

having been developed to assign the SM and BM position from 0° to 20° is limited. To 
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address this challenge, we utilized a machine learning approach to map low-frequency 

Raman spectra features to the twist angle and developed an improved linear chain 

model[35,37–40] that considers the effects of twist angle and near layers. We use a 

feedforward neural network (FNN)[41] to obtain a function to describe the relationship 

between the low-frequency modes and the twist angle, and then use finite difference 

method (FDM)[42] and density functional theory (DFT) calculation to show that the 

nearest and second-nearest layer plays the most crucial role in low-frequency modes. 

The resulting model can be used to accurately characterize the twist angle in stacked 

few-layer MoS2 and other 2D systems, providing valuable insights into interlayer 

coupling. 

2|MATERIALS AND METHODS 

2.1|Fabrication of Twisted Bilayer MoS2 

Seeding promoter assisted chemical vapor deposition (CVD) was utilized to synthesize 

MoS2 monolayers[43]. In our synthesis, two crucibles containing the molybdenum 

trioxide (MoO3) and sulfur (S) powders as precursors, were separated in a single quartz 

tube. A 300 nm SiO2/Si substrate was positioned face-down on the crucible loaded with 

MoO3, where the seeding promoter, perylene-3,4,9,10-tetracarboxylic acid 

tetrapotassium salt (PTAS), was applied on the SiO2/Si substrate surface. The 

temperature was increased from room temperature to 620℃ in 30 minutes and 

maintained at 620℃ for 5 minutes in 17 sccm Ar carrier gas flow. The sample was then 

cooled down immediately to room temperature in 100 sccm Ar carry gas flow. 

We further used dry transfer to stack two MoS2 monolayers together to form the 

twist bilayers[44]. In brief, a monolayer of MoS2 synthesized via CVD on a SiO2/Si 

substrate is spin-coated with a 20% Polystyrene (PS) toluene solution, followed by 

baking at 80 ℃ for 3 minutes. The sample is then placed in water for 10 minutes, 

causing the PS film together with the MoS2 monolayer to separate from the substrate 

and float on the water surface. Subsequently, a polydimethyl-siloxane (PDMS) 

elastomer is used to pick up the film, forming a PDMS-PS-MoS2 (PPM) structure. The 

top glass slide of the transfer platform is then connected to the PPM and carefully placed 

on top of another monolayer of MoS2 on a Si/SiO2 substrate. After baking at 90℃ for 

10 minutes, the top glass slide is carefully lifted, leaving the monolayer MoS2 on the 

bottom substrate. Because there are multiple monolayers of MoS2 triangular domains 

on one substrate with different crystal orientation, the resulting stacked MoS2 bilayers 

have various twist angles for the study.  

To determine the twist angle, we leverage the fact that the side of the triangular 

domain aligns with the lattice direction. Thus, by gauging the rotating angle between 

two triangular domains under the optical microscopy image, we can measure the twist 

angle in the bilayer MoS2.This method provides a precision within 3o. 

2.2|Raman spectroscopic characterization 

Raman spectroscopy measurements were conducted using a Horiba T64000 triple mode 

spectrometer equipped with an 1800 g/mm grating and a liquid nitrogen-cooled CCD 

camera for signal detection. A 532 nm laser was used to excite the samples, and Raman 

spectra were measured in the range of 12 cm−1 to 550 cm−1, which included both low-

frequency (LF) and high-frequency (HF) featured Raman peaks of MoS2. 532nm laser 

with 2.33 eV energy is used here because it is the most commonly available laser in 

most research laboratories, which makes our results be more applicable and 

representative. Additionally, a Raman peak from the Si substrate at 520.7 cm−1 was 
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also included for the calibration of the spectra. 

2.3|Machine Learning Methods 

We employed a FNN[45] (Fig.2a) with a structure of 187 input nodes, two hidden layers 

with 64 and 32 nodes respectively, and one output node. The blue dots represent neurons. 

The solid lines connecting the dots represent the flow of information between the 

neurons. The weights and biases (not shown here) associated with these connections 

determine the strength and offset of the computations performed by the neurons. By 

adjusting these weights and biases during training, the network learns to predict twist 

angle based on the input Raman spectra. The FNN was trained using a backpropagation 

algorithm with a mean squared error (MSE) loss function to model the relationship 

between the input low-frequency spectrum and the material property (i.e. twist angle). 

In this study, the input nodes are the low frequency Raman spectra and the output is 

twist angle (θt ). The hidden layers allow the FNN to capture complex nonlinear 

relationships between the input parameters and the output property. 50 different Raman 

low-frequency spectra are collected as training dataset and 5 more spectra are for test. 

We optimize the hyperparameters of the FNN by Adam[46], including the number of 

nodes in each layer and the learning rate, through a cross-validation procedure to realize 

the best performance (See Supporting Materials Section 2). The trained FNN was then 

used to predict θt from the low frequency Raman spectra with high accuracy (margin 

of error = 4.7%) and efficiency. 

2.4|DFT Calculation Methods 

To investigate the vibrational mechanism related to low frequency Raman modes in 

few-layer MoS2 systems, first-principles calculations based on density functional 

theory (DFT) were conducted. The Quantum Espresso package was employed to 

perform the DFT calculations with the Perdew-Burke-Ernzerhof (PBE) functional 

serving as the exchange-correlation functional. In order to simulate a 2D system, a 15 

Å vacuum layer was utilized. A uniform 9×9×1 K-point grid was employed for 

integration over the Brillouin zone. Systems consisting of 4 layers of 2H-MoS2 were 

investigated. To understand the effect of each layer in a multilayer system on the 

targeting layer, finite displacement method (FDM)[42] is used to calculate the spring 

constant (Fig.3a). The interlayer spring constant can be obtained by calculating the 

force acting on the targeting layer of MoS2 when the other layer is displaced by a small 

distance in the direction perpendicular to the layer plane. The interlayer spring constant 

can then be calculated as the ratio of the force to the displacement, which is 𝑘 =
𝐹

Δ𝑥
, 

where 𝑘 is the spring constant, 𝐹 is the force, and Δ𝑥 is the finite small displacement In 

this work, we show 5 different small finite displacements of the top layer and calculate 

the out-of-plane force operating on each other layer to study the effect of the force in 

each layer on the top layer. 

3|RESULTS AND DISCUSSION 

3.1|Experimental Raman characteristic of twisted bilayer MoS2 as training dataset 

Figure 1a shows a typical optical image of the twisted bilayer MoS2, where the 

highlighted two triangular domains are stacked and the twist angle is determined to be 

9°. Figure 1b illustrate the vibrations for SM and BM in the bilayer. These interlayer 
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vibrational modes have been reported at the low-frequency region of the Raman spectra 

(<100 cm-1)[32].  In the Raman spectrum of monolayer MoS2, low-frequency peaks are 

absent due to the lack of interlayer coupling within the monolayer system. In contrast, 

bilayer MoS2 exhibits both SM (20 cm-1) and BM (38 cm-1) (Fig.1c). The characteristic 

high-frequency peaks of MoS2, the E2g mode (at 385 cm−1 for monolayer MoS2) and 

the A1g mode (at 404 cm−1  for monolayer MoS2) are observed in both exfoliated 

monolayer and bilayers (Fig.1c). Fig.1d and 1e show the low-frequency and high-

frequency Raman spectra of bilayer MoS2 with various twist angle. It is clear that the 

high-frequency modes are not sensitive to the twist angle, however, the low frequency 

modes are strongly dependent on the twisted angle, which is consistent with the 

phenomenon reported in literature[32]. For example, at 𝜃=60° both the SM and BM can 

be seemed clearly, at 𝜃 =9°, 20°, 29° and 41°, only the BMs are visible. Such high 

sensitivity of the interlayer vibrational mode to the twist angle is due to the varying 

symmetries at different angles.[32] The  monolayer MoS2 belongs to the D6h point group. 

Upon twisting the layers, the symmetry will be reduced to different extend, resulting in 

the change of the low-frequency Raman modes. 

At specific twist angles, known as commensurate angles[47], the lattice of the bilayer 

MoS2 system exhibits an overall periodicity, leading to a long-range Moiré pattern (See 

Supporting Materials Section 1). This pattern can be characterized by a larger supercell 

with its own unique symmetry. In such cases, the low-frequency Raman modes are 

easier to be observed due to the considerable vibrational modes whose supercell's 

symmetry satisfying the Raman selection rules. At the twist angles near 0° and 60°, a 

higher prevalence of commensurate angles is observed. As depicted in Fig.1d when the 

twist angle approaches 0° and 60°, the SM and BM manifest distinctly. In contrast, at 

incommensurate angles, where the Moiré pattern lacks long-range order, the twisted 

bilayers result in a breakdown of the original lattice symmetry[33,48], and the Raman 

selection rules become more complicated, leading to the emergence of shift or 

disappearance of low-frequency modes. As shown in Fig.1d, when the twist angle is 

approaching 30°, the SM and BM tend to merge, resulting in a single broad peak. 

Moreover, these modes might become too weak to be observed due to the mismatch of 

the lattices leading to weak interlayer coupling[32]. For example, at 20°, the low-

frequency Raman peaks become weaker than that of other twist angles. Considering the 

distinct low-frequency Raman spectra at different twist angles, it is impossible to 

measure the Raman spectra for all twisted 2D systems experimentally. Thus, it is often 

lack of reference when trying to identify the twist angle from the measured Raman 

spectra. In this work, we use the measured 50 low-frequency Raman spectra to train the 

FNN to build the relationship with the twist angle.  

3.2| FNN to predict twist angle from low frequency spectrum 

To determine the relationship R=f(𝜃𝑡) between the low-frequency Raman spectrum (R) 

and the twist angle (𝜃𝑡) from 0° to 60° in bilayer MoS2, we employed a designed FNN 

model, referred as the twist angle dependent FNN (TA-FNN). Figure 2a illustrates the 

TA-FNN architecture, consisting of one input layer, two hidden layers, and one output 

layer. The well-trained neural network is capable of predicting the twist angle in bilayer 

MoS2 based on the low-frequency Raman spectra. Figure 2b compares the predicted 𝜃𝑡 
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from the model with the real 𝜃𝑡. The solid line along the diagonal is a reference line 

where the predictions exactly match with the real value. Due to the inevitable 

measurement errors, interlayer impurities, and model robustness, the predictions are 

deviates from the reference line. However, all predictions in the test dataset exhibit a 

credible 5% error margin, suggesting that the model can predict the twist angle with 

high integrity. Therefore, the TA-FNN demonstrates the close relationship between the 

Raman spectrum and the twist angle effectively.  

To establish R as a function of 𝜃𝑡 (R=f (𝜃𝑡)), we first obtain a regression mapping 

of θ to the breathing mode spring constant, which comes from the BM peak position. 

In Figure 2c, a function 

R=−2.6 ∗ 10−8 ∗ 𝜃𝑡
6 + 4.6 ∗ 10−6 ∗ 𝜃𝑡

5 − 3.1 ∗ 10−4 ∗ 𝜃𝑡
4 + 8.9 ∗ 10−3 ∗ 𝜃𝑡

3 −

1.1 ∗ 10−1 ∗ 𝜃𝑡
2 + 3.1 ∗ 𝜃𝑡 + 3.7 

is shown as a sixth order polynomial fitting line to visualize the twist angle-dependent 

spring constant trend. To obtain a better fit, the data used in the fitting process are often 

pre-processed to remove some fluctuations. One common approach[49] is to calculate 

the average value of the data within a specified range, which is then assigned as the 

representative data point for that range in the fitting. For instance, in this fitting process, 

the average value of the LF peak positions between 10° to 20° is assigned as the 

representative value for 15° LF mode position in the fitting. The spring constant is then 

calculated from the BM frequency using the linear chain model (see Supporting 

Materials Section 3). It is noteworthy that the fitting line exhibits a periodicity of 30°, 

which is attributed to the fact that twisted stacking lattices are the same for 𝜃𝑡=0° and 

60° (both form 3R and 2H stacking), and they transform into 1T or 3R when the twist 

angle is 30° if not considering translational shift[32]. In the final model, this fitting 

formula is incorporated to account for the influence of the twist angle. 

3.3|Investiagtion of the contribution of near layers to the interlayer coupling  

To implement the model in multilayered materials, the coupling strength between layers 

should be studied. Theoretically, every two layers have coupling between them. 

However, since each layer is at a different distance away from the interested layer, the 

intermediate layers screen the Coulomb force, causing the nearest layer from the target 

layer to predominantly contribute to the spring constant of target layer. We perform 

density functional theory (DFT) calculations and finite difference method (FDM) to 

compute the reduced spring constant. 

Figure 3a shows a four-layer 2H-MoS2 system. From linear chain mode, the system 

can be simplified by considering interlayer coupling as a spring constant. The nearest 

interlayer spring constant is assigned to 𝛾1, the second nearest interlayer spring constant 

is 𝛾2 and the third nearest is 𝛾3. Using FDM, we introduce a small vertical displacement 

Δ𝑥 to the top layer and calculate the forces operated on the 2nd, 3rd and 4th layer by DFT, 

which reflect operation strength from each layer. 

Displacing the top layer with varying distances of 0.027 Å, 0.054 Å, 0.081 Å, 0.108 Å, 

and 0.135 Å is performed. The amplitudes of the atomic displacements are limited to 

1%[50,51]. Figure 3b illustrates the force per unit area resulting from different top layer 

displacements, denoted by different colored dashed lines. First, larger layer 

displacement corresponds to increased forces due to the augmented strain within the 
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system. Take nearest layer spring constant for example, when the smallest displacement 

0.027Å is applied on the top layer, the force on the nearest layer is 3.5×10−4eV/Å. 

Comparably, the largest displacement 0.135Å generate 2.4×10−3  eV/Å force on the 

nearest layer, which is 6.8 times that of previous one. From Hook’s law, force should 

be proportional to displacement linearly, hence, it is reasonable when displacement 

increase to 5 times large, the force increases to 6.8 times because the vibration of layer 

is nonharmonic. Second, we find that the nearest layer contributes to force on the 

interested layer by nearly an order of magnitude compared to the second nearest layer, 

and two orders of magnitude compared to the third nearest layer for the four larger 

displacements.  For the smallest displacement of 0.027 Å, the force exerted by the 

nearest layer is 3.5 × 10−4  eV/Å, while the second nearest layer exerts a force of 

1.9 × 10−4 eV/Å, approximately half of that by the nearest layer. The force exerted by 

the third nearest layer is 1.0 × 10−6 eV/Å, which is much smaller - about 1/350 of the 

force generated by the nearest layer. For larger displacement like 0.081Å, the nearest 

layer force is 1.6× 10−3eV/Å, and the 2nd layer force is 1.0× 10−4 eV/Å, which is 1/16 

of nearest layer. The 3rd layer force is 7× 10−5 eV/Å, which is 4% of the nearest layer. 

Therefore, it’s reasonable to simplify the linear chain model by just considering the 

nearest layer and second nearest layer effect. From the force vs layers relationship, the 

forces are fluctuating and close to zero for the 3rd nearest layer. This is because the 

strong Coulomb screening of the near layers weaken the coupling for the layers far from 

it. Therefore, we only considered the nearest and second nearest layer coupling in the 

final model. 

3.4|Twist Angle Dependent Linear Chain Model for Interlayer Modes 

Based on the above analysis, the vibrational modes can be based on the coupling 

between layers whose strength is closely related to twist angles. Therefore, a twist angle 

dependent linear chain model (TA-LCM) was established in this section to give more 

precise low-frequency BM positions. Because SM cannot be observed from 10° to 48° 

in twist bilayer MoS2 in our experiment, it will be discussed qualitatively in later context. 

TA-LCM is based on classical LCM and introduce twist angle dependent spring 

constant in the dynamic matrix (See Supporting Materials Section 4). TA-LCM is 

visualized in Fig.4a in a 1+1+1 twisted trilayer model system. Nearest layer coupling 

depends on twisted angle effect is shown by the clouds between two layers. In the model, 

consider 𝛾(𝜃𝑡) as the spring constant. The dynamic matrix will be 

[

𝛾1(𝜃1) + 𝛾2(𝜃3) −𝛾1(𝜃1) −𝛾2(𝜃3)

−𝛾1(𝜃1) 𝛾1(𝜃1) + 𝛾1(𝜃2) −𝛾1(𝜃2)

−𝛾2(𝜃3) −𝛾1(𝜃2) 𝛾1(𝜃2) + 𝛾2(𝜃3)

] 

This model can be applied on all twisted stacking system well by changing the matrix 

element in the dynamic matrix and calculating the eigenvalues as the vibration 

frequencies. Figure 4b shows the optical image of a 1+1+1 twisted trilayer MoS2. A 

second dry transfer is implemented here to stack the third MoS2 triangle sample 

vertically on an existing twist bilayer MoS2. The twist angles 𝜃1, 𝜃2 are measured as 

42° and 28° for the twist trilayer MoS2 sample in Fig. 4b. Replacing 𝜃1, 𝜃2 and 𝜃3 with 

42° , 28° and 50° (calculated by 120°-(42° +28°)) in previous dynamic matrix, the 

calculated BM with lower frequency (BM1) and breathing mode with higher frequency 
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(BM2) are 34.5 cm−1 and 47.0 cm−1. Figure 4c shows the experimental low-frequency 

spectrum for the sample in Fig. 4b. Peak BM1 (34.3 cm−1) and peak BM2 (47.1 cm−1) 

match the predicted BMs well. For more twisted trilayer samples, please see Supporting 

Materials Section 5. Other than BMs, the peak with lowest frequency at 23.9 cm-1 is 

assigned to a SM because previous work proved that SM is usually not affected by the 

twist angle. Here the system containing a 50° twist angle will generate a SM around 

28.3 cm−1. Twist angle 28° is not a commensurate angle, so it cannot couple to above 

twisted bilayer shearing system. Another evidence is when a lower excitation power 

(500 μW) is used，the SM disappears and when a higher power (1 mW) is applied, it 

appears clearly. Such power dependence is because the entire MoS2 layer needs to 

participate to excite SM, thus needs more power. In contrast, exciting BM can be a local 

event. This also results in the larger reduced mass of SM than that of BM. From the 

most straightforward vibration theory 𝑓 = √
𝛾

𝑚
 , where 𝑓 is the vibration frequencies, 𝛾 

is the spring constant and 𝑚  is the mass, larger mass leads to lower vibrational 

frequency. Therefore, the SM usually exhibits lower Raman shift than the BM, 

matching well with our assignment.  

Furthermore, Fig. 4d shows a contour map of the prediction results of the frequency of 

the BMs for twist trilayer MoS2 from our model. 𝜃1 and 𝜃2 are the two twist angles in 

the trilayer ranging from 0° to 60°, from where we predict the BM1 and BM2 

frequencies. It is reasonable to see BM1 and BM2 has the similar Raman shift trend 

according to twist angles. When 𝜃1  and 𝜃2  are both around 30°, the Raman shift of 

BM1 and BM2 are the largest in the whole (𝜃1,𝜃2) region. When both twist angles are 

close to 0° and 60°, the BM1 and BM2 Raman shifts are local maxima compared to 

their nearby angles. This is because the coupling around these special angles is stronger. 

As commensurate angles appears more around 0° and 60°[47], lattice periodicity in 

superlattice creates stronger coupling between layers and generates higher vibrational 

frequency. Although we demonstrate the application of this model in a twist trilayer 

MoS2 to predict the mode frequencies from the twist angles, it can be applied to predict 

the twist angle from low-frequency Raman modes or obtain low-frequency Raman 

information (e.g. mode frequency) from the stacking configuration in other trilayer 2D 

materials systems.  

4|CONCLUSION 

In conclusion, we have successfully applied a machine learning approach to elucidate 

the relationship between the spring constant and the twist angle, which then is further 

used to predict the twist angle in stacked 2D layers from the measured low-frequency 

Raman spectra.  Moreover, we performed FDM and DFT calculations to show that only 

the nearest layer plays significant role in the linear chain model. Furthermore, we 

applied the TA-LCM on a twist (1+1+1) trilayer MoS2 sample to validate the improved 

identification of low-frequency Raman BMs from the given twist angles. This 

methodology can be extended to investigate other 2D materials with twisted stacking, 

thereby enhancing our understanding of low-frequency vibration modes and facilitating 

the characterization of these materials' structure and properties. 
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Fig.1 (a) Optical image of twisted bilayer MoS2 on 300 nm SiO2/Si substrate.  (b) Illustration of the 

shear mode and the breathing mode in bilayer MoS2. (c) Raman spectra of exfoliated monolayer MoS2 

and bilayer 2H-MoS2. (d) Low-frequency Raman spectra in bilayer MoS2 with different twist angles 

labeled on the spectra. (e) High-frequency Raman spectra showing the 𝐸2𝑔 and 𝐴1𝑔 modes. 
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Fig.2 (a) The artificial neural network (FNN) architecture, in which the low-frequency 

Raman spectrum serves as the input and the twist angle as the output. (b) Plot of the 

relationship between the predictions and the real values. Blue dots represent the predictions 

generated by the TA-FNN.  The blue solid line signifies the ideal match between the 

predictions and the real values. The dashed lines delineate the 5% error region. (c) The 

effective spring constant as a function of the twist angle. The polynomial fitting line is 

indicated. 
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Fig.3 (a) Illustration of the interlayer coupling from the nearest, the second nearest and 

the third nearest layers. A finite small displacement Δ𝑥 is applied to the top layer. Nearest, 

second nearest and third nearest spring constant 𝛾1 , 𝛾2  and 𝛾3  are shown between the 

corresponding layers. (b) The force on unit area calculated by DFT and FDM for five Δ𝑥. 
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Fig.4 (a) 1+1+1 twisted trilayer MoS2 TA-LCM schema. 𝜃1 , 𝜃2  and 𝜃3  are twist angle 

between the 1st and 2nd layer, 2nd and 3rd layer, and 1st and 3rd layer. (b) Optical image of 

one 1+1+1 twisted trilayer MoS2. (c) Low-frequency Raman spectrum of the 1+1+1 twisted 

trilayer MoS2 shown in (b). (d, e) Contour maps of BM1 and BM2 peak position calculated 

from TA-LCM. 
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