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Abstract
One solution to the challenge of choosing an appropriate clustering algorithm is to combine different clusterings into a single 
consensus clustering result, known as cluster ensemble (CE). This ensemble learning strategy can provide more robust and 
stable solutions across different domains and datasets. Unfortunately, not all clusterings in the ensemble contribute to the 
final data partition. Cluster ensemble selection (CES) aims at selecting a subset from a large library of clustering solutions 
to form a smaller cluster ensemble that performs as well as or better than the set of all available clustering solutions. In 
this paper, we investigate four CES methods for the categorization of structurally distinct organic compounds using high-
dimensional IR and Raman spectroscopy data. Single quality selection (SQI) forms a subset of the ensemble by selecting 
the highest quality ensemble members. The Single Quality Selection (SQI) method is used with various quality indices 
to select subsets by including the highest quality ensemble members. The Bagging method, usually applied in supervised 
learning, ranks ensemble members by calculating the normalized mutual information (NMI) between ensemble members 
and consensus solutions generated from a randomly sampled subset of the full ensemble. The hierarchical cluster and select 
method (HCAS-SQI) uses the diversity matrix of ensemble members to select a diverse set of ensemble members with the 
highest quality. Furthermore, a combining strategy can be used to combine subsets selected using multiple quality indices 
(HCAS-MQI) for the refinement of clustering solutions in the ensemble. The IR + Raman hybrid ensemble library is created 
by merging two complementary “views” of the organic compounds. This inherently more diverse library gives the best full 
ensemble consensus results. Overall, the Bagging method is recommended because it provides the most robust results that 
are better than or comparable to the full ensemble consensus solutions.

Keywords  Clustering ensemble · Clustering ensemble selection · Bagging · Hierarchical cluster and selection · Normalized 
mutual information · Consensus function

Abbreviations
CE	� Cluster ensemble
CES	� Cluster ensemble selection
CSPA	� Cluster-based Similarity Partitioning 

Algorithm
HBGF	� Hybrid Bipartite Graph Formulation
SQI	� Single Quality Index Selection
HCAS-SQI	� Hierarchical Cluster and Select with Single 

Quality Index
HCAS-MQI	� Hierarchical Cluster and Select with Multi-

ple Quality Indices

DC	� Direct combining
WC	� Weighted combining
BC	� Bagging combining

Introduction

In recent years, we have witnessed a dramatic explosion of 
chemical ‘big’ data from high-throughput screening (HTS), 
combinatorial synthesis, and theoretical simulations. Unsu-
pervised machine learning, or pattern recognition, aims to 
extract useful information using unlabeled data, has become 
an indispensable tool for drug designers to mine chemical 
information from large compound databases. Cluster analy-
sis is a type of unsupervised machine learning technique 
that divides unlabeled data objects into groups or clusters 
such that objects in the same cluster are more similar than 
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objects belonging to different clusters [1, 2], and it has 
been applied to solve different research problems in vari-
ous fields. PubChem, a public repository for information on 
small molecules and their biological activities, reported a 
structure–activity relationship (SAR) clustering approach to 
group non-inactive compounds according to their structural 
similarity and bioactivity similarity to facilitate hit explora-
tion in the early stage of drug discovery [3]. Machine learn-
ing techniques are used increasingly in combination with 
quantum chemical calculations or molecular modeling to 
complement experiments for studying complex chemical 
systems. Clustering of molecular dynamics (MD) trajecto-
ries is a commonly used approach that can reveal, explain, 
and even predict the behavior of a particular experiment 
[4]. The analysis of datasets obtained from molecular simu-
lations can often benefit from transforming the original 
features into a lower dimensional representation, which is 
referred to as dimensionality reduction [5]. The use of clus-
tering in molecular simulations is very common because 
clustering can be seen as a way to compactly represent com-
plex multidimensional probability distributions and is there-
fore used as a complement to other dimensionality reduction 
approaches. In addition, the clustering of gene expression 
data has been proven to be valuable in revealing the inherent 
structure in gene expression data, understanding gene func-
tions, and understanding gene regulation [6].

The commonly used clustering algorithms can be divided 
into two classes: partitioning schemes and density-based 
schemes. Using a partitioning scheme, one can find any 
number of clusters from a set of data harvested from a uni-
form probability distribution. On the other hand, using a 
density-based scheme, one will obtain a single cluster since 
it corresponds to the peaks of the probability distribution. 

Which approach one should employ strongly depends upon 
the purpose of the analysis. The most commonly used par-
tition-based clustering algorithms are k-means [7], spectral 
clustering [8], and hierarchical clustering [9]. The perfor-
mance of most clustering algorithms is highly data-depend-
ent, which means there is no single clustering method that 
can learn any data set according to Kleinberg’s theorem 
[10]. In addition, several challenges are inherent to cluster-
ing algorithms [11, 12]. Different techniques discover dif-
ferent structures from the same set of data objects because 
each algorithm optimizes according to a specific criterion. A 
single clustering algorithm with different parameter settings 
can also reveal various structures in the same data set. How 
to validate clustering results without a labeled test dataset. 
Choosing a suitable clustering algorithm that can apply to 
all data sets is difficult. It is crucial to choose a clustering 
algorithm based on what is known about the dataset and 
what is expected about the result.

One solution to the challenge in choosing a proper clus-
tering technique is by combining different clusterings into a 
single consensus clustering solution. Cluster ensemble [13] 
(CE), or consensus clustering, generates a consensus from 
multiple clustering solutions without using the base cluster-
ing algorithms or original data features [14, 15]. CE strat-
egy is characterized by producing consensus partitions that 
are more robust, novel, stable, and flexible than the clusters 
produced by a single base clustering algorithm [16–18]. The 
advantage of the CE strategy is that it can handle multiple 
data sources or representations, with each model capturing 
the big picture and complementing each other. As shown in 
Fig. 1, CE has mainly two stages: (1) obtains a large library 
of clustering solutions which should be highly diverse, and 
then (2) combines these base partitions using a consensus 

Fig. 1   Cluster ensemble framework
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function. It has been shown that ensembles are more efficient 
when constructed from a set of clustering solutions with dis-
similar errors [19, 20]. It is shown that the clustering solu-
tions in the ensemble needed to be as diverse as possible to 
give more information about the underlying patterns in the 
data. A number of ensemble approaches have been proposed 
to generate multiple diverse base clustering solutions from 
a single dataset [21–23]. The second stage is difficult since 
there is no well-defined correspondence between the differ-
ent clustering results. Traditionally, all clustering solutions 
(full ensemble library) are combined with the use of a con-
sensus function to achieve the final solution. Various appli-
cations of CE have been implemented and deployed for drug 
discovery and design. For example, CE method is exploited 
to reduce cost and time for the process of High-Throughput 
Screening for combining multiple clusterings of chemical 
structures to enhance the ability of separating biologically 
active molecules from inactive ones in each cluster [24–26]. 
Chu et al. used CE methods on sets of chemical compounds 
represented by 2D fingerprints and concluded that consensus 
methods can outperform the standard clustering method for 
cheminformatics application [27].

Recently, various clustering ensemble selection (CES) 
strategies have been proposed, aiming to select a subset 
of clustering solutions from the ensemble library whose 
consensus solution outperforms that of the full ensemble 
[28–30]. Two critical questions need to be addressed in the 
CES process: (1) How to measure the quality of clustering 
solutions in the ensemble? (2) How to select a subset of 
base clustering solutions with high quality and eliminate 
the redundant base clustering solutions? Validation indices 
used for measuring the quality of a data partition can be 
categorized into two classes: internal and external indices. 
The internal validation indices are based on the information 
intrinsic to the data to assess the goodness of the clustering 
structure without external data labels, which are usually used 
to select the best clustering algorithm to be applied or the 
optimal number of clusters present on a given data set. On 
the other hand, the external validation indices measure the 
similarity between the output of the clustering algorithm and 
the correct partition of the data set (external data labels). 
Note that the consensus function does not use the original 
data features and that the dataset is unlabeled. Thus, the 
quality of each clustering solution using external validation 
indices can be defined as the pair-wise similarity among the 
ensemble members or the similarity to the consensus solu-
tion of the full ensemble. Specifically, an external valida-
tion index, such as normalized mutual information (NMI) 
or adjusted Rand index (ARI), is used to measure the shared 
information of a clustering solution (ensemble member) with 
the full ensemble. Past research has shown that when com-
bining clustering solutions into a final partition, diversity 
and quality importantly impact the ensemble performance 

[28, 31–33]. Another question that needs to be addressed is 
what level of diversity would benefit the consensus solution, 
and different opinions on the effects of diversity would trans-
late into different selection strategies in the cluster ensemble.

New psychoactive substances (NPS), also known as 
designer drugs, are compounds that alter the molecular 
structure of existing controlled substances to mimic their 
pharmacological effects and circumvent legislation [34, 35]. 
New NPS are emerging at an alarming rate and often with-
out time for adequate experimental determination of their 
pharmacological profile. By definition, designer drugs are 
made up of chemical combinations that we have not seen 
before. They almost never match traditional databases, and 
chemists often don't know what they are looking for. In tra-
ditional drug testing, such as infrared (IR) and Raman, if 
a sample does not match any known substance, it does not 
yield a positive identification [36]. An unknown sample is 
assigned to a given class or category by leverages informa-
tion extracted from training samples using pattern recogni-
tion techniques [37]. Most mature pattern recognition tech-
niques are based on supervised learning such as partial least 
squares discriminate analysis (PLS-DA) and linear discrimi-
nant analysis (LDA) for classification, and calibration using 
partial least squares regression (PLSR) [37, 38]. However, 
unsupervised learning techniques (e.g., clustering analysis) 
have not reached the same level of maturity in chemomet-
ric analysis. Cluster analysis is particularly useful when the 
class structure of the data varies over time, or where the cost 
of acquiring classified (labeled) samples might be too costly 
to make it feasible to obtain the large data sets required for 
some supervised learning techniques, especially in the case 
of spectroscopic data [37].

The majority of the papers reporting the application of 
cluster analysis to spectroscopy data focused on demon-
strating that an analytical testing technique, such as FTIR 
spectroscopy, paired with cluster analysis, can discrimi-
nate between different classes of materials. Some papers 
included a comparison of multiple clustering techniques, 
and a few presented an evaluation of new clustering algo-
rithms [39–41]. There are scarce investigations of CES using 
spectroscopy data in pharmaceutical or forensic analysis of 
organic compounds. Designing a CES method that yields the 
best results is not trivial (if possible) considering the variety 
of options available. We report a comparative study of CES 
workflows for clustering IR and Raman spectroscopy data, 
with the aim of ensuring rigor and validity for future prac-
titioners performing cluster analysis. We show techniques 
found in the contemporary pattern recognition and machine 
learning literature include similarity measures used for clus-
tering, the clustering algorithm itself, how to choose the 
number of clusters, and how to evaluate and quantify the 
results. Furthermore, the workflow reported in this study 
can be applied to other datasets beyond spectroscopy data, 
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since CE only need to access clustering solutions rather than 
original data.

The rest of this paper is arranged as follows: Section II 
presents the related works on CES strategies. Section III 
descries the different CES methods to be investigated in this 
paper. Section IV describes the series of experiments to eval-
uate the performance different CES strategies. Section V is 
the results and discussion. Section VI is the final conclusion.

Related work

Given a dataset X with N  data points 
{
x1,… , xN

}
 , where 

each data point xp ∈ X is represented by a vector of D attrib-
ute values (or features), i.e., xp = (xp,1,… , xp,D) . Let 
Π =

{
�1,… ,�M

}
 be an ensemble library with M clustering 

solutions, each of which is referred to as an ‘ensemble mem-
ber’. Each clustering solution �i ∈ Π is represented as an N
-dimensional vector, which denotes a set of cluster labels 
�i =

{
Ci
1
,Ci

2
… ,Ci

ki

}
 of N data points, where ki is the num-

ber of clusters in the i-th run of the clustering. For each 
xp ∈ X , �i,p denotes the cluster label of data point xp in the 
i-th base clustering. The cluster ensemble selection problem 
is to find a new subset ΠS = {�1,… ,�J} where �j ∈ Π and 
J ≤ M , then a consensus function generates the final con-
sensus partition �∗ = C∗

1
,…C∗

K
 , where K denotes the num-

ber of clusters in the final clustering partition result of a 
dataset X that summarizes the information from the cluster 
ensemble Π.

CES mainly includes three steps [22, 23]: (1) Genera-
tive mechanism: approaches that can produce diverse set of 
clustering solutions of a given data set [18, 20, 21, 42–52]. 
(2) Ensemble subset selection: select ensemble members that 
are differ from each other (diversity) and have a satisfactory 
quality [28–30, 32, 53–55]. (3) Consensus function: com-
bine multiple clustering solutions into the final data partition 
without gaining access to the clustering algorithms or data 
features [13, 42, 56–60].

There are many ways to generate a diversity collection 
of ensemble members for a given dataset, and there are no 
restrictions on how the clustering solutions must be obtained. 
Homogeneous ensembles are created using a single cluster-
ing algorithm and run iteratively with several sets of param-
eters. The non-deterministic k-means clustering algorithm is 
commonly used with random initialization in this approach 
[18, 21, 61, 62]. Since the output of the clustering algorithm 
depends on the initial choice of the number of clusters k , 
each clustering run can use a randomly selected value of 
k from a pre-specified interval to increase the diversity of 
the ensemble [63–65]. As a rule-of-thumb, the maximum 

number of clusters should be greater than the expected num-
ber of clusters, that can be set as max(k) =

√
N  . [20, 21, 

44, 45] Heterogeneous ensembles are created using differ-
ent clustering algorithms to introduce diversity [50–52, 66]. 
Since each clustering algorithm has its own advantages and 
disadvantages, using multiple algorithms can provide dif-
ferent decisions for data partitioning and complement each 
other. Gionis et al. [66]. used hierarchical clustering with 
single, average, complete, and Ward’s linkage as well as k
-means to generate the ensembles used in the study.

Clustering of high-dimensional data faces additional 
challenges, such as poor discrimination of distance [67–69], 
redundant features [69], and irrelevant features [70]. Studies 
point out that as the dimensionality increases, the relative 
distance between the farthest and nearest points converges 
to zero. Traditionally, the vibrational spectrum of a sample 
is matched to the corresponding experimental reference in 
the database based on the deviation of the peak position. 
With the development of data-driven methods in chemical 
analysis, correlation coefficients, such as Pearson and Spear-
man, can be used as similarity measures for spectral data to 
enable automated processing of large numbers of spectra 
[71, 72]. Studies reported by van der Spoel et al. show that 
Spearman's correlation can better represent the approximate 
matching of frequency bands, while Pearson's correlation 
can better represent the consistency of the most dominant 
feature(s), and the two measures can be used in a comple-
mentary manner [71, 72]. Using either measure, the original 
data set can be converted into a N × N similarity matrix and 
subject to further clustering analysis.

The goal of the consensus function is to explore a clus-
tering �∗ that shares the highest amount of information 
regarding the ensemble Π =

{
�1,… ,�M

}
 . Different con-

sensus functions on the same ensemble diversity can results 
in different consensus solutions. Consensus function based 
on hypergraph partitioning, such as Cluster-based Similar-
ity Partitioning Algorithm (CSPA), hypergraph Partition-
ing Algorithm (HGPA), and Meta-Clustering Algorithm 
(MCLA) are very popular and widely used [13]. CSPA 
builds a similarity matrix based on the clustering solutions 
in the ensemble, which measure for each pair of data points 
the frequency of them being clustered together in the ensem-
ble, also referred to as the co-association matrix. However, 
these algorithms act properly just for balanced clusters, 
where cluster sizes are constrained to N∕K . [73] Hybrid 
Bipartite Graph Formulation (HBGF) [74] is a graph-based 
hybrid method, which is introduced with the purpose to 
improve the previous models of CSPA and MCLA that con-
siders only either the associations between data points or 
those amongst clusters.
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Cluster ensembles are mainly applied to enhance the qual-
ity of single clustering results. Hence, a large library of clus-
tering solutions is generated to form the ensemble. A more 
efficient consensus solution can be obtained if the ensemble 
members are different from each other (diversity) and have 
satisfactory quality [53, 75]. Especially when the ensemble 
size is small, combining identical clustering solutions leads 
to an inaccurate consensus solution [45]. In the supervised 
classification task, the classifiers are ranked based on their 
individual performance on a held-out test set, and the best 
ones are picked. On the contrary, in unsupervised clustering, 
the data sets are unlabeled, so it is impossible to estimate 
the quality of individual clustering solutions by computing 
their quality using the test set. This leads to unreliable clus-
tering solutions in a large ensemble, so not all ensemble 
members are necessarily beneficial to the final consensus 
solution [55, 76, 77]. Most methods in existing literature 
work on the basis of label matching between two data parti-
tions. Generally, when the labels of two partitions are not 
matched completely, then the two partitions are considered 
diverse. The ARI and NMI are widely used to measure the 
clustering solutions’ diversity and quality. Diversity meas-
ures can be further divided into pair-wise and non-pair-wise 
fashions. Specifically, in the pair-wise diversity each ensem-
ble member is chosen as a class label implicitly, and other 
ensemble members are measured by the chosen class label: 
diversity

(
�i,�j

)
= 1 − quality(�i,�j) . Based on an objec-

tive function introduced by Strehl and Ghosh [13], Lin and 
Fern used SNMI

�
�i,Π

�
=
∑M

j=1
NMI(�i,�j) that measure 

the information an ensemble member �i shares with all the 
clustering solutions in the ensemble [28]. Naldi et al. [63] 
report a comparative study using different internal validation 
indices to select ensemble members and revealed that each 
index may be more suitable for a specific data conformation, 
on the basis of which they proposed a combination of indices 
in the selection process.

Only a few researches have focused on the way a subset 
of ensemble members must be chosen considering quality 
and diversity [28, 76, 78]. Hadjitodorov et al. [45] used four 
ARI-based diversity measures in the selection process, and 
the results showed that ensemble subsets with median diver-
sity are usually significantly better than the subsets chosen at 
random. Fern and Lin [28] introduced the Cluster And Select 
(CAS) approach, which first divides all ensemble members 
into K  groups based on their similarity, then selects the 
ensemble member with the highest quality from each group 
to be included in the ensemble subset for the final consen-
sus solution. In this approach, the size of ensemble subset 
is arbitrarily determined. Based on the CAS framework, 

Akbari et al. [78] proposed Hierarchical cluster ensemble 
selection (HCES) that identifies the subsets of ensemble 
members considering both diversity and quality using hier-
archical clustering techniques with different linkage meth-
ods. On the other hand, Jia et al. [65] present the Selective 
Spectral Clustering Ensemble (SELSCE) by applying the 
bagging technique to rank and evaluate the ensemble mem-
bers. In the Hybrid clustering solution selection strategy 
(HCSS) proposed by Yu et al. [79], the problem of selec-
tion of ensemble members is converted to feature selection. 
They applied four feature selection strategies to create four 
ensemble subsets. After that a merged subset is selected on 
the basis of a weighting consensus function. Ma et al. [80] 
also used different combination strategies that combine dif-
ferent subsets obtained by several selection algorithms. A 
consensus matrix is then constructed and a normalized cut 
algorithm is then applied as the consensus function.

Cluster ensemble selection methods

The CES is divided into three stages: the generation of the 
base clustering ensemble library Π , the selection of the opti-
mal ensemble subset ΠS , and the aggregated results using 
the consensus function with the ensemble subset. Table 1 
provides a concise summary of the four CES methods (Algo-
rithm b-e) evaluated in this paper, and a flow chart is also 
given in Fig. 2. Note that the performance of CES methods 
is evaluated by comparing to two references. It is reported 
in the literature that the aggregated consensus results should 
outperform the full ensemble. Therefore, the average per-
formance of all ensemble members is used as Reference 1. 
Algorithm a is the traditional cluster ensemble approach in 
which the consensus solution is computed using the full 
ensemble and is referred as Reference 2. 

Quality and diversity measures of clustering 
solution

In this work, we chose four quality indices to evaluate the 
ensemble members’ quality and to enable the selection of 
the ensemble subset to generate the consensus solutions, 
individually (SQI method) and combined (HCAS-MQI 
method). The external validation index NMI is adopted to 
measure the similarity between a pair of clustering solutions. 
Let �i and �j ( i, j ∈ (1,… ,M) ) be two ensemble members 
with ki clusters Ci = {Ci

1
,Ci

2
… ,Ci

ki
} and kj clusters 

Cj = {C
j

1
,C

j

2
… ,C

j

kj
} , respectively. NMI is defined as:
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Table 1   CES Methods Evaluated in this paper

Fig. 2   Flowchart of cluster ensemble selection methods. Algorithm a 
Consensus solution computed using the full ensemble Π . Algorithm 
b–e are CES methods summarized in Table 1 and described in “ CES-

single quality index selection (SQI)”–“CES-Hierarchical cluster and 
selection using multiple quality indices (HCAS-SQI)” sections
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M u t u a l  i n fo r m a t i o n  I(Ci,Cj)  i s  g i ve n  a s 
H
(
Ci

)
− H

(
Ci|Cj

)
 . H(C) is the Shannon entropy of C, and 

H
(
Ci|Cj

)
 is the conditional entropy of Ci given Cj . NMI = 0 

mean two partitions contain no information about one 
another, whereases NMI = 1 indicates two partitions contain 
perfect information about one another. The first quality index 
( Q1-SNMI) is then defined as [28]:

Intuitively, an ensemble member �i maximizing Q1 maxi-
mizes the information it shares with all the members in the 
ensemble, thus can be considered to best capture the general 
trend contained in the ensemble.

The Silhouette index ( Q2-Silhouette) assesses how well 
each data point xp belongs to its assigned cluster Cp . [81] 
Each individual Silhouette number is evaluated as:

where Cq represents the closest cluster to each Cp . At each 
depth on the dendrogram, the average silhouette number is 
evaluated across all samples and calculated as:

The Calinski Harabasz index [82] (Variance Ratio Crite-
rion) ( Q3-Calinski Harabasz) evaluates the quality of a data 
partition as:

where � and � are the within-group and between-group 
dispersion matrices. The normalization term (n − k)∕(k − 1) 
prevents this ratio to increase monotonically with the num-
ber of clusters.

Davies Bouldin index [83] ( Q4-Davies Bouldin) also 
based on a ratio involving within-group and between-group 
distances as follows:

(1)NMI
(
�i,�j

)
= NMI

(
Ci,Cj

)
=

I
(
Ci,Cj

)
√[

H
(
Ci

)
,H

(
Cj

)] ,

(2)Q1

(
�i
)
=

1

M

M∑
m=1

NMI
(
�i,�m

)

(3)s(i) =
x
(i)

Cq
− x

(i)

Cp

max(x
(i)

Cq
, x

(i)

Cp
)

(4)Q2

(
�i
)
=

1

N

N∑
i=1

s(i)

(5)Q3

(
�i
)
=

trace(�)

trace(�)
×
n − k

k − 1

where Dl = maxl≠m{Dl,m} , term Dl,m is the within-to-
between cluster spread for the l th and m th clusters, hence Dl 
represents the worst case within-to-between cluster spread 
involving the l th cluster. Hence, good data partition com-
posed of compact and separated clusters and distinguished 
by small values of Davies Bouldin index, and the minimum 
value is zero.

CES‑single quality index selection (SQI)

In SQI method (Algorithm b), given Π , the ensemble mem-
bers are ranked according to the chosen quality index and 
the selected ensemble subset is formed with the ensemble 
members with the highest quality. Noted that Q4-Davies 
Bouldin distinguished better partitions by smaller values, 
the ensemble members are sorted in ascending order instead. 
This method does not consider the diversity of ensemble, 
hence redundant ensemble members can be included.

CES‑bagging selection

The bagging technique, usually applied in supervised learn-
ing, can be used to evaluate the quality of ensemble mem-
bers and does not require the use of external ground truth 
labels. Specifically, part of the ensemble is randomly sam-
pled to get a consensus result and then compute the NMI 
between the consensus results and the ensemble members. 
Finally, the ensemble members are ranked by aggregating 
multiple NMI values. Given T  rankings of M members in Π , 
a combination function is defined as a function mapping the 
T  rankings of original Π members into a single combined 
ranking:

where RCt = (Rankt
(
�1
)
,Rankt

(
�1
)
,… ,Rankt

(
�M

)
) , and 

Rankt
(
�i
)
 is the rank of the ensemble member �i in the rank-

ing solution RCt where t = (1,… , T) . The final ranking is the 
average ranking of all ranking solutions defined as:

The Bagging selection algorithm (Algorithm c) is shown 
in Fig. 3 and as follows:

(6)Q4

(
�i
)
=

1

k

k∑
l=1

Dl

(7)Com ∶ {RCt(t = (1, T)} → RCfinal
,

(8)RCfinal =

∑T

t=1
RCt

T
,
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Fig. 3   Flowchart of bagging selection method (Algorithm c)
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CES—hierarchical cluster and select using single 
quality index (HCAS‑SQI)

In HCAS-SQI method (Algorithm d), each ensemble mem-
ber is considered as an entity (node in the dendrogram). 
The pair-wise diversity matrix is constructed use diversity 
measure defined as:

(9)Diversity
(
�i,�j

)
= 1 − NMI

(
�i,�j

)

The ensemble members are partitioned by a hierarchical 
clustering algorithm using the constructed diversity matrix. 
Different agglomerative hierarchical clustering linkage 
methods can be used such as single, average, and complete 
linkage. The results can be displayed as a dendrogram that 
includes nested partitions of all ensemble members. The 
final grouping of ensemble members is obtained by cutting 
the dendrogram at the proper layer. The subset ΠS is formed 
by select the highest quality member from each group, as 
described below and shown in Fig. 4:

Fig. 4   Flowchart of HCAS-SQI method (Algorithm d)
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a.	 Direct combining (DC): directly combining selected 
ensemble members in each subset ΠS

g
 to obtain a new 

subset ΠS
DC

 . Any ensemble member that is selected by 
one or more quality Indices.

b.	 Weighted combining (WC):
	   A unified weighting function, which takes into account 

both the weights of the subsets and those of the base clus-
tering solution in each subset. Since each clustering solu-
tion �i corresponds to a partition of the data, it is reason-
able to adopt suitable criteria to measure the quality of the 
clusters and assign the weights of base clustering solutions. 
The Squared-Error Distortion ( Distor ) is designed to mini-
mize the mean squared distance from all data points to their 
nearest cluster centroids, which is defined as follows:

where � is the distance function and U is the set of clus-
ter centers.

	   Given a subset ΠS
g
 , which contains Jg clustering solutions 

selected from M full ensemble members of Π , the weight of 
selected ensemble member �j in ΠS

g
 is computed as follows:

(10)Distor
(
�j
)
=

1

N

N∑
p=1

�
(
xp,U

)
,

(11)w
g

j
= exp

⎛⎜⎜⎜⎝

−
�
Distor

�
�j
�
− minJ

j=1
Distor

�
�j
��

1

J

∑J

j=1
Distor

�
�j
�

⎞⎟⎟⎟⎠
,

Specifically, two strategies are used in Step 3 after the 
dendrogram is partitioned at a layer L . The first strategy 
(strategy a) is to simply select the highest quality ensem-
ble member from each group. The number of ensemble 
members Jg in the selected subset ΠS is determined by the 
number of groups in this layer. From bottom layer 1 to top 
layer L , different subsets of ensemble members are chosen 
with L to 1 ensemble members, respectively. At layer L (the 
top layer), all ensemble members are included in one group 
(Fig. 3), in this condition, it is equivalent to choosing the 
ensemble member with the highest quality. However, in 
strategy a, low-quality ensemble members can be selected 
as long as they are diverse from the ensemble members in 
other groups. In strategy b, the dendrogram is partitioned at 
the bottom layer L = 1 , then the highest quality ensemble 
members are selected from each group, and subsequently 
ranked according to their quality. The final ensemble subset 
is formed by including the Jg top-ranked ensemble members, 
where Jg ≤ M.

CES‑hierarchical cluster and selection using multiple 
quality indices (HCAS‑MQI)

HCAS-MQI (Algorithm e), is based on HCAS-SQI (Algo-
rithm d). After selecting subsets of ΠS

g
 ( g ∋ 1,… ,G ), where 

G is the number of subsets from using different quality indi-
ces, a combining strategy can be used to generate the final 
reduced ensemble subset. The three different combining 
strategies evaluated in this study are:
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	   The weights of the non-selected base clustering solu-
tions are set to 0, which means wg

j
= 0 for �j ∈ Π − ΠS

g
.

	   The weight of a subset ΠS
g
 is determined by the 

weights of its selected base clustering solutions as fol-
lows:

where J is the number of chosen ensemble members by 
the g-th HCAS run. The weights of subsets wg are then 
re-normalized:

(12)wg =
1

J

∑
�j∈Π

S
g

w
g

j
,

(13)w̃g = exp

�
wg − maxG

g=1
wg

1

G

∑G

g=1
wg

�
,

	   The weighting function �
(
�i
)
 of each base cluster-

ing solution �i is calculated based on the weights of the 
subsets and individual wg

i
 in each subset as follows:

c.	 Bagging combining (BC):

The Bagging technique described in “CES-bagging selec-
tion” section is used, but ΠS

DC
 is used as the input instead.

The HCAS-MQI with different combining strategies are 
shown in Fig. 5 and as follows:

(14)�
(
�i
)
=

G∑
g=1

w̃g ∙ w
g

i
,

Fig. 5   Flowchart of HCAS-MQI method (Algorithm e) of different combining strategies
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Methods and materials

Dataset acquisition and curation

A total of 127 unique NPS compounds were selected from 
16 major core chemical structure categories. These include 
17 natural or synthetic opioids, 62 stimulants (piperidines, 
tropane alkaloids, amphetamines, cathinones, aminoindanes, 
and benzofurans), 35 hallucinogens (2C, 2C-B, and 2C-T 
series, and tryptamines), 6 sedatives (benzodiazepines), and 
7 cannabinoids. A total of 10 low-energy conformers were 
generated by PubChem3D [84], which samples the ener-
getically accessible and biologically relevant conformations 
of chemical structures using the average atomic pairwise 
rmsd. The geometry optimizations were performed using the 
Gaussian 16 program [85] using the B3LYP level of DFT in 
combination with the 6–311 +  + G(d, p) basis set. Different 
basis sets (6-31G(d), 6–31 +  + G(d, p), 6–311 +  + G(d, p)) 
were used with B3LYP for the computation of the spec-
tra as described in our previous study [86]. The results 
were compared to the experimental gas IR spectra avail-
able at the NIST [87] for six compounds, and the unscaled 
6–311 +  + G(d, p) spectra resulted in the highest spectral 
correlation coefficients. Redundant conformers converged 

to the same structure were eliminated from the dataset, thus 
leaving a total of 930 conformations. The harmonic vibra-
tional wavenumbers of all conformers were determined at 
the corresponding optimized structures, which were con-
firmed to be local minima by checking that there were no 
imaginary frequencies. The dynamic Raman scattering activ-
ity was calculated with the polarizability gradient method 
with laser excitation wavelength set at 785 nm, which corre-
sponds to a wavelength of 12,739 cm–1 and 0.0580 Hartree. 
The IR spectra and Raman spectra were truncated from 400 
to 4000 cm–1 and 200 to 1800 cm–1, respectively, with an 
interval of 2 cm–1. Therefore, two separate datasets were 
obtained for the NPS compound set, using IR and Raman 
spectra as features, where the dimensions of the data sets 
are: ( 930 × 1801 ) and ( 930 × 801 ), respectively. See Sup-
porting Document Appendix B and C for more details.

Generation of base clustering ensemble 5

Mixed heuristics were used to diversify the base clustering 
ensemble. First, two correlation coefficients are used as a 
spectral similarity measure to project the original spectral 
feature to N by N spectral similarity matrix, see Supporting 
Document Appendix D. This, including the original dataset, 
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resulted in three data representations. Each of the following 
diversifying approaches was applied to all three data repre-
sentations. Second, for each clustering run, the number of 
clusters k predicted for that run, is set by randomly draw-
ing a number between 2 and c , where c is defined as 

√
N . 

Third, the iterative clustering algorithm k-means is applied 
with different random initialization. Fourth, the determinis-
tic clustering algorithm hierarchical clustering is used with 
five different linkage methods, which generate different den-
drograms and subsequently different clustering solutions. 
The above settings are used to generate the base cluster-
ing ensemble Π with 300 ensemble members. All reported 
results are averaged across 20 evaluations.

Consensus functions

We experimented with the popular approaches include the 
Cluster-based Similarity Partitioning Algorithm (CSPA) 
[13] and Hybrid Bipartite Graph Formulation (HBGF) [74]. 
We apply both to produce a final partition of the data points 
into K clusters, where K is the number of known classes in 
the NPS dataset. Both CSPA and HBGF are implemented 
from using the ClusterEnsembles Python package [88].

Performance evaluation criterion

Since the ground truth label is unknown, the class labels of 
the NPS dataset are used as a surrogate. The degree to which 
two molecules are considered 'similar' depends on both their 
structural encoding and the similarity metric used. The class 
label of NPS compounds is assigned using the Maximum 
Common Substructure (MCS) similarity defined as:

where NC is the number of matched heavy atoms in MCS of 
molecule A and B, NA and NB are the number of heavy atoms 
in molecule A and B, respectively. TMCS was calculated using 
the rdFMCS modules implemented in RDKit software [89]. 
The affinity matrices were used as input and submitted to a 
Ward linkage clustering with Euclidean distance as the simi-
larity metric for hierarchical clustering. The optimal num-
ber of clusters K was determined by silhouette index (SI) 
analysis (see Supporting Document Appendix E, Figure S1).

The performance of CES methods and the traditional 
cluster ensemble approach is measured by the average value 
of the NMI between the predicted cluster labels and the 
ground truth labels after performing the evaluation 20 times.

Another measure, Dominant ratio ( Γ ) [79], is defined 
based on NMI to evaluate the effectiveness of clustering 
solution selection strategies as follows:

(15)TMCS =
NC

NA + NB − NC

,

where Y is the set of ground truth labels, YS
1
 is the set of 

predicted cluster labels derived from the selected ensemble 
subset ΠS by the CES strategy, and YS

2
 is the predicted clus-

ter label set derived from the remaining unselected cluster-
ing solutions Π − ΠS . A better CES strategy will result in a 
higher value of the dominant ratio ( Γ).

Results and discussion

The following results report the NMI and Γ on each CES 
method while varying the size of the ensemble subset from 
5 to 200. Since the full ensemble consensus solution uses all 
ensemble members, it is not possible to calculate their Γ. In 
addition, we report the performance of a randomly selected 
strategy that forms an ensemble subset by randomly draw-
ing from the library, which is repeated 10 times in each run. 
As mentioned earlier, each number reported is an average 
of 20 runs. The class label (ground truth) of the NPS data 
set is used only to evaluate the CES methods, and is not 
used in the CES process. All experiments were performed 
using both IR and Raman data sets, only unique results are 
shown. For the proposed CES methods and the Random 
method, each of their results was compared with the full 
ensemble, and those that are statistically superior to the full 
ensemble ( p < 0.05 , paired t-test) are shown in bold font. 
The performances of quality indices, consensus functions, 
and individual CES methods are shown in Figs. 6, 7, 8 and 
Tables 1, 2, 3. The subfigures on the right give the NMI 
values determined using the ground truth labels, whereas the 
sub-figures on the right show the dominant ratio Γ . The size 
of the selected subsets is plotted on the x-axis.    

Comparison of quality indices and consensus 
function in SQI method

In this experiment, the four quality indices presented in 
“ Quality and diversity measures of clustering solution” 
section were used in the SQI method. The ensemble subsets 
selected using SQI with a single quality index are referred 
to as SQI-Qg (SQI-SNMI, SQI-Silhouette, SQI-Calinski 
Harabasz, and SQI-Davies Bouldin). The results obtained 
using the IR dataset are shown in Fig. 6. Subfigures (a) and 
(c) show the results of using the CSPA consensus func-
tion, and subfigures (b) and (d) show the results of using 
the HBGF consensus function. Table 2 report the NMI val-
ues for ensemble subset sizes of 30, 60, 90, 120, 150, and 
180 obtained from each combination of data set, consensus 

(16)Γ =
NMI(YS

1
,Y)

NMI(YS
2
,Y)

,
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function, and SQI method, as well as the NMI values of the 
full ensembles.

To understand whether the full ensemble consensus solu-
tion is influenced by the quality of ensemble members, we 
compared the average and NMI distributions of the ensemble 
members generated using the IR and Raman datasets. As 
shown in Fig S3 in Appendix F of the Supporting Document, 
the average NMI of ensemble members using the Raman 
dataset is 0.608, while the average NMI using the IR data set 
is only 0.526. As expected, the quality of ensembles gener-
ated of the NPS compounds using IR and Raman datasets is 
different. However, it is uncertain whether this discrepancy 
is due to the lower dimensionality of the Raman data set. 
As shown in Table 2 and Fig. 6, the quality of the ensemble 
has a positive effect on the full ensemble consensus solu-
tion, for which the full ensemble consensus solution using 
Raman dataset is superior, regardless of the consensus func-
tion used.

The Random method was included to ensure that the 
performance improvement observed with the CES meth-
ods could not have been achieved by chance. The Random 

method represents the CE approach that does not take into 
account the quality or diversity of the ensemble members. 
The results shown in Fig. 6 confirm this, as the Random 
selection method is generally worse than the full ensemble 
consensus solution across different subset sizes. We also see 
that the quality indices SNMI and Silhouette can effectively 
improve consensus performance. On the other hand, subsets 
selected using Calinski Harabasz or Davies Bouldin only 
perform comparably to the Random method for increasingly 
larger subset sizes. It is interesting to note that for the Raman 
data set, as can be seen in Appendix Figure S4, the Random 
method performed respectably well in comparison to that 
of the full ensemble. This suggests that there exists larger 
amount of redundancy in the libraries.

Evaluate the effect of diversity in HCAS‑SQI

The HCAS method reduces the redundancy in the ensem-
ble library by hierarchically partitioning the ensemble 
members into different groups using the pairwise diversity 
matrix of the ensemble. The HCAS-SQI method described 

Fig. 6   Performance of SQI using different quality indices and consen-
sus function. In (a) and (b), the red dashed line indicates the consen-
sus solution using the full ensemble Π , and the black dotted line rep-

resents the average NMI of all ensemble members. In (c) and (d), the 
dominant ratio Γ = 1.0 is shown as a red dashed line
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in “CES—hierarchical cluster and select using single qual-
ity index (HCAS-SQI)” section was tested with a focus on 
assessing which selection strategy is more effective. To 
simplify the analysis, only SNMI and Silhouette quality 
indices were used, and the ensemble subsets selected using 
HCAS-SQI with a single quality index are referred to as 
HCAS-Qg (HCAS-SNMI and HCAS-Silhouette). From the 
discussion in “Comparison of quality indices and consen-
sus function in SQI method ” in “CES—hierarchical clus-
ter and select using single quality index (HCAS-SQI)” 
section, we see that although the ensemble quality is on 
average higher using the Raman data set, there is greater 
redundancy in the ensemble library. Therefore, the Raman 
data set library may benefit more from a CES method that 
takes into account the diversity among ensemble mem-
bers. The results obtained using the Raman data set using 
the CSPA and HBGF consensus functions are shown in 
Fig. 7. Different clustering linkage methods were used in 
this experiment, and since there is no statistical differ-
ence among the results of these linkage methods, only the 
results obtained using Ward's linkage method are shown 
here.

When constructing a tree diagram of ensemble members, 
the size of the clusters is requested to be 150. Strategy a 

is equivalent to cutting the dendrogram from the top layer 
to the bottom layer and gradually generating more distinct 
groups towards the lower layer. At each layer, a subset is 
formed by selecting the highest quality ensemble members 
from each group. At the top layer, all ensemble members are 
in one group, so the strategy a selects one ensemble member 
with the highest quality from the library, which is equiva-
lent to that of the SQI method. However, starting from the 
second-top layer, it starts to diverge from the SQI method, as 
equally high-quality but redundant ensemble members will 
not be selected. Thus, while trying to increase diversity, a 
subset of the ensemble of the same size contains more low-
quality members. As can be seen in Fig. 7, this CES strategy 
did not lead to improvements.

Strategy b can be considered a special case of strategy a. 
At the bottom layer L = 1 , all ensemble members are divided 
into 150 diverse groups, and the highest quality members in 
each group are first selected and then sorted again according 
to their quality. Then, subsets of different sizes are formed 
by including the top-ranked ensemble members. As sup-
ported by the results, the advantage of strategy b is obvious 
because it can achieve better performance at a smaller subset 
size when using the CSPA consensus function. The subset 
that achieved the maximal performance in HCAS-SNMI 

Fig. 7   Performance of HCAS-SQI using hierarchical clustering with 
Ward linkage. In (a) and (b), the red dashed line indicates the consen-
sus solution using the full ensemble Π , and the black dotted line rep-

resents the average NMI of all ensemble members (Reference 1). In 
(c) and (d), the dominant ratio Γ = 1.0 is shown as a red dashed line
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has about 60 members, which is half of the best-performing 
subset in SQI-SNMI. Of course, as the subset size increases, 
more low-quality members are selected, so it performs worse 
and eventually converges with strategy a.

Final comparison of all CES methods

In addition to improving the quality of clustering solu-
tions, there are other motivations and benefits of using CE 
methods. It is well known that a single clustering algorithm 
might fail for certain datasets that do not match well with 

the modeling assumptions [90]. CE method that uses multi-
ple base clustering algorithms applicable to various datasets 
can provide more robust performances. Strehl and Ghosh 
illustrated empirically the utility of CE as Feature distrib-
uted clustering, where different clustering solutions are built 
by selecting different subsets of the features while utilizing 
all the data points [13]. In the case of spectroscopy data of 
organic compounds, there are multiple aspects or "views" 
of the object to be clustered, as IR and Raman spectra of the 
same compound can complement each other as different fea-
tures of the same data point. Here we use a simple strategy 

Fig. 8   Final comparison of all CES method. CSPA consensus func-
tion. HCAS using Ward linkage and strategy b. In a–c the red dashed 
line indicates the consensus solution using the full ensemble Π , and 

the yellow dotted line represents HCAS-MQI-DC subsets. In d–f the 
dominant ratio Γ = 1.0 is shown as a red dashed line
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to build a hybrid ensemble library (IR + Raman) combin-
ing clustering solutions built using IR and Raman datasets 
of NPS compound: 150 ensemble members were randomly 
selected with replacements from each of the IR and Raman 
generated ensembles, jointly creating an ensemble library 
with 300 members.

The last experiment compares all CES methods. As 
seen in Figs. 6 and 7, although HBGF gives better full 
ensemble results, neither SQI nor HCAS-SQI can further 
improve the ensemble subset performance. In this final 
comparison, only the CSPA consensus function was used. 
The Bagging method described in “CES-bagging selec-
tion” in “CES—hierarchical cluster and select using sin-
gle quality index (HCAS-SQI)” section uses 50 bootstrap 
iterations to generate the ensemble subsets, and Strategy 
b and Ward linkage are used in HCAS-SQI. As described 
in “CES-hierarchical cluster and selection using multiple 
quality indices (HCAS-MQI)” section, the ensemble sub-
sets selected using HCAS-SQI with SNMI or Silhouette 
(HCAS-SNMI and HCAS-Silhouette) were merged using 
three combining strategies (HCAS-MQI-DC, HCAS-MQI-
WC, and HCAS-MQI-BC). Figure 8 shows the results 
obtained using the ensemble libraries generated from the 
IR and Raman datasets as well as the IR + Raman hybrid 

library. Table 3 provides the summary of the final com-
parison of all CES methods for the ensemble subset sizes 
of 20, 40, 60, 80, and 100, as well as the NMI values of 
the full ensemble consensus.

We first noticed that SQI-SNMI is very sensitive to 
ensemble subset sizes, and its performance is unfavorable 
for smaller set sizes. With the addition of more ensem-
ble members, its performance gradually improves and 
surpasses all other CES methods. This sensitivity is less 
severe when diversity is also considered in the HCAS-
SNMI approach, requiring only a smaller ensemble size 
to achieve its optimal performance. In contrast, the Bag-
ging method is relatively more robust with regard to the 
ensemble subset sizes.

In terms of the impact of the composition of the ensemble 
library, we observe that the Raman responds most strongly 
to the CES methods, as all CES methods except HCAS-SQI-
Silhouette and HCAS-MQI-BC result in improved perfor-
mance compared to the full ensemble consensus solution. 
It is also interesting to observe that the IR + Raman hybrid 
library benefits the most from the CE approach, although 
none of the CES methods can further improve performance. 
This hybrid library that merges complementary “views” 
of the data objects improves the intrinsic diversity of the 

Table 2   Results for SQI

Results that are statistically superior to the full ensemble (p<0.05, paired t-test) are shown in bold font

Data Consensus SQI-Qg Size Full

30 60 90 120 150 180

IR CSPA SQI-SNMI 0.628
(0.014)

0.631
(0.007)

0.634
(0.007)

0.627
(0.014)

0.626
(0.009)

0.627
(0.011)

0.618
(0.016)

SQI-Silhouette 0.616
(0.010)

0.612
(0.007)

0.611
(0.011)

0.612
(0.012)

0.616
(0.012)

0.608
(0.009)

Random 0.603
(0.006)

0.603
(0.006)

0.605
(0.007)

0.607
(0.007)

0.609
(0.005)

0.610
(0.007)

HBGF SQI-SNMI 0.647
(0.015)

0.637
(0.015)

0.647
(0.011)

0.654
(0.007)

0.667
(0.010)

0.666
(0.012)

0.652
(0.015)

SQI-Silhouette 0.652
(0.014)

0.658
(0.013)

0.663
(0.010)

0.652
(0.011)

0.642
(0.011)

0.632
(0.011)

Random 0.624
(0.005)

0.633
(0.007)

0.619
(0.008

0.617
(0.006)

0.620
(0.007)

0.623
(0.008)

Raman CSPA SQI-SNMI 0.652
(0.019)

0.681
(0.012)

0.689
(0.013)

0.697
(0.010)

0.694
(0.010)

0.690
(0.010)

0.661
(0.012)

SQI-Silhouette 0.668
(0.008)

0.662
(0.008)

0.657
(0.008)

0.655
(0.013)

0.669
(0.014)

0.667
(0.017)

Random 0.664
(0.005)

0.662
(0.004)

0.661
(0.004)

0.662
(0.003)

0.660
(0.004)

0.661
(0.004)

HBGF SQI-SNMI 0.651
(0.013)

0.671
(0.010)

0.678
(0.012)

0.694
(0.020)

0.693
(0.010)

0.698
(0.010)

0.690
(0.016)

SQI-Silhouette 0.692
(0.013)

0.698
(0.013)

0.705
(0.013)

0.708
(0.010)

0.700
(0.010)

0.693
(0.013)

Random 0.673
(0.005)

0.672
(0.007)

0.672
(0.008)

0.672
(0.006)

0.676
(0.006)

0.679
(0.006)
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clustering solutions, which we believe is the main reason 
for its superior performance.

Ward linkage and Strategy b were used in HCAS method 
when forming subset ΠS

g
 . The HCAS-MQI method merges 

the ensemble subsets created by HCAS-SQI-SNMI and 
HCAS-SQI-Silhouette. Only the CSPA consensus function 
was used in this analysis.

Table 3   Comparison across all 
CES methods

Results that are statistically superior to the full ensemble (p<0.05, paired t-test) are shown in bold font
The results of the CES method with the best maximum performance on each data set are underlined

Data CES methods Size Max Full

20 40 60 80 100

IR SQI-SNMI 0.615
(0.012)

0.626
(0.011)

0.631
(0.008)

0.635
(0.007)

0.636
(0.008)

0.638 0.618
(0.016)

SQI-Silhouette 0.622
(0.012)

0.612
(0.012)

0.613
(0.007)

0.615
(0.009)

0.612
(0.013)

0.636

Bagging 0.627
(0.013)

0.620
(0.010)

0.622
(0.009)

0.623
(0.012)

0.618
(0.013)

0.627

HCAS-SQI-SNMI 0.623
(0.010)

0.604
(0.010)

0.598
(0.010)

0.603
(0.011)

0.593
(0.009)

0.629

HCAS-SQI-Silhouette 0.611
(0.008)

0.610
(0.008)

0.598
(0.008)

0.596
(0.008)

0.594
(0.013)

0.625

HCAS-MQI-WC 0.607
(0.009)

0.603
(0.010)

0.600
(0.007)

0.602
(0.012)

0.599
(0.010)

0.621

HCAS-MQI-BC 0.621
(0.011)

0.613
(0.012)

0.604
(0.008)

0.600
(0.014)

0.600
(0.010)

0.624

Raman SQI-SNMI 0.641
(0.018)

0.659
(0.017)

0.681
(0.012)

0.686
(0.016)

0.691
(0.010)

0.691 0.661
(0.012)

SQI-Silhouette 0.668
(0.012)

0.670
(0.011)

0.662
(0.008)

0.663
(0.012)

0.657
(0.010)

0.673

Bagging 0.692
(0.016)

0.689
(0.013)

0.691
(0.010)

0.690
(0.012)

0.687
(0.010)

0.692

HCAS-SQI-SNMI 0.681
(0.015)

0.682
(0.012)

0.663
(0.011)

0.649
(0.010)

0.636
(0.012)

0.692

HCAS-SQI-Silhouette 0.661
(0.008)

0.657
(0.016)

0.653
(0.013)

0.646
(0.014)

0.638
(0.012)

0.663

HCAS-MQI-WC 0.661
(0.014)

0.652
(0.012)

0.638
(0.015)

0.643
(0.014)

0.646
(0.013)

0.673

HCAS-MQI-BC 0.689
(0.010)

0.683
(0.011)

0.687
(0.013)

0.670
(0.009)

0.652
(0.013)

0.689

IR + Raman SQI-SNMI 0.663
(0.024)

0.683
(0.017)

0.691
(0.011)

0.691
(0.010)

0.682
(0.014)

0.693 0.691
(0.020)

SQI-Silhouette 0.685
(0.013)

0.686
(0.017)

0.693
(0.017)

0.687
(0.017)

0.695
(0.013)

0.695

Bagging 0.684
(0.020)

0.690
(0.017)

0.688
(0.015)

0.686
(0.013)

0.683
(0.015)

0.691

HCAS-SQI-SNMI 0.673
(0.017)

0.675
(0.012)

0.689
(0.023)

0.680
(0.014)

0.677
(0.013)

0.693

HCAS-SQI-Silhouette 0.699
(0.017)

0.675
(0.014)

0.675
(0.012)

0.677
(0.012)

0.676
(0.010)

0.699

HCAS-MQI-WC 0.694
(0.021)

0.687
(0.015)

0.667
(0.015)

0.671
(0.010)

0.675
(0.010)

0.696

HCAS-MQI-BC 0.679
(0.014))

0.692
(0.018)

0.690
(0.017)

0.694
(0.011)

0.684
(0.019)

0.699
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Conclusion

In this paper, we investigate the utility of cluster ensem-
ble selection method (CES) in improving unsupervised 
learning tasks for high-dimensional spectroscopy data 
of organic compounds. Two complementary spectra of 
NPS compounds were used in this study, namely IR and 
Raman datasets, which were calculated using Gaussian16 
at the B3LYP/6–311 +  + G(d, p) level. The goal of the CES 
method is to select a subset of ensemble members from a 
large library of clustering solutions to form a consensus 
solution that achieves better performances than using the 
full ensemble. While ensemble learning algorithms in clas-
sification tasks, such as Bagging and Boosting, has become 
popular and widely used, unsupervised ensemble learning is 
much more difficult, and its application in high-dimensional 
spectroscopy data is worth investigating.

Four CES frameworks are proposed by incorporating 
commonly used clustering validation indices. The results 
presented in “Comparison of quality indices and consensus 
function in SQI method” section suggest that SQI method 
using SNMI and Silhouette can obtain consensus solu-
tions with quality higher than or equivalent to that of the 
full ensemble. Interestingly, although consensus solutions 
obtained using HBGF gives better results, it also required 
larger ensemble sizes compare to that used by CSPA. The 
HCAS method aims at select ensemble subsets by consid-
ering the diversity and quality of the ensemble members. 
For libraries containing more redundant ensemble members, 
CES is more effective in further improving performance 
compared to the full ensemble consensus scheme. The 
IR + Raman hybrid ensemble library is created by merging 
two complementary “views” of the organic compounds. This 
inherently more diverse library gives the best full ensemble 
consensus results. Overall, the Bagging method is recom-
mended because it provides the most robust results that are 
better than or comparable to the full ensemble consensus 
solutions.
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