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Abstract

One solution to the challenge of choosing an appropriate clustering algorithm is to combine different clusterings into a single
consensus clustering result, known as cluster ensemble (CE). This ensemble learning strategy can provide more robust and
stable solutions across different domains and datasets. Unfortunately, not all clusterings in the ensemble contribute to the
final data partition. Cluster ensemble selection (CES) aims at selecting a subset from a large library of clustering solutions
to form a smaller cluster ensemble that performs as well as or better than the set of all available clustering solutions. In
this paper, we investigate four CES methods for the categorization of structurally distinct organic compounds using high-
dimensional IR and Raman spectroscopy data. Single quality selection (SQI) forms a subset of the ensemble by selecting
the highest quality ensemble members. The Single Quality Selection (SQI) method is used with various quality indices
to select subsets by including the highest quality ensemble members. The Bagging method, usually applied in supervised
learning, ranks ensemble members by calculating the normalized mutual information (NMI) between ensemble members
and consensus solutions generated from a randomly sampled subset of the full ensemble. The hierarchical cluster and select
method (HCAS-SQI) uses the diversity matrix of ensemble members to select a diverse set of ensemble members with the
highest quality. Furthermore, a combining strategy can be used to combine subsets selected using multiple quality indices
(HCAS-MQI) for the refinement of clustering solutions in the ensemble. The IR +Raman hybrid ensemble library is created
by merging two complementary “views” of the organic compounds. This inherently more diverse library gives the best full
ensemble consensus results. Overall, the Bagging method is recommended because it provides the most robust results that
are better than or comparable to the full ensemble consensus solutions.

Keywords Clustering ensemble - Clustering ensemble selection - Bagging - Hierarchical cluster and selection - Normalized
mutual information - Consensus function

Abbreviations DC Direct combining

CE Cluster ensemble wC Weighted combining

CES Cluster ensemble selection BC Bagging combining

CSPA Cluster-based Similarity Partitioning
Algorithm

HBGF Hybrid Bipartite Graph Formulation Introduction

SQI Single Quality Index Selection

HCAS-SQI  Hierarchical Cluster and Select with Single In recent years, we have witnessed a dramatic explosion of
Quality Index chemical ‘big’ data from high-throughput screening (HTS),

HCAS-MQI Hierarchical Cluster and Select with Multi- combinatorial synthesis, and theoretical simulations. Unsu-
ple Quality Indices pervised machine learning, or pattern recognition, aims to

extract useful information using unlabeled data, has become
an indispensable tool for drug designers to mine chemical
information from large compound databases. Cluster analy-
sis is a type of unsupervised machine learning technique
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objects belonging to different clusters [1, 2], and it has
been applied to solve different research problems in vari-
ous fields. PubChem, a public repository for information on
small molecules and their biological activities, reported a
structure—activity relationship (SAR) clustering approach to
group non-inactive compounds according to their structural
similarity and bioactivity similarity to facilitate hit explora-
tion in the early stage of drug discovery [3]. Machine learn-
ing techniques are used increasingly in combination with
quantum chemical calculations or molecular modeling to
complement experiments for studying complex chemical
systems. Clustering of molecular dynamics (MD) trajecto-
ries is a commonly used approach that can reveal, explain,
and even predict the behavior of a particular experiment
[4]. The analysis of datasets obtained from molecular simu-
lations can often benefit from transforming the original
features into a lower dimensional representation, which is
referred to as dimensionality reduction [5]. The use of clus-
tering in molecular simulations is very common because
clustering can be seen as a way to compactly represent com-
plex multidimensional probability distributions and is there-
fore used as a complement to other dimensionality reduction
approaches. In addition, the clustering of gene expression
data has been proven to be valuable in revealing the inherent
structure in gene expression data, understanding gene func-
tions, and understanding gene regulation [6].

The commonly used clustering algorithms can be divided
into two classes: partitioning schemes and density-based
schemes. Using a partitioning scheme, one can find any
number of clusters from a set of data harvested from a uni-
form probability distribution. On the other hand, using a
density-based scheme, one will obtain a single cluster since
it corresponds to the peaks of the probability distribution.

Which approach one should employ strongly depends upon
the purpose of the analysis. The most commonly used par-
tition-based clustering algorithms are k-means [7], spectral
clustering [8], and hierarchical clustering [9]. The perfor-
mance of most clustering algorithms is highly data-depend-
ent, which means there is no single clustering method that
can learn any data set according to Kleinberg’s theorem
[10]. In addition, several challenges are inherent to cluster-
ing algorithms [11, 12]. Different techniques discover dif-
ferent structures from the same set of data objects because
each algorithm optimizes according to a specific criterion. A
single clustering algorithm with different parameter settings
can also reveal various structures in the same data set. How
to validate clustering results without a labeled test dataset.
Choosing a suitable clustering algorithm that can apply to
all data sets is difficult. It is crucial to choose a clustering
algorithm based on what is known about the dataset and
what is expected about the result.

One solution to the challenge in choosing a proper clus-
tering technique is by combining different clusterings into a
single consensus clustering solution. Cluster ensemble [13]
(CE), or consensus clustering, generates a consensus from
multiple clustering solutions without using the base cluster-
ing algorithms or original data features [14, 15]. CE strat-
egy is characterized by producing consensus partitions that
are more robust, novel, stable, and flexible than the clusters
produced by a single base clustering algorithm [16-18]. The
advantage of the CE strategy is that it can handle multiple
data sources or representations, with each model capturing
the big picture and complementing each other. As shown in
Fig. 1, CE has mainly two stages: (1) obtains a large library
of clustering solutions which should be highly diverse, and
then (2) combines these base partitions using a consensus
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function. It has been shown that ensembles are more efficient
when constructed from a set of clustering solutions with dis-
similar errors [19, 20]. It is shown that the clustering solu-
tions in the ensemble needed to be as diverse as possible to
give more information about the underlying patterns in the
data. A number of ensemble approaches have been proposed
to generate multiple diverse base clustering solutions from
a single dataset [21-23]. The second stage is difficult since
there is no well-defined correspondence between the differ-
ent clustering results. Traditionally, all clustering solutions
(full ensemble library) are combined with the use of a con-
sensus function to achieve the final solution. Various appli-
cations of CE have been implemented and deployed for drug
discovery and design. For example, CE method is exploited
to reduce cost and time for the process of High-Throughput
Screening for combining multiple clusterings of chemical
structures to enhance the ability of separating biologically
active molecules from inactive ones in each cluster [24-26].
Chu et al. used CE methods on sets of chemical compounds
represented by 2D fingerprints and concluded that consensus
methods can outperform the standard clustering method for
cheminformatics application [27].

Recently, various clustering ensemble selection (CES)
strategies have been proposed, aiming to select a subset
of clustering solutions from the ensemble library whose
consensus solution outperforms that of the full ensemble
[28-30]. Two critical questions need to be addressed in the
CES process: (1) How to measure the quality of clustering
solutions in the ensemble? (2) How to select a subset of
base clustering solutions with high quality and eliminate
the redundant base clustering solutions? Validation indices
used for measuring the quality of a data partition can be
categorized into two classes: internal and external indices.
The internal validation indices are based on the information
intrinsic to the data to assess the goodness of the clustering
structure without external data labels, which are usually used
to select the best clustering algorithm to be applied or the
optimal number of clusters present on a given data set. On
the other hand, the external validation indices measure the
similarity between the output of the clustering algorithm and
the correct partition of the data set (external data labels).
Note that the consensus function does not use the original
data features and that the dataset is unlabeled. Thus, the
quality of each clustering solution using external validation
indices can be defined as the pair-wise similarity among the
ensemble members or the similarity to the consensus solu-
tion of the full ensemble. Specifically, an external valida-
tion index, such as normalized mutual information (NMI)
or adjusted Rand index (ARI), is used to measure the shared
information of a clustering solution (ensemble member) with
the full ensemble. Past research has shown that when com-
bining clustering solutions into a final partition, diversity
and quality importantly impact the ensemble performance

[28, 31-33]. Another question that needs to be addressed is
what level of diversity would benefit the consensus solution,
and different opinions on the effects of diversity would trans-
late into different selection strategies in the cluster ensemble.

New psychoactive substances (NPS), also known as
designer drugs, are compounds that alter the molecular
structure of existing controlled substances to mimic their
pharmacological effects and circumvent legislation [34, 35].
New NPS are emerging at an alarming rate and often with-
out time for adequate experimental determination of their
pharmacological profile. By definition, designer drugs are
made up of chemical combinations that we have not seen
before. They almost never match traditional databases, and
chemists often don't know what they are looking for. In tra-
ditional drug testing, such as infrared (IR) and Raman, if
a sample does not match any known substance, it does not
yield a positive identification [36]. An unknown sample is
assigned to a given class or category by leverages informa-
tion extracted from training samples using pattern recogni-
tion techniques [37]. Most mature pattern recognition tech-
niques are based on supervised learning such as partial least
squares discriminate analysis (PLS-DA) and linear discrimi-
nant analysis (LDA) for classification, and calibration using
partial least squares regression (PLSR) [37, 38]. However,
unsupervised learning techniques (e.g., clustering analysis)
have not reached the same level of maturity in chemomet-
ric analysis. Cluster analysis is particularly useful when the
class structure of the data varies over time, or where the cost
of acquiring classified (labeled) samples might be too costly
to make it feasible to obtain the large data sets required for
some supervised learning techniques, especially in the case
of spectroscopic data [37].

The majority of the papers reporting the application of
cluster analysis to spectroscopy data focused on demon-
strating that an analytical testing technique, such as FTIR
spectroscopy, paired with cluster analysis, can discrimi-
nate between different classes of materials. Some papers
included a comparison of multiple clustering techniques,
and a few presented an evaluation of new clustering algo-
rithms [39—41]. There are scarce investigations of CES using
spectroscopy data in pharmaceutical or forensic analysis of
organic compounds. Designing a CES method that yields the
best results is not trivial (if possible) considering the variety
of options available. We report a comparative study of CES
workflows for clustering IR and Raman spectroscopy data,
with the aim of ensuring rigor and validity for future prac-
titioners performing cluster analysis. We show techniques
found in the contemporary pattern recognition and machine
learning literature include similarity measures used for clus-
tering, the clustering algorithm itself, how to choose the
number of clusters, and how to evaluate and quantify the
results. Furthermore, the workflow reported in this study
can be applied to other datasets beyond spectroscopy data,
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since CE only need to access clustering solutions rather than
original data.

The rest of this paper is arranged as follows: Section II
presents the related works on CES strategies. Section III
descries the different CES methods to be investigated in this
paper. Section IV describes the series of experiments to eval-
uate the performance different CES strategies. Section V is
the results and discussion. Section VI is the final conclusion.

Related work

Given a dataset X with N data points {xl, ,xN}, where
each data point x, € X is represented by a vector of D attrib-
ute values (or features), i.e., x, = (xp,l, ,xp’D). Let
I1= {”1» ,ﬂM} be an ensemble library with M clustering
solutions, each of which is referred to as an ‘ensemble mem-
ber’. Each clustering solution z; € I1 is represented as an N
-dimensional vector, which denotes a set of cluster labels
T = { c.c ..., Cliq } of N data points, where k; is the num-

ber of clusters in the i-th run of the clustering. For each
x, € X, 7, denotes the cluster label of data point X, in the
i-th base clustering. The cluster ensemble selection problem
is to find a new subset [T = {x,, ..., x,} where 7; € Il and
J < M, then a consensus function generates the final con-
sensus partition 7* = CT, CI*(, where K denotes the num-
ber of clusters in the final clustering partition result of a
dataset X that summarizes the information from the cluster
ensemble IT.

CES mainly includes three steps [22, 23]: (1) Genera-
tive mechanism: approaches that can produce diverse set of
clustering solutions of a given data set [18, 20, 21, 42-52].
(2) Ensemble subset selection: select ensemble members that
are differ from each other (diversity) and have a satisfactory
quality [28-30, 32, 53-55]. (3) Consensus function: com-
bine multiple clustering solutions into the final data partition
without gaining access to the clustering algorithms or data
features [13, 42, 56-60].

There are many ways to generate a diversity collection
of ensemble members for a given dataset, and there are no
restrictions on how the clustering solutions must be obtained.
Homogeneous ensembles are created using a single cluster-
ing algorithm and run iteratively with several sets of param-
eters. The non-deterministic k-means clustering algorithm is
commonly used with random initialization in this approach
[18, 21, 61, 62]. Since the output of the clustering algorithm
depends on the initial choice of the number of clusters k,
each clustering run can use a randomly selected value of
k from a pre-specified interval to increase the diversity of
the ensemble [63—65]. As a rule-of-thumb, the maximum
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number of clusters should be greater than the expected num-
ber of clusters, that can be set as max(k) = \/]Tl [20, 21,
44, 45] Heterogeneous ensembles are created using differ-
ent clustering algorithms to introduce diversity [50-52, 66].
Since each clustering algorithm has its own advantages and
disadvantages, using multiple algorithms can provide dif-
ferent decisions for data partitioning and complement each
other. Gionis et al. [66]. used hierarchical clustering with
single, average, complete, and Ward’s linkage as well as k
-means to generate the ensembles used in the study.

Clustering of high-dimensional data faces additional
challenges, such as poor discrimination of distance [67-69],
redundant features [69], and irrelevant features [70]. Studies
point out that as the dimensionality increases, the relative
distance between the farthest and nearest points converges
to zero. Traditionally, the vibrational spectrum of a sample
is matched to the corresponding experimental reference in
the database based on the deviation of the peak position.
With the development of data-driven methods in chemical
analysis, correlation coefficients, such as Pearson and Spear-
man, can be used as similarity measures for spectral data to
enable automated processing of large numbers of spectra
[71, 72]. Studies reported by van der Spoel et al. show that
Spearman's correlation can better represent the approximate
matching of frequency bands, while Pearson's correlation
can better represent the consistency of the most dominant
feature(s), and the two measures can be used in a comple-
mentary manner [71, 72]. Using either measure, the original
data set can be converted into a N X N similarity matrix and
subject to further clustering analysis.

The goal of the consensus function is to explore a clus-
tering z* that shares the highest amount of information
regarding the ensemble I1 = {7[1, cees TFM}. Different con-
sensus functions on the same ensemble diversity can results
in different consensus solutions. Consensus function based
on hypergraph partitioning, such as Cluster-based Similar-
ity Partitioning Algorithm (CSPA), hypergraph Partition-
ing Algorithm (HGPA), and Meta-Clustering Algorithm
(MCLA) are very popular and widely used [13]. CSPA
builds a similarity matrix based on the clustering solutions
in the ensemble, which measure for each pair of data points
the frequency of them being clustered together in the ensem-
ble, also referred to as the co-association matrix. However,
these algorithms act properly just for balanced clusters,
where cluster sizes are constrained to N/K. [73] Hybrid
Bipartite Graph Formulation (HBGF) [74] is a graph-based
hybrid method, which is introduced with the purpose to
improve the previous models of CSPA and MCLA that con-
siders only either the associations between data points or
those amongst clusters.
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Cluster ensembles are mainly applied to enhance the qual-
ity of single clustering results. Hence, a large library of clus-
tering solutions is generated to form the ensemble. A more
efficient consensus solution can be obtained if the ensemble
members are different from each other (diversity) and have
satisfactory quality [53, 75]. Especially when the ensemble
size is small, combining identical clustering solutions leads
to an inaccurate consensus solution [45]. In the supervised
classification task, the classifiers are ranked based on their
individual performance on a held-out test set, and the best
ones are picked. On the contrary, in unsupervised clustering,
the data sets are unlabeled, so it is impossible to estimate
the quality of individual clustering solutions by computing
their quality using the test set. This leads to unreliable clus-
tering solutions in a large ensemble, so not all ensemble
members are necessarily beneficial to the final consensus
solution [55, 76, 77]. Most methods in existing literature
work on the basis of label matching between two data parti-
tions. Generally, when the labels of two partitions are not
matched completely, then the two partitions are considered
diverse. The ARI and NMI are widely used to measure the
clustering solutions’ diversity and quality. Diversity meas-
ures can be further divided into pair-wise and non-pair-wise
fashions. Specifically, in the pair-wise diversity each ensem-
ble member is chosen as a class label implicitly, and other
ensemble members are measured by the chosen class label:
diversity(x;, 7;) = 1 — quality(r;, 7;). Based on an objec-
tive function introduced by Strehl and Ghosh [13], Lin and
Fern used SNMI(z;,11) = Z]Ail NMI(x;, m;) that measure
the information an ensemble member z; shares with all the
clustering solutions in the ensemble [28]. Naldi et al. [63]
report a comparative study using different internal validation
indices to select ensemble members and revealed that each
index may be more suitable for a specific data conformation,
on the basis of which they proposed a combination of indices
in the selection process.

Only a few researches have focused on the way a subset
of ensemble members must be chosen considering quality
and diversity [28, 76, 78]. Hadjitodorov et al. [45] used four
ARI-based diversity measures in the selection process, and
the results showed that ensemble subsets with median diver-
sity are usually significantly better than the subsets chosen at
random. Fern and Lin [28] introduced the Cluster And Select
(CAS) approach, which first divides all ensemble members
into K groups based on their similarity, then selects the
ensemble member with the highest quality from each group
to be included in the ensemble subset for the final consen-
sus solution. In this approach, the size of ensemble subset
is arbitrarily determined. Based on the CAS framework,

Akbari et al. [78] proposed Hierarchical cluster ensemble
selection (HCES) that identifies the subsets of ensemble
members considering both diversity and quality using hier-
archical clustering techniques with different linkage meth-
ods. On the other hand, Jia et al. [65] present the Selective
Spectral Clustering Ensemble (SELSCE) by applying the
bagging technique to rank and evaluate the ensemble mem-
bers. In the Hybrid clustering solution selection strategy
(HCSS) proposed by Yu et al. [79], the problem of selec-
tion of ensemble members is converted to feature selection.
They applied four feature selection strategies to create four
ensemble subsets. After that a merged subset is selected on
the basis of a weighting consensus function. Ma et al. [80]
also used different combination strategies that combine dif-
ferent subsets obtained by several selection algorithms. A
consensus matrix is then constructed and a normalized cut
algorithm is then applied as the consensus function.

Cluster ensemble selection methods

The CES is divided into three stages: the generation of the
base clustering ensemble library I1, the selection of the opti-
mal ensemble subset ITS, and the aggregated results using
the consensus function with the ensemble subset. Table 1
provides a concise summary of the four CES methods (Algo-
rithm b-e) evaluated in this paper, and a flow chart is also
given in Fig. 2. Note that the performance of CES methods
is evaluated by comparing to two references. It is reported
in the literature that the aggregated consensus results should
outperform the full ensemble. Therefore, the average per-
formance of all ensemble members is used as Reference 1.
Algorithm a is the traditional cluster ensemble approach in
which the consensus solution is computed using the full
ensemble and is referred as Reference 2.

Quality and diversity measures of clustering
solution

In this work, we chose four quality indices to evaluate the
ensemble members’ quality and to enable the selection of
the ensemble subset to generate the consensus solutions,
individually (SQI method) and combined (HCAS-MQI
method). The external validation index NMI is adopted to
measure the similarity between a pair of clustering solutions.
Let z; and ; (i,j e (,...,M)) be two ensemble members
with k; clusters C;, = {C!, C’2 e C/ls»} and kj clusters
Cj = {Cj s Cé e Ci/_ }, respectively. NMI is defined as:
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Table 1 CES Methods Evaluated in this paper

Reference 1. The average performance of all ensemble members
(Reference 2) Algorithm a.
Traditional Cluster Ensemble: compute consensus solution using the full ensemble I1
Algorithm b. Single Quality Index Selection (SQI):
Ensemble members are ranked according to a single quality index:
Q1-SNMI
Q,-Silhouette scote
Q3-Calinski Harabasz
Q4-Davies Bouldin
Algorithm c. Bagging Selection:
Ensemble members are ranked using the bagging technique by comparing to the consensus
solution of bootstrapped subsets
Algorithm d. Hierarchical Cluster and Select with Single Quality Index (HCAS-SQI):
Consider both ensemble members’ diversity and ranked according to a single quality index
Algorithm e. Hierarchical Cluster and Select with Multiple Quality Indices (HCAS-MQI):
Consider ensemble members’ diversity and combined rankings of multiple quality indices

using a combining strategy

Step 1. Base Clustering Ensemble Generation Original Dataset

Base Clustering Solution Library I1 = {7y, ..., Ty}

A
r _ o ______1
:_ Hierarchical Cluster and Select (HCAS) |
2 Input: similarity matrix of II |
Single Quality Selection Bagging Selection 1 l l —l
(SQI) HH = (T[l,...,ﬂ.'H), s . li
Q) — ; : M Quality Quality Qua ity
Rank®(m;) = Quality(m;) wher&? Hl 2 index Q, index Q, index Qg4
Rankfmal(x;) ns ns ns
Combining strategy
| Step 2. Final subset ns = (my,..,m),J<M |
| Step 3. Compute consensus solution Consensus function |
2T b. sQI c. Bagging d. HCAS-SQI e. HCAS-MQI
*
Tsor g THcAs-sQI THcAS-MQI
Fig.2 Flowchart of cluster ensemble selection methods. Algorithm a single quality index selection (SQI)”—“CES-Hierarchical cluster and
Consensus solution computed using the full ensemble I1. Algorithm selection using multiple quality indices (HCAS-SQI)” sections

b—e are CES methods summarized in Table 1 and described in “ CES-
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NMI (7, m;) = NMI(C;, C)) = —— ()

Mutual information I(C, Cj) is given as
H(Ci) - H(CJC}). H(C) is the Shannon entropy of C, and
H(C;|C;)is the conditional entropy of C; given C;. NMI=0
mean two partitions contain no information about one
another, whereases NMI =1 indicates two partitions contain
perfect information about one another. The first quality index
(Q;-SNMI) is then defined as [28]:

M
0, () = Ail > NMi (. x,,) 2)
m=1

Intuitively, an ensemble member 7; maximizing O, maxi-
mizes the information it shares with all the members in the
ensemble, thus can be considered to best capture the general
trend contained in the ensemble.

The Silhouette index (Q,-Silhouette) assesses how well
each data point x, belongs to its assigned cluster C,,. [81]
Each individual Silhouette number is evaluated as:

X —x0
(i) q P
ST G .19, 3)
max qu,xcp

where C, represents the closest cluster to each C,,. At each
depth on the dendrogram, the average silhouette number is
evaluated across all samples and calculated as:

N
1 )
0y (m) = 5 25" “
i=1

The Calinski Harabasz index [82] (Variance Ratio Crite-
rion) (Q5-Calinski Harabasz) evaluates the quality of a data
partition as:

_ traceB) n-—k
O (ﬂi) ~ trace(W) x k—1 )

where W and B are the within-group and between-group
dispersion matrices. The normalization term (n — k) /(k — 1)
prevents this ratio to increase monotonically with the num-
ber of clusters.

Davies Bouldin index [83] (Q,-Davies Bouldin) also
based on a ratio involving within-group and between-group
distances as follows:

k
Q4(7;) = % IZDZ (6)
=1

where D, = max,,,{D,,,}, term D,, is the within-to-
between cluster spread for the /th and mth clusters, hence D,
represents the worst case within-to-between cluster spread
involving the /th cluster. Hence, good data partition com-
posed of compact and separated clusters and distinguished
by small values of Davies Bouldin index, and the minimum
value is zero.

CES-single quality index selection (SQI)

In SQI method (Algorithm b), given I1, the ensemble mem-
bers are ranked according to the chosen quality index and
the selected ensemble subset is formed with the ensemble
members with the highest quality. Noted that Q,-Davies
Bouldin distinguished better partitions by smaller values,
the ensemble members are sorted in ascending order instead.
This method does not consider the diversity of ensemble,
hence redundant ensemble members can be included.

CES-bagging selection

The bagging technique, usually applied in supervised learn-
ing, can be used to evaluate the quality of ensemble mem-
bers and does not require the use of external ground truth
labels. Specifically, part of the ensemble is randomly sam-
pled to get a consensus result and then compute the NMI
between the consensus results and the ensemble members.
Finally, the ensemble members are ranked by aggregating
multiple NMI values. Given T rankings of M members in I1,
a combination function is defined as a function mapping the
T rankings of original IT members into a single combined
ranking:

Com : {RC'(t = (1,T)} » RC/™, (7)

where RC' = (Rank’(ﬂ] ),Rank’(ﬂl), ,Rank’(ﬁM)), and
Rank' (ﬂi) is the rank of the ensemble member 7; in the rank-
ing solution RC' where ¢t = (1, ..., T). The final ranking is the
average ranking of all ranking solutions defined as:

>I RC
T

RCfmal = , (¥

The Bagging selection algorithm (Algorithm c) is shown
in Fig. 3 and as follows:
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Algorithm c. Bagging Selection

Input: [1 = {m4,...,my}// the full ensemble of base clustering library

Step 1: Compute the ranking of selected ensemble members in 3.
Repear
Fort=(1,T):
[Tt randomly select (g) ensemble members from HSDC with replacement,
7"t obtaining a consensus partition using I1¢,
RC'< compute the similarity measure (NMI) between the consensus partition and the ensemble
members in [T,
End
Step 2: RC/inale compute the final ranking using T' ranking solutions of ensemble members in 3.
Step 3: Sort RC/ M@ in descending order.
Step 4: Select the first /* ensemble members as the reduced subset.

Output: [l = {m1,...m;+}/ /Final reduced subset

Algorithm c. Bagging Selection
Given Full Cluster Ensemble Members I1

S —— ’ l g §

I
’ Random Sampling with Replacement _‘

Set 1 Set 2 ‘ Set T
P

Consensus u‘:::::::u Consensus | | Consensus

Solution Solution ‘ Solution

\ RC1(m;) RC?(m;) RC™(m;) |
Y
Aggregated Ranking of Ensemble Members
. 1 RE®
t=1
RCYnal () = 22—

n"
Selection of Highest Ranked Ensemble Members

Fig.3 Flowchart of bagging selection method (Algorithm c)
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Step 1:

Input:
IT= {T[l,

;nM}

Diversity matrix

Step 2: Dendyogram of 11 members

Step 3 - Strategy a:
Select the ensemble

member with the
highest quality in each

Step 3 - Strategy b:
Rank(m;) = Sort(Quality(m;))
Then select top ] 4 ensemble

e members: 2
Levels | Number of "S,L n g
Groups g
1 k=1L [ CCING] H 05t = {nl,a}..,nf} [—
Compute consensus
solution from subset of
2 |k=L-1 [ o B H n%2 = {nf,n3 ...nf_1} |—> each layer
3 |k=L-2 [ €3, C3.nrs CPp H ns3 = {n},n3 ..,n}_,} |—
*,1
s = (T[ z i
s (w=r-3 | dctects | noteptatnty | & Hedser
\ =
< *,2
2 THcAs-sQD
2 —
3
=
S .
-
L—2 k=3 ci2,ck2, ck? ]_,[ns,l,—z = {rr{“z,nﬁ'z,n’g'z}]—»
\ *,L
"HCAS—SQI)
L-1 k=2 [ C{‘_I,Cé_I ]_,{ nst-1 = {n{‘-l’ﬂé-l} 1_,
L k=1 [ ct ]_.[ NSt = {mf} 1—»
L | _-

Fig.4 Flowchart of HCAS-SQI method (Algorithm d)

CES—hierarchical cluster and select using single

quality index (HCAS-SQI)

In HCAS-SQI method (Algorithm d), each ensemble mem-
ber is considered as an entity (node in the dendrogram).
The pair-wise diversity matrix is constructed use diversity
measure defined as:

Diversity(ﬂi, ﬂ'j) =1- NMI(”i’ ”j) ®

The ensemble members are partitioned by a hierarchical
clustering algorithm using the constructed diversity matrix.
Different agglomerative hierarchical clustering linkage
methods can be used such as single, average, and complete
linkage. The results can be displayed as a dendrogram that
includes nested partitions of all ensemble members. The
final grouping of ensemble members is obtained by cutting
the dendrogram at the proper layer. The subset ITS is formed
by select the highest quality member from each group, as
described below and shown in Fig. 4:
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Algorithm d. Hierarchical Cluster and Select with Single Quality Index (HCAS-SQI)

between two ensemble members.

partitioned as a dendrogram implicitly.

Strategy a:
for each layer L = (1,L):

Strategy b:
Jor layer L = 1:

Input: [1 = {m4,...,mp}// the full ensemble of base clustering library
Step 1: Compute pair-wise diversity measure matrix in which each element of matrix is diversity measure

Step 2: Using a hierarchical clustering algorithm on the diversity measure matrix, all ensemble members are

Step 3: Form selected subset l'[g using two strategies:

H;’L<— select one ensemble member from each group with highest Q.

HZ’1<— select one ensemble member from each group with highest Q4
Rank(m;) < sort ensemble members in descending order of @

H§<— select the first J; ensemble members as the final subset.

Output: H; = {m1,...7;,}/ /The selected subset of ensemble members using quality index Qg, where Jg

<M

Specifically, two strategies are used in Step 3 after the
dendrogram is partitioned at a layer L. The first strategy
(strategy a) is to simply select the highest quality ensem-
ble member from each group. The number of ensemble
members J, in the selected subset I8 is determined by the
number of groups in this layer. From bottom layer 1 to top
layer L, different subsets of ensemble members are chosen
with L to 1 ensemble members, respectively. At layer L (the
top layer), all ensemble members are included in one group
(Fig. 3), in this condition, it is equivalent to choosing the
ensemble member with the highest quality. However, in
strategy a, low-quality ensemble members can be selected
as long as they are diverse from the ensemble members in
other groups. In strategy b, the dendrogram is partitioned at
the bottom layer L = 1, then the highest quality ensemble
members are selected from each group, and subsequently
ranked according to their quality. The final ensemble subset
is formed by including the J, top-ranked ensemble members,
where J, < M.

CES-hierarchical cluster and selection using multiple
quality indices (HCAS-MQI)

HCAS-MQI (Algorithm e), is based on HCAS-SQI (Algo-
rithm d). After selecting subsets of Hg (g>1,...,G), where
G is the number of subsets from using different quality indi-
ces, a combining strategy can be used to generate the final
reduced ensemble subset. The three different combining
strategies evaluated in this study are:
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Direct combining (DC): directly combining selected
ensemble members in each subset IS to obtain a new
subset Hf)c. Any ensemble member that is selected by
one or more quality Indices.
Weighted combining (WC):

A unified weighting function, which takes into account
both the weights of the subsets and those of the base clus-
tering solution in each subset. Since each clustering solu-
tion z; corresponds to a partition of the data, it is reason-
able to adopt suitable criteria to measure the quality of the
clusters and assign the weights of base clustering solutions.
The Squared-Error Distortion (Distor) is designed to mini-
mize the mean squared distance from all data points to their
nearest cluster centroids, which is defined as follows:

N

5 2 0l V).

p=1

Distor(irj) = (10

where ¢ is the distance function and U is the set of clus-
ter centers.

Given a subset Hi , which contains J, o clustering solutions
selected from M full ensemble members of I, the weight of
selected ensemble member 7; in Hg is computed as follows:

—<Distor(7rj) - minj!:]Distor(frj)>
wé = exp

! 52{=1Distor(7zj)

. (1)
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The weights of the non-selected base clustering solu-
tions are set to 0, which means wf =0forz; € I - Hg.

The weight of a subset Hg is determined by the
weights of its selected base clustering solutions as fol-
lows:

_ 1 ¢
Ye= 7 2 v (12)
€l

where J is the number of chosen ensemble members by
the g-th HCAS run. The weights of subsets w, are then
re-normalized:

~ w_g—maxgzlw_
we=exp| ——— | (13)

52g=1wg

a. Direct combining (DC)

Subset 117 Subset I13

The weighting function y (x;) of each base cluster-
ing solution 7, is calculated based on the weights of the
subsets and individual wf in each subset as follows:

G
x(m) =Y W, e wf, (14)
g=1
c. Bagging combining (BC):
The Bagging technique described in “CES-bagging selec-
tion” section is used, but Hf)c is used as the input instead.

The HCAS-MQI with different combining strategies are
shown in Fig. 5 and as follows:

S
Subset I1 E

M5cas—pe = M5 UTI5 U - U= {ny, ..., ty} //Reduced subset

b. Weighted combining (WC)

Subset I15

Subset 15

s
Subset I

J :

w7 |

x(m;) = X5_, Wy - w{//Weight of each ensemble member 7; in I1

v

Mfcas—we = {m1, ., 7;+} //Final reduced subset

c. Bagging combining (BC)

Subset IT7 Subset I13

s
Subset I1;

3cas—pe = 5 U U+ U I3 = {my, ..., my} //Reduced subset from Direct combining (DC)

[

|

[ ot rety || mRatre?y || | (ne, =", Re?y |

——

RCfinal — 2foi RCt
T

//Final combined ranking of ensemble member 7; in I13

\Z

M cas—pc = {m1, ..., 7 }//Final reduced subset

Fig.5 Flowchart of HCAS-MQI method (Algorithm e) of different combining strategies
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Algorithm e. Hierarchical Cluster and Select with Multiple Quality Indices (HCAS-MQI)

Step 2. Generate combined final reduced subset:

Direct combining (DC):

Weighted combining (WC):

For each subset Hg:

Bagging combining (BC):

As described in section 3.3

Input: [1 = {m4,...,mpy}// the full ensemble of base clustering library

Step 1. Generation ensemble subset using HCAS-SQI as described in Algorithm d:
IS = {HS,...,H‘E;}H G subsets of selected ensembles using different quality index Qg

M3caspc =T U3 U -+ UIIE = {m1,..,7y}/ /Final reduced subset from DC

Step 2a. Distor(7;) < compute the Squared-Error Distortion of each ensemble member
Step 2b. W)(-J(— compute the weight of each ensemble member, where the weight of non-
selected ensemble member is set to 0
Step 2c. Wy« compute the weight of each subset

Step 2d. W< compute the re-normalized. Weights of subsets

Step 2e. y(m;)< the weighting function for each ensemble member

Mcas_pc =T U5 U - UTIS = {mq,..,7my}/ /Final reduced subset from DC

Output: H%CAS—MQI = {my,..,m*}/ /Final reduced subset

Methods and materials
Dataset acquisition and curation

A total of 127 unique NPS compounds were selected from
16 major core chemical structure categories. These include
17 natural or synthetic opioids, 62 stimulants (piperidines,
tropane alkaloids, amphetamines, cathinones, aminoindanes,
and benzofurans), 35 hallucinogens (2C, 2C-B, and 2C-T
series, and tryptamines), 6 sedatives (benzodiazepines), and
7 cannabinoids. A total of 10 low-energy conformers were
generated by PubChem3D [84], which samples the ener-
getically accessible and biologically relevant conformations
of chemical structures using the average atomic pairwise
rmsd. The geometry optimizations were performed using the
Gaussian 16 program [85] using the B3LYP level of DFT in
combination with the 6-311+ + G(d, p) basis set. Different
basis sets (6-31G(d), 6-31+ +G(d, p), 6-311+ +G(d, p))
were used with B3LYP for the computation of the spec-
tra as described in our previous study [86]. The results
were compared to the experimental gas IR spectra avail-
able at the NIST [87] for six compounds, and the unscaled
6-311+ + G(d, p) spectra resulted in the highest spectral
correlation coefficients. Redundant conformers converged
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to the same structure were eliminated from the dataset, thus
leaving a total of 930 conformations. The harmonic vibra-
tional wavenumbers of all conformers were determined at
the corresponding optimized structures, which were con-
firmed to be local minima by checking that there were no
imaginary frequencies. The dynamic Raman scattering activ-
ity was calculated with the polarizability gradient method
with laser excitation wavelength set at 785 nm, which corre-
sponds to a wavelength of 12,739 cm™ and 0.0580 Hartree.
The IR spectra and Raman spectra were truncated from 400
to 4000 cm™! and 200 to 1800 cm™!, respectively, with an
interval of 2 cm™'. Therefore, two separate datasets were
obtained for the NPS compound set, using IR and Raman
spectra as features, where the dimensions of the data sets
are: (930 x 1801) and (930 x 801), respectively. See Sup-
porting Document Appendix B and C for more details.

Generation of base clustering ensemble [l

Mixed heuristics were used to diversify the base clustering
ensemble. First, two correlation coefficients are used as a
spectral similarity measure to project the original spectral
feature to NV by N spectral similarity matrix, see Supporting
Document Appendix D. This, including the original dataset,
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resulted in three data representations. Each of the following
diversifying approaches was applied to all three data repre-
sentations. Second, for each clustering run, the number of
clusters k predicted for that run, is set by randomly draw-
ing a number between 2 and c, where c is defined as \/ﬁ .
Third, the iterative clustering algorithm k-means is applied
with different random initialization. Fourth, the determinis-
tic clustering algorithm hierarchical clustering is used with
five different linkage methods, which generate different den-
drograms and subsequently different clustering solutions.
The above settings are used to generate the base cluster-
ing ensemble IT with 300 ensemble members. All reported
results are averaged across 20 evaluations.

Consensus functions

We experimented with the popular approaches include the
Cluster-based Similarity Partitioning Algorithm (CSPA)
[13] and Hybrid Bipartite Graph Formulation (HBGF) [74].
We apply both to produce a final partition of the data points
into K clusters, where K is the number of known classes in
the NPS dataset. Both CSPA and HBGF are implemented
from using the ClusterEnsembles Python package [88].

Performance evaluation criterion

Since the ground truth label is unknown, the class labels of
the NPS dataset are used as a surrogate. The degree to which
two molecules are considered 'similar’ depends on both their
structural encoding and the similarity metric used. The class
label of NPS compounds is assigned using the Maximum
Common Substructure (MCS) similarity defined as:

Ne

Tyes = ——————,
Mes = NN, — N, (15)

where N is the number of matched heavy atoms in MCS of
molecule A and B, N, and Ny are the number of heavy atoms
in molecule A and B, respectively. T),-¢ was calculated using
the rdFMCS modules implemented in RDKit software [89].
The affinity matrices were used as input and submitted to a
Ward linkage clustering with Euclidean distance as the simi-
larity metric for hierarchical clustering. The optimal num-
ber of clusters K was determined by silhouette index (SI)
analysis (see Supporting Document Appendix E, Figure S1).

The performance of CES methods and the traditional
cluster ensemble approach is measured by the average value
of the NMI between the predicted cluster labels and the
ground truth labels after performing the evaluation 20 times.

Another measure, Dominant ratio (I') [79], is defined
based on NMI to evaluate the effectiveness of clustering
solution selection strategies as follows:

NMI(YS,Y)
=————, 16

NMI(YS,Y) (16)
where Y is the set of ground truth labels, Yf is the set of
predicted cluster labels derived from the selected ensemble
subset IT° by the CES strategy, and Yg is the predicted clus-
ter label set derived from the remaining unselected cluster-
ing solutions IT — II5. A better CES strategy will result in a
higher value of the dominant ratio (I).

Results and discussion

The following results report the NMI and I" on each CES
method while varying the size of the ensemble subset from
5 to 200. Since the full ensemble consensus solution uses all
ensemble members, it is not possible to calculate their I'. In
addition, we report the performance of a randomly selected
strategy that forms an ensemble subset by randomly draw-
ing from the library, which is repeated 10 times in each run.
As mentioned earlier, each number reported is an average
of 20 runs. The class label (ground truth) of the NPS data
set is used only to evaluate the CES methods, and is not
used in the CES process. All experiments were performed
using both IR and Raman data sets, only unique results are
shown. For the proposed CES methods and the Random
method, each of their results was compared with the full
ensemble, and those that are statistically superior to the full
ensemble (p < 0.05, paired t-test) are shown in bold font.
The performances of quality indices, consensus functions,
and individual CES methods are shown in Figs. 6, 7, 8 and
Tables 1, 2, 3. The subfigures on the right give the NMI
values determined using the ground truth labels, whereas the
sub-figures on the right show the dominant ratio I'. The size
of the selected subsets is plotted on the x-axis.

Comparison of quality indices and consensus
function in SQI method

In this experiment, the four quality indices presented in
“ Quality and diversity measures of clustering solution”
section were used in the SQI method. The ensemble subsets
selected using SQI with a single quality index are referred
to as SQI-Q, (SQI-SNMI, SQI-Silhouette, SQI-Calinski
Harabasz, and SQI-Davies Bouldin). The results obtained
using the IR dataset are shown in Fig. 6. Subfigures (a) and
(c) show the results of using the CSPA consensus func-
tion, and subfigures (b) and (d) show the results of using
the HBGF consensus function. Table 2 report the NMI val-
ues for ensemble subset sizes of 30, 60, 90, 120, 150, and
180 obtained from each combination of data set, consensus
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b- IR, HBGF
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NMI
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=+ Random ~—— SQI-Calinski Harabasz
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C. IR, CSPA

Dominant ratio

=+ Random — SQI-Calinski Harabasz
0.7 A — SQI-SNMI — SQI-Davies Bouldin
SQI-Silhouette
T T T T T T T
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d. IR, HBGF

Dominant ratio

0.8 4
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=+ Random ~— SQI-Calinski Harabasz

= SQI-SNMI = SQI-Davies Bouldin = SQI-SNMI = SQI-Davies Bouldin
0.500 4 — SQI-Silhouette —— SQI-Silhouette
T T T T T T T 0.4 T T T T T T T
25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200

Size of selected subset

Fig.6 Performance of SQI using different quality indices and consen-
sus function. In (a) and (b), the red dashed line indicates the consen-
sus solution using the full ensemble I1, and the black dotted line rep-

function, and SQI method, as well as the NMI values of the
full ensembles.

To understand whether the full ensemble consensus solu-
tion is influenced by the quality of ensemble members, we
compared the average and NMI distributions of the ensemble
members generated using the IR and Raman datasets. As
shown in Fig S3 in Appendix F of the Supporting Document,
the average NMI of ensemble members using the Raman
dataset is 0.608, while the average NMI using the IR data set
is only 0.526. As expected, the quality of ensembles gener-
ated of the NPS compounds using IR and Raman datasets is
different. However, it is uncertain whether this discrepancy
is due to the lower dimensionality of the Raman data set.
As shown in Table 2 and Fig. 6, the quality of the ensemble
has a positive effect on the full ensemble consensus solu-
tion, for which the full ensemble consensus solution using
Raman dataset is superior, regardless of the consensus func-
tion used.

The Random method was included to ensure that the
performance improvement observed with the CES meth-
ods could not have been achieved by chance. The Random
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Size of selected subset

resents the average NMI of all ensemble members. In (¢) and (d), the
dominant ratio I' = 1.0 is shown as a red dashed line

method represents the CE approach that does not take into
account the quality or diversity of the ensemble members.
The results shown in Fig. 6 confirm this, as the Random
selection method is generally worse than the full ensemble
consensus solution across different subset sizes. We also see
that the quality indices SNMI and Silhouette can effectively
improve consensus performance. On the other hand, subsets
selected using Calinski Harabasz or Davies Bouldin only
perform comparably to the Random method for increasingly
larger subset sizes. It is interesting to note that for the Raman
data set, as can be seen in Appendix Figure S4, the Random
method performed respectably well in comparison to that
of the full ensemble. This suggests that there exists larger
amount of redundancy in the libraries.

Evaluate the effect of diversity in HCAS-SQI

The HCAS method reduces the redundancy in the ensem-
ble library by hierarchically partitioning the ensemble
members into different groups using the pairwise diversity
matrix of the ensemble. The HCAS-SQI method described
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Fig. 7 Performance of HCAS-SQI using hierarchical clustering with
Ward linkage. In (a) and (b), the red dashed line indicates the consen-
sus solution using the full ensemble II, and the black dotted line rep-

in “CES—hierarchical cluster and select using single qual-
ity index (HCAS-SQI)” section was tested with a focus on
assessing which selection strategy is more effective. To
simplify the analysis, only SNMI and Silhouette quality
indices were used, and the ensemble subsets selected using
HCAS-SQI with a single quality index are referred to as
HCAS-Q, (HCAS-SNMI and HCAS-Silhouette). From the
discussion in “Comparison of quality indices and consen-
sus function in SQI method ™ in “CES—hierarchical clus-
ter and select using single quality index (HCAS-SQI)”
section, we see that although the ensemble quality is on
average higher using the Raman data set, there is greater
redundancy in the ensemble library. Therefore, the Raman
data set library may benefit more from a CES method that
takes into account the diversity among ensemble mem-
bers. The results obtained using the Raman data set using
the CSPA and HBGF consensus functions are shown in
Fig. 7. Different clustering linkage methods were used in
this experiment, and since there is no statistical differ-
ence among the results of these linkage methods, only the
results obtained using Ward's linkage method are shown
here.

When constructing a tree diagram of ensemble members,
the size of the clusters is requested to be 150. Strategy a

C. CSPA
1.075 A
1.050 o
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[}
.‘E
=~ 1.000 +
=
=}
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£ 0975 A
g N
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(= - Y b TP B 25 A s o
09501 /) 7 T===3CT54% T \‘,‘;\1\ //-x,j—\i—;'\,/
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-]
o 5
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=
=
<
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g
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resents the average NMI of all ensemble members (Reference 1). In
(¢) and (d), the dominant ratio I" = 1.0 is shown as a red dashed line

is equivalent to cutting the dendrogram from the top layer
to the bottom layer and gradually generating more distinct
groups towards the lower layer. At each layer, a subset is
formed by selecting the highest quality ensemble members
from each group. At the top layer, all ensemble members are
in one group, so the strategy a selects one ensemble member
with the highest quality from the library, which is equiva-
lent to that of the SQI method. However, starting from the
second-top layer, it starts to diverge from the SQI method, as
equally high-quality but redundant ensemble members will
not be selected. Thus, while trying to increase diversity, a
subset of the ensemble of the same size contains more low-
quality members. As can be seen in Fig. 7, this CES strategy
did not lead to improvements.

Strategy b can be considered a special case of strategy a.
At the bottom layer L = 1, all ensemble members are divided
into 150 diverse groups, and the highest quality members in
each group are first selected and then sorted again according
to their quality. Then, subsets of different sizes are formed
by including the top-ranked ensemble members. As sup-
ported by the results, the advantage of strategy b is obvious
because it can achieve better performance at a smaller subset
size when using the CSPA consensus function. The subset
that achieved the maximal performance in HCAS-SNMI
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Fig.8 Final comparison of all CES method. CSPA consensus func-
tion. HCAS using Ward linkage and strategy b. In a—c the red dashed
line indicates the consensus solution using the full ensemble IT, and

has about 60 members, which is half of the best-performing
subset in SQI-SNMI. Of course, as the subset size increases,
more low-quality members are selected, so it performs worse
and eventually converges with strategy a.

Final comparison of all CES methods
In addition to improving the quality of clustering solu-
tions, there are other motivations and benefits of using CE

methods. It is well known that a single clustering algorithm
might fail for certain datasets that do not match well with
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the modeling assumptions [90]. CE method that uses multi-
ple base clustering algorithms applicable to various datasets
can provide more robust performances. Strehl and Ghosh
illustrated empirically the utility of CE as Feature distrib-
uted clustering, where different clustering solutions are built
by selecting different subsets of the features while utilizing
all the data points [13]. In the case of spectroscopy data of
organic compounds, there are multiple aspects or "views"
of the object to be clustered, as IR and Raman spectra of the
same compound can complement each other as different fea-
tures of the same data point. Here we use a simple strategy
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Table 2 Results for SQI

Data Consensus  SQI-Q, Size Full
30 60 90 120 150 180
IR CSPA SQI-SNMI 0.628  0.631  0.634 0.627 0.626 0.627  0.618
(0.014) (0.007) (0.007) (0.014) (0.009) (0.011) (0.016)
SQI-Silhouette 0.616  0.612  0.611 0.612 0.616  0.608
(0.010) (0.007) (0.011) (0.012) (0.012) (0.009)
Random 0.603 0.603 0.605 0.607 0.609 0.610
(0.006) (0.006) (0.007) (0.007) (0.005) (0.007)
HBGF SQI-SNMI 0.647 0.637 0.647 0.654 0.667 0.666 0.652
(0.015) (0.015) (0.011) (0.007) (0.010) (0.012) (0.015)
SQI-Silhouette 0.652  0.658  0.663  0.652  0.642  0.632
(0.014) (0.013) (0.010) (0.011) (0.011) (0.011)
Random 0.624  0.633 0.619 0.617 0.620 0.623
(0.005) (0.007) (0.008 (0.006) (0.007) (0.008)
Raman CSPA SQI-SNMI 0.652 0.681 0.689 0.697 0.694 0.690 0.661
(0.019) (0.012) (0.013) (0.010) (0.010) (0.010) (0.012)
SQI-Silhouette 0.668  0.662  0.657  0.655 0.669  0.667
(0.008) (0.008) (0.008) (0.013) (0.014) (0.017)
Random 0.664  0.662  0.661 0.662  0.660  0.661
(0.005) (0.004) (0.004) (0.003) (0.004) (0.004)
HBGF SQI-SNMI 0.651  0.671 0.678  0.694 0.693  0.698  0.690
(0.013) (0.010) (0.012) (0.020) (0.010) (0.010) (0.016)
SQI-Silhouette 0.692  0.698  0.705 0.708 0.700  0.693
(0.013) (0.013) (0.013) (0.010) (0.010) (0.013)
Random 0.673 0.672 0.672 0.672 0.676  0.679
(0.005) (0.007) (0.008) (0.006) (0.006) (0.006)

Results that are statistically superior to the full ensemble (p<0.05, paired t-test) are shown in bold font

to build a hybrid ensemble library (IR + Raman) combin-
ing clustering solutions built using IR and Raman datasets
of NPS compound: 150 ensemble members were randomly
selected with replacements from each of the IR and Raman
generated ensembles, jointly creating an ensemble library
with 300 members.

The last experiment compares all CES methods. As
seen in Figs. 6 and 7, although HBGF gives better full
ensemble results, neither SQI nor HCAS-SQI can further
improve the ensemble subset performance. In this final
comparison, only the CSPA consensus function was used.
The Bagging method described in “CES-bagging selec-
tion” in “CES—hierarchical cluster and select using sin-
gle quality index (HCAS-SQI)” section uses 50 bootstrap
iterations to generate the ensemble subsets, and Strategy
b and Ward linkage are used in HCAS-SQI. As described
in “CES-hierarchical cluster and selection using multiple
quality indices (HCAS-MQI)” section, the ensemble sub-
sets selected using HCAS-SQI with SNMI or Silhouette
(HCAS-SNMI and HCAS-Silhouette) were merged using
three combining strategies (HCAS-MQI-DC, HCAS-MQI-
WC, and HCAS-MQI-BC). Figure 8 shows the results
obtained using the ensemble libraries generated from the
IR and Raman datasets as well as the IR + Raman hybrid

library. Table 3 provides the summary of the final com-
parison of all CES methods for the ensemble subset sizes
of 20, 40, 60, 80, and 100, as well as the NMI values of
the full ensemble consensus.

We first noticed that SQI-SNMI is very sensitive to
ensemble subset sizes, and its performance is unfavorable
for smaller set sizes. With the addition of more ensem-
ble members, its performance gradually improves and
surpasses all other CES methods. This sensitivity is less
severe when diversity is also considered in the HCAS-
SNMI approach, requiring only a smaller ensemble size
to achieve its optimal performance. In contrast, the Bag-
ging method is relatively more robust with regard to the
ensemble subset sizes.

In terms of the impact of the composition of the ensemble
library, we observe that the Raman responds most strongly
to the CES methods, as all CES methods except HCAS-SQI-
Silhouette and HCAS-MQI-BC result in improved perfor-
mance compared to the full ensemble consensus solution.
It is also interesting to observe that the IR +Raman hybrid
library benefits the most from the CE approach, although
none of the CES methods can further improve performance.
This hybrid library that merges complementary “views”
of the data objects improves the intrinsic diversity of the

@ Springer



Journal of Computer-Aided Molecular Design

Table 3 Comparison across all
CES methods

Data CES methods Size Max  Full
20 40 60 80 100
IR SQI-SNMI 0.615 0.626 0.631 0.635 0.636  0.638 0.618
(0.012)  (0.011) (0.008) (0.007) (0.008) (0.016)
SQI-Silhouette 0.622 0.612 0.613 0.615 0.612 0.636
(0.012)  (0.012) (0.007) (0.009) (0.013)
Bagging 0.627 0.620 0.622 0.623 0.618 0.627
(0.013)  (0.010) (0.009) (0.012) (0.013)
HCAS-SQI-SNMI 0.623 0.604 0.598 0.603 0.593 0.629
(0.010) (0.010) (0.010) (0.011) (0.009)
HCAS-SQI-Silhouette  0.611 0.610 0.598 0.596 0.594  0.625
(0.008)  (0.008) (0.008) (0.008) (0.013)
HCAS-MQI-WC 0.607 0.603 0.600 0.602 0.599 0.621
(0.009) (0.010) (0.007) (0.012) (0.010)
HCAS-MQI-BC 0.621 0.613 0.604 0.600 0.600 0.624
(0.011)  (0.012) (0.008) (0.014) (0.010)
Raman SQI-SNMI 0.641 0.659 0.681 0.686 0.691 0.691 0.661
(0.018)  (0.017) (0.012) (0.016) (0.010) (0.012)
SQI-Silhouette 0.668 0.670  0.662 0.663 0.657 0.673
(0.012)  (0.011) (0.008) (0.012) (0.010)
Bagging 0.692 0.689  0.691 0.690 0.687  0.692
(0.016)  (0.013) (0.010) (0.012) (0.010)
HCAS-SQI-SNMI 0.681 0.682 0.663 0.649 0.636  0.692
(0.015) (0.012) (0.011) (0.010) (0.012)
HCAS-SQI-Silhouette  0.661 0.657 0.653 0.646 0.638 0.663
(0.008) (0.016) (0.013) (0.014) (0.012)
HCAS-MQI-WC 0.661 0.652 0.638 0.643 0.646 0.673
(0.014)  (0.012) (0.015) (0.014) (0.013)
HCAS-MQI-BC 0.689 0.683 0.687 0.670  0.652 0.689
(0.010) (0.011) (0.013) (0.009) (0.013)
IR+Raman SQI-SNMI 0.663 0.683 0.691 0.691 0.682 0.693 0.691
(0.024) (0.017) (0.011) (0.010) (0.014) (0.020)
SQI-Silhouette 0.685 0.686 0.693 0.687 0.695 0.695
(0.013)  (0.017) (0.017) (0.017) (0.013)
Bagging 0.684 0.690  0.688 0.686 0.683 0.691
(0.020) (0.017) (0.015) (0.013) (0.015)
HCAS-SQI-SNMI 0.673 0.675 0.689 0.680 0.677 0.693
(0.017)  (0.012) (0.023) (0.014) (0.013)
HCAS-SQI-Silhouette  0.699 0.675 0.675 0.677 0.676  0.699
(0.017)  (0.014) (0.012) (0.012) (0.010)
HCAS-MQI-WC 0.694 0.687 0.667 0.671 0.675 0.696
(0.021)  (0.015) (0.015) (0.010) (0.010)
HCAS-MQI-BC 0.679 0.692 0.690 0.694  0.684  0.699
(0.014)) (0.018) (0.017) (0.011) (0.019)

Results that are statistically superior to the full ensemble (p<0.05, paired t-test) are shown in bold font

The results of the CES method with the best maximum performance on each data set are underlined

clustering solutions, which we believe is the main reason

for its superior performance.

Ward linkage and Strategy b were used in HCAS method
when forming subset Hi. The HCAS-MQI method merges

@ Springer
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was used in this analysis.
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Conclusion

In this paper, we investigate the utility of cluster ensem-
ble selection method (CES) in improving unsupervised
learning tasks for high-dimensional spectroscopy data
of organic compounds. Two complementary spectra of
NPS compounds were used in this study, namely IR and
Raman datasets, which were calculated using Gaussian16
at the B3LYP/6-311 + 4+ G(d, p) level. The goal of the CES
method is to select a subset of ensemble members from a
large library of clustering solutions to form a consensus
solution that achieves better performances than using the
full ensemble. While ensemble learning algorithms in clas-
sification tasks, such as Bagging and Boosting, has become
popular and widely used, unsupervised ensemble learning is
much more difficult, and its application in high-dimensional
spectroscopy data is worth investigating.

Four CES frameworks are proposed by incorporating
commonly used clustering validation indices. The results
presented in “Comparison of quality indices and consensus
function in SQI method” section suggest that SQI method
using SNMI and Silhouette can obtain consensus solu-
tions with quality higher than or equivalent to that of the
full ensemble. Interestingly, although consensus solutions
obtained using HBGF gives better results, it also required
larger ensemble sizes compare to that used by CSPA. The
HCAS method aims at select ensemble subsets by consid-
ering the diversity and quality of the ensemble members.
For libraries containing more redundant ensemble members,
CES is more effective in further improving performance
compared to the full ensemble consensus scheme. The
IR + Raman hybrid ensemble library is created by merging
two complementary “views” of the organic compounds. This
inherently more diverse library gives the best full ensemble
consensus results. Overall, the Bagging method is recom-
mended because it provides the most robust results that are
better than or comparable to the full ensemble consensus
solutions.
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