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Perovskite oxides have been of high-interest and relatively well studied over the last 20 years due to

their various applications, specifically for solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells

(SOECs). One of the key properties for a perovskite to perform well as a component in SOFCs, SOECs,

and other high-temperature applications is its thermal expansion coefficient (TEC). The use of machine

learning (ML) to predict material properties has greatly increased over the years and has proven to be a

very useful tool for materials screening. The process of synthesizing and testing perovskite oxides is

laborious and costly, and the use of physics-based models is often highly computationally expensive.

Due to the amount of elements able to be accommodated in the ABO3 structure and the ability for

crystallographic mixing in both the A and B-sites, there are a massive amount of possible ABO3

perovskites. In this paper, a ML model for the prediction of the TECs of AA0BB0O3 perovskites is

produced and applied to millions of potential compositions resulting in reliable TEC predictions for

150451 of the compositions.

1. Introduction

The perovskite structure type has the largest number of repre-
sentatives with known structure reported to date in Pearson’s
crystallographic data (PCD) databases, with over 20 000 experi-
mental reports (Fig. 1).1 (Perovskites are especially numerous,
when more derivatives like High-Tc cuprates are added to the
perovskite family.) Many reports on perovskites began in the
late 1980s during a spark of interest in super conductive
materials and since then there have been several large spikes
in perovskite research due to their various applications.2–4 The
structure of perovskite is deceptively simple (Fig. 2), given that
the substitution of elements in the ABX3 structure results in
various distortions, which affects the desired properties.

Perovskite-type oxides have received a considerable amount
of attention over the last few decades because of their attractive

physical and chemical properties. The perovskite structure is
very versatile, which enables them to perform excellently in
several high-interest applications, including high temperature
technologies such as solid oxide fuel cells (SOFCs), and solid
oxide electrolysis cells (SOECs).5–22 In these high temperature
applications one of the properties that is essential to performance
is the thermal expansion coefficients (TECs) of the materials used
for certain device components. Thermal expansion coefficients

Fig. 1 Structure type statistics of top 10 most reported structure types
from PCD.
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are proportionality constants of how a material expands or
contracts with a change in temperature. Using materials with
incompatible TECs in a device can cause strain and lead to
defects, which greatly impacts the device’s longevity and overall
performance. For example, in SOFCs and SOECs incompatible
TECs between the cell components causes delamination in the
cells, which causes them to degrade rapidly.23,24

The ABO3-type structure subset of perovskite oxides is able to
accommodate a large range of elements in both the A and B-sites
and both sites can be shared by atomic mixing, which causes
there to be an immense amount of possible ABO3-type perovskite.
The overall relationship between the degree of atomic mixing in
the crystallographic sites and the TEC is not very well understood
as it is heavily dependent on the elements involved, and as shown
later in this paper there are many element properties that effect
the TEC value. Even though there has been an extensive amount
of research related to perovskite oxides, only a relatively small
amount of possible compositions have been studied25–27 (Fig. 1).

In recent years the use of machine learning (ML) to predict
material properties and to computationally screen for potential
high performance materials has substantially increased.28–34

However, these efforts are typically limited to theoretical study
and rarely result in experimental validations.31 In comparison to
using ML, the process of synthesizing and testing the properties
of perovskites is very time consuming and costly. While there
are physics-based simulation techniques and ML models for
predicting TECs, they typically involve computationally costly
calculations, knowledge of certain experimentally determined
structural properties or have significant error.8,35–37 Targeting a
high amount of TEC predictions and focusing on predictability
based solely on composition is a challenge and in the current
study it will be seen if it can be done.

In this paper, a ML derived prediction model for the thermal

expansion coefficient of quinary A1�xA
0
xB1�yB

0
yO3 perovskites,

focusing on binary substitution of each metal site, where no
intersite mixing is expected is discussed. The model was trained
and tested using a manually compiled dataset from experimental
data found in the literature (Table S1, ESI†). Using a dataset only
made up of quinary AA0BB0O3 instead of one with all types of ABO3

perovskites reduced the diversity of materials being used to train
and test the model and requires a less robust model to make
accurate predictions and gain chemical knowledge behind the
simpler phenomenon. It also had the benefit of simplifying how
the data was formatted as the number of elements in eachmaterial
is constant. The most beneficial aspect of this model is that they
only use variables related to the properties of the constituent
elements in the material and thus can be applied to a given
chemical formula nearly instantly, which is demonstrated in this
paper. The models used in this work can be used as an effective
tool for screening of perovskite oxides by ruling out material
compositions that have a TEC outside of a specified range.

2. Experimental

The model was prepared based on quinary AA0BB0O3 perovskites
found in the literature and in-lab gathered data. The dataset
consisted of 146 samples. The TEC values recorded were taken
from large range tests, usually from about 25 1C to 900–1000 1C.
The features were calculated based on the composition of the
samples using data from the element property table included in
the ESI.† All string values (labels) were changed to numerical
labels. The zero values were assumed to be meaningful, and not
an equivalent of N/A. The features with empty cells were
excluded, which changed the x-vector block from 948 to 902
features. Depending on the methods used, the missing values
were replaced with the best guess or the feature/sample were
excluded from the training set. The split of training/validation
was 90/10 and the validation split method was random. To find
the optimal model, the k-fold method with random splits was
used to train multiple train-validation sets. The methods that
were considered in this study consisted of partial least squares
(PLS) regression, support vector machine (SVM) regression, prin-
cipal component regression (PCR), local weighted regression

Fig. 2 Compositional map of AA0BB0O3 perovskite oxides produced using
compositions from the PCD, crystallographic open database, and the
dataset presented in the work.
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(LWR), multiple linear regression (MLR), artificial neural network
(ANN), and a gradient-boosted decision tree (GBDT) regression
model (XGBoost). The models were built with PLS_Toolbox soft-
ware by Eigenvector in a MATLAB environment.38 Two samples
were selected for blind validation of the model, their features
were calculated in a similar manner to the training dataset, and
the predicted values were compared to the lab-measured values
as an experimental validation.

3. Results and discussion
3.1 PLS

Various methods have been tested for the dataset. The first
method was partial least squares regression. While being the
simplest method, it might produce a decent result, while allowing
for additional visualization of the data and the model. The
principle of PLS is similar to principal component analysis
(PCA), where dimensions (902 features) were reduced to three
latent values (LVs). The root mean square error (RMSE) of the
cross-validated dataset was 2.89 (�10�6 K�1), while the bias
remained very low: �10�14. The cumulative variance captured
by the model is great, 59.56% at 3 LVs, which is a good indication
that the problem might not require a complex solution.

The PLS model gives information on the potential limita-
tions of the model and the nature of the dataset. For instance,
the 95% confidence level ellipse (Fig. 3a), gives us a good idea
that the samples located outside it might be very different from
the rest of the data points. The sample La0.2Sr0.8Co0.9Sb0.1O3 is

the sample with the lowest content of the rare-earth metal (La),
while other samples have at least 0.3 index next to a rare-earth
metal. The two other samples both contain Al and are the only
samples with Al, while the majority of the data set contains
transition metals as the B-site cations in the AA0BB0O3 perovs-
kites formula. The arrays of samples that are lined can also
reveal more information, such as the samples measured in the
same batch, or their composition being a gradual solid solution
substitution. The two samples for experimental validation
(purple squares) are within the confidence ellipse. Regardless,
the cross-validated model fit line is far from the ideal 1 : 1
measured/predicted ratio (Fig. 3b). While the experimental
validation samples were within proximity from the point where
overestimation turns into underestimation, the model devia-
tion from the ideal line is too noticeable to speculate whether
this method could be applied to the experimental validation
samples and for this reason the predicted samples are not
plotted, but the predicted values are included in Table 1.

Feature statistics can help us understand the nature of the
TEC phenomenon within the perovskite dataset. Table 2 lists the
top ten features according to the variable importance in projec-
tion (VIP) and selectivity ratio feature statistics. While feature
statistics show only the potential of each variable to influence the
model, it is important to understand that it is not the individual
variables that govern the model, rather the combination of
variables that is important. It is necessary to see that out of 902
features the best-performing features from different statistic
methods appear in the top 10 of the feature lists. In this case,
the most common high-performance features are various

Fig. 3 (a) PLS model confidence ellipse (b) plot of predicted TEC vs. measured TEC for the PLS model TEC predictions. R2: 0.63.

Table 1 Experimentally validated samples (values �10�6 K�1)

Sample Experimental TEC PLS predictions SVM prediction

Other methods

PCR LWR ANN XGBoost

La0.3Ca0.7Fe0.7Cr0.3O3 11.83 16.13 12.70 18.69 13.76 12.94 18.70
La0.3Sr0.7Fe0.7Cr0.3O3 16.30 18.75 15.83 20.30 17.77 17.39 20.68
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electronegativity scales. The data redundancy is not an issue
given that PLS method is based on dimensionality reduction.
From the list, the factors important in perovskites are similar to
other works that study the formation of perovskite phases. For
example, electronegativity is crucial to differentiate A and B-site
cations in perovskite, along with the size factors, that typically
attribute large size to an A-site cations.39–41 Interestingly, bulk
modulus is also in the top list of feature statistics. Bulk modulus
is a compressibility factor, directly related to expansion/compres-
sion process, the very phenomenon TEC is about.

3.2 SVM

Next, the support vector machine method is implemented, which
has demonstrated numerous successes in the solid-state chemistry
field, given that themethod is exceptionally successful with limited
datasets, common in materials research.42 Epsilon-SVR with radial
basis function type kernel was used with cost parameter = 3.1623,
epsilon = 0.01, and gamma = 0.001. While the parameters are
reasonable for an SVM model (Fig. 4), the number of support
vectors is 137, which is too large for a 146 sample dataset, which is
reflected in the gamma parameter and might be considered as
overfitting. Cross-validated RMSE = 1.54 (�10�6 K�1), reduced
RMSE value of 0.38, and bias being in the range on�10�1 is good.

The model’s fit (Fig. 5) shows the promising potential for
extrapolation or for entire database screening. It should be
noted that the samples that show the most overestimation or
underestimation are Ba-containing samples, which are rare in
the database and contain Sb in the composition. Similarly to Al-
containing samples highlighted in the PLS model, the SVM-
highlighted Sb-containing samples are outside of a typical
compositional range for the B substitution element, which
typically is a transition metal. It is worth pointing out the most
underestimated sample also features a small atomic percent of
the substitution, which is generally not ideal for machine
learning models.

3.3 Other methods

As a survey run, other ML methods have been used to estimate
their potential: principal component regression, local weighted
regression with 10 local points, and multiple linear regression.
Out of these three methods, the MLR fit was decent, however,
the model predicts a negative TEC value for some samples,
making the model physically unreasonable. Feature scores were
extracted at the same time, with a significant overlap of the
most important variables to the ones listed in Table 2. Among
interesting additions to the important feature list is B0 weighted
Young modulus (Young modulus value multiplied by the atomic
fraction of B0), which is physically related to the previously
mentioned bulk modulus. This tells us that the perovskite
TEC problem is not purely chemical, but also depends on the
mechanical properties of the constituent elements.

One of the most common machine-learning techniques,
artificial neural network was also applied to test it. It is worth
mentioning that even before starting with ANN, there were not
high expectations, since ANN works wonderfully well with large
amounts of data, which is not the case in materials science.43

Table 2 Variable statistics in PLS model

Top 10 features (VIP) Top 10 features (selectivity ratio)

B crystal radius A Pauling EN
B gamma A Allred EN
A Pauling EN A Allred–Rockow EN
A Allred EN A density
A density A Nagle EN
A Allred–Rockow EN A Mulliken EN
B bulk modulus A ScRLDA Exc potential
A Mulliken EN A RLDA Exc potential
A Nagle EN A LSD Exc potential
B0 ionization energy A LDA Exc potential

Fig. 4 SVM parameters optimization.
Fig. 5 Plot of predicted TEC vs. measured TEC for the SVM model TEC
predictions. R2: 0.88.
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ANN resulted in RMSE = 1.52 (�10�6 K�1), with bias being in
the range of �10�2, however, the best results were achieved
with only 2 layer-1 nodes, definitely not an expected or typical
parameter for such a complex method. For a comparison, the
model fit is available in the ESI† (Fig. S1).

XGBoost (gradient-boosted decision tree) regression is
another method that has been applied. While it produces a fit
and overall results that are similar to the PLS model, this method
has a great advantage, as it allows us to score the features. The set
of the top most important features was different from the list in
Table 2. From the newer insights (XGBoost) the most important
variable was A-site cation atomic weight, which is expected given
that most of the A-site cations are heavy alkali metals or rare-earth
elements.

Summarizing the trial runs, it can be concluded that the
factors that typically influence perovskite formation, such as A
vs. B-site cation electronegativity and size echo well with similar
parameters from ML methods, and second the crystallographic
patterns proposed by Pauling, Villars, and Pettifor. Additional
insight that has been obtained from ML is that mechanical
factors play a significant role, especially the compressibility
factor. This is expected, given that the property being studied
(TEC) is related to changes that manifest themselves in
mechanical form, such as expansion. While the other methods
provided additional insight, they did not perform as well as the
SVM model.

3.4 Feature selection

Feature selection is a typical approach to make the model less
bulky and more sensitive to the variable changes. Feature
selection is used to reduce the number of variables, while
improving model statistics, inherently it means that a signifi-
cant part of the x-block carries useless information and pro-
duces noise. Feature selection is an iterative process of
removing/adding features until a better model than the one
started with is produced. The most common feature selection
approaches (besides simple variable statistics) are genetic
algorithm (GA), which is a combination of mutation, crossover,
and selection steps, iPLS and rPLS, which use scored features
(top of this list is given in Table 2) and then apply an interval or
recursive weighted method to this list. Given that the features
in Table 2 already show chemically meaningful features, there
is a reasonable expectation that these methods might be
successful (Table 3).

GA took the most time, which is expected, however produced
insignificant improvement, by lowering the RMSE statistics by
less than 0.001 (�10�6 K�1) with a model that uses 259 out of
902 features. While the improvement is less than what would

be considered useful, it is important to see how the most
successful methods (PLS and SVM) from the trial run respond
to these newly selected features. The PLS method was improved,
resulting in a better fit with just two LVs, that capture in total
33.20% of all variance, which is an extremely successful result,
considering that there were an initial 902 variables. This resulted
in all samples being within the confidence ellipse, except for
La0.2Sr0.8Co0.9Sb0.1O3 which also showed problems as described
above. The same selected features were used for the SVM model
which resulted in improved predictions (Fig. 6). The improved
SVM model give fairly accurate TEC predictions for the two
external validation samples, with an error of 7.23% and 2.67%.
The prediction accuracies of ML models are can be assessed by
their usefulness in real world situations. In SOFCs and SOECs a
TEC difference between adjacent cell components of 7.23% or
2.67% is considered to be good, meaning predictions with errors
this low give useful and actionable results.44–46

3.5 Predictions

Once the model was finalized, the list of AA0BB0O3 perovskite
compositions to predict TEC for was generated and the model
was applied. Given that the number of potential candidates could
be quite large, some limitations to possible A and B-site cations
and mixings (A–A0, B–B0, and A–B) were applied. Element statis-
tics were gathered from the crystallography open database (COD),
the PCD database and the dataset used in this work (Tables S2
and S3, ESI†).1 The index range of oxygen in the perovskites was
set to 2.55–3 in order to maximize the number of compounds for
statistical purpose. To differentiate A and B-site cations in ABO3

formula, a simple size criterion is sufficient, since A-site cation is
larger than B in most cases (only 3.6% exceptions), when ionic
radii are compared. The exceptions were typically attributed to
the presence of Bi and Nb elements in the composition. From 302

Table 3 Feature selection model results (values �10�6 K�1)

Sample
Default
PLS

iPLS-FS GA Default SVM iPLS-FS GA

PLS PLS SVM SVM

La0.3Ca0.7Fe0.7Cr0.3O3 16.13 17.87 16.28 12.70 13.19 12.65
La0.3Sr0.7Fe0.7Cr0.3O3 18.75 18.92 18.25 15.83 16.14 15.59

Fig. 6 Comparison of the SVM models produced using different feature
selection methods.
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AA0BB0O3 perovskite reports, A–A0, B–B0, and A–B combinations
were summarized in Tables S4–S6 (ESI†). The list of elements for
perovskite candidate generation is available in Table 4. Taking
into account the size factor, some limitations were additionally
applied. For example, Yb, Dy, Er, Gd, La, Mn, Sm, Y were only
considered as a B-site element with Ba and K in the A-site.

For the test run, 10 000 compositions were generated, then
were processed through the routine of generating features and
their TEC values were predicted (Fig. 7). As expected, most of
the candidate compositions returned a prediction of the same
value (TEC = 14.06 � 10�6 K�1), which is an indication of the
sample compositions being outside the confidence region of
the ML model. This is not an indication of a bad model, rather
a way to warn the researcher that the model had to deal with
values (or elements) it has not seen before, which results in a
fixed value prediction, better than a diverse random guess. On
the other hand, some series showed a great value distribution,

like the LaxSr1�xByB
0
1�yO3 series, which had TEC values pre-

dicted from 10 � 10�6 K�1 to 24 � 10�6 K�1. The series with Ba
also had successful predictions, with values from 13 � 10�6 K�1

to 16 � 10�6 K�1.
Next, 3 593 726 AxA

0
1�xByB

0
1�yO3 compositions were gener-

ated with x and y ranging from 0.2 to 0.8, with a 0.1 composition
step, and additional points at 0.25 and 0.75. In these composi-
tions, some of the elements did not have Allred electronegativity
values, which were needed for the model. One option was to
remove the features that were composed of Allred values, which
could potentially negatively affect the model quality, and the
other option was to get the missing Allred values for the elements
that lack them, and proceed with the prediction. The latter option
was selected. In order to get the missing Allred values for some of
the elements, a separate ML model that can successfully predict
the values was tested and created. To predict the values of the
elements supervised learning algorithms were used to generate

regression models. The algorithms include (1) support-vector
machines, (2) decision tree, (3) multi-layer perception neural
network (MLP-NN), (4) cubic spline interpolation, and (5) Gaus-
sian process regression (GPR). The RMSE values between the
actual and predicted Allred values were compared (Table S7,
ESI†). SVMs, MLP-NN, and cubic spline interpolation resulted
in high RMSE values. The poor performance can be attributed to
the smoothness of the regression curves. The Decision Tree
algorithm, in contrast, produced a RMSE value of 0, demonstrat-
ing a perfect alignment between actual and predicted Allred
values. However, each of the predicted values was identical to
the value of the adjacent element with 1 lower atomic number.
Out of the 5 algorithms, GPR with the Radial Basis Function
(RBF) kernel produced the best regressionmodel. With the RMSE
value of 6.78 � 10�10, the unknown Allred values were success-
fully interpolated with the GPR method. As a result, Predicted
Allred values (Table 5), were used for feature calculation and then
applied to predict TEC values.

In total 150 451 compositions had a reliably predicted TEC,
with the list available in ESI.† The histogram distribution of
predicted values is shown in Fig. 8. From the deviation of the
model line from the ideal line, a correction equation could be
extracted, and then applied to predicted values. In principle,
this should lead to the corrected values being in closer

Table 4 Composition of A and B site in perovskites

A-Site elements B-Site elements A or B-site elements

Ba Al Bi
Ca Cd Ce
Eu Co Dy
K Cr Er
La Cu Gd
Li Fe Mn
Na Ga Sm
Nd Mg Y
Pb Nb
Pr Nd
Sr Ni

Ru
Sb
Sc
Sn
Ta
Ti
V
W
Yb
Zn
Zr

Fig. 7 TEC predictions for the 10000 composition test run.

Table 5 Predicted Allred EN values

Allred EN predicted

Niobium Nb 1.83
Technetium Tc 2.12
Ruthenium Ru 2.15
Tellurium Te 2.52
Promethium Pm 1.16
Europium Eu 1.18
Terbium Tb 1.21
Ytterbium Yb 1.26
Hafnium Hf 1.39
Tantalum Ta 1.79
Rhenium Re 2.83
Osmium Os 2.78
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agreement with the experimentally measured values. The cor-
rection used the following equation (eqn (1)):

Corrected value = value + (value � 15.7) � 0.72 (1)

All the elements that appeared in the training/testing
dataset also appeared in compositions inside the confidence
region of the model. The A-site elements that did not appear in
compositions included in the training set but appeared in the
model confidence region were Eu, K, Na, and Pb, whereas
compositions including Li, Mn, Y, and Yb in the A-site were also
not in the training set but weren’t in the model confidence
region. The main cause of this is likely due to the differences
in size between the grouping of Li, Mn, Y, and Yb and the
grouping of Eu, K, Na, and Pb. The only elements that were in the
B-site for generated compositions but were not in the B-site for
any of the compositions in the model confidence region were La
and Y, which were only used as potential B-site elements when Ba
and K were the A-site elements. This is not very surprising as the
training set did not have any compositions that included La or Y
in the B-site and they both have larger ionic radii then all the
B-site elements included in the training set.

Of the 150451 compositions in the model confidence region
84% of them contained Sr, which isn’t surprising as nearly all
(98%) of the compositions in the training set included Sr. The
other 16% of compositions in the model confidence region were
significantly made up of compositions containing Ce, Ca, Ba, Eu,
Dy, Bi, or Pr in the A-site. It is not surprising that Ca and Ba are in
this list as they are the alkaline earthmetals in nearest proximity to
Sr. Bi was the fourth highest occurring A-site element in the
training set so it is not surprising to see a significant amount of
compositions containing Bi in the confidence region of the model.
It is not very clear as to why Ce, Eu, Dy, and Pr appear in much
more non-Sr compositions in the confidence region than Gd, La,
Nd, Sm, and Er, and due to there being many features used in the
model (259) it is difficult to determine the exact cause.

Most compositions with a TEC value at the low and high ends of
the predicted TEC range have both an A and B-site element with an
index of 0.8 or 0.75, which is expected as a smaller amount of

doping typically leads to a smaller change in TEC from what the
value of the most similar undoped ABO3. The default SVM predic-
tions ranged from TEC values of 8.49 � 10�6 K�1 to 25.65 �
10�6 K�1, which is close to the training set range of 9.11� 10�6 K�1

to 27.1 � 10�6 K�1. It was expected that there would be few default
SVM predictions that are outside the training set range and due to
the limited range of the training set and lower representation of
compositions with low or high TECs, the default predictions at the
low and high ends may be a bit conservative.

Looking at various AaA
0
bB1�xB

0
xO3 andA1�xA

0
xBaB

0
bO3 series

(where x = 0.2–0.8), the predictions seem to follow the three typical
trends seen in literature. The first one being where the TEC values

continuously increase as x increases (cases where AaA
0
bB

0O3 or

A
0
xBaB

0
bO3 has a larger TEC values than AaA

0
bBO3 or ABaB

0
bO3).

The second trend seen is the opposite where the TEC values
continuously decrease as x increases. The third trend observed is
where the highest or lowest TEC value in the series is around x = 0.5
(sometimes x = 0.4 or x = 0.6), which seems to occur in cases where

AaA
0
bB

0O3 or A
0
xBaB

0
bO3 and AaA

0
bBO3 or AaA

0
bO3 have similar

TEC values.

4. Conclusion

In summary, the use of amachine learningmodel for the prediction
of thermal expansion coefficients of AA0BB0O3-type perovskites that
uses features based solely on composition and was experimentally
validated using two blind validation samples was successfully
demonstrated. Using a manually compiled dataset consisting of
146 samples a variety of ML methods including PLS, SVM, PCR,
LWR, MLR, ANN, and GBDT, were used to produce the TEC
prediction models. The method that produced the highest perform-
ing model was SVM, and after a feature selection process reducing
the number of features from an initial 902 to 259, the model gave a
cross-validated RMSE value of 1.54 � 10�6 K�1. After finalizing the

model, 3593726 AxA
0
1�xByB

0
1�yO3 compositions were generated

with x and y ranging from 0.2 to 0.8, with a 0.1 composition step,
and additional points at 0.25 and 0.75. The model was applied to
the generated compositions which resulted in 150451 of the
predictions being in the confidence region of the model and
deemed to be reliable predictions of the TECs.
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The training dataset and the predictions have been shared in
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