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ABSTRACT: Machine-learning methods have exciting potential to aid materials discovery, but their wider adoption can be
hindered by the opaqueness of many models. Even if these models are accurate, the inability to understand the basis for the
predictions breeds skepticism. Thus, it is imperative to develop machine-learning models that are explainable and interpretable so
that researchers can judge for themselves if the predictions are consistent with their own scientific understanding and chemical
insight. In this spirit, the sure independence screening and sparsifying operator (SISSO) method was recently proposed as an
effective way to identify the simplest combination of chemical descriptors needed to solve classification and regression problems in
materials science. This approach uses domain overlap (DO) as the criterion to find the most informative descriptors in classification
problems, but sometimes a low score can be assigned to useful descriptors when there are outliers or when samples belonging to a
class are clustered in different regions of the feature space. Here, we present a hypothesis that the performance can be improved by
implementing decision trees (DT) instead of DO as the scoring function to find the best descriptors. This modified approach was
tested on three important structural classification problems in solid-state chemistry: perovskites, spinels, and rare-earth intermetallics.
In all cases, the DT scoring gave better features and significantly improved accuracies of >0.91 for the training sets and >0.86 for the
test sets.

1. INTRODUCTION manipulation.’™ The typical quantitative metrics used to
Machine learning methods promise to advance discovery in assess machine-learning classification models are accuracy
[fraction of correct predictions = (true positives + true

synthesis, materials, catalysts, and drug design, among many
possible areas in chemistry.' These methods relate chemical
descriptors (the input) to the large knowledge base of
structures and properties (the output) of substances. The
relationships between the input and output, which are often
represented as data in a high-dimensional space, are usually not
straightforward. Many machine-learning models are then
regarded as “black boxes” if these relationships are too obscure
to be understandable by human users (as in neural networks or

negatives)/all predictions], precision [fraction of accurate
positive predictions = true positives/(true positives + false
positives) ], and recall [fraction of actual positives accurately
predicted = true positives/(true positives + false negatives)].
These metrics only reveal how well a model performs the task
based on the outcome rather than how the process works and
what factors influence the results.’ Similar to other high-stakes

t-distributed stochastic neighbor embedding) or if too many Received:  April 10, 2023 horancGeniy

decision-making entities are involved (as in ensemble trees). Published: June 30, 2023
Machine-learning models are prone to overfitting, resulting in
unnecessarily complicated expressions to arrive at answers that
may be correct but for the wrong reasons.” Furthermore, data
in materials science are not immune to bias or even
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Figure 1. Metal oxides with rutile or fluorite structures can be classified equally well by various machine-learning models, which show that
electronegativity and radii are determining factors. The black-box model (based on random forest) identifies the importance of these features but
not their relationship. The interpretable model (based on SISSO) shows that the expression y/r serves as an effective tolerance factor.

applications (such as health care or loan applications),
understanding the reasons for a prediction in materials science
may be equally or more important than the result.” '
Knowing the relationship between the inputs and outputs
enables researchers to judge the quality of predictions, correct
for biases, enhance theory, develop general principles, and
design further experiments to test the limits of the models."’
The challenge is to seek explanations that balance simplicity
with completeness.

Thus, there is impetus to develop machine-learning models
that are interpretable, meaning that statements about cause
and effect can be formulated, and explainable, meaning that the
results can be justified by connecting to selected parameters.
The distinction between interpretability and explainability is
sometimes confounded.” It is certainly possible for a black-box
model to be explainable post hoc even if the reasons may not be
fully satistying. There is also no basis for the belief that
accuracy must be sacrificed if models are designed to be more
interpretable. Model-agnostic metrics, such as permutation
importance and Shapley values,'”'® do exist that offer
explainability (by noting how predictions are affected by
changes in feature values) but do not improve interpretability.
The features must be carefully considered so that they are
informative and meaningful to domain experts.'*"®

To illustrate these considerations as applied to solid-state
chemistry, consider the problem of determining whether the
rutile or fluorite structure is preferred by metal oxides
MO,.'*'” Although simple chemical concepts largely suffice
to explain the structural preference, it is interesting to see
whether machine-learning methods arrive at the same
conclusions. The data set consists of 28 binaries, 256 ternaries,
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257 quaternaries, and SS higher multinaries (see the Methods
section for details).'® Applying either random forest or sure
independence screening and sparsifying operator (SISSO)
algorithms results in models that perform equally well (Figure
1). The random forest model, a black-box one, reveals that the
electronegativity y and radius r of the metal M (or their
averages if there are multiple metal atoms) are important
features but does not indicate the relationship. The SISSO
model, an interpretable one, shows that the ratio of these
chemical features acts as a tolerance factor to separate fluorite
(y/r < 22) and rutile (y/r > 2.2) structures. This result
facilitates the rationalization in chemical terms that the fluorite
structure is favored over the rutile structure when the M—O
bonding character is more ionic (low y) and when the metal
atoms have large size (high r), consistent with the higher
coordination number of 8 in fluorite, which also agrees with
the classical radius ratio rules of Pauling."’

Many questions in solid-state chemistry can be formulated in
a manner similar to classification problems. What is the
structure type of a given compound (rutile or fluorite)? Will it
have a specific property (superconducting or not; ferromag-
netic or not)? The tabular data are often plotted as structure
maps or phase diagrams, which are easily interpretable in terms
of only one (e.g, radius ratio, electron count, or Mendeleev
number) or two (e.g., electronegativity and size) parame-
ters.”””" These visual representations are the epitome of
simplicity, preferred by practitioners because conclusions can
be made quickly by interpreting the patterns on these maps
while the complexity of chemical relationships is still captured.
For example, the site distributions in normal versus inverse
spinels AB,X, can often be explained by crystal-field
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Figure 2. Comparison of the SISSO-DO and SISSO-DT methods.

stabilization energies, but this is only one factor; a structure
map based on orbital radii performs the classification more
succinctly and accurately (including compounds containing
atoms with closed d shells) and reveals that d-orbital
interactions are only of minor importance.””*’

Creating effective structure maps requires a good choice of
parameters to plot. The recently developed SISSO method,
which is based on compressed sensing using symbolic
expressions for regression and classification, does just that.”*
It builds feature space by combining descriptors with different
mathematical operators to generate a large number of
equations and selects the best set of equations. A key
advantage of this approach is that it is applicable to materials
chemistry problems, where the number of samples may be
small, while the number of descriptors may be large. In this
way, a better tolerance factor, superseding the Goldschmidt
tolerance factor, was discovered that predicts the formability of
perovskite structures with an accuracy of 92% on a set of 576
ABX; compounds.” This tolerance factor was identified by a
SISSO calculation using domain overlap (DO) as the scoring
function; the top 100000 descriptors were selected, and a post
hoc analysis was performed using decision trees (DT) with two
terminal leaves. In a new implementation called SISSO++, the
final descriptor selection is performed by ranking equations
using a support vector machine as well as DO, which can
alleviate some of the shortfalls of DO scoring.26 However, as
we demonstrate later, useful equations may be discarded
during the initial ranking by DO.

We raise the hypothesis that DT may serve as a better
scoring function than DO to identify the optimum descriptors.

DT with a shallow depth will be used to screen the millions or
billions of descriptors generated recursively in the SISSO
feature space. Then, we test this approach on three diverse
classification problems in solid-state chemistry (perovskites,
spinels, and rare-earth intermetallics) and evaluate how well it
performs compared to using DO as the scoring function.

2. METHODS

2.1. Implementation of DT for Scoring Descriptors. In the
original SISSO method, the primary features are first combined
recursively with mathematical operators to build a large number of
equations.”* Then, in a procedure termed “sure independence
screening”, the descriptors are scored for classification problems
using one-dimensional (1D) DO, in which the domains of samples
belonging to each class are approximated by convex hulls and the
number of samples that lie in overlapping regions are minimized. In
the “sparsifying operator” part of this method, the descriptors are
ranked using DO scoring, and a subset of the top k features are
selected and ordered by complexity to give the best n-dimensional
descriptors. If several descriptors result in the same degree of convex
hull overlap, then the one with minimal n-dimensional overlap volume
is selected.

In the modified approach proposed here, which pertains only to
classification problems, DT was applied to both the sure
independence screening and the sparsifying operator parts of the
SISSO method. The DT algorithm builds a treelike graph with simple
rules to classify samples based on given features; it is nonparametric,
simple to interpret, and applicable to multiclass problems. DT was
implemented using the Classification and Regression Tree (CART)
algorithm.”” The best feature (for descriptors of dimensions greater
than one) and threshold splitting points were evaluated using the Gini
impurity, 1 — Y2, P?, where c is the number of classes and P; is the
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Figure 3. Three data sets examined: ABX; compounds classified as perovskites (PV+) or nonperovskites (PV—), AB,O, compounds classified as
spinels (SP+) or nonspinels (SP—), and rare-earth intermetallics RX classified as CsCl, TII, or FeB structures. Models were created using DO or
DT as scoring functions to select descriptors by SISSO, and their accuracies in classifying the test sets were compared.

fraction of samples belonging to class i. A node in the DT is split into
two child nodes by finding the best feature that minimizes the Gini
impurity. The steps are performed recursively until all samples are
classified or a stopping criterion is reached. Because shallow trees
were used, with a depth of <4, no pruning was performed. The
accuracy in classifying the training set was used to score the features.
This DT algorithm was implemented in Fortran, with the feature
ranking and descriptor identification steps modified in the original
SISSO code to use trees instead of overlap, as schematized in Figure
2.

2.2. Data Sets. For the illustrative example presented in the
Introduction to classify metal oxides MO, as rutile or fluorite
structures, data were collected from Pearson’s Crystal Data."® Shannon
radii and Pauling electronegativity were used as features. In addition
to a SISSO model, a random forest model was developed using the
Scikit-learn Python library.”®

For the main test cases, to compare the two approaches (DO and
DT) for descriptor scoring, three data sets were examined. Crystal
structure data were gathered for ABX; compounds (perovskites vs
nonperovskites) from previous literature,” for oxides AB,O, (spinels
vs nonspinels) from Pearson’s Crystal Data,'® and for rare-earth
intermetallics RX (CsCl, T1I, and FeB structure types) from our own
recent work.”” The number of samples in these data sets, a schematic
of the workflow, and the classification accuracies for the test sets are
summarized in Figure 3.

2.3. Features. Crystal structures depend on many types of
features, including the position of an element in the periodic table,
which can be described by well-defined quantities (e.g, atomic
number Z), or radii and electronegativities, which can be chosen from
various scales. To allow a fair comparison, the models were developed
with the same features that were most commonly used in previous
classification models of perovskites, spinels, and rare-earth inter-
metallics. For the ABX; data set, the features considered were
oxidation states (n,, ng, and ny), Shannon ionic radii (r,, rg, and ry),

and radius ratios, with subscripts A, B, and X referring to the
component elements. For the AB,0O, data set, the features considered
were Ahrens radii (1%, rA", and rAY), radius ratios, Allred—Rochow
electronegativities (4", ¥4%, and y&"), and modified bond stretching
force constants (K,g), as defined by:
AR AR
_ Xa s
[(rf:h + r]fh)z + (ré\h + r)j(\h)2 + 1.155(1’11:11 + r)?h)(ré\h + r;(\h)]

(1)

Because the atom B in AB,O, can adopt multiple oxidation states
in some compounds, indices 1 and 2 were used to identify the lower
and higher oxidation states, respectively. For the RX data set, the
features considered were atomic numbers of R and X (Z; and Zy),
metallic radii of R (r}), covalent radii of X (ry), Pauling
electronegativities of X (%), and period and group numbers of X
(Px and Gy). A complete list of these features is provided in Table S1I.

Calculations were performed using the original (SISSO-DO,
version 3.0.2)** and modified (SISSO-DT) versions of the code.
For SISSO-DO, the top 10000 two-dimensional (2D) descriptors
were analyzed post hoc using DT. This analysis was performed in
Python, using the Decision Tree Classifier implemented in the Scikit-
learn package.”® The maximum tree depth was fixed at 3. All
computations were performed on a desktop computer equipped with
an Intel(R) Core™ {7-10700K and 16 GB of RAM running Ubuntu
20.04. The data sets are provided in the Supporting Information, and
the modified SISSO-DT code is available at https://github.com/
balaranjan/SISSO_DT.git.

Kyp

3. RESULTS AND DISCUSSION

3.1. Simulated Data. As a benchmark, a simulated data set
was examined using DO versus DT as scoring functions for
SISSO analysis. The set consists of 100 randomly generated
samples belonging to two classes and distributed over disjoint

https://doi.org/10.1021/acs.inorgchem.3c01153
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Figure 4. Set of 100 randomly generated samples belonging to two classes (red triangles and blue squares), classified by SISSO using (a) DO and
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to each class.
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Figure 5. Set of 100 randomly generated samples belonging to two classes and containing four mislabeled samples classified by SISSO using (a)
DO and (b) DT.

regions, with their x and y coordinates acting as features. First, perform better, as seen later in rare-earth intermetallics, where
SISSO analysis was performed in its original implementation outliers in regular trends along a series of f elements are well-
using DO, in which separate convex hulls are created around known (e.g, europium and ytterbium compounds). As is
each class, with the aim to minimize their overlap by typical in machine-learning methods, there remains a risk of
optimizing the features. The result is that a cluster of samples overfitting, which would be manifested as elaborate convex hull
belonging to the red class lies within the convex hull of the shapes with sharp angles in the DO, or multiple smaller nodes,
blue class and vice versa, such that 41% of the samples are leading to poor generalizability in DT. A visual assessment of
misclassified (Figure 4a). Next, SISSO analysis was performed the plotted data goes a long way toward ensuring that the

using DT, with a depth of 3. (The depth controls how large a fitting is reasonable.
decision tree can grow; larger trees are less interpretable and Next, another simulated data set was examined to evaluate
may lead to overfitting if data sets are small.) Here, different the impact of mislabeled data. Alas, despite best efforts,
clusters of each class are clearly separated by decision experimental databases such as Pearson’s Crystal Data'® or
boundaries such that only 1% of the samples are misclassified ICSD™ cannot guarantee 100% trustworthiness. Errors could
(Figure 4b). be introduced at any stage of data collection or processing.
In general, the success of DO depends strongly on the They could arise from experimental limitations, related to the
distribution of samples in the feature space. For well-behaved instrument or method of analysis, or human foibles, ranging
data, most samples lie within a single cluster close to the center from honest typographical errors to outright malice. Errors can
of the convex hull. However, if the samples are distributed over occur with crystallographic assignments (wrong space group,
disjoint clusters, the center of the convex hull may not be sites, or prototype) or chemical compositions (incorrect or
highly populated, or worse, it could be populated by samples of imprecise formula). To illustrate an extreme case, four samples
the opposite class. In such cases, DT may be expected to were intentionally mislabeled within the simulated data set. If
10869 https://doi.org/10.1021/acs.inorgchem.3c01153
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DO is used with SISSO, 71% of the samples are misclassified
(Figure Sa). As a consequence of these few mislabeled samples
(outlying red triangles on the left and blue squares on the
right), useful descriptors of lower complexity are unnecessarily
discarded, which can lead to overfitting with more complex
descriptors. If DT with a depth of 1 is used with SISSO, only
these four mislabeled samples are misclassified (Figure Sb).

Errors in a data set introduce a dilemma. A machine-learning
practitioner with little background in materials science may
inadvertently attribute outliers to imperfections in the model,
whereas a materials scientist may be more likely to mistrust the
original data and advocate for reinvestigation of the experi-
ments. This scenario demonstrates the need to use scoring
functions that are flexible enough to accommodate samples
lying in disparate clusters yet belonging to the same class while
being robust enough to disregard outliers.

In the following sections, we compare how these two scoring
functions for SISSO classification perform when they are
applied to three cases of real experimental data. The first two,
perovskites and spinels, have been extensively analyzed in the
literature previously, whereas the third, rare-earth intermetal-
lics, has not. Two iterations of feature construction (rung =2)
over a subspace of 10000 features were applied. For the DT
approach, the maximum tree depth was set to 3 for 2D
features. The notation is of the forms O%% and O%® for the
descriptors derived from overlap scoring and T and T$** for
those derived from DT, where the superscript indicates the
data set (PV = perovskites, SP = spinels, and RX = rare-earth
intermetallics).

3.2. Perovskites ABX;. The data set consists of 576
compounds with the formula ABXj; of which 313 are
perovskites and 263 are not; there are 369 oxides, 66 fluorides,
71 chlorides, 27 bromides, and 43 iodides.”” It was split into
training (80%) and test sets (20%). The top-ranked descriptors
selected using DT outperform those using DO scoring (Table
1) and give a more visually striking structure map that places

Table 1. Performance of Models to Classify Perovskites
ABX; Based on Descriptors Selected by DO and DT
Scoring”

SRy descriptor”
function P accuracy  precision recall
DO orv = Ialnla/m) o080 0.79 0.93
! g (0.81) (0.76) (0.93)
fa fi
Ozpv = (”A - _B]/"A
x X
DT = _ 091 0.96 0.90
ryo fy (0.93) (0.95) (0.93)

pv _ "
T, = _(VA - VB)
nx
“Performance metrics are shown for test and, in parentheses, training
b . o e
sets. “The descriptors are based on radii (ry, rp, and ry) and oxidation
states (n,, ng, and ny).

perovskites within a narrow window (Figure 6). Even with a
small number of features (7.9 X 10*) involving equations built
from two iterations of feature construction, the 2D descriptors
(T}Y and T3V) found by DT scoring are able to discriminate
well between perovskites and nonperovskites. The accuracy
(0.95 for the full data set) is similar to that obtained with the
best 2D descriptor found by Bartel et al. (0.95).”> Out of the

576 compounds, 40 were misclassified in the full data set (and
30 in the training set). The descriptor T}" does not depend on
any feature of element A, which allows the transition points of
T3 to be tracked individually for different elements B.

These mathematical solutions provide an explanation for
classifying perovskites versus nonperovskites, but extracting an
interpretation in terms of chemical ideas is another matter
wholly. It is appealing when features of each element A, B, and
X appear at least once in the descriptors, and when they are
related in simple ways such as ratios or differences. The
structure map of Figure 6b resembles existing ones built from
the Goldschmidt tolerance factor t = (ry + ry)/~2 (15 + 1y)
and the octahedral factor y = ry/ry, for which there is a narrow
stability window for perovskites to form.”" It is no accident
that the first part of the descriptor T}" is ry/rs, which is just
the inverse of the octahedral factor y. The second part, ny/ny,
acts as a correction term that imparts additional restrictions on
the relative oxidation states of B and X. Similarly, the
descriptor T5" expresses a dependence on the relative sizes
of A and B but through their difference rather than a ratio, as
appears in the Goldschmidt tolerance factor.

3.3. Spinel Oxides AB,0,. A data set of 258 ternary oxides
AB,O, was extracted from Pearson’s Crystal Data, of which 123
adopt the MgAL O,-type structure (hereafter referred to as
spinel) and 135 do not.'® From this data set, 180 entries were
used for the training set and 78 for the test set. Scoring with
DT results in mathematically simpler descriptors and better
performance than that with DO (Table 2). This procedure
misclassifies 17 out of 180 entries in the training set and 28 out
of 258 in the total data set. The structure map derived from
DT shows a much clearer separation between spinels and
nonspinels than the one derived from DO (Figure 7).

Many other structure maps to classify spinels have previously
been reported in the literature, and it is interesting to compare
how well they perform over the same data set. One of the
earliest maps, which was developed by Kugimiya and Steinfink,
uses the ratio of Ahrens radii rA"/r4" and a modified bond
stretching constant Kyp o ya¥p as descriptors.”” It misclassifies
60 out of 258 compounds in the total data set. A more recent
map by Zhang and Zunger, which uses pseudopotential radii of
elements A and B as descriptors, misclassifies 57 compounds in
the total data set.”® Although the more rudimentary models are
less accurate, they have the appeal of much simpler descriptors
compared to the machine-learning model using DT. In this
regard, the machine-learning model is somewhat disadvantaged
in being less easily interpretable even if it uses similar
elemental features.

At first glance, the descriptors derived from SISSO-DT may
appear opaque, but a more careful examination shows that they
incorporate structurally and chemically meaningful information
consistent with previously developed structure maps. The first
descriptor T}® contains expressions relating electronegativities
in the numerator (yA® + ¥A%) and radii in the denominator
(rA"4%), both of which are captured in the bond stretching
constant K,p in similar ways and account for electronic and
structural effects. The second descriptor T5" contains the
radius ratio r4"/745, which is equivalent to the index used in the
structure map of Kugimiya and Steinfink.”” This ratio is also
(inversely) proportional to a geometric tolerance factor
recently proposed by Song and Liu for normal spinels,

7= /3 (ryg + 1y)/2(ry + 14).”” By itself, this tolerance factor
is insufficiently versatile to distinguish spinels from other
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Table 2. Performance of Models to Classify Spinel Oxides
AB,O, Based on Descriptors Selected by DO and DT
Scoring”

scoring descriptor”
function P accuracy  precision recall
Ahy Ah AR
DO ot = PUR)mr 069 0.63 0.89
1 e (0.74) (0.66) (0.91)
A
o _ AT
! "
"
Ah AR AR
bT pseo ol *20)  os6 0.85 0.87
1 Py (0.91) (0.87) (0.94)
AR\3
TSP — RKupa| 74
2 T T Ah | Aw
"a \"p2

“Performance metrics are shown for test and, in parentheses, training
sets. The descriptors are based on Ahrens radii (r,, 5 and rg),
Allred—Rochow electronegativities (y,, ¥p and o), and a bond
stretching constant Kyp.

AB,O, structure types, as can be seen by the significant overlap
(Figure 8a). Nevertheless, the appeal of a 1D descriptor to
classify spinels is undeniable.

The insight gained above suggests that the key expressions
related to radii (FA"A" and A/ rﬁ%) can be put to advantage. In
a simpler structure map created using these descriptors, spinels
are located in a cluster centered at rA"rA} = 0.45 and ri'/rib =
1.1 (Figure 8b). If normal spinel structures are assumed,
Pauling rules indicate that rAbrAY values are expected to lie
between 0.18 and 0.48. For most spinels, the value of 74"/ is
greater than 0.8, indicating a preference for larger A cations
relative to B cations. Most spinels fall within the ellipse,
allowing a 1D tolerance factor to be defined as

Ah 2
.
7, = 2.5(rt i — 045)” + 0-3[% - 1.2] - 01
B1 (2)

with the condition 7, < 0.0 and an accuracy of 84% in
classification.

Questions may be raised about how sensitive the machine-
learning models are to different types of features and how they
would perform on imbalanced data sets. If Ahrens radii are
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Figure 7. Classification of spinels (red triangles) and nonspinels (blue squares) among AB,O, compounds using the best descriptors selected by

(a) DO and (b) DT as scoring functions.
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replaced by Shannon radii in the descriptors listed in Table 2,
DT scoring still performs better than DO scoring (Table S2).
The oxides AB,O, form a balanced data set for which machine-
learning methods are expected to behave well. In contrast, the
chalcogenides AB,X, (X =S, Se, Te) form an imbalanced data
set containing half as many spinels as nonspinels, as well as
many more sulfides and selenides than tellurides. When the
two methods are applied to this imbalanced data set, DT
scoring still achieves a higher accuracy (0.74) than DO scoring
(0.59) (Table S3).

3.4. Rare-Earth Intermetallics RX. The data set consists
of 106 equiatomic rare-earth intermetallics RX (X = Si, Ay, Cu,
Ag, Rh, Pd, Ni, Pt) extracted from Pearson’s Crystal Data."®
These compounds were examined because the distribution of
the three structure types adopted (44 FeB, 33 TII, and 29
CsCl) appears to be puzzlingly haphazard. Similar to how
structure maps for other classes of compounds were historically
developed through a combination of trial-and-error and
chemical intuition, the elements R and X were rearranged in
different sequences until a reasonable separation of these
structure types was achieved.”” A good descriptor for the x axis
of the RX structure map was found to be a simple combination
of R-element features, x = Zr™, where Z is the atomic number
and 7™ is the metallic radius. However, the functional form of
the descriptor for the y axis was not obvious. To determine this
descriptor, numerical values were assigned to the X element (Si
=1, .., Pt = 8) and SISSO regression was applied, giving

_ JZ x P/G
exp (7o) (3)

where Z is the atomic number, P is the period, G is the group,
Jp is the Pauling electronegativity, and r, is the covalent radius
of the X element. The final mathematical expression obtained
in this process depends on the depth and complexity
parameters set in the algorithm, which requires some judgment
to be exercised by the user. This is why a visual inspection of
the structure map by a domain expert, a materials scientist, in
this case, can be valuable. Only 2 out of 106 entries in the data
set are misclassified in this structure map, and its success in
explaining many experimental results, such as polymorphism
and stabilization of a different structure by adding a third
component, lends credence to it. It is noteworthy that SISSO
classification with scoring by DO fails to give a satisfactory

structure map when the same set of starting features was used
and even when the good descriptors obtained above were fed
in. As discussed earlier, DO scoring tends to perform poorly
when samples belonging to the same class are distributed over
disjointed clusters in feature space, as is the case here. Thus, it
is interesting to determine whether DT scoring will do a better
job.

The data set of these 106 RX intermetallics was split into
training (80%) and test (20%) sets, with stratified splitting
applied to maintain equitable class distributions of the three
structure types (FeB, TII, and CsCl) within these sets. A tree
depth of 2 was set for DT scoring of the feature space. (When
three classes are present, more than two leaf nodes in the DT
are needed for classification.) With the descriptors obtained by
DT scoring, the performance is significantly better than that by
DO scoring (Table 3). The recall is also higher here, in

Table 3. Performance of Models to Classify Rare-Earth
Intermetallics RX Based on Descriptors Selected by DO and
DT Scoring”

scoring descriptor”
function P accuracy  precision recall
PXrg'
oRx _ PXr 0.67 0.65 0.62
bo LT G (0.84) (0.77) (0.86)
oM = Gy
Zy
RX _ 0.91 0.92 091
DT T = ()G (g.95) (0.95) (0.95)

T = In(Zy) Zpre
“Performance metrics are shown for test and, in parentheses, training

sets. "The descriptors are based on atomic number Z, period P, group
G, Pauling electronegativity yp, and covalent radius ..

contrast to the previous two case studies, in which this metric
was slightly inferior using DT scoring. The explanation can be
traced to the significant overlap of the convex hull for FeB with
those of the other two structure types, with samples clearly
seen to be distributed over disjointed regions (Figure 9a),
which poses no problem for the structure map based on DT
scoring (Figure 9b). The DT model misclassifies 4 entries in
the training set and 2 in the test set.
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Table 4. Post Hoc Analysis of SISSO-DO Descriptors Selected by DT

data set descriptor
. pv _ Ta’x A _ 1B
perovskites ABX 0;" = > (* - —
(rs) B Ix
pv _ Mg
exp(rp)
AR )2, Ah A
67 "o Ta
spinel oxides AB,O, O3SP = BT
(r2)
Ahy2 AR
oS = () Xo
4 T _Ah_Ah AR
oTa X

03" = (G (R = %)

G
O = (Zp + Zy) =2
PX

rare-earth intermetallics RX

accuracy precision recall
0.85 (0.92) 0.91 (0.94) 0.85 (0.90)
0.69 (0.87) 0.71 (0.91) 0.63 (0.81)
0.68 (0.90) 0.69 (0.90) 0.68 (0.90)

“Performance metrics are shown for test and, in parentheses, training sets.

3.5. Post Hoc Analysis. The results demonstrate that DT
serves as a scoring function better than that of DO to classify
perovskites, spinel oxides, and rare-earth intermetallics. For the
SISSO-DO method, the performance metrics (accuracy,
precision, recall) were calculated using DO. As a fair
comparison, it would be interesting to evaluate the perform-
ance of the descriptors selected by SISSO-DO using DT. To
this end, the top 10,000 2D descriptors from the SISSO-DO
models were ranked by DT. The maximum tree depth was
fixed at 3 and the descriptor pairs in SISSO-DO giving highest
accuracy on the training sets were examined (Table 4).

For the perovskite data set, the DT-selected descriptor pair
(05Y, 0Y) performs significantly better than the SISSO-DO
descriptor pair (O}, 05") (Table 1), with an increase of 0.05
in accuracy in the test set. However, this pair still falls short
compared to the SISSO-DT pair by 0.06 in test set accuracy.
For the spinel oxides and rare-earth intermetallics data sets,
there is no significant difference (0.01 or less) in test set
accuracy between the DT-selected and SISSO-DO descriptor
pairs (Tables 2 and 3), but they are far outperformed by the
SISSO-DT pairs. Overall, the SISSO-DT descriptors give
accuracies of >0.91 on the training sets and >0.86 on the test
sets for the three classification problems, while using a
relatively smaller feature space. Shallow DT (having low

depths) does not hamper interpretability. In addition to
improvements in accuracy, SISSO-DT is generally faster than
SISSO-DO. For the perovskite data set, which has the greatest
number of samples, SISSO-DT required 140 min, whereas
SISSO-DO required 262 min. For the spinel data set, which
has the greatest number of features, SISSO-DT required 40
min and SISSO-DO required 51 min. Finally, although it might
be possible to increase the dimensions of the descriptor space
to improve the accuracy of the machine-learning models, this
will come at the expense of decreased interpretability and
significantly higher computational costs.

4. CONCLUSIONS

DT was proposed, implemented, and tested to score features
generated by the SISSO method. To classify crystal structures
of perovskites, spinel oxides, and rare-earth intermetallics,
SISSO-DT offers significantly improved performance using
features that are better than those of SISSO-DO. The
visualization of these machine-learning models, as manifested
in structure maps based on chemical descriptors related in
simple ways, facilitates interpretation and enables experimen-
talists to make predictions of new materials with greater
confidence.
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