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and accelerate discovery
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Many domains across physical, life, and social sciences suffer from incomplete models of constructs (e.g.,

organisms, environments, behaviors), which hinders reproducibility and the pace of discovery. Critically, the

prevailing research paradigm, of individuals or small groups working within the resource constraints of their

own organization, does little to support model completion and discovery. It does not integrate capabilities,

enable investigators to generate data at scale, or offer a path to sharing knowledge at the level of data (versus

at the level of conclusions). To develop and deploy a new paradigm for conducting science, The Defense

Advanced Research Projects Agency (DARPA) created the Synergistic Discovery and Design (SD2) program.

The SD2 program proposed a novel method of conducting science that (1) integrates the capabilities of

multiple organizations across multiple domains and (2) makes implicit knowledge explicit at all stages of the

scientific process. It assembled and integrated a sociotechnical system that aimed to overcome the

limitations of conventional scientific methods. In this paradigm, scientists and technologists collaborated to

develop technologies, share data, and conduct science in ways that were faster, more efficient, more

complete, and more productive than was possible outside of this program. This paper describes the SD2

approach to developing that sociotechnical system—of selectively applying conventional methods of science,

embracing a more collaborative paradigm, and establishing an infrastructure—to drive discovery.
Many domains across physical, life, and social sciences suffer
from a common problem: Incomplete models of constructs
(e.g., organisms, environments, behaviors) hinder reproduc-
ibility and the pace of discovery. For example, in synthetic
biology, until recently only a fraction of the genomic interac-
tions and regulatory network of E. coli was documented, making
it difficult to design compatible genetic components and
systems that reliably persist in E. coli across environmental
conditions. This necessarily constrained the ways E. coli can be
used as a testbed to design organisms that perform useful
functions. Critically, the way science is currently conducted in
many elds does little to support model completion and
discovery. It does not (1) facilitate integration of diverse capa-
bilities, (2) position investigators to generate quantities of data
needed to drive advanced analytics (e.g., machine learning), or
(3) offer a path to sharing knowledge when it is most protable
to do so, at the level of data (vs. at the level of conclusions).

To develop and deploy a new paradigm for conducting
science, The Defense Advanced Research Projects Agency
(DARPA) created the Synergistic Discovery and Design (SD2)
program. The SD2 program proposed a novel method of
il.com

icine, USA

try, USA
conducting science that (1) integrates the capabilities of
multiple organizations across multiple domains and (2) makes
implicit knowledge explicit at all stages of the scientic process.
It assembled and integrated biologists, chemists, computer
scientists, and social scientists to develop and embody a socio-
technical system that aimed to overcome the limitations of
conventional scientic methods. This paper describes the SD2
approach to developing that sociotechnical system—of selec-
tively applying conventional methods of science, embracing
a more collaborative paradigm, and establishing an infra-
structure—to drive discovery.

The prevailing paradigm for research

To better understand the methods developed and deployed by
the SD2 program, it helps to understand the benets and
limitations of the prevailing, conventional paradigm of science,
one we call the individualist paradigm.1 Individualist science is
characterized by an individual or small group working within
the resource constraints of their own organization to design,
test, and analyze constructs.

Benets of individualist science

In the individualist paradigm, single investigators or small
groups complete an entire research cycle on their own. Inves-
tigators generate focused questions within tractable regions of
© 2023 The Author(s). Published by the Royal Society of Chemistry
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a research space, develop experimental and analytical
approaches to addressing the questions, perform the experi-
ments, analyze the data, and then evaluate whether the results
support or refute a model or a theory (Fig. 1). It is largely
a exible paradigm, as it allows investigators to choose their
own questions and search over a broad scientic space (vs.
conning investigators to operating in a narrow space dened
by a central authority). This method is well suited for scientic
exploration that does not require extensive resources or inter-
disciplinary capabilities. From an organizational perspective,
individualist science is efficient, as it necessarily co-locates
planning, data generation, and analysis. If investigators work
only with members of their own organization (or their own lab),
it obviates the need for cross-organization communication (e.g.,
contractual negotiations), training (e.g., how to implement
a protocol), and the extensive data processing and tracking
required when sharing data outside of an organization.

This paradigm can also be operationally efficient because it
allows investigators to leverage their own strengths, knowledge,
and previous methods and results. Such an approach allows for
continuity in developing, conducting, and disseminating a line
of research. For example, iterative or derivative methods that
address the same research question may yield results that are
comparable across experiments and thus easily aggregated and
interpreted. The individualist paradigm also consolidates
scientic knowledge so that the individuals who know the most
Fig. 1 The individualist Paradigm, (1). Investigators work siloed, in paralle
Knowledge is not shared during an experimental cycle, resulting in few op
shared only after conclusions are drawn, resulting in few opportunities t

© 2023 The Author(s). Published by the Royal Society of Chemistry
about a dataset are those who generated it, thus accelerating the
process of reporting results. In short, the individualist para-
digm allows investigators to conduct principled, efficient, and
sometimes impactful science. However, it imposes constraints
that put grand discovery out of reach, slows the pace of prog-
ress, and causes confusion generated by a lack of
reproducibility.
Limitations of individualist science

Individualist science is inadequate for solving complex prob-
lems that require multiple experts, diverse resources, or rapid
generation of data at scale. Complex problems oen require
multiple experts from different disciplines to contribute to
solutions. Examples include interventions for cancer or Alz-
heimer's disease, or rapid vaccine development in response to
a pandemic. Of course, individual scientists can contribute to
solving these problems; however, scientists operating within
the connes of their own group are necessarily constrained by
the capabilities and expertise of that group. Hence, these groups
oen investigate only part of a complex problem. For, example,
in the study of cell division and cancer, individual labs tend to
specialize in the regulation of a specic event or phase (e.g.,
DNA replication in S, or growth-factor signaling in G1). Alter-
natively, labs may focus on a specic mode of regulation (e.g.,
kinase/phosphorylation or transcriptional regulation). In the
study of materials science, some groups specialize in the
l, resulting in design and implementation of idiosyncratic methods, (2).
portunities to accelerate or increase data production, (3). Knowledge is
o reconcile incompatible methods and contradictory conclusions.

Digital Discovery, 2023, 2, 12–27 | 13
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synthesis of novel materials, others in characterization, and
others in processing and device fabrication. The implicit
understanding is that somehow all these labs will congregate
and determine how all of these activities and pieces t together
to inform a complete model (e.g., of cell division or a new
functional material). Yet the data and models generated by
these labs are unlikely to be compatible, so aggregating
understanding at this level is unlikely to yield the necessary
insights. As laboratories become more specialized, they may
become even more siloed and less able to share protocols, data,
and insights, let alone to do so in rapid, scalable ways. As
problems become more complex, interdisciplinary, and urgent,
the paradigm for solving them must enable rapid integration
and scaling of data-collection and analysis capabilities. The
individualist paradigm hinders labs from integrating capabil-
ities and collaborating effectively.

Individualist science fails to support reproducibility of
results. Reproducibility of scientic results is critical to vali-
dating claims and maintaining trust in reported scientic
ndings, but reproducibility is problematically elusive.2–6 For
example, results may be irreproducible when descriptions of
data-collection methods are poor or incomplete7,8 or when the
results themselves are false or misleading because they are
products of investigator biases (e.g., the “le drawer” problem).9

Critically, individualist science does little to mitigate these
problems, as it allows investigators to make methodological
and reporting decisions without much (if any) external input.
Moreover, the individualist paradigm promotes the use of
idiosyncratic protocols that, in contrast to harmonized proto-
cols, will inherently be less reproducible and compatible across
organizations.

The prevailing approach to authoring protocols constrains
scientists to designing experiments that feature and leverage
their own organization's resources. As noted previously, capa-
bilities may not be compatible across organizations; thus, even
in response to a common problem, different labs oen author
protocols that call for different experimental materials, instru-
ments, and resources. These differences necessarily render the
datasets incompatible and ill-suited for integration. Instead,
aggregation of relevant scientic knowledge must then occur at
the level of conclusions. This may be acceptable when conclu-
sions are compatible;10 however, it becomes problematic when
conclusions are incompatible because they are based on
different ndings yielded by different experimental methods.
Identifying the precise point in the research cycle where vari-
ance was introduced and inuenced the results is critical, but
very difficult to pinpoint across organizations working in siloed,
parallel fashion.

Within the individualist paradigm, it has become common
to collaborate in ways that separate data-collection groups and
activities from data-analysis groups and activities. This style of
collaboration is prevalent where the data collected are large
(e.g., ‘omics data sets). As experimentalists advance from design
to experiment to data collection, implicit knowledge (e.g., the
intent of an experiment), if not made explicit, may fail to
propagate to the data analysis groups (or if it propagates, it does
so ambiguously, leaving room for confusion). The lack of
14 | Digital Discovery, 2023, 2, 12–27
integration between experimentalists and analysts in this
scenario can result in conclusions that are misaligned with
experimental intent and methods. Consequently, it becomes
difficult to reconcile conclusions derived from analysis across
experiments.

Individualist science fails to support data sharing. Individ-
ualist approaches force investigators to aggregate knowledge at
the level of conclusions because there are few standards for
organizing and annotating datasets and few (if any) incentives
for sharing data prior to publication.11,12 Even if the protocols
and capabilities of multiple organizations were compatible, this
would not necessarily render their experimental data compat-
ible, as they might simply use different conventions (or meta-
data schema) for naming and organizing the critical
components of a protocol (e.g., strains, growth conditions, and
instrumentation) and data outputs. Data pre-processing,
normalization, and versioning can all impact downstream
analyses. When working with constructs that are highly sensi-
tive to environmental conditions—including those affected by
different measurement instruments—the ability to capture and
represent comprehensive metadata is critical to integrating
data. Integration there, versus aggregation at the level of
conclusions, allows scientists to share and analyze a larger
dataset, develop more comprehensive models, and discover
impactful phenomena.

Moreover, a methodological paradigm that fails to support
the aggregation of knowledge before the level of conclusions is
necessarily slow and difficult to accelerate. When national- or
global-level problems require rapid, large-scale responses,
interested and capable organizations cannot simply join the
cause and contribute their data unless those data are compat-
ible. Instead, responding organizations typically operate in
parallel, siloed fashion, executing full experimental cycles
before sharing potentially incompatible conclusions. For
example, in response to the COVID-19 pandemic, there was
a large-scale globally distributed effort to generate data relevant
to pathogen genomics, clinical outcomes, and epidemiological
factors. Recognizing the value of rapid dissemination of infor-
mation, many publications provided open access to COVID-19
research and released data prior to peer review.13 Useful as
these measures were, the data that were made available were
not necessarily easily aggregated for analysis, not least of all
because data collection methods were not standardized or
transparent and there was no globally accessible infrastructure
for transforming and aggregating idiosyncratic data for anal-
ysis.14 Thus, it required extensive manual labor to reconcile and
compile these data. Such outcomes are suboptimal. By contrast,
a paradigm that aggregates knowledge at the level of data
supports scaling and acceleration to address a wide range of
problems more quickly and comprehensively.

Individualist science does not fully leverage new experi-
mental capabilities. Individualist science is largely conducted
manually and typically results in small datasets or large datasets
in small condition spaces. Increasingly, however, labs are
replacing or augmenting manual operations with automation to
address some of the inefficiencies and unreliability associated
with manual procedures, for example, inefficiencies associated
© 2023 The Author(s). Published by the Royal Society of Chemistry
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with human availability, and errors associated with human
discretion, bias, and cognitive load.15 Although automation can
support production of larger datasets, automated protocols are
still likely to deviate from one lab to another because of a lack of
standardization and proper documentation. Without standards
and proper documentation, individual investigators cannot
share and integrate protocols and datasets across institutions
and, in turn, cannot leverage complementary capabilities and
generate data at scale. That limitation notwithstanding, inves-
tigators may still be reluctant to adopt shared standards if they
perceive those standards as constraints on their work. That
perception is, in at least one way, shortsighted. Standards that
enable investigators to share protocols and leverage the exper-
imental capabilities outside of their organizations—for
example, automated, semi-automated, or foundry-type capa-
bilities—will allow for data generation at scale and a greater
chance of discovering phenomena that are simply not observ-
able in small, idiosyncratically generated datasets.

Individualist science does not engage new analytic technol-
ogies (e.g., articial intelligence or machine learning; AI/ML).
Because typical datasets are idiosyncratic, not shareable, and
sparse, they tend to be analyzed in circumscribed ways. The
scientists who generated the data, and who are typically
responsible for analyzing the data, tend to apply only those
methods for which they have facility, which address the vari-
ables they explicitly identied in their models, and which may
not be extensible to data at scale. Further, the small datasets
typically generated in individualist science are simply not suit-
able for more sophisticated analytics (e.g., ML) that require
large amounts of data for training and learning. Thus, analyses
tend not to identify latent variables that impact model perfor-
mance and inform model revision. The individualist paradigm
inhibits progress in accelerating the pace of discovery because it
does not support examination of the numerous variables that
inuence the generality—the cross-context stability or robust-
ness—of many scientic constructs.

In short, the individualist model of science fails to support
reproducibility, data sharing, advances in experimentation and
analytics, and rapid progress to common conclusions. Hurdles
to generating, analyzing, and sharing data at scale prevent
scientists from accelerating model development and discovery.
A new paradigm is needed to overcome these hurdles.

An alternative to individualist science

To overcome the limitations of individualist science and
accelerate the pace of discovery, scientists must engage in
activities that promote collaboration across disciplines and
enable production of larger, more completely described,
shareable, and reproducible datasets. Rather than bound
scientic activities by the physical and intellectual resource
constraints of individual organizations, scientists should seek
to enhance their organizational capabilities and leverage the
complementary capabilities of other organizations. The SD2
program did this by integrating existing, distributed methods
and capabilities into a sociotechnical system that allows
scientists to collaborate to share protocols and data more easily,
© 2023 The Author(s). Published by the Royal Society of Chemistry
generate data more reliably, and leverage cross-organizational
capabilities that support data generation and analysis at scale.

One can look to a recent example in the study of protein
structure—the success of AlphaFold—to illustrate the benets
of collaborative science and, in particular, standardized data
formats and advances in data analytics.16 For decades,
numerous researchers worked individually to document and
collect many high-resolution structures of diverse proteins. To
be publishable, these data had to be in a standard format and
posted to a shared repository, the Worldwide Protein Data Bank
(wwPDB).17 This data bank, which currently supports large-scale
data sharing and reuse, took more than 20 years to gain traction
with scientic, publishing, and funding communities. It was
founded in 1971 by a relatively small community of scientists
who were willing to share their data. At that time, the larger
scientic community was less inclined to share data, at least in
part because of unresolved questions regarding the scientic
and commercial value of withholding data (e.g., to improve their
accuracy or realize nancial gains).18 It was not until 1989 that
the International Union of Crystallography's (IUCr) Biological
Macromolecule commission addressed these concerns and
articulated its policy that structures be deposited in the PDB
prior to publication and that their public release could be
delayed for a limited time.19 Then, in 1992, more than 20 years
aer the PDB was founded, the NIH and other funding agencies
began to adopt formal policies mandating deposition of
research results in the PDB.20 Since the year 2000, over 209 000
data sets have been deposited to the PDB. These data are freely
and publicly available. Consequently, they have been used to
inform a vast array of prospective solutions associated with
predicting protein structure. For example, the ten most cited
structures in this database had been cited, collectively, over 31
000 times through 2018.21 Most recently, wwPDB datasets fed
novel data-driven neural-network models of machine learning
to provide a computationally efficient method of predicting
structures that is as accurate as experimental methods that are
far more costly and less efficient.22 The SD2 program aimed to
accomplish a similar outcome, though more quickly, in
synthetic biology and materials chemistry, as these elds have
suffered from a paucity of large, accessible datasets conducive
to applications of advances in AI/ML (except see resources such
as SynBioHub,23 the Cambridge Structural Database24 [CSD] and
the Inorganic Crystal Structure Database25 [ICSD], which
provide access to large repositories of structural data for some
biological and chemical constructs). Here, we describe compo-
nents of a framework for collaborative science that aggregates
and integrates scientic insight at the level of data and gener-
ates datasets of sufficient quantity and quality to support better
experimental decision-making, leverage advances in analytics,
and accelerate discovery.
Solving complex problems that require multiple experts,
a diversity of resources, or data at scale

The SD2 program focused on three core scientic topics: (1)
designing proteins for better binding and stability, (2) engi-
neering genetic components and networks for sensing and
Digital Discovery, 2023, 2, 12–27 | 15
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signaling in yeast and bacteria, and (3) identifying materials
and methods for synthesizing perovskite crystals. These are
high-dimensional problems that require diverse expertise and
capabilities and data at scale to fully investigate. Because these
types of problems require more comprehensive investigation, it
is necessary to bring amore complete set of resources to bear on
them. This was a fundamental question for SD2: How does one
integrate the diverse capabilities of distributed organizations to
solve high-dimensional problems more quickly and effectively?
The solution was to design a sociotechnical system that iden-
tied and integrated complementary expertise and capabilities
across individual organizations. For example, consider a high-
level workow for investigating a model representing an
organism with a synthetic circuit that renders the organism
a sensor for a molecule in its environment. Investigators design
the model, including the synthetic parts and network, write
a protocol to test it, implement the protocol (e.g., build parts,
run an experiment, generate data), analyze the data, and
generate conclusions. It would require tremendous resources to
complete this workow at scale. A single organization likely
could not do this efficiently, end-to-end, and generate the data
required to fully interrogate the model. The SD2 program,
however, divided the required scientic and engineering labor
across more than 20 organizations spread over ve technical
areas. These technical areas included the following:

� Discovery, responsible for applying machine learning and
other sophisticated analytics to data, to inform model
development.

� Design, responsible for designing model constructs and
developing protocols for testing those constructs.

� Experimentation, responsible for executing protocols and
generating raw data.

� Data Infrastructure, responsible for providing and main-
taining the hardware and soware for transferring, storing,
curating, and processing data at Petabyte scale.

� Socio-technical Integration, responsible for facilitating,
monitoring, and measuring collaboration in, and the evolution
of, the sociotechnical system.

Separating design, discovery, experimentation, and data
infrastructure created loops of data ow that required the
scientists and technologists of SD2 (designated “program
performers”) to collaborate to identify the most propitious ways
to generate, share, and operate on data. Performers collabo-
rated through several methods, including attending an in-
person hackathon and quarterly program-wide integration
meetings, participating in small groups to dene and rene
workows and roles, interfacing on collaboration-focused
platforms (e.g., Slack, Google Drive, GitHub, GitLab), and
leveraging a shared infrastructure for housing data and so-
ware (the SD2 Environment or “SD2E”).26 Through these
methods, performers negotiated the scientic questions they
would address, the methods they would use to address them,
and the division of labor across teams addressing a challenge.
Simultaneously, performers identied friction points that
slowed communication or the transfer or use of data and
developed solutions to mitigate those friction points. For
example, during a week-long program-wide hackathon at the
16 | Digital Discovery, 2023, 2, 12–27
start of the program, existing datasets relevant to each scientic
topic were delivered to teams of performers clustered by each
topic. As is typical of most research datasets, these were labeled
and organized idiosyncratically, making it difficult for
performers to understand the intent of the activities that
generated the data and to identify methods for analyzing them.
It became clear that if multiple teams were to operate on the
same datasets, those teams needed a mechanism for under-
standing the data. This led to negotiating methods for
describing activities, data, and metadata in a standardized way,
so that any performer on the program could theoretically
understand and operate on any SD2 dataset (akin to imple-
menting FAIR data standards).27 Thus began development of
the sociotechnical infrastructure that evolved into a system of
people, technologies, and processes (the sociotechnical system,
or STS) that guided the work within, and the collaboration
across, each technical area. This system allowed design teams to
send models to experiment planners who compiled and pushed
protocols to experimental labs that generated and shared data
with analysts who operated on it and fed results back to
designers for model renement (see Fig. 2). This became known
as the design-build-test-learn (DBTL) loop. The general work-
ow of this loop has its roots in Walter Shewhart's specica-
tion–production–inspection cycle for quality control and
iterative product development in manufacturing (1939). This
was popularized by Edward Deming in the 1950s as the plan-do-
check-act (PDCA) cycle. This is essentially a formalized version
of the scientic method applied to manufacturing. The broad
contours of iterative ligand synthesis and validation have exis-
ted for some time in pharmaceutical research, and certainly
have been practiced without giving it an explicit name. Early
invocations refer to this as cycles of design, synthesize, test,
interpret28 or design, test, make, analyze,29 which consciously
adopts quality management terminology for the discovery
process. As implemented in SD2, it was an architecture for
collaboratively and iteratively generating and analyzing data at
scale and enhancing scientic models in ways not achievable
through individualist science.

Supporting reproducibility
Protocol authoring

The experimental protocol is the core driver of data generation
in the DBTL loop. Finding common ways to express protocols
(and by extension their associated data and metadata) is the
rst step in solving reproducibility problems and enabling
rapid data sharing.

To facilitate protocol authoring and sharing across organi-
zations, the SD2 program developed a suite of standardization
tools (e.g., document templates and soware applications) that
integrated with commonly used document and spreadsheet
formats. One of those tools, the Experiment Request, is a Google
Docs-based template for organizing the prose of a protocol—the
details that characterize a protocol—into a machine-readable
format for driving an experiment.30 Critically, it is a dynamic
document that records and timestamps changes to the experi-
mental goal, rationale, execution plan (including a matrix of
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 The Design-Build-Test-Learn Loop in terms of team/role.
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materials, parameters, and measurements), and analysis plan.
It provides users with references to relevant artifacts, matrices
of experimental materials and variables, and parameters for
candidate analytics (e.g., expected data types and assertions of
measurement dependencies). It also identies metadata
requirements, potential or expected challenges to running the
experiment, and links to newly generated data. This template
evolved with use over time, standardized the language of
experimental protocols, and resulted in a more streamlined
DBTL workow. Consequently, performers spent fewer hours
searching for clarication of critical details such as experi-
mental parameters or data and metadata structures.

To further streamline the cross-organization workow,
program performers developed the Intent Parser,31 an applica-
tion that processes the Experiment Request to further stan-
dardize the language in a protocol by mapping constructs in the
request to canonical denitions in a shared database (e.g.,
a “Data Dictionary”)32 and linking these constructs to descrip-
tions in a widely accessible resource (e.g., SynBioHub).23 When
the Intent Parser encounters a novel term—for example, an
idiosyncratic shorthand label for a material or procedure—it
ags it for clarication. This allows scientists to either adopt
others' (perhaps more common) terms and revise their protocol
or to add new terms to the shared database. Thus, the Intent
Parser helped standardize protocols while also allowing exible
protocol authoring. Critically, it reduced the need for all
collaborators to know and use the same language during
planning, as it discovers language discrepancies and incre-
mentally nudges collaborators toward a shared lexicon.

This approach to protocol authoring denes thematerials and
methods of an experiment with sufficient precision to ensure
reproducibility (or at least to raise the likelihood of reproduc-
ibility), yet it grants scientists license to use some local termi-
nology by automating the standardization of terms. It also
allowed a level of efficiency and productivity not realized prior to
developing these applications: In a four-month period following
development of this approach, 19 users from various organiza-
tions generated 34 experiment requests across three different
© 2023 The Author(s). Published by the Royal Society of Chemistry
protocols, yielding over 16 000 experimental samples generated
across multiple sites. Moreover, the standardized language and
formats of these protocols allowed simpler and faster analysis
and more effective data sharing across the program31 It is
important to note, however, that these applications were born of
a struggle to develop a single, automated tool for ingesting the
prose of any synthetic biology experiment protocol and trans-
lating it into a protocol that is executable by one of multiple
laboratories with different infrastructures and capabilities. The
work of developing such an automated tool—for example, of
reconciling the different methods, materials, and lexicons of over
a dozen organizations—proved to be too costly in time and
resources to pursue. Instead, the SD2 community decided that
the efficiency afforded by the combination of small modications
to the content and structure of written protocols and the rela-
tively simple automation of the Experiment Request and Intent
Parser tools outweighed the cost of developing a fully automated
protocol translation tool.

Whereas the synthetic biology working groups maintained
and reconciled existing languages for representing new proto-
cols, the materials chemistry working group had to invent new
processes for representing protocols because the methods for
testing their prescribed reactions had never before been auto-
mated. Hence, this group adopted a co-designmodel in which it
simultaneously developed the underlying experimental labora-
tory protocol (designated as a “workow” of reaction and
characterization steps) and the soware to support experi-
mental specication and reporting. The experimental develop-
ment was geographically distributed, with one team working on
bench-scale development and the other team focused on auto-
mating those processes. A third team of soware developers
served as a conduit between the two experimental groups,
capturing and documenting the necessary specications and
metadata required to perform the experiment. This informed
both the soware development as well as the evolution of the
protocol and ensured that the protocol could be executed at
different sites with different capabilities.
Digital Discovery, 2023, 2, 12–27 | 17
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Transitioning protocols across organizations

To further support reproducibility, the SD2 program leveraged
mechanisms for easily transitioning protocols to experimental
labs. The program integrated soware applications that
compile and output human- or machine-readable protocols for
guiding human or automated protocol execution. These appli-
cations allowed different organizations across technical areas to
advance protocols while maintaining their own conventions for
draing and executing protocols. The synthetic biology groups
largely used the following two applications to transition proto-
cols to experimental labs: Aquarium33,34 and Autoprotocol.35 The
materials chemistry group developed and deployed an appli-
cation called Experiment Specication, Capture, and Laboratory
Automation Technology (ESCALATE) to support protocol
development and execution across labs.36

Aquarium is a lab-management soware application
designed to support human-executed experimentation at the
benchtop (though it can also drive automated experimentation).
It is a user-friendly application that offers predened, common
experimental procedures and allows users to dene their own
protocol templates. Every dened, executable protocol step is
represented as a unit that authors can select and chain to
generate simple or complex protocols. This standardization
generates protocols that are easy to repeat and share. By
installing and using Aquarium at multiple performer sites, the
SD2 program developed a network of laboratories that can
leverage each other's capabilities to generate complementary
datasets and test for reproducibility.

Autoprotocol is an experiment-building language designed
to produce machine-executable protocols that enable auto-
mated experimentation. Similar to Aquarium, Autoprotocol
allows an author to identify experimental parameters, compile
a protocol of executable steps, and share the protocol with an
appropriately equipped lab. Autoprotocol differs slightly from
Aquarium in that it requires greater knowledge of coding;
however, with modication, it can offer a user interface that
allows scientists to select protocol elements and congure them
in a workow that can be easily read and interpreted by
a human lab tech or an automated agent.

The soware supporting materials chemistry experiments,
ESCALATE, originated from cross-organization work and thus
emphasizes cross-lab interactions. Because the labs partici-
pating in SD2 had different levels of automation, ESCALATE was
developed to support both human and machine instructions. It
was originally developed as a lightweight framework to proto-
type designs using a shared le system and spreadsheets. It was
forged in the context of designing experiments to support metal
halide perovskite crystallization. Using the lessons learned from
the co-design process, a more general version was developed to
allow for arbitrary experiments. Borrowing lessons learned from
the development of Aquarium and Autoprotocol, the underlying
model of experiments in ESCALATE allows for import and
export of Autoprotocol experiment specications. In principle,
this can also be adapted for import and export of other
emerging standards for describing reaction data, such as those
18 | Digital Discovery, 2023, 2, 12–27
found in the Open Reaction Database37 and those using the
Universal Chemical Description Language (cDL).38

Aquarium, Autoprotocol, ESCALATE, and similar applica-
tions support collaborative science and reproducibility in
several ways. First, these applications help standardize tech-
nical language, resulting in protocols that can be read and
understood by users who share that language. Second, they
allow scientists to author a protocol to be executed in any
compatibly equipped lab. Collaborations can exist in which
partner labs offer collaborators a menu of experimental capa-
bilities from which to choose. Thus, for example, a scientist
with no access to measurement devices could author a protocol
to be run in a fully instrumented lab because both the author
and the lab run instances of Aquarium. These applications can
also be force multipliers. A scientic question requiring quick
production of large datasets (e.g., data characterizing a novel
virus at the start of a pandemic) could be addressed viamultiple
labs running the same protocol, thus consolidating an other-
wise distributed workforce. A protocol that might have been
executed by few can now be executed by many.

To support capability integration even further, at the time of
this publication, an application—the Open Protocol Interface
Language (OPIL)—is in development to translate protocols
between Aquarium and Autoprotocol.39 With a common
protocol language, the data and workows from labs with
different operating systems (e.g., human operated or semi-
automated) will be interoperable. This will allow more effi-
cient vetting of protocols and convergence on candidates for
automated or high-throughput execution. As more labs inte-
grate in this way, they can scale up responses to emergent
problems without requiring investment in new infrastructure
for automated workows.
Supporting data sharing

To realize potential synergies across distributed organizations,
the data generated by each organization must be shareable and
interpretable. Standardizing protocols is a necessary early step,
as experimental intent, input, and output must be interpret-
able. Similarly, standards for capturing and representing met-
adata are critical for sharing (propagating and tracking) data
through a distributed workow. In SD2, metadata took the form
of contextual data (e.g., provenance of materials, descriptions of
samples on plates) and the methods for generating, labeling,
and processing those contextual data. One of the challenges of
standardizing metadata across organizations is that different
organizations have different conventions or schemas for rep-
resenting metadata; for example, human-operated labs may
record and convey metadata exibly, in prose, whereas robotics
labs may record and convey metadata rigidly, in machine-
readable code. The conventions used by each are not easily
abandoned. Thus, rather than develop a new convention and
require all performers to adopt it, the SD2 program developed
a post–hoc process for translating metadata from different
organizations into a common lexicon. Initially, organizations
with established conventions populated a table that mapped
terms from convention X to convention Y to convention Z. This
© 2023 The Author(s). Published by the Royal Society of Chemistry
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table allowed organizations to maintain their conventions and
to translate their terms to and from other naming conventions.
This eventually led to development of the previously referenced
Data Dictionary32 and a stable schema that all performers could
use to represent data and metadata for almost any experimental
space in the program. It allowed data analysts to see the
conditions of a given experiment, access a reference le, and
query the data in a meaningful way. For example, when
exploring the performance of genetic circuits in yeast, analysts
needed to know what materials (e.g., yeast strain and reagent)
were in each well of a sample plate. The Data Dictionary gave
analysts access to a fully described experimental sample that
allowed them to draw meaningful conclusions from the data.
Critically, it provided a commonly accessible repository of
complete data, which obviated the need to share data les
repeatedly across communications platforms (e.g., email, Slack)
and risk operating on incompatible data.

Performers on SD2 also used metadata to describe analyses.
Downstream, at the “learn” stage of the DBTL loop, many
parameters were required to congure analytics. These param-
eters became metadata that described an analysis and allowed
for easier sharing and interpretation of results. For example,
when ensuring the quality of data and results, analysts could
refer to metadata representing analytic choices (e.g., to use one
control sample rather than another), to consider the validity of
those choices and determine the quality of the results. Thus, by
developing tools and processes for capturing metadata at
various stages of the DBTL loop, SD2 performers could share
data and compare apples to apples at each stage and be con-
dent that they understood what the data and results
represented.

The materials chemistry working group capitalized even
further on metadata representations, eventually using them to
rene their experimental search space. They used statistical
analysis of metadata to identify anomalies associated with
variations in laboratory conditions, which were in turn used as
hypotheses for subsequent experiments.40 This type of “auto-
mated serendipity” enables exible experimentation in which
variations are permitted, documented, and analyzed for
insights that inform model (or search space) renement.

In addition to developing metadata tools and processes, SD2
performers leveraged a centralized, performer-maintained
infrastructure to facilitate collaborative science and engi-
neering, and in particular, data sharing. This infrastructure
provided access to a research computing ecosystem with
tremendous capacity to host soware and to store and process
data at scale.41 Importantly, it provided access to resources to
allow a technically diverse user-base (from novice, point-and-
click users to expert soware developers) to participate in
collaborative science and engineering. For example, it served as
a platform for hosting the previously described data integration
and metadata representation tools, as well as a diverse set of
tools for analyzing data. Performers could access a dataset,
a reference le for tracking metadata, an array of tools for
analyzing the data, and tutorials or documentation for using the
analysis tools. It was the core of development activities and
a space where performers could contribute to the standards,
© 2023 The Author(s). Published by the Royal Society of Chemistry
methods, and tools that advanced a exible and extensible
approach to collaborative science.

Critically, the SD2 program leveraged a central authority to
develop and impose mandates for sharing data. This was a key
programmatic feature whose consequences—namely, quick
negotiation and adoption of processes for sharing data—can be
contrasted with the consequences of lacking a central authority.
Recall that the PDB was conceived by practitioners in 1971,42 but
was not enforced by some journals and funding institutions
until 1992.20 In contrast, SD2 performers developed and adop-
ted standards and a formal agreement for data sharing rela-
tively quickly within the program. The program then promoted
these standards in outreach to publishers, funders, andmilitary
research laboratories. However, it is important to note that the
program reached consensus on some standards only aer
experiencing signicant challenges to sharing and operating on
data. Early in the program, the data scientists who were
responsible for discovery through application of novel analytics,
and who relied on the data to be FAIR (ndable, accessible,
interoperable, and reusable),27 were unable to apply their
analytics across early datasets because those datasets were not
necessarily interoperable or reusable. It took requests for better
data “FAIRness” and quality to induce program performers to
develop the processes and leverage the resources described in
this section.
Engaging new experimental capabilities and generating data
at scale

To generate data at scale, scientists must leverage synergies
across labs and efficiencies in labs that enhance data genera-
tion through automation. Leveraging cross-organization syner-
gies is relatively straightforward and takes advantage of the
tools and applications previously discussed.

With standardized, shareable protocols, distributed labs can
run the same experiment and generate multiples of data.
Collaborators who share an authoring and execution platform
can leverage excess capacities for generating data in their
partners' labs. Thus, if one lab is running experiments at full
capacity, it can request to use spare capacity at a partner lab. In
addition, distributed labs with complementary capabilities can
collaborate to design and run experiments they would not be
able to run alone. This enabled execution of different types of
experiments—for example, single-crystal versus thin-lm
synthesis of perovskite crystals—across laboratories to study
common phenomena.40

With automation, collaborators can scale their workows to
generate more data more efficiently. Leveraging automation to
enhance data generation can take at least two forms. It can be as
simple as adding automation to support human operations at
the benchtop, or it can represent a fundamental departure from
the benchtop approach, by replacing human operators with
machinery. The SD2 program introduced automation to
support data generation in both ways: (1) we paired soware
applications with human technicians (the semi-automated lab)
and (2) we paired soware applications with machinery (the
fully automated lab).
Digital Discovery, 2023, 2, 12–27 | 19
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In the semi-automated SD2 lab, applications such as
Aquarium support competent, reliable execution and docu-
mentation of protocols. They provide human lab technicians
explicit instructions for executing every step of a protocol. Lab
techs can explore information associated with each step,
preview future steps, and review past steps, to enhance their
understanding of the protocol. During execution, the applica-
tion prompts the lab tech to indicate when a step is complete
and whether the step was modied in any way. Thus, the lab
tech can annotate a step, for example, to record observations,
changes to steps, durations of processes, or tips for imple-
menting techniques. Aer a lab tech has completed a step and
recorded any necessary metadata, the application advances to
the next step and provides associated instructions. Thus, the lab
tech will complete the protocol stepwise, receiving prompts to
ensure that the actual conditions of execution are documented
at each step. This approach allows the lab tech to exercise
discretion in executing the protocol, to modify steps when
appropriate, and to document the modications. Of course,
allowing lab techs discretion over how to execute a protocol can
be problematic, as it requires competency. Applications such as
Aquarium address this concern in two ways. First, they reduce
the baseline level of competency required by lab techs by
including contextual details (e.g., tips for techniques) and
alternative operations. Consequently, lab techs do not have to
rely on their own, potentially limited, knowledge of scientic
principles or experience at the bench to determine whether an
operation should be executed as written. Second, in cases in
which lab tech competency is decient or unknown, protocol
authors can disable the features of the application that allow lab
techs to exercise discretion (e.g., suggestions of alternative
materials or procedures). In these cases, the application simply
guides the lab tech rigidly through the protocol. This can alle-
viate some of the cognitive demand experienced by lab techs, for
example in evaluating options or executing complex actions,
and free up resources to focus on the important aspects of the
protocol, thus reducing errors.13

Soware applications that reduce the competence needed to
execute experimental protocols should, however, be imple-
mented strategically. Although they support efficient, reliable
data generation, they represent an ambiguous good from an
educator's perspective. On the one hand they may allow
students or other workers with lower levels of training to
participate in the research process; on the other hand, they
reduce agency and the development of higher order skills
associated with entry-level scientic apprenticeships. This
tradeoff is not necessarily detrimental. As more scientic tasks
become automated, the need for scientists to develop expertise
relevant to formerly manual tasks decreases and is replaced by
a need to develop expertise and knowledge relevant to auto-
mation. A discussion of the opportunities and training needs
associated with automation in the chemical sciences can be
found in a recent report by the US National Academy of
Sciences.43 Incorporating automation technologies into peda-
gogical training is not inherently new,44,45 but recent efforts have
focused on training students in the combination of experi-
mental hardware and planning algorithms46,47 and on closely
20 | Digital Discovery, 2023, 2, 12–27
adjacent enabling technologies such as computer vision48,49 and
speech recognition.50 In addition to producing a more techno-
logically skilled workforce, this also provides an opportunity to
create a more inclusive scientic workforce, as laboratory
automation can remove barriers for students with visual or
physical disabilities.51

In the fully automated lab, scientists design and submit
protocols that can be read and executed by machines. In a lab
with closed work cells, there is typically no human–machine
interaction beyond uploading and selecting a protocol. The
progress of an experiment is tracked through automated
documentation of the movement of materials through a work-
ow. This is generally an efficient means of generating data, as
it is not constrained by human resources (e.g., time, attention,
availability). However, protocol exibility and modication
opportunities are limited, as changing hardware and soware
parameters can be resource intensive. Hence, automated
workows are ideal for protocols that have been pilot tested and
vetted. This concern can be partially mitigated by an open,
modular infrastructure in which workows can move from
module to module, or machine to machine, with humans
transferring materials from one module to another. For
example, one agent works on strain construction then a lab tech
delivers the product to another agent that works on incubation
and then on to another agent that draws andmeasures samples.
Here, the progress of an experiment is tracked by human
observers who can exibly input metadata for each observation.
In this modular workow, small changes can be made at
different points in a protocol (e.g., at strain construction or at
sampling) if the downstream effects are acceptable and docu-
mented. A practical (but not insurmountable) technical chal-
lenge is developing automated modules that span the diverse
range of activities (e.g., perturbation or materials handling) that
are characteristic of biological and chemical protocols.

Aer the initial investment of writing and pilot testing
a protocol, an automated, high-throughput approach offers
signicant gains in efficiency. Writing code to instruct an
automated lab agent is more efficient than training a human lab
tech to execute the same protocol. Moreover, an automated
agent should, on average, offer greater reliability and avail-
ability than a human operator. Given a reliable source of power
and regular maintenance, a machine's output should far
surpass that of a human operator over increasingly longer
intervals. Thus, optimized efficiency and maximized output are
the primary benets to this model. However, just as one must
conduct a cost-benet analysis before leveraging full automa-
tion, one must also conduct a cost-benet analysis of exporting
protocols to high-throughput labs. In SD2, scientists weighed
the error rate of low-throughput, benchtop testing against the
cost of that error rate amplied by high-throughput testing. In
many instances, it was worth advancing a protocol to high-
throughput testing; however, in some cases, it was justiable
to generate small datasets for emerging unvetted protocols or
protocols that required extensive human operations. This was
particularly the case when advancing a protocol to automated or
high-throughput testing required extensive modications either
because the automated infrastructure lacked the machinery to
© 2023 The Author(s). Published by the Royal Society of Chemistry
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perform a traditionally manual operation (e.g., mixing a sample
by using a vortex device), thus requiring identication and
description of a replacement procedure, or because the auto-
mated infrastructure had to be recoded to perform the required
procedure. To guide decisions on whether to pursue high- versus
low-throughput testing, performers developed a decision tree
that prompted them to consider the capability needed to
execute the protocol, how likely the protocol was to require
modication, how much data were needed to answer the
scientic question, and the cost of using each approach (e.g.,
benchtop vs. high throughput; see Fig. 3).

By and large, the approach toward automation on SD2—
develop and deploy automation strategically and judiciously—is
compatible with recent social critiques suggesting that aspira-
tions toward full automation are suboptimal.52 To transform
certain types of laboratory tasks through automation creates
a need for highly technical development and maintenance
(requiring specialized expertise) and precarious “piecework” to
deal with errors in automation and interfaces between auto-
mated agents. Thus, full automation is likely to be unnecessary,
potentially doomed to failure, and (if successful) exclusive of
certain types of scientic investigation, thus landing scientists
back in the connes of individualist science (albeit an auto-
mated individualist science). Instead, a better strategy may be to
develop “islands of automation” in the laboratory, surrounded
by manual tasks, thus enabling more exible and inclusive
science.

Engaging new analytic technologies

Bioinformatics has been the prevailing method for data pro-
cessing and discovery in the biological domain. Recently, AI/ML
techniques have seen more use given the growth of data and
lack of well-dened models in the space. These new techniques
Fig. 3 Decision Tree for Experimenting at the Benchtop versus a High-

© 2023 The Author(s). Published by the Royal Society of Chemistry
present several opportunities and challenges. On one hand,
they are purely data-driven, do not require expertise in the
domain, and, with enough data, can discover non-linear,
complex patterns in high-dimensional data. These patterns
could be biomarkers or predictions of potential experimental
failures that can inform experiment design. On the other hand,
an incomplete understanding of the domain in which they are
applied makes it difficult to transform the underlying objective
of the model to be useful for downstream applications. This has
an impact on how one denes “data at scale.” For example,
a typical synthetic biology experiment uses a few (10–40)
underlying genetic parts to create a circuit that will respond to
a stimulus. The number of combinations of those parts grows
combinatorially, and if one tests, for example, only three
replicates of 5–10 designs, this represents a small fraction of the
whole design space. Moreover, the variability of the response to
a stimulus by a circuit can be large, and with only three repli-
cates, such variability cannot be approximated. Thus, although
such an experiment generates a lot of data, the amount is
inadequate to train a design-space model using commonly
available ML techniques. Unless researchers collect more data,
they cannot avail themselves of emerging analytic techniques
that have greater potential than bioinformatics to informmodel
completion.

To address genetic-design challenge problems on SD2,
experts in ML collaborated with experts in synthetic biology. In
these collaborations, synthetic biologists explained the specic
discovery objectives that could benet from ML techniques,
while ML experts explained the data requirements for training
relevant ML algorithms. Together, they developed experimental
designs and analytic workows to comprehensively predict the
outcome of an experiment, given data at scale. As a specic
example, applying four inducers to an organism to stimulate
Throughput (H-T) Lab.

Digital Discovery, 2023, 2, 12–27 | 21
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a response requires data to be generated in ve conditions (one
control + 4 inducers) at the various time points of interest (e.g.,
log and stationary phase). At a sample level, this yields a total of
10 conditions for which “responses” can be observed, which is
too few to train any ML model. By contrast, by scoping obser-
vations from the sample level to the level of genetic tran-
scriptome—specically, the response of a particular gene's
expression given the features of the gene—the amount of data
becomes the product of the gene's transcriptome (∼4000)
across the conditions (×10), which yields a total of ∼40 000
observations. When run across three replicates per condition,
these conditions yield a total of 120 000 observations. This is
enough data to train a variety of models, given accurate iden-
tication of genetic features that can be linked to the gene's
expression, such as its role in a network of genes. Using
machine learning, the experimental conditions, and a vector-
ized representation of a gene's role in the network that repre-
sents the organism, SD2 performers were able to achieve greater
than 90% accuracy in predicting whether the gene would be
dysregulated, and an R2 ∼ 0.6 in quantifying the level of the
gene's dysregulation.53

In the materials chemistry thrust, work focused on acceler-
ating the Edisonian trial-and-error process by using data at
scale. A variety of experiment planning algorithms were tested
for their ability to support interpolation of results,54
Fig. 4 The Collaborative Paradigm Instantiated by DARPA's SD2 Program
in harmonized protocols that yield compatible results, (2). Harmonized
added to the system to scale up production for rapid responding, (3).
protocols and a central data repository allow analysts to operate on the

22 | Digital Discovery, 2023, 2, 12–27
extrapolation to new chemical systems,36 combination of model
predictions to identify anomalies,55 as well as active-learning54

and active-meta learning approaches56 for crystal growth
control. These activities culminated in a competition between
algorithms developed in the different problem domains.57

Automation was necessary to accumulate the initial datasets
needed for algorithm development and testing, as well as to
dene statistically signicant performance baselines. However,
it should be emphasized that many of these methods are
applicable to manual experimentation now that these initial
data exist.56

The SD2 community applied collaboratively developed tools
and methods—for example, automated data generation, pre-
processing, normalization, and analysis—to several scientic
questions. Among other advances, these efforts led to faster and
more accurate predictions of protein stability,58–60 faster
discovery of perovskite crystals,54,55,61 and more accurate
predictions of the impact of synthetic biological circuits on host
organisms.62
Enhancing discovery

In the individualist paradigm, knowledge is shared only aer an
entire experimental cycle is complete and conclusions have
been reached by the individual scientist. In SD2's collaborative
, (1). Investigators collaborate to develop and share protocols, resulting
protocols allow resources (investigators, experimental facilities) to be
A centralized data repository ensures data are FAIR, (4). Harmonized
same data, to generate compatible and reconcilable conclusions.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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paradigm, scientists worked together to share knowledge at all
stages of the scientic method (see Fig. 4).

This supports scalable, reproducible data generation and
analysis by multiple groups. Protocol sharing and harmoniza-
tion supports high-throughput experimentation. Data sharing
at all levels supports experimental design conducive to AI/ML
analytic approaches. Automated pipelines for pre-processing,
normalization, and quality control increase the speed with
which raw data become ready for analysis.30 Standardized data
frames enable automated batch analysis of new data along with
old data, substantially reducing the time and resources other-
wise needed to complete an experimental cycle. In contrast to
the scalability of the individualist approach, the speed of
discovery scales with the addition of new laboratories in
a collaborative paradigm because shared data accumulates
more rapidly and accelerates all processes downstream of data
production. At the end of the 4 year program, SD2 performers
generated measurements of progress relative to an estimated
pre-SD2 baseline.63 Analysts classied and normalized this
diverse set of performer-generated, oen domain-specic
statistics. They reported that SD2 performers increased the
number of constructs (e.g., perovskite crystals) designed or
discovered by 12×; increased the complexity of model designs
(e.g., genetic networks) by 20×; increased the speed of model
design, build, test, or analysis by 10×; increased labor efficiency
(e.g., output per individual) by nearly 4×; and increased the
accuracy of model predictions (e.g., protein stability) by 3× (see
Fig. 5).64 Critical to supporting rapid responses to emergent
large-scale problems, the sociotechnical system developed in
SD2 yielded notable gains in the speed to complete experi-
mental cycles. Cycle speeds for designing proteins, engineering
genetic components and networks, and synthesizing perovskite
crystals increased dramatically (from 3–81×) over pre-SD2 rates.
Recommendations from the SD2 experience

SD2 performers learned many valuable lessons throughout the
course of the program. The following are a few that stand out for
their application to future collaborative enterprises that
resemble the sociotechnical system (STS) developed and
deployed in the SD2 program.
Fig. 5 Gains over baseline (pre-SD2 measures) in metrics relevant to
experimental cycles.

© 2023 The Author(s). Published by the Royal Society of Chemistry
In convening an STS, it will benet the enterprise to engage
in activities—for example, knowledge capture activities—that
help identify the details of collaborators' methods that are
critical to supporting collaboration and discovery. In the same
way that making implicit knowledge explicit is critical to
sharing knowledge and enabling discovery at the level of
science, making methods and metamethods explicit is critical
to sharing the knowledge (e.g., procedural, semantic, and
institutional knowledge) that enables collaboration.

Throughout the collaboration, and especially early in the
process, collaborators should be allowed to fail and encouraged
to fail fast. Many professionals across industry and academia
perceive failure as a negative outcome. This may obstruct their
ability to view failure as an opportunity to improve or advance
their work; consequently, rather than see and embrace failure,
they push back and persist in an unrecognized failure mode.
SD2 experienced both conditions. Not surprisingly, when SD2
performers recognized failure, accepted it, and sought oppor-
tunities to improve, they experienced success much more
rapidly.

Collaborators must be exible about retaining versus omit-
ting metadata processes. Metadata collection, representation,
and availability ended up being hallmark characteristics of the
SD2 STS. However, it was challenging to identify what metadata
to collect and how to organize them, because the metadata
requirements depended on how the data would be used. Met-
adata uses are not always discernible early in research and they
may rarely be anticipated for future research that will be con-
ducted beyond the time and sociotechnical boundaries of the
immediate STS. Moreover, somemetadata requirements cannot
be easily identied until a problem is discovered. Thus, exi-
bility is critical to managing metadata processes.

Regarding metadata and automation, if metadata
processes—for example, collection and management—are
candidates for automation, collaborators should consider
automating them prior to running experiments. This may
require the temporal staggering of work. Thus, it may not be
possible to generate data while engineering data-management
solutions, but this might avoid confusion and wasted work.

Regarding automation in general, collaborators should
carefully consider the goals of introducing automation as
a solution. It can enhance efficiency and free humans to engage
in more fruitful activities, but it comes at a cost in set-up time,
diagnosis, and exibility. SD2 performers were initially focused
on automating the full DBTL loop, which turned out to be too
large and risky of an undertaking for processes that were still
evolving, as there was high potential for wasting time auto-
mating the nascent, volatile processes. The balance struck by
performers was to attempt to automate processes that were well
dened and did not demand high exibility. This purchased
speedy execution for a large subset of data-production
processes. In addition, performers worked to identify the
processes that required the most human effort and to automate
those, which resulted in reduced processing time and human
errors. Ultimately, automation should support scientic
outcomes, and it should support rather than fully replace the
work of relevant human operators.
Digital Discovery, 2023, 2, 12–27 | 23
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Finally, to engage potential users of emergent methods,
technologies, and standards—and to avoid simply creating
a new silo of information—collaborators should conduct
outreach activities with relevant stakeholders. SD2 performers
did so to promote the use of their scientic approach and the
standards and tools that they developed. For example, the
program sponsored a meeting with funders and publishers of
science to address issues of open science, such as the publica-
tion of datasets. SD2 performers also engaged stakeholders,
such as U.S. military research laboratories, in nearly all of their
program-wide meetings, in part to elicit guidance that could
shape the products of the program. In addition, SD2 performers
published their research methods and ndings extensively; and
many of the tools and datasets developed in SD2 were made
public at https://github.com/SD2E.65 However, like all DARPA
programs, outreach activities were not formally funded aer
the end of the program. Thus, continued outreach, training,
and maintenance of the SD2 infrastructure, tools, and data
will likely require development of an entity (e.g., similar to U.
S. Department of Energy laboratories or NIST) or a long-term
program to fund research infrastructure. In the absence of
such an entity or program, outreach beyond the lifespan of
a government-funded program is le in the hands of individ-
uals and groups who are invested in transitioning program
products into adjacent research and development spaces.

Conclusion

The prevailing approach to conducting science—the individu-
alist approach—is suboptimal, particularly in response to high-
dimensional problems that call for a rapid response and data at
scale. That paradigm oen fails to support collaborative
protocol authoring and data sharing; it connes scientists to
infrastructures with limited capabilities; and it fails to support
the integration of capabilities that would improve the pace of
discovery and model development. A break from—or at least an
enhancement to—the prevailing approach seems warranted.
New approaches are needed that allow scientists to share
protocols and data, and to leverage a fuller set of capabilities to
generate, validate, and more deeply analyze larger datasets. The
collaborative paradigm instantiated by the SD2 community in
the form of a sociotechnical system is one such approach. It
convened experts from diverse domains to develop a network of
people, tools, and methods that could be applied to problems
that have long suffered from the limitations of individualist
science. No single organization was responsible for the work of
all technical areas. Instead, organizations collaborated to
identify synergies, select scientic challenges to address within
a given topic, and divide the labor to generate and analyze data
at scale.

Although the work of SD2 was domain-specic, the collab-
orative paradigm it adopted can be generalized to support
multidisciplinary work across several domains in life, physical,
and social sciences. The SD2 sociotechnical system can serve as
a model for developing similar systems that support a national
infrastructure that is equipped and ready to respond to emer-
gent, high dimensional problems that require diverse resources
24 | Digital Discovery, 2023, 2, 12–27
and capabilities to generate and analyze data at scale. To retain
the status quo means failure to optimize resources, capabilities,
and output at any stage of the scientic method, and hence
missed opportunities to maximize discovery.

The discoveries that will advance science in profound ways
will be made possible by collaborative, multidisciplinary efforts.
These efforts require practices and incentives for sharing
methods and data, and for identifying and leveraging comple-
mentary capabilities. This will allow for efficient generation and
analysis of quality data at scale. This will lead to discovery.
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