
Turn Constrained Shortest Path

Amogh Allani

Florida Atlantic University

Boca Raton, USA

Email: aallani2019@fau.edu

KwangSoo Yang

Florida Atlantic University

Boca Raton, USA

Email: yangk@fau.edu

AbstractÐGiven a transportation network, a source node s, a
destination node t, and the number of maximum possible turnings
b, the Turn-Constrained Shortest Path (TCSP) problem is to find
the route that minimizes the travel distance and meets the turn-
constraint. The TCSP problem is important for societal applica-
tions such as shipping and logistics, emergency route planning,
and traffic management services. We propose novel approaches
for TCSP to meet the turn-constraint while minimizing the travel
distance for the vehicle route. Experiments using real-world
datasets demonstrated that the proposed algorithms can minimize
the travel distance and meet the turn-constraint; furthermore, it
has comparable solution quality to the unconstrained shortest
path and significantly reduces the computational cost.

KeywordsÐconstrained shortest route, routing service, emer-
gency management

I. INTRODUCTION

Given a transportation network, a source node s, a desti-

nation node t, and the number of maximum possible turnings

b, the Turn-Constrained Shortest Path (TCSP) problem is to

find the route that minimizes the travel distance and meets the

turn-constraint. Figure 1a shows an example input of TCSP

consisting of 9 nodes and 12 edges. Every edge is associated

with a distance as indicated by the number displayed over

the edge. Let A be the source node and I be the destination

node. Assume that the route has no more than one left-turn

(i.e., b = 1) and minimizes the travel distance. Figure 1b

shows an example output of TCSP where the route can

minimize the travel distance and meet the turn-constraint (i.e.,

A → B → E → H → I).

(a) Input (b) Output

Fig. 1: Example of the Input and Output of TCSP

A. Application Domain

The TCSP problem is important for societal applications

such as shipping and logistics, emergency route planning, and

traffic management services. Consider the issue of decreasing

fuel consumption along a route. In the scope of North America

and China, where right-turn on red is broadly permitted, left-

turns disadvantage drivers. To take left-turns at intersections,

drivers spend more time and fuel idling at signals. The TCSP

problem addresses this issue by creating paths that reduce

time at intersections. As left-turns are penalized, the route

will contain more right-turns, which do not require a green

signal. In densely populated road networks (e.g., Los Angeles,

Toronto, or Beijing), abundant four-way intersections make

the applications of TCSP even more advantageous. For these

reasons, TCSP is a fuel-efficient, economical routing option

for commuters and businesses.

Importantly, TCSP serves as a safer option in emergency

vehicle routing and ensuring driver security. Ambulances and

fire trucks must often clear traffic to quickly reach left-turns at

an intersection. Since left-turns require a green light, reducing

left-turns minimizes the time emergency vehicles need to clear

dense traffic. Critically, taking a left-turn can also expose a

vehicle to oncoming traffic at intersections without a protected

left light. As a result, left-turns have a significantly higher

crash factor than right-turns among all drivers [3]. Thus, right-

turns encouraged within a TSCP are inherently safer than left-

turns. Accordingly, TCSP reduces the need for emergency

vehicles to run high-risk left-turns on red lights along their

paths. Decreasing response time and further risks is vital

to delivering time-critical assistance to an emergency: TSCP

accomplishes this task safely and effectively.

For similar reasons, TCSP can assist higher-risk drivers

(i.e., drivers affected by age-related disease or novice drivers)

with navigating more complex routes. TCSP greatly simplifies

routes by reducing the variation between turns. A driver

with a memory-related disorder might have greater ease in

remembering a TCSP. The scalability of constraints of TCSP

could also help simplify routes. In planning routes with

detours, for example, TCSP could modify its penalty so that

the detour will discourage routes requiring U-turns or three-

point turns. Reducing the need for complicated maneuvers

minimizes risks for drivers more prone to committing errors.

Additionally, in areas with more roundabouts or traffic circles,

the penalty could fall on turns taken at the more complex

four-way intersections. Given that turns at intersections have a

higher crash factor than roundabouts, this would reduce driver

errors and accidents.

B. Problem Definition

In our problem formulation, a transportation network is

represented as a directed graph of nodes and edges. Every node

represents a spatial location in geographic space (i.e., road

2023 IEEE 20th International Conference on Smart Communities: Improving Quality of Life using AI, Robotics and
IoT (HONET)

979-8-3503-3111-0/23/$31.00 ©2023 IEEE 89

20
23

 IE
EE

 2
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
m

ar
t C

om
m

un
iti

es
: I

m
pr

ov
in

g
Q

ua
lit

y
of

 L
ife

 u
sin

g
AI

, R
ob

ot
ic

s a
nd

 Io
T

(H
O

N
ET

) |
 9

79
-8

-3
50

3-
31

11
-0

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

HO
N

ET
59

74
7.

20
23

.1
03

74
66

9

Authorized licensed use limited to: Florida Atlantic University. Downloaded on January 27,2024 at 17:13:28 UTC from IEEE Xplore. Restrictions apply.

intersections) and every edge represents a connection between

two nodes and has a distance. The TCSP (N,E,D, b, s, t)
problem can be formalized as follows:

Input:

• A transportation network with

• a set of nodes N and a set of edges E,

• a set of positive real distances of edges D : E → R+

0

• a source node s and a destination node t, and

• the number of maximum possible turnings b

Output: Turn-Constrained Shortest Path (TCSP)

Objective:

• Minimize the travel distance from s to t.

Constraints:

• Turn-Constraint: The number of turns in the path does

not exceed b.

C. Related Work

Shortest Path Problems are extensively used in many fields,

such as transportation, logistics, and vehicle routing planning.

Given a source node s and a destination node t, the goal of

the shortest path problems is to find the route that minimizes

the travel cost (e.g., distance, time, etc). Notable examples

of shortest path algorithms include Dijkstra’s algorithm and

A* algorithm [5], [11]. However, these approaches do not

always produce the best route in real-world applications due to

network constraints (e.g., traffic signals, turn restrictions, gas

consumption, etc.) in a transportation network. Furthermore,

traditional approaches estimate the turning-cost (i.e., delay and

driver turning time) at a intersection and compute the shortest

path using Dijkstra’s algorithm and A* algorithm [14], [4],

[9], [2], [7], [13], [1], [10], [6]. We refer to this problem as

the soft turn-constrained shortest path problem. The soft turn-

constrained shortest path problem, however, cannot strictly

restrict the number of left-turns along the shortest path, result-

ing in many possible left-turns. More seriously, the turning-

cost cannot be correctly estimated due to dynamic time-

varying traffic environment (e.g., traffic signal, congestion, and

accidents). By contrast, this paper proposes a novel approach

for producing a Turn-Constrained Shortest Path (TCSP) that

can minimize the travel distance from s to t while satisfying

the hard constraint on the number of turning points (i.e., b).

D. Outline

The rest of the paper is organized as follows: Section II

describes our proposed approach. Section III describes the ex-

perimental design and presents the experimental observations

and results. Section IV concludes the paper.

II. PROPOSED APPROACH

In this section, we describe our novel approaches to the

TCSP problem. Our approach consists of three main com-

ponents: 1) turn-encoded node, 2) anti-monotone property

and distance pruning rule, and 3) admissible heuristic cost

function. We theoretically evaluate the proposed approach

through a cost model.

A. Turn-Encoded Shortest Path algorithm

The Turn-Encoded Shortest Path (TESP) algorithm starts

with distance estimates from the source and iteratively creates

turn-encoded nodes that meet the turn-constraint. The first core

idea in TESP is to create turn-encoded nodes and prune the

search space that violates the turn-constraint. The turn-encoded

node n maintains the number of turns in the path from the

source node to the node n.

turn-encoded node = n(i), (1)

where n is a node-id and i is the number of turns in the path

from the source node s to the node n.

Every turn-encoded node n(i) estimates the upper-bound

of the turn-constrained shortest-path distance from the source

node s to the node n. It also maintains a pointer to its

predecessor to create a simple path.

The Turn-Encoded Shortest Path (TESP) method uses the

generalized Dijkstra’s algorithm that iteratively updates the

estimated distance in an open-node set and selects the open-

node with the lowest estimated distance as the next closed-

node. It is important to note that each turn-encoded node (i.e.,

n(i)) is unique in both open and closed-node sets, but the

node-id can be duplicated.

(a) Graph (b) Open and Closed Nodes

Fig. 2: TESP: Iteration 1

Consider the input example in Figure 1a. Let A be the

source node and let I be the destination node. Assume that

the shortest path should have no more than one left-turn (i.e.,

b ≤ 1). To simplify the example, let us also assume that every

edge is bidirectional with the same distance in both directions.

We first add A(0) to the closed-node set and relax its

adjacent nodes (i.e., B and C) (see Figure 2a). Both paths

A → B and A → C have no left-turn; therefore, TESP adds

B(0) and C(0) to the open-node set (see Figure 2b).

(a) Graph (b) Open and Closed Nodes

Fig. 3: TESP: Iteration 2

Next, we select the open-node with the lowest estimated

distance (i.e., C(0)) and relax its adjacent nodes (i.e., E and

F) (see Figure 3a). The path A → C → F has no left-turn

2023 IEEE 20th International Conference on Smart Communities: Improving Quality of Life using AI, Robotics and
IoT (HONET)

90
Authorized licensed use limited to: Florida Atlantic University. Downloaded on January 27,2024 at 17:13:28 UTC from IEEE Xplore. Restrictions apply.

and we add F (0) into the open-node set. However, since node

E has one left-turn along the path A → C → E, we increase

the number of turns by one (i.e., E(1)). Figure 3b shows that

TESP creates two open-nodes (i.e., E(1) and F(0)).

(a) Graph (b) Open and Closed Nodes

Fig. 4: TESP: Iteration 3

After that, we add B(0) to the closed-node set and relax its

adjacent nodes (D and E) (see Figure 4a). Since both paths

A → B → D and A → B → E have no left-turn, we create

two turn-encoded nodes (i.e., D(0) and E(0)) into the open-

node set (see Figure 4b).

(a) Graph (b) Open and Close Nodes

Fig. 5: TESP: Iteration 4

The second core idea of TESP is to remove all infeasible

turn-encoded nodes in open-node set according to the anti-

monotone property.

Definition 1 (Anti-monotone Property). The turn-encoded

node has the anti-monotone property if the node n(t) violates

the turn-constraint. If the turn-encoded node n(t) violates the

turn-constraint, then all of its successors violate the turn-

constraint.

The relaxation of the closed-node produces a path that

stays constant or increases the number of turns. Therefore,

we can remove infeasible turn-encoded nodes in the relaxation

process. In the fourth iteration, TESP adds E(1) to the closed-

node set and relaxes three adjacent nodes (i.e., B, G, and H)

(see Figure 5a). Since the path A → C → E → B violates

the turn-constraint, we do not add B(2) in the open-node set

according to the anti-monotone property. In this example, we

create two open-nodes (i.e., G(1) and H(1)) (see Figure 5b).

The third core idea of TESP is that we prune the search

space using the following distance pruning rule.

Definition 2 (Distance Pruning Rule). Let O be the open-

node set and let C be the closed-node set. Then the distance

pruning rule removes the turn-encoded node n(j) if n(i) ∈ O

or n(i) ∈ C, i ≤ j, and distance(n(i)) ≤ distance(n(j)).

(a) Graph (b) Open and Closed Nodes

Fig. 6: TESP: Iteration 5

In the fifth iteration, TESP adds H(1) to the closed-node

set and tries to relax its two adjacent nodes (i.e., I and F)

(see Figure 6a). The path A → C → E → F produces F (1).
Since the distance of F (0) (i.e., 4) in the open-node set is

less than F (1) (i.e., 5), we can remove F (1) according the

distance pruning rule. We also remove I(2) because the path

A → C → E → H → I violates the turn-constraint. In this

example, H(1) produces no successor (i.e., open-node).

This process terminates in O(n · b) iterations, where n is

the number of nodes and b is the turn-constraint. Let k be

the number of turn-points on the unconstrained shortest path.

Then the number of iterations becomes O(n · k) if k < b.

(a) Graph (b) Open and Closed Nodes

Fig. 7: TESP: Iteration 6

In this example, TESP requires three more iterations to

find a turn-constrained shortest path (TCSP) (see Figures 7-9).

Figure 7a shows that F (0) has one successor (i.e., H) along

the path A → C → F → H . We can remove it because TESP

has already closed the turn-encoded node H(1) (see 7b).

(a) Graph (b) Open and Closed Nodes

Fig. 8: TESP: Iteration 7

Figure 8a shows that E(0) has three successors (i.e., C,

G, and H). We can remove C(0) because TESP has already

closed the turn-encoded node C(0). We can also remove G(1)
according to the distance pruning rule. We add H(0) to the

open-node set along the path A → B → E → H (see

Figure 8b).

2023 IEEE 20th International Conference on Smart Communities: Improving Quality of Life using AI, Robotics and
IoT (HONET)

91
Authorized licensed use limited to: Florida Atlantic University. Downloaded on January 27,2024 at 17:13:28 UTC from IEEE Xplore. Restrictions apply.

(a) Graph (b) Open and Closed Nodes

Fig. 9: TESP: Iteration 8

Lastly, Figure 9a shows that H(0) has two successors (i.e.,

F and I). The distance of F (0) (i.e., 4) in the closed-node set

is less than the distance of the path A → B → E → H → F

(i.e., 7). Therefore, we can remove it. The path A → B →

E → H → I produces the turn-encoded node I(1). Since the

distance of all turn-encoded nodes in the open-node set is equal

to the distance of I(1) (i.e., 6), the TESP algorithm returns a

TCSP (i.e., A → B → E → H → I) (see Figure 9b).

Algorithm 1 TESP Algorithm (Pseudo-code)

Inputs:

- A transportation network G with a set of nodes N and a set of edges E,

- a set of positive real distances of edges D : E → R+

0

- a source node s and a destination node t, and
- the number of maximum possible turnings b

Outputs: Turn-Constrained Shortest Path
Steps:

1: Create a open-node set O and a closed-node set C.
2: Create a priority queue Q.
3: O = Q ∪ s(0)
4: while Q is empty do

5: u(i) = EXTRACT−MIN(Q)
6: if u(i) is the destination then

7: break
8: end if

9: C = Q ∪ u(i)
10: for each v ∈ Adjacent(u) do

11: Create turn-encoded node v(j))
12: Remove v(j) if j > b
13: Remove v(j) if v(k) ∈ O, k ≤ j, and Dist(v(k)) ≤

Dist(v(j))
14: Relax(u(i), v(j))
15: end for

16: end while

17: Identify the turn-constrained shortest path (TCSP).
18: return TCSP

Algorithm 1 presents the pseudo-code for a generalized

version of TESP. First, it creates open-node set, closed-node

set, and priority queue (Lines 1−2). It then adds the source

node (i.e., s(0)) into the priority queue (Line 3) and iteratively

expands the search space (Lines 4−17). At each iteration,

TESP selects the closed-node with the least distance (Line

5) and removes all infeasible adjacent nodes according to

the anti-monotone property and distance pruning rule (Lines

12−13). It then relaxes the remaining adjacent nodes (Line

14) and continues until the priority queue is empty (Line 4)

or the destination node is found (Line 6−7). Finally, it returns

a TCSP (Lines 17−18).

B. Turn-Encoded Shortest Path with A* algorithm

A large-sized network may have many feasible turn-

constrained paths. One of the best ways to further reduce

the search space for TESP is to utilize the underestimated

heuristic function based on the A* algorithm [8], [11]. The A*

algorithm uses the evaluation function f(n) = g(n) + h(n),
where g(n) is the travel distance from the source node s to

the node n and h(n) is the estimated distance of the turn-

constrained shortest path from the node n to the destination

node t. It is well known that A* is cost-optimal when h(n) is

an admissible heuristic function [11].

Definition 3 (Admissible Heuristic). The turn-constrained

shortest-path distance h(n, t, b̂) is admissible for all

nodes n on the turn-constrained shortest path of

TCSP (N,E,D, b, s, t) if b ≤ b̂.

The cost for choosing the next closed-node for TESP can

be defined using the following evaluation function:

f(n, b) = g(n) + h(n, b̂), (2)

where n is a node-id, b and b̂ are a turn-constraint, and b ≤ b̂.

The Turn-Encoded Shortest Path with A* algorithm (TESP-

A*) uses the admissible heuristic function that can stretch

the search space toward the destination node and reduce the

number of iterations of the TESP algorithm. It precomputes

and stores the values of the admissible heuristic function

between nodes and the destination node. Given a source s

and a destination node t, the space complexity of the heuristic

function (i.e., h(n, b̂)) is O(n), where n is the number of nodes

and b̂ is the turn-constraint.

TESP-A* can be viewed as the generalized version of the bi-

directional search algorithm. Let turns(g(n)) be the number

of turns for g(n) and let turns(b̂) be the number of turns

for h(n, b̂). Assume that turns(g(n)) = i and turns(b̂) = j.

Then the cost of f(n, b) = g(n)+h(n, b̂) is optimal if i+j ≤ b

and b ≤ b̂. If f(n, b) is the optimal cost of TCSP, then TESP-

A* is the same as the bi-directional search algorithm. We can

use this condition as the early stopping criterion for TESP-A*.

Definition 4 (Tight Admissible Heuristic). The turn-

constrained shortest-path distance h(n, t, b− i) is admissible

if b is the turn-constraint and turns(g(n)) = i

We can materialize the turn-constrained shortest-path dis-

tance h(n, t, b − i) for all i ≤ b [12]. The space complexity

of the tight admissible heuristic functions becomes O(n · b).
However, the computation of h(n, t, b̂) for each b̂ ≤ b

is challenging for a large-sized transportation network. In

our proposed approach, we remove the turn-constraint (i.e.,

b̂ = ∞) and use the shortest-path distance as the admissible

heuristic for TESP-A*.

C. Asymptotic analysis of the proposed approaches

We developed a cost model for the proposed approaches.

2023 IEEE 20th International Conference on Smart Communities: Improving Quality of Life using AI, Robotics and
IoT (HONET)

92
Authorized licensed use limited to: Florida Atlantic University. Downloaded on January 27,2024 at 17:13:28 UTC from IEEE Xplore. Restrictions apply.

1) TESP: Let n be the number of nodes, let m be the

number of edges, and let b be the number of turns (i.e., turn-

constraint). TESP requires at most O(n · b) iterations. The

relaxation examines at most m · b edges. TESP creates a turn-

encoded path at a cost of O(n · b · log (n · b)+m · b). Assume

that m = O(n). Then the computational complexity of TESP

is O(n · b · log (n · b)).

2) TESP-A*: The main difference between TESP and

TESP-A* is the admissible heuristic function and the early

stopping criterion. The cost model of TESP-A* is the same

as that of TESP. The computational complexity becomes

O(n · log n) if we use tight admissible heuristic function. This

is because only one turn-encoded node is required for each

node to evaluate the tight admissible heuristic function.

III. EXPERIMENTAL EVALUATION

We conducted experiments to evaluate the performance of

our proposed approaches (i.e., TESP and TESP-A*). The

overall goal was to show the performance improvements to

create a Turn-Constrained Shortest Path (TCSP). We wanted

to answer five questions: (1) What is the effect of the size

of the network (i.e., number of nodes (n))? (2) What is the

effect of the path-length (i.e., l)? (3) What is the effect of the

turn-constraint (i.e., b)? (4) Does the solution of the proposed

approaches meet the turn-constraint? (5) Are the proposed

approaches scalable for large-sized transportation networks?

A. Experimental Layout

We tested three different approaches: 1) Turn-Encoded

Shortest Path (TESP), 2) Turn-Encoded Shortest Path with

A* (TESP-A*), and 3) Dijkstra’s Shortest Path Algorithm. It

is worth noting that the shortest-path distance can serve as

a lower bound of the turn-constrained shortest-path distance.

However, the shortest path cannot preserve the turn-constraint.

For the transportation network, we chose ten different areas

in the Florida map from OpenStreetMap and created directed

graphs. In our experiment, we use the shortest-path distance

(i.e., b̂ = ∞) as the admissible heuristic for TESP-A*

(see Equation 2). We precomputed the shortest paths and

materialized the values of the admissible heuristic function

for the TESP-A* approach. For simplicity, we consider only

the left-turn-constraint in our analysis. The algorithms were

implemented in Java 1.8 with a 32 GB memory run-time

environment. All experiments were performed on an Intel(R)

Core(TM) i5-6500 CPU @ 3.20GHz machine running Ubuntu

16.04.6 LTS with 32GB of RAM.

B. Experimental Results and Analysis

We experimentally evaluated the proposed algorithms by

comparing the impact on performance of (1) size of the

transportation network (i.e., number of nodes (n)), (2) path-

length (i.e., l), and (3) the turn-constraint (i.e., b). Performance

measurements were execution time, the length of the path (i.e.,

travel distance) from the source node to the destination node,

and the number of violations of the turn-constraint.

1) Effect of Network Size: The first set of experiments

evaluated the effect of the size of the transportation network

(i.e., n). We used a Florida map and created ten road net-

works with 50, 000, 100, 000, 150, 000, and 200, 000 nodes,

respectively. We fixed the turn-constraint (i.e., b) to 10 and

the path-length (i.e., l) to 10km. We varied the number of

nodes (i.e., n) from 50, 000 to 200, 000. The performance

measurements were averaged over 100 test runs for each

network. Figure 10a gives the execution time. As can be

seen, TESP-A* outperforms TESP. This is because TESP-A*

utilizes an admissible heuristic to reduce the search space. We

can see that the number of nodes has little effect on algorithm

performance because the size of the search space of the three

algorithms depends on the path-length. Figure 10b shows that

the shortest path approach performs slightly better than TESP

and TESP-A*. However, the shortest paths violated the turn-

constraint and produced 15.2, 16.5, 18.7, and 17.6 left-turns

on average, respectively.

(a) Run Time Comparison (b) Solution Quality

Fig. 10: Effect of number of nodes (b = 10 and l = 10km)

2) Effect of Path-Length: The second set of experiments

evaluated the effect of the path-length (i.e., l) on algorithm

performance. We fixed the number of nodes (i.e., n) to

100, 000 and fixed the turn-constraint (i.e., b) to 6. We varied

the path-length (i.e., l) from 5km to 20km. The performance

measurements were averaged over 100 test runs for each path-

length. Figure 11a shows that TESP-A* outperforms TESP. As

the path-length increases, the performance gap also increases.

This is because the search space of the three algorithms

increases as the path-length increases. We can see that TESP-

A* can efficiently reduce the search space for finding the

turn-constrained shortest path. When comparing the solution

quality (i.e., travel distance) of the path, the three algorithms

are almost identical, even though the shortest path performs

slightly better (see Figure 11b). However, the shortest paths

violated the turn-constraint and produced 10.5, 12.5, 13.2, and

13.1 left-turns on average, respectively.

3) Effect of Turn-Constraint: The third set of experiments

evaluated the effect of the turn-constraint (i.e., b) on algorithm

performance. We fixed the number of nodes (i.e., n) to

100, 000 and fixed the path-length (i.e., l) to 10km. We varied

the turn-constraint (i.e., b) from 4 to 10. The performance

measurements were averaged over 100 test runs for each turn-

constraint. Figure 12a gives the execution time. As can be

seen, TESP-A* significantly outperforms TESP. As the value

2023 IEEE 20th International Conference on Smart Communities: Improving Quality of Life using AI, Robotics and
IoT (HONET)

93
Authorized licensed use limited to: Florida Atlantic University. Downloaded on January 27,2024 at 17:13:28 UTC from IEEE Xplore. Restrictions apply.

(a) Run Time Comparison (b) Solution Quality

Fig. 11: Effect of path-length (n = 100K and b = 6)

of turn-constraint (i.e., b) increases, so does the performance

gap. This is because the search space increases for TESP as

the value of the turn-constraint increases. Figure 12b shows

that the shortest path approach performs slightly better than

TESP and TESP-A* in terms of the travel distance. However,

the shortest paths violated the turn-constraint and produced

8.9, 12.5, 14.4, and 16.5 left-turns on average, respectively.

(a) Run Time Comparison (b) Solution Quality

Fig. 12: Effect of turn-constraint (n = 100K and l = 10km)

4) Scalability of TESP-A*: The fourth experiment verified

the scalability of TESP-A*. We fixed the turn-constraint (i.e.,

b) to 10 and incrementally increased the number of nodes

(i.e., n) from 50, 000 to 200, 000. We also increased the

path-length (i.e., l) proportional to the number of nodes (i.e.,

5km− 20km). Figure 13a shows that TESP-A* significantly

outperforms TESP. As both the number of nodes and the

path-length increase, so does the performance gap. This is

because TESP-A* can efficiently prune the search space based

on admissible heuristic. Figure 13b shows that the solution

of quality of the shortest path is slightly better than other

solutions in terms of the travel distance. However, the shortest

paths violated the turn-constraint and produced 16, 16.4, 19.3,

and 18.8 left-turns on average.

IV. CONCLUSION

We presented the problem of creating a Turn Constrained

Shortest Path (TCSP). In this paper, we introduced a novel

Turn-Encoded Shortest Path (TESP) approach for producing

a TCSP to meet the turn-constraint while minimizing the

travel distance. We also proposed TESP-A* that incorporates

the admissible heuristic function to reduce the computational

cost of TESP. We presented experiments using the Florida

(a) Run Time Comparison (b) Solution Quality

Fig. 13: Scalability of TESP-A* (b = 10)

map, which demonstrated that our proposed algorithm had

comparable solution quality to the shortest path in terms of

travel distance, produced a path with the turn-constraint, and

significantly reduced the computational cost.

V. ACKNOWLEDGMENTS

This material is based upon work supported by the National

Science Foundation CAREER under Grant No. 1844565.

REFERENCES

[1] BUCHHOLD, V., WAGNER, D., ZEITZ, T., AND Z ÈUNDORF, M. Cus-
tomizable contraction hierarchies with turn costs. In 20th Symposium

on Algorithmic Approaches for Transportation Modelling, Optimization,

and Systems (ATMOS 2020) (2020), Schloss Dagstuhl-Leibniz-Zentrum
fÈur Informatik.

[2] CALDWELL, T. On finding minimum routes in a network with turn
penalties. Communications of the ACM 4, 2 (1961), 107±108.

[3] CHOI, E.-H. Crash factors in intersection-related crashes: An on-scene
perspective. Tech. rep., 2010.

[4] CLOSSEY, J., LAPORTE, G., AND SORIANO, P. Solving arc routing
problems with turn penalties. Journal of the Operational Research

Society 52, 4 (2001), 433±439.
[5] DEMETRESCU, C., GOLDBERG, A. V., AND JOHNSON, D. S. The

shortest path problem: Ninth DIMACS implementation challenge,
vol. 74. American Mathematical Soc., 2009.

[6] GEISBERGER, R., AND VETTER, C. Efficient routing in road networks
with turn costs. In Experimental Algorithms: 10th International Sym-

posium, SEA 2011, Kolimpari, Chania, Crete, Greece, May 5-7, 2011.

Proceedings 10 (2011), Springer, pp. 100±111.
[7] GUTI ÂERREZ, E., AND MEDAGLIA, A. L. Labeling algorithm for the

shortest path problem with turn prohibitions with application to large-
scale road networks. Annals of Operations Research 157 (2008), 169±
182.

[8] HART, P. E., NILSSON, N. J., AND RAPHAEL, B. A formal basis for
the heuristic determination of minimum cost paths. IEEE transactions

on Systems Science and Cybernetics 4, 2 (1968), 100±107.
[9] KIRBY, R. F., AND POTTS, R. B. The minimum route problem for

networks with turn penalties and prohibitions. Transportation Research

3, 3 (1969), 397±408.
[10] PALLOTTINO, S., AND SCUTELLA, M. G. Shortest path algorithms in

transportation models: classical and innovative aspects. In Equilibrium

and advanced transportation modelling. Springer, 1998, pp. 245±281.
[11] RUSSELL, S. J. Artificial intelligence a modern approach. Pearson

Education, Inc., 2010.
[12] SHEKHAR, S., FETTERER, A., AND GOYAL, B. Materialization trade-

offs in hierarchical shortest path algorithms. In Advances in Spatial

Databases: 5th International Symposium, SSD’97 Berlin, Germany, July

15±18, 1997 Proceedings 5 (1997), Springer, pp. 94±111.
[13] VANHOVE, S., AND FACK, V. Route planning with turn restrictions: A

computational experiment. Operations Research Letters 40, 5 (2012),
342±348.

[14] WINTER, S. Modeling costs of turns in route planning. GeoInformatica

6 (2002), 345±361.

2023 IEEE 20th International Conference on Smart Communities: Improving Quality of Life using AI, Robotics and
IoT (HONET)

94
Authorized licensed use limited to: Florida Atlantic University. Downloaded on January 27,2024 at 17:13:28 UTC from IEEE Xplore. Restrictions apply.

