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Abstract—Given a transportation network, a source node s, a
destination node ¢, and the number of maximum possible turnings
b, the Turn-Constrained Shortest Path (TCSP) problem is to find
the route that minimizes the travel distance and meets the turn-
constraint. The TCSP problem is important for societal applica-
tions such as shipping and logistics, emergency route planning,
and traffic management services. We propose novel approaches
for TCSP to meet the turn-constraint while minimizing the travel
distance for the vehicle route. Experiments using real-world
datasets demonstrated that the proposed algorithms can minimize
the travel distance and meet the turn-constraint; furthermore, it
has comparable solution quality to the unconstrained shortest
path and significantly reduces the computational cost.

Keywords—constrained shortest route, routing service, emer-
gency management

I. INTRODUCTION

Given a transportation network, a source node s, a desti-
nation node ¢, and the number of maximum possible turnings
b, the Turn-Constrained Shortest Path (TCSP) problem is to
find the route that minimizes the travel distance and meets the
turn-constraint. Figure la shows an example input of TCSP
consisting of 9 nodes and 12 edges. Every edge is associated
with a distance as indicated by the number displayed over
the edge. Let A be the source node and I be the destination
node. Assume that the route has no more than one left-turn
(i.e., b = 1) and minimizes the travel distance. Figure 1b
shows an example output of TCSP where the route can
minimize the travel distance and meet the turn-constraint (i.e.,
A—-B—FE—H-—I.

(a) Input (b) Output

Fig. 1: Example of the Input and Output of TCSP

A. Application Domain

The TCSP problem is important for societal applications
such as shipping and logistics, emergency route planning, and
traffic management services. Consider the issue of decreasing
fuel consumption along a route. In the scope of North America
and China, where right-turn on red is broadly permitted, left-
turns disadvantage drivers. To take left-turns at intersections,

KwangSoo Yang
Florida Atlantic University
Boca Raton, USA
Email: yangk @fau.edu

drivers spend more time and fuel idling at signals. The TCSP
problem addresses this issue by creating paths that reduce
time at intersections. As left-turns are penalized, the route
will contain more right-turns, which do not require a green
signal. In densely populated road networks (e.g., Los Angeles,
Toronto, or Beijing), abundant four-way intersections make
the applications of TCSP even more advantageous. For these
reasons, TCSP is a fuel-efficient, economical routing option
for commuters and businesses.

Importantly, TCSP serves as a safer option in emergency
vehicle routing and ensuring driver security. Ambulances and
fire trucks must often clear traffic to quickly reach left-turns at
an intersection. Since left-turns require a green light, reducing
left-turns minimizes the time emergency vehicles need to clear
dense traffic. Critically, taking a left-turn can also expose a
vehicle to oncoming traffic at intersections without a protected
left light. As a result, left-turns have a significantly higher
crash factor than right-turns among all drivers [3]. Thus, right-
turns encouraged within a TSCP are inherently safer than left-
turns. Accordingly, TCSP reduces the need for emergency
vehicles to run high-risk left-turns on red lights along their
paths. Decreasing response time and further risks is vital
to delivering time-critical assistance to an emergency: TSCP
accomplishes this task safely and effectively.

For similar reasons, TCSP can assist higher-risk drivers
(i.e., drivers affected by age-related disease or novice drivers)
with navigating more complex routes. TCSP greatly simplifies
routes by reducing the variation between turns. A driver
with a memory-related disorder might have greater ease in
remembering a TCSP. The scalability of constraints of TCSP
could also help simplify routes. In planning routes with
detours, for example, TCSP could modify its penalty so that
the detour will discourage routes requiring U-turns or three-
point turns. Reducing the need for complicated maneuvers
minimizes risks for drivers more prone to committing errors.
Additionally, in areas with more roundabouts or traffic circles,
the penalty could fall on turns taken at the more complex
four-way intersections. Given that turns at intersections have a
higher crash factor than roundabouts, this would reduce driver
errors and accidents.

B. Problem Definition

In our problem formulation, a transportation network is
represented as a directed graph of nodes and edges. Every node
represents a spatial location in geographic space (i.e., road
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intersections) and every edge represents a connection between
two nodes and has a distance. The TCSP(N, E, D, b, s,t)
problem can be formalized as follows:
Input:
e A transportation network with
« a set of nodes N and a set of edges I,
« a set of positive real distances of edges D : E — R{
e a source node s and a destination node ¢, and
« the number of maximum possible turnings b
Output: Turn-Constrained Shortest Path (TCSP)
Objective:
e Minimize the travel distance from s to ¢.
Constraints:
¢ Turn-Constraint: The number of turns in the path does
not exceed b.

C. Related Work

Shortest Path Problems are extensively used in many fields,
such as transportation, logistics, and vehicle routing planning.
Given a source node s and a destination node ¢, the goal of
the shortest path problems is to find the route that minimizes
the travel cost (e.g., distance, time, etc). Notable examples
of shortest path algorithms include Dijkstra’s algorithm and
A* algorithm [5], [11]. However, these approaches do not
always produce the best route in real-world applications due to
network constraints (e.g., traffic signals, turn restrictions, gas
consumption, etc.) in a transportation network. Furthermore,
traditional approaches estimate the turning-cost (i.e., delay and
driver turning time) at a intersection and compute the shortest
path using Dijkstra’s algorithm and A* algorithm [14], [4],
[91, [2], [71, [13], [1], [10], [6]. We refer to this problem as
the soft turn-constrained shortest path problem. The soft turn-
constrained shortest path problem, however, cannot strictly
restrict the number of left-turns along the shortest path, result-
ing in many possible left-turns. More seriously, the turning-
cost cannot be correctly estimated due to dynamic time-
varying traffic environment (e.g., traffic signal, congestion, and
accidents). By contrast, this paper proposes a novel approach
for producing a Turn-Constrained Shortest Path (TCSP) that
can minimize the travel distance from s to ¢ while satisfying
the hard constraint on the number of turning points (i.e., b).

D. Outline

The rest of the paper is organized as follows: Section II
describes our proposed approach. Section III describes the ex-
perimental design and presents the experimental observations
and results. Section IV concludes the paper.

II. PROPOSED APPROACH

In this section, we describe our novel approaches to the
TCSP problem. Our approach consists of three main com-
ponents: 1) turn-encoded node, 2) anti-monotone property
and distance pruning rule, and 3) admissible heuristic cost
function. We theoretically evaluate the proposed approach
through a cost model.

A. Turn-Encoded Shortest Path algorithm

The Turn-Encoded Shortest Path (TESP) algorithm starts
with distance estimates from the source and iteratively creates
turn-encoded nodes that meet the turn-constraint. The first core
idea in TESP is to create turn-encoded nodes and prune the
search space that violates the turn-constraint. The turn-encoded
node n maintains the number of turns in the path from the
source node to the node n.

turn-encoded node = n(i), (1

where n is a node-id and ¢ is the number of turns in the path
from the source node s to the node n.

Every turn-encoded node n(i) estimates the upper-bound
of the turn-constrained shortest-path distance from the source
node s to the node n. It also maintains a pointer to its
predecessor to create a simple path.

The Turn-Encoded Shortest Path (TESP) method uses the
generalized Dijkstra’s algorithm that iteratively updates the
estimated distance in an open-node set and selects the open-
node with the lowest estimated distance as the next closed-
node. It is important to note that each turn-encoded node (i.e.,
n(7)) is unique in both open and closed-node sets, but the
node-id can be duplicated.

Open Turn-Encoded Nodes

[Node[Distance] pi s
B(0 2 A(0)
c(o0 1 A(0)
Closed Turn-Encoded Nodes
[Node[Distance] p s |
[A@ o ] |

(a) Graph
Fig. 2: TESP: Iteration 1

(b) Open and Closed Nodes

Consider the input example in Figure la. Let A be the
source node and let I be the destination node. Assume that
the shortest path should have no more than one left-turn (i.e.,
b < 1). To simplify the example, let us also assume that every
edge is bidirectional with the same distance in both directions.

We first add A(0) to the closed-node set and relax its
adjacent nodes (i.e., B and C') (see Figure 2a). Both paths
A — B and A — C have no left-turn; therefore, TESP adds
B(0) and C(0) to the open-node set (see Figure 2b).

Open Turn-Encoded Nodes
Node|Distance

pr
B(0) 2 A(0)

| E(1) 2 C(0)-A(0;
F(0) 4 C(0)-A(0)
Closed Turn-Encoded Nodes
Node|Distance redecessors
A0 o0

[col 1 ] A(Q) |

(a) Graph
Fig. 3: TESP: Iteration 2

(b) Open and Closed Nodes

Next, we select the open-node with the lowest estimated
distance (i.e., C'(0)) and relax its adjacent nodes (i.e., E and
F) (see Figure 3a). The path A — C' — F has no left-turn
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and we add F'(0) into the open-node set. However, since node
FE has one left-turn along the path A — C — F, we increase
the number of turns by one (i.e., E(1)). Figure 3b shows that
TESP creates two open-nodes (i.e., E(1) and F(0)).

Open Turn-Encoded Nodes

Node|Distance| predecessors
E(1) 2 C(0)-A(0)
F(0) 4 C(0)-A(0)
Do) 6 B(0)-A(0)
LE(0) 4 B(0)-A(0)
Closed Turn-Encoded Nodes
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A0 o0
C(0) 1 A0)
B(0)| 2 A(0)

(a) Graph
Fig. 4: TESP: Iteration 3

(b) Open and Closed Nodes

After that, we add B(0) to the closed-node set and relax its
adjacent nodes (D and F) (see Figure 4a). Since both paths
A — B — D and A — B — E have no left-turn, we create
two turn-encoded nodes (i.e., D(0) and E(0)) into the open-
node set (see Figure 4b).

Open Turn-Encoded Nodes
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(a) Graph
Fig. 5: TESP: Iteration 4

(b) Open and Close Nodes

The second core idea of TESP is to remove all infeasible
turn-encoded nodes in open-node set according to the anti-
monotone property.

Definition 1 (Anti-monotone Property). The turn-encoded
node has the anti-monotone property if the node n(t) violates
the turn-constraint. If the turn-encoded node n(t) violates the
turn-constraint, then all of its successors violate the turn-
constraint.

The relaxation of the closed-node produces a path that
stays constant or increases the number of turns. Therefore,
we can remove infeasible turn-encoded nodes in the relaxation
process. In the fourth iteration, TESP adds F(1) to the closed-
node set and relaxes three adjacent nodes (i.e., B, G, and H)
(see Figure S5a). Since the path A — C — EF — B violates
the turn-constraint, we do not add B(2) in the open-node set
according to the anti-monotone property. In this example, we
create two open-nodes (i.e., G(1) and H(1)) (see Figure 5b).

The third core idea of TESP is that we prune the search
space using the following distance pruning rule.

Definition 2 (Distance Pruning Rule). Ler O be the open-
node set and let C' be the closed-node set. Then the distance
pruning rule removes the turn-encoded node n(j) if n(i) € O
or n(i) € C, i < j, and distance(n(i)) < distance(n(j)).

Open Turn-Encoded Nodes
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(a) Graph
Fig. 6: TESP: Iteration 5

(b) Open and Closed Nodes

In the fifth iteration, TESP adds H(1) to the closed-node
set and tries to relax its two adjacent nodes (i.e., I and F’)
(see Figure 6a). The path A — C — E — F produces F(1).
Since the distance of F'(0) (i.e., 4) in the open-node set is
less than F'(1) (i.e., 5), we can remove F'(1) according the
distance pruning rule. We also remove I(2) because the path
A — C — FE — H — [ violates the turn-constraint. In this
example, H (1) produces no successor (i.e., open-node).

This process terminates in O(n - b) iterations, where n is
the number of nodes and b is the turn-constraint. Let k£ be
the number of turn-points on the unconstrained shortest path.
Then the number of iterations becomes O(n - k) if k < b.

Open Turn-Encoded Nodes
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(a) Graph
Fig. 7: TESP: Iteration 6

(b) Open and Closed Nodes

In this example, TESP requires three more iterations to
find a turn-constrained shortest path (TCSP) (see Figures 7-9).
Figure 7a shows that F'(0) has one successor (i.e., H) along
the path A — C — F' — H. We can remove it because TESP
has already closed the turn-encoded node H (1) (see 7b).

Open Turn-Encoded Nodes
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[E@[ 4 B(0)-A(0)

(a) Graph
Fig. 8: TESP: Iteration 7

(b) Open and Closed Nodes

Figure 8a shows that E(0) has three successors (i.e., C,
G, and H). We can remove C(0) because TESP has already
closed the turn-encoded node C'(0). We can also remove G(1)
according to the distance pruning rule. We add H(0) to the
open-node set along the path A — B — E — H (see
Figure 8b).
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(b) Open and Closed Nodes
Fig. 9: TESP: Iteration 8

Lastly, Figure 9a shows that H(0) has two successors (i.e.,
F and I). The distance of F(0) (i.e., 4) in the closed-node set
is less than the distance of the path A - B — F — H — F
(i.e., 7). Therefore, we can remove it. The path A — B —
E — H — I produces the turn-encoded node I(1). Since the
distance of all turn-encoded nodes in the open-node set is equal
to the distance of I(1) (i.e., 6), the TESP algorithm returns a
TCSP (i.e., A— B — E — H — I) (see Figure 9b).

Algorithm 1 TESP Algorithm (Pseudo-code)

Inputs:
- A transportation network G with a set of nodes N and a set of edges E,
- a set of positive real distances of edges D : £ — Ra‘
- a source node s and a destination node ¢, and
- the number of maximum possible turnings b
Outputs: Turn-Constrained Shortest Path

Steps:

1: Create a open-node set O and a closed-node set C.
2: Create a priority queue Q).

3: O=QUs(0)

4: while Q) is empty do

5:  u(i) = EXTRACT—-MIN(Q)

6: if u(i) is the destination then

7: break

8: end if

9: C =QUu(7)

10: for each v € Adjacent(u) do

11: Create turn-encoded node v(j))

12: Remove v(j) if j > b

13: Remove v(j) if v(k) € O, k < j, and Dist(v(k)) <

Dist(v(;))
14: Relax(u(i),v(j))
15: end for

16: end while
17: Identify the turn-constrained shortest path (TCSP).
18: return TCSP

Algorithm 1 presents the pseudo-code for a generalized
version of TESP. First, it creates open-node set, closed-node
set, and priority queue (Lines 1—2). It then adds the source
node (i.e., s(0)) into the priority queue (Line 3) and iteratively
expands the search space (Lines 4—17). At each iteration,
TESP selects the closed-node with the least distance (Line
5) and removes all infeasible adjacent nodes according to
the anti-monotone property and distance pruning rule (Lines
12—13). It then relaxes the remaining adjacent nodes (Line
14) and continues until the priority queue is empty (Line 4)
or the destination node is found (Line 6—7). Finally, it returns
a TCSP (Lines 17—18).

B. Turn-Encoded Shortest Path with A* algorithm

A large-sized network may have many feasible turn-
constrained paths. One of the best ways to further reduce
the search space for TESP is to utilize the underestimated
heuristic function based on the A* algorithm [8], [11]. The A*
algorithm uses the evaluation function f(n) = g(n) + h(n),
where g(n) is the travel distance from the source node s to
the node n and h(n) is the estimated distance of the turn-
constrained shortest path from the node n to the destination
node ¢. It is well known that A* is cost-optimal when h(n) is
an admissible heuristic function [11].

Definition 3 (Admissible Heuristic). The turn-constrained
shortest-path  distance h(n,t,lA)) is admissible for all
nodes n on the turn-constrained shortest path of
TCSP(N,E,D,b,s,t) if b<b.

The cost for choosing the next closed-node for TESP can
be defined using the following evaluation function:

f(n,b) = g(n) + h(n,b), 2

where n is a node-id, b and b are a turn-constraint, and b < b

The Turn-Encoded Shortest Path with A* algorithm (TESP-
A*) uses the admissible heuristic function that can stretch
the search space toward the destination node and reduce the
number of iterations of the TESP algorithm. It precomputes
and stores the values of the admissible heuristic function
between nodes and the destination node. Given a source s
and a destination node ¢, the space complexity of the heuristic
function (i.e., h(n, b)) is O(n), where n is the number of nodes
and b is the turn-constraint.

TESP-A* can be viewed as the generalized version of the bi-
directional search algorithm. Let turns(g(n)) be the number
of turns for g(n) and let turns(b) be the number of turns
for h(n,b). Assume that turns(g(n)) = i and turns(b) = j.
Then the cost of f(n,b) = g(n)+h(n, b) is optimal if i+j < b
and b < b. If f(n,b) is the optimal cost of TCSP, then TESP-
A* is the same as the bi-directional search algorithm. We can
use this condition as the early stopping criterion for TESP-A*.

Definition 4 (Tight Admissible Heuristic). The turn-
constrained shortest-path distance h(n,t,b — i) is admissible
if b is the turn-constraint and turns(g(n)) =1

We can materialize the turn-constrained shortest-path dis-
tance h(n,t,b — i) for all ¢ < b [12]. The space complexity
of the tight admissible heuristic functions becomes O(n - b).
However, the computation of h(n,t, IS) for each b < b
is challenging for a large-sized transportation network. In
our proposed approach, we remove the turn-constraint (i.e.,
b = c0) and use the shortest-path distance as the admissible

heuristic for TESP-A*,

C. Asymptotic analysis of the proposed approaches

We developed a cost model for the proposed approaches.
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1) TESP: Let n be the number of nodes, let m be the
number of edges, and let b be the number of turns (i.e., turn-
constraint). TESP requires at most O(n - b) iterations. The
relaxation examines at most m - b edges. TESP creates a turn-
encoded path at a cost of O(n-b-log (n-b)+m-b). Assume
that m = O(n). Then the computational complexity of TESP
is O(n-b-log(n-b)).

2) TESP-A*: The main difference between TESP and
TESP-A* is the admissible heuristic function and the early
stopping criterion. The cost model of TESP-A* is the same
as that of TESP. The computational complexity becomes
O(n-logn) if we use tight admissible heuristic function. This
is because only one turn-encoded node is required for each
node to evaluate the tight admissible heuristic function.

III. EXPERIMENTAL EVALUATION

We conducted experiments to evaluate the performance of
our proposed approaches (i.e., TESP and TESP-A*). The
overall goal was to show the performance improvements to
create a Turn-Constrained Shortest Path (TCSP). We wanted
to answer five questions: (1) What is the effect of the size
of the network (i.e., number of nodes (n))? (2) What is the
effect of the path-length (i.e., [)? (3) What is the effect of the
turn-constraint (i.e., b)? (4) Does the solution of the proposed
approaches meet the turn-constraint? (5) Are the proposed
approaches scalable for large-sized transportation networks?

A. Experimental Layout

We tested three different approaches: 1) Turn-Encoded
Shortest Path (TESP), 2) Turn-Encoded Shortest Path with
A* (TESP-A¥*), and 3) Dijkstra’s Shortest Path Algorithm. It
is worth noting that the shortest-path distance can serve as
a lower bound of the turn-constrained shortest-path distance.
However, the shortest path cannot preserve the turn-constraint.
For the transportation network, we chose ten different areas
in the Florida map from OpenStreetMap and created directed
graphs. In our experiment, we use the shortest-path distance
(.e., b = o0) as the admissible heuristic for TESP-A*
(see Equation 2). We precomputed the shortest paths and
materialized the values of the admissible heuristic function
for the TESP-A* approach. For simplicity, we consider only
the left-turn-constraint in our analysis. The algorithms were
implemented in Java 1.8 with a 32 GB memory run-time
environment. All experiments were performed on an Intel(R)
Core(TM) 15-6500 CPU @ 3.20GHz machine running Ubuntu
16.04.6 LTS with 32GB of RAM.

B. Experimental Results and Analysis

We experimentally evaluated the proposed algorithms by
comparing the impact on performance of (1) size of the
transportation network (i.e., number of nodes (n)), (2) path-
length (i.e., ), and (3) the turn-constraint (i.e., b). Performance
measurements were execution time, the length of the path (i.e.,
travel distance) from the source node to the destination node,
and the number of violations of the turn-constraint.

1) Effect of Network Size: The first set of experiments
evaluated the effect of the size of the transportation network
(i.e., n). We used a Florida map and created ten road net-
works with 50,000, 100,000, 150,000, and 200,000 nodes,
respectively. We fixed the turn-constraint (i.e., b) to 10 and
the path-length (i.e., I) to 10km. We varied the number of
nodes (i.e., n) from 50,000 to 200,000. The performance
measurements were averaged over 100 test runs for each
network. Figure 10a gives the execution time. As can be
seen, TESP-A* outperforms TESP. This is because TESP-A*
utilizes an admissible heuristic to reduce the search space. We
can see that the number of nodes has little effect on algorithm
performance because the size of the search space of the three
algorithms depends on the path-length. Figure 10b shows that
the shortest path approach performs slightly better than TESP
and TESP-A*. However, the shortest paths violated the turn-
constraint and produced 15.2, 16.5, 18.7, and 17.6 left-turns
on average, respectively.
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Fig. 10: Effect of number of nodes (b = 10 and [ = 10km)

2) Effect of Path-Length: The second set of experiments
evaluated the effect of the path-length (i.e., [) on algorithm
performance. We fixed the number of nodes (i.e., n) to
100, 000 and fixed the turn-constraint (i.e., b) to 6. We varied
the path-length (i.e., /) from 5km to 20km. The performance
measurements were averaged over 100 test runs for each path-
length. Figure 11a shows that TESP-A* outperforms TESP. As
the path-length increases, the performance gap also increases.
This is because the search space of the three algorithms
increases as the path-length increases. We can see that TESP-
A* can efficiently reduce the search space for finding the
turn-constrained shortest path. When comparing the solution
quality (i.e., travel distance) of the path, the three algorithms
are almost identical, even though the shortest path performs
slightly better (see Figure 11b). However, the shortest paths
violated the turn-constraint and produced 10.5, 12.5, 13.2, and
13.1 left-turns on average, respectively.

3) Effect of Turn-Constraint: The third set of experiments
evaluated the effect of the turn-constraint (i.e., b) on algorithm
performance. We fixed the number of nodes (i.e., n) to
100, 000 and fixed the path-length (i.e., [) to 10km. We varied
the turn-constraint (i.e., b) from 4 to 10. The performance
measurements were averaged over 100 test runs for each turn-
constraint. Figure 12a gives the execution time. As can be
seen, TESP-A* significantly outperforms TESP. As the value
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Fig. 11: Effect of path-length (n = 100K and b = 6)

of turn-constraint (i.e., b) increases, so does the performance
gap. This is because the search space increases for TESP as
the value of the turn-constraint increases. Figure 12b shows
that the shortest path approach performs slightly better than
TESP and TESP-A* in terms of the travel distance. However,
the shortest paths violated the turn-constraint and produced
8.9, 12.5, 14.4, and 16.5 left-turns on average, respectively.
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4) Scalability of TESP-A*: The fourth experiment verified
the scalability of TESP-A*. We fixed the turn-constraint (i.e.,
b) to 10 and incrementally increased the number of nodes
(i.e., n) from 50,000 to 200,000. We also increased the
path-length (i.e., [) proportional to the number of nodes (i.e.,
5km — 20km). Figure 13a shows that TESP-A* significantly
outperforms TESP. As both the number of nodes and the
path-length increase, so does the performance gap. This is
because TESP-A* can efficiently prune the search space based
on admissible heuristic. Figure 13b shows that the solution
of quality of the shortest path is slightly better than other
solutions in terms of the travel distance. However, the shortest
paths violated the turn-constraint and produced 16, 16.4, 19.3,
and 18.8 left-turns on average.

IV. CONCLUSION

We presented the problem of creating a Turn Constrained
Shortest Path (TCSP). In this paper, we introduced a novel
Turn-Encoded Shortest Path (TESP) approach for producing
a TCSP to meet the turn-constraint while minimizing the
travel distance. We also proposed TESP-A* that incorporates
the admissible heuristic function to reduce the computational
cost of TESP. We presented experiments using the Florida
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map, which demonstrated that our proposed algorithm had
comparable solution quality to the shortest path in terms of
travel distance, produced a path with the turn-constraint, and
significantly reduced the computational cost.
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