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Abstract: Learning good data representations for medical imaging tasks ensures the preservation

of relevant information and the removal of irrelevant information from the data to improve the

interpretability of the learned features. In this paper, we propose a semi-supervised model—namely,

combine-all in semi-supervised learning (CqSL)—to demonstrate the power of a simple combination

of a disentanglement block, variational autoencoder (VAE), generative adversarial network (GAN),

and a conditioning layer-based reconstructor for performing two important tasks in medical imaging:

segmentation and reconstruction. Our work is motivated by the recent progress in image segmen-

tation using semi-supervised learning (SSL), which has shown good results with limited labeled

data and large amounts of unlabeled data. A disentanglement block decomposes an input image

into a domain-invariant spatial factor and a domain-specific non-spatial factor. We assume that

medical images acquired using multiple scanners (different domain information) share a common

spatial space but differ in non-spatial space (intensities, contrast, etc.). Hence, we utilize our spatial

information to generate segmentation masks from unlabeled datasets using a generative adversarial

network (GAN). Finally, to reconstruct the original image, our conditioning layer-based reconstruc-

tion block recombines spatial information with random non-spatial information sampled from the

generative models. Our ablation study demonstrates the benefits of disentanglement in holding

domain-invariant (spatial) as well as domain-specific (non-spatial) information with high accuracy.

We further apply a structured L2 similarity (SL2SIM) loss along with a mutual information minimizer

(MIM) to improve the adversarially trained generative models for better reconstruction. Experimental

results achieved on the STACOM 2017 ACDC cine cardiac magnetic resonance (MR) dataset suggest

that our proposed (CqSL) model outperforms fully supervised and semi-supervised models, achiev-

ing an 83.2% performance accuracy even when using only 1% labeled data. We hypothesize that our

proposed model has the potential to become an efficient semantic segmentation tool that may be used

for domain adaptation in data-limited medical imaging scenarios, where annotations are expensive.

Code, and experimental configurations will be made available publicly.

Keywords: augmentation; cardiac segmentation; domain invariant features; disentangled representation;

generative adversarial network; image quality; mutual information; reconstruction; variational autoencoder

1. Introduction

1.1. Background and Problem Statement

The emerging success of deep convolutional neural networks (CNNs) has rendered
them the de facto model in solving high-level computer vision tasks [1–3]. However, such
approaches mostly rely on large amounts of annotated data for training, the acquisition of
which is expensive and laborious, especially for medical imaging/diagnostic radiology data.
To address the need for high performance, there has been a growing trend in using a limited
amount of annotated data along with an abundance of unlabeled data in a semi-supervised
learning (SSL) setting.
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The recent dominant body of research that has proposed SSL methods in deep learning
features various approaches, including an auxiliary loss term defined on un-annotated data
(consistency regularization) [4,5], adversarial networks [6], generating pseudo-labels [7,8]
based on model predictions on weakly augmented un-annotated data, self-training [9,10],
adversarial learning [11] and domain adaptation [12]. Here we acknowledge their latest
accomplishments in the field of domain adaptation, semi-supervised learning and inter-
pretable representation learning by disentanglement and briefly discuss some of their yet
outstanding limitations.

1.2. Ongoing Efforts and Related Work

Semi-Supervised Learning: Semi-supervised learning (SSL) [13,14] has experienced
much research attention thanks to the increasing availability of large-scale unlabeled data.
Semi-supervised learning aims to revamp the model performance by learning from a
small portion of labeled data along with optimizing an additional unsupervised loss on
a larger portion of unlabeled data, assumed to be sampled from similar distributions,
depending on the type of information that needs to be captured from the unlabeled data.
Commonly, the rationale of SSL is based on generative models and adversarial networks.
The integration of consistency regularization in SSL has shed light on standard baselines
recently. By optimizing this loss term, the model imposes several assumptions/constraints
on the decision boundary to avoid high-density regions of unannotated data.

Generative adversarial networks: Moreover, generative adversarial learning can be
adapted to semi-supervised learning for semantic segmentation [15–17] as well as by
generating pseudo pixel-level predictions [18,19]. Adversarial networks use a critic to
predict the pixel-level distribution of the data, which acts as an adversarial loss term with
the goal to provide the generator with learnable useful visual features from the unlabeled
data for medical image synthesis [20]. Nonetheless, learning high-dimensional data can
be difficult. Autoencoders struggle with multi-modal data distributions, and generative
models rely on computationally demanding models, which are especially difficult to train.

Mutual information estimation: Recent work on representation learning has focused
on mutual information estimation [21]. As mutual information maximization has been
shown to be effective at capturing the salient attributes of data, being able to disentan-
gle these attributes is another desirable property. For example, it may be beneficial to
remove data attributes that are irrelevant to a given task, such as illumination conditions in
object recognition.

Disentanglement learning: Some newly introduced techniques have dedicated
considerable attention to disentangle representation with generative modeling [22,23].
In disentangled representation, information is represented as a collection of (indepen-
dent) factors [24], each of which corresponds to a meaningful aspect of the data [25,26].
A current line of research has argued that disentangled representations are beneficial for
a variety of tasks, including (semi-)supervised learning of downstream tasks, few-shot
learning [27], and exploratory medical data analysis. Additionally, these representations
also make it easier for later processes to only use the relevant parts of the data as input.

Unpaired image-to-image translation: Image-to-image translation was first proposed
by Isola et al. in [28] in their conditional GAN paper. Furthermore, CycleGAN [29]
tackles the problem of the above paired image translation approach by introducing a cycle-
consistency loss to retrieve the original images by exploiting a cycle of translation. Later
work [30] improved CycleGAN from one-to-one mapping to multimodal image generation.
Nevertheless, in medical applications, image synthesis without explicit anatomy design
constrain may lead to volatile anatomical structures and artifacts. Moreover, these methods
are not aimed at medical image segmentation.

Domain Adaptation: Domain adaptation, a form of transfer learning, encodes the
distribution knowledge from a certain source domain to a different but related target
domain, and thus, alleviates the domain shift discrepancy in real world applications [31].
Various methods have been proposed, including style and content-disentanglement [32],
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and adversary based approaches [33,34]. As described later, in this work, we disentangle
the most interpretable segmentation-aware spatial (skeleton) information.

Normalization layers: Inspired by instance normalization (IN) [35], conditional batch-
normalization [36] and adaptive IN (AdaIN) [37] bring significant improvement in image
generation. Later on, feature-wise linear modulation (FiLM) [38] and spatially adaptive
denormalization (SPADE) [39] shed additional light over other normalization layers in
image synthesis. In our proposed work, we also show how we can adapt both SPADE as
well as FiLM normalization as part of a residual and common decoder, respectively.

Variational autoencoder-based models: There have been several recent works involv-
ing disentangled learning with variational autoencoder (VAE) [24,40,41]. In contrast to
these previous works, we will attempt to demonstrate the use of a VAE as a disentangled
representation by sampling the sentiency code to separate the domain-specific information
from the domain-invariant latent code.

1.3. Overview of the Proposed Method

To further address some of the shortcomings associated with existing methods, our
efforts focus on learning meaningful spatial features utilizing a disentangler with a mutual
information minimizer (MIM) to improve the adversarially trained generative models for
improving semi-supervised segmentation and reconstruction results.

Our proposed method builds on several recent and key research findings in the fields
of generative models, semi-supervised learning, and representation learning via disen-
tanglement. We believe that the proposed framework’s reliance on as little as 1% labeled
data for training, in concert with the high segmentation accuracy achieved, comparable to
the fully or semi-supervised models, renders the proposed work an attractive solution for
medical image segmentation, where access to vast expert-annotated data is expensive and
often difficult to gain access to.

We approach this problem using a method that is based on disentangled represen-
tations and utilizes data from multiple scanners with varying intensities and contrast
(Figure 1). Our method is intended to address multi-scanner unlabeled-data issues, such
as intensity differences, and a lack of sufficient annotated data. Learning good data rep-
resentations for medical imaging tasks ensures the preservation of relevant information
and the removal of irrelevant information from the data to improve the interpretability of
the learned features. Our model disentangles the input image into spatial and non-spatial
space. These spatial features are represented as categorical feature maps, with each category
corresponding to input pixels that are spatially similar and are from the same organ part.
This semantic similarity aids in learning to be generalized the anatomical representation to
any modality from different scanners. Furthermore, the non-spatial features capture the
image’s global intensity information, which aids the renderer in painting the anatomy in
the reconstructed image. Finally, because annotating data is time-consuming and expensive,
the ability to learn this decomposition through disentanglement using a small number of
labels is critical in medical image analysis.

In light of these needs, here we propose a semi-supervised (CqSL) model for learn-
ing disentangled representations that combines recent developments in semi-supervised
learning–generative models and adversarial learning. We aim to factorize the representa-
tion of an image pair into two parts: a shared representation that captures the common
information between images and an exclusive representation that contains the specific in-
formation of each image. Furthermore, in order to achieve representation disentanglement,
we propose to minimize mutual information between shared and exclusive representa-
tions. Moreover, we use feature-wise linear modulation (FiLM) [38] to distinguish the
domain-invariant information from the domain-specific information, as well as a spatially
adaptive normalization (SPADE) [39]-based decoder to guide the synthesis of more texture
information to restrain the posterior collapse of the VAE and spatial information.
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Figure 1. Images, histograms and surface plots of two 3D cardiac images featuring all slices of two

random patients from the ACDC dataset are illustrated in (a,b). From left to right: cardiac MR image

in 4 dimensions, histogram plot, and surface plot.

To illustrate its adequacy, our model is applied to two of the foremost critical tasks in
medical imaging—segmentation of cardiac structures and reconstruction of the original
image—and both assignments are handled by the same model. Our model leverages a
large amount of unannotated data from the ACDC (https://www.creatis.insa-lyon.fr/
Challenge/acdc/databases.html, accessed on 2 October 2021) dataset to learn the inter-
pretable representations through judicious choices of common factors that serve as strong
prior knowledge for more complicated problems—the segmentation of cardiac structures.
Figure 2 shows a simplified data view of our proposed model.

D

SKe

Se
Z1 Z2 Z3 Z4 Z5 Z6 Z7
{0,   0.05, 0.6, 0.5,  0.3, 0.05,  0}

R

 
Disentangler 

Segmentor

Reconstructor

Spatial  
Encoder

Non-spatial
Encoder

Labeled  
Image

Unlabeled  
Image

Figure 2. A simplified schematic overview of the proposed model.
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1.4. Contributions

Our proposed work makes several contributions summarized as follows:

1. We combine recent developments in disentangled representation learning with strong
prior knowledge about medical imaging data that features a decomposition into
“skeleton (spatial)” and “sentiency (non-spatial)”, to ensure that the spatial informa-
tion is not mixed up with the non-spatial information.

2. We alter the usual cross-entropy loss to down-weigh the loss applied to well-classified
samples in order to overcome the foreground–background class imbalance problem.
Specifically, we exploit a novel supervised loss—the weighted-soft-background-focal
(WSBF) loss, which focuses the training on a set of hard examples to ensure that this
loss can differentiate between easy/hard examples.

3. We employ both qualitative and quantitative tests to evaluate the usefulness of our
framework, which show that our model outperformed fully supervised methods,
even when using only 1% labeled data for training.

The paper is organized as follows: Section 1 establishes the general background and
motivation of the work, reviews the related literature on latest developments in the field of
domain adaptation, semi-supervised learning and representation learning, and provides an
overview of the proposed work; Section 2 describes our proposed methodology; Section 3
presents our quantitative and qualitative results achieved using our proposed method for
both image segmentation and reconstruction, along with the associated ablation studies;
Section 4 concludes the paper with a summary of our contributions and promising future
research directions.

2. Methods

2.1. CqSL Model Overview

We propose a model that combines the concept of variational generative and adver-
sarial learning, and disentangled interpretation learning in a semi-supervised learning
scheme, which is suited for domain-adapted segmentation as well as reconstruction.

We define the learning task as follows: given an (unknown) data distribution p(x, y)
over images and segmentation masks, we define a source domain having a training set,
DL = {(xl

i , yl
i)}

nl
i=1 with nl labeled examples, and another domain having a training

set, DUL = {(xul
j )}nul

j=1 with nul unlabeled examples, which are sampled as independent,

identically distributed variables from p(x, y) and p(x) distribution. Empirically, we want
to minimize the target risk ∈t (φ, θ) = minφ,θ LL(DL, (φ, θ)) + γLUL(DUL, (φ, θ)), where
LL is the supervised loss for segmentation, LUL is the unsupervised loss defined on
unlabeled images and φ, θ denotes the learnable parameters of the overall network.

We propose to solve the task by learning domain-specific and domain-invariant fea-
tures that are discriminative of the semgentor and reconstructor. Figure 3 shows the
proposed model comprised of five components—(1) disentanglement component, (2) a
disentangled variational autoencoder (DVAE), (3) a mask segmentor identifier (SI), (4) a
mask discriminator identifier (DI), and (5) a reconstructor R.

The disentangler D (Figure 3a) is designed to factorize the representation of an image
pair into two parts: a shared spatial representation (skeleton, SKe) that captures the common
information between images and an exclusive non-spatial representation (sentiency, Se)
that contains the specific information of each image. The skeleton block SKe is a modified
U-Net++ [42] type architecture (EPU-Net++) (Figure 4 and Section 2.1.1) and is responsible
for capturing the domain-invariant features ( fSK). The sentiency block Se is a DVAE
(Figure 3b) type architecture, which takes both the input image and the domain-invariant
features ( fSK) as the input to map domain-specific features ( fSE) using the reparameterized
trick [43].

The reconstruction block consists of two decoders: the SPADE-based decoder takes
the ( fSE) feature from the sentiency block and proceeds directly to the reconstructor R
(Figure 3d), while the FiLM-based decoder works as another disentangler, which untangles
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a segmentor identifier (SI) (Figure 3c), used for segmentation and extracted features, which
then proceed directly to the reconstructor R. The reconstructor R aims to recover the original
image from both ( fSK, fSE). A mutual information minimizer (Figure 3a block) is applied
between (SKe and Se) to enhance the disentanglement. A supervised trainer is trained on
the labeled data to predict the segmentation mask distribution optimizing a supervised
loss. An unsupervised trainer is trained on the unlabeled data, optimizing unsupervised
losses (Algorithm 1 specifies the overall training procedure). Both the unsupervised and
supervised trainers share the same block, as mentioned above.

µ

σ

Z

...

SPADE

FiLM

Combined

R

SI

D

Se

Real / FakeDI

Disentangler 
 Reconstructor 

Discriminator 
Identifier 

Common Decoder 

Residual Decoder 

Absence Domain 

Residual Image 

Segmentor  
Identifier 

Entangle 

Disentangle 
 

Mutual Info Minimizer 

Se

Skeleton Encoder SKe

R
D

DI

Sentiency Encoder 

Adder 

Domain Invariant  
Features 

SSIM + L2  
Loss 

Adv_GM Loss 

(a)  
Disentangler Block

(b)  
VAE Block

(c)  
GAN Block

Domain Specific  
Features 

SKd8

SKd1
Skeleton Decoder SKd

Labeled Example

Unlabeled Example

xl

xul

Supervised Loss yl

y' l

Shared Block

fSK

fSE

DI
y' ul

Real / Fake

yl

Z1 Z2 Z3 Z4 Z5 Z6 Z7

(d)  
Reconstruction Block

SKd2

SKe

SI

{0.05, 0.6.... 0.3}

L = No. of segmentation categories

fSKF

Figure 3. Illustration of CqSL framework: Our model makes use of both labeled as well as unlabeled

images. The first block (a) crops the input images to a specific dimension. Then, we disentangle

the latent features of the images via a disentangled block. An input image is first encoded to a

multi-channel spatial representation, SKdn=1,2...8. Then, SKdn can be fed into a segmentation network

SI to generate a multi-class segmentation mask. (c) We train a generative network, which predicts

semantic labels for both labeled and unlabeled data. (b) A sentiency encoder Se uses the factor

SKdn and the input image to generate a latent vector z representing the imaging modality using a

variational autoencoding block. (d) The decoder networks combine the two representations SKdn

and z to reconstruct the input image.
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Algorithm 1 CqSL mini-batch training.

Input:
Training set of labeled data xl , yl , cl ǫ DL
Training set of unlabeled data xul , size m, ǫ DUL
Disentanglement Learned parameters: (φ, θ), generator G; segmentor S; disentangler D;
discriminator identifier DI, mutual information estimator M, and reconstructor R.
Require:
Shared disentangler D, Shared encoder SKk

d, Se and decoder
for each epoch do

for each step do
Sample mini-batch from xl

i ; xl
1, . . . , xl

nl
; through DL(x)

Sample mini-batch from xul
j ; xul

1 , . . . , xul
nul

; through DUL(x)

Compute model outputs for the labeled inputs
ŷl ←Wφ,θ (IL)
Compute model outputs for the unlabeled inputs
ŷul ←Wφ,θ(IUL)
Calculate mutual information between the disentangled feature pair ( fsk, fse) with Mi:
Update the mask discriminator identifier DI along its gradient:

∇φDI
1

|IL|
∑

i∈IL

[

LDI(xl
i , yl

i , ŷl
i)
]

+

γ
1

|IUL|
∑

i∈IUL

[

LDI(xul
j , ŷul

j )
]

Update the segmentation mask generator SI and VAE encoder along its gradient:

∇θSI
1

|IL|
∑

i∈IL

[

LSI(xl
i , yl

i , ŷl
i)
]

+

∇θSE
1

|IL|
∑

i∈IL

[

LSe
(xl

i ,F (xl
i),∼ zl

dim)
]

+

γ
1

|IUL|
∑

j∈IUL

[

LG(xul
j , ŷul

j )
]

+

∇θSE
1

|IUL|
∑

i∈IUL

[

LSe
(xul

j ,F (xul
j ),∼ zul

dim)
]

end for
end for

2.1.1. Disentanglement

Referring to Figure 3a, the disentangler block factorizes the image features into spa-
tial (skeleton/physique) features, as well as non-spatial (sentiency) features that carry
residual information. The skeleton block is a modified U-Net type architecture—EvoNorm-
Projection-UNet++ (EPU-Net++) as shown in Figure 4. We attach eight different decoders
at the common bottleneck layer of EPU-Net++. Each decoder captures bottleneck features
from 2D cropped images and transforms them into different feature maps consisting of a
number of binary channels which are then combined together to form eight most effective

channels: xST

(0,1)(h×w×c)
−−−−−−→ {∑i=8

i=1 fSKi
}. These feature maps are responsible for capturing

the domain-invariant features and contain cardiac structures (myocardium, the left and the
right ventricle), effective for segmentation and some surrounding structures, effective for
reconstruction (Figure 5).
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Bottleneck:	Conv2D	+	EvoNorm	+	Gaussian-Dropout	+
Conv2D	+	EvoNorm	+	Gaussian-Dropout

EP	Layer:	EvoNorm2D	+	1x1	Conv
+	Gaussian-Dropout

Figure 4. Illustration of EPU-Net++ Block: skip connections are replaced with a long projection block.

Figure 5. Representative examples showing the 5 (out of 8) most semantic disentangled multi-channel

binary maps of the spatial information generated from the skeleton decoder from the base to apex

(top to bottom rows). Some channels indicate anatomical portions that are well-defined, such as

the myocardium, left ventricle or the right ventricle, while others represent the remaining anatomy

needed to characterize the input image.

We use a separate neural network for capturing the sentiency information i.e., domain-
specific information. We combine the crop image and the domain-invariant features to pe-
nalize the deviation of latent features from the prior distribution employing Kullback–Leibler
divergence by applying a VAE architecture (Figure 3b) with the following objective function:

Lvae = ∑
∣

∣

∣

(

p(zi) log
p(zi)

p(zi|x
ul
i , fSKi

)

)∣

∣

∣
(1)
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A VAE learns a low dimensional latent space such that the acquired latent representa-
tions fit a prior distribution that is predetermined to be an isotropic multivariate Gaussian
p(z) = N (0, 1). An encoder and a decoder make up a VAE. Given an input, the encoder
guesses the Gaussian distribution’s parameters. In order to enable learning through back
propagation, this distribution is then sampled using the reparameterization technique,
and the resulting sample is sent through the decoder to reconstruct the input.

We use disentangled features as the prior distribution in a VAE (Equation (1)) to
remove class-irrelevant features (e.g., background pixels) and ensure that domain-invariant
features are well-disentangled from class-specific features, because the image-only a priori
aligns the latent features to a normal distribution.

2.1.2. Mutual Information Minimizer

To better exploit the disentanglement, we add a regularization term based on mutual
information (MI), denoted as MIM, which measures the “amount of information” learned
from knowledge of random variable Y about the other random variable X [44]. In this
paper, we adopt the mutual information neural estimator (MINE) [45], MI( fSK, fSE):

1

N

N

∑
i=1

M(α, β, θ)− log
( 1

N

N

∑
i=1

expM(α,β′ ,θ)
)

(2)

where (α, β) are sampled from the joint distribution of ( fSK, fSE) and β′ is sampled from
the marginal distribution.

The mutual information can be expressed as the difference of two entropy terms
MIM(X; Y) = H(X)− H(X|Y); we seek to minimize the MI between domain-invariant
and domain-specific features ( fSK, fSE), whereas we make an assumption that the informa-
tion content does not vary much between intra-domains (Figure 3a).

2.1.3. Segmentation

The mask segmentor identifier (SI) (Figure 3c) takes the output from the FiLM decoder
f F
SK as input and generates predicted segmentation mask SI( fSK) = ŷl ∈ {0, 1}(H×W×L),

where L is the number of categories (RV, LV, LV-Myo, and background) in the training
dataset. We exploit a novel supervised loss, weighted soft background focal (WSBF) loss,
LL

SI(seg) = LWSFL + LBFD for the base model, which is a combination of background focal

dice loss (BFD) and weighted soft focal loss (WSFL):

LLSI(seg) =
[

α0 + y(α1 − α0)
]

|y− ŷ|γ.wmap.CE(y, ŷ) +

∑
c

[

2−
2 ∑ yŷ + ǫ

∑(y + ŷ) + ǫ
−

2 ∑ yŷ + ǫ

∑(y + ŷ) + ǫ

]
1
γ

(3)

where α0 and α1 are designed to account for class imbalance and are treated as hyper-
parameters, the term |y− ŷ|γ is used to down-weigh examples with backgrounds, where
γ varies in the range [1, 3]. The term CE(y, ŷ) = −y log ŷ− (1− y) log(1− ŷ) denotes the
cross-entropy loss.

On the other hand, the data with no corresponding segmentation masks are trained
by minimizing the unsupervised loss via a KL divergence based on least-squares GAN [46].
However, since the least-squares loss is not sufficiently robust, we introduce a new diver-
gence loss function by incorporating it into a Geman–McClure model [47] fashion called
adversarial-Geman–McClure (adv-GM) loss between the ground truth of real mask yl and
prediction on unlabeled data yul :

LUSI(adv-GM) =
DI(SI( fSK(xul)))2 + (DI(ŷul)− 1)2

2β + DI(SI( fSK(xul)))2 + (DI(ŷul)− 1)2
(4)
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where β is the scale factor which varies in the range of [0, 1] and we set β = 0.5 in
our experiment.

2.1.4. Image Reconstruction

To better capture the anatomical shape and the intensity information in the synthetic
image, we propose a two-branched reconstruction architecture featuring two separate
decoders: one is conditioned with FiLM [38], and the other with SPADE [39] (Figure 6a)
and both are then concatenated to produce a realistic image. The FiLM decoder consists of
multiple FiLM layers, a gamma-beta predictor, and convolutional layers with 3 × 3 kernel
and (8, 8, 8, 8, 1) channels in the stride of 1. Each convolution layer is followed by batch
normalization layer along with a Leaky-ReLU layer.

γInstanceNorm

Conv

Conv
Conv ReLU

Fout
Fin

βfSK

fSE

Image Conv

fSK

Interpolation
	Layer

SPADE
Upsample
Res.	Block

SPADE

(a)

(b)

Figure 6. Detailed architecture of SPADE block: (a) shape-aware normalization block where the

spatial tensors, γ and β are multiplied and added to the input features; (b) decoder block fSES with

shape-aware normalization.

To better retain the non-spatial information in the MR image, we integrate the shape
knowledge into the idea of SPADE [39] and form a shape-aware normalization layer (see
Figure 6). SPADE first normalizes the input feature Fin with a scale α and a shift µ learned
from sampled z using an instance-normalization (InstanceNorm) layer, inspired by [38] and
then denormalizes it based on a spatial representation fSK through learnable parameters γ

and β. fSK is then interpolated to match the texture dimension of the sampled z from the
sentiency encoder and used as a semantic mask for SPADE:

Fout =
Fin − µ

α
× γ( fSK) + β( fSK) (5)

where Fin and Fout denote the output feature maps. γ and β are learned from fSK by
three Conv layers. Thus, the learned shape information precludes washing away the
anatomical information, which encourages the image synthesis to be more accurate. The
first convolution layer inside the SPADE block (Figure 6) encodes the interpolated fSK,
and the other two convolution layers learn the spatial tensors γ and β. Simultaneously,
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an instance normalization layer is applied to the intermediate feature map, which is then
modulated by the scale and shift parameters γ and β learned from sampled z to produce
the output. Finally, the output of the two decoders is re-entangled in order to reconstruct
an image.

2.2. Objective Functions

The training objective function consists of multiple losses for labeled and unlabeled
data, each weighted by some scalar term λ:

Ltotal = λseg LLSI(seg) + λadv−GM {LLSI,DI(adv−GM)

+ LUSI,DIu(adv−GM)}+ λvaeLvae

+ λSL2SIM { LLSL2SIM + LUSL2SIM}

+ λMIM MIM( fSK, fSE)

(6)

where λt is the weight for the loss of type t. In this paper, we empirically set the weights as
λvae = 0.01, λseg = 10, λadv−GM = 10, λSL2SIM = 0.01, λMIM = 1.

2.2.1. Segmentation Loss

Since the model is trained on both labeled and unlabeled data, the segmentation loss
Lseg includes both supervised and unsupervised losses:

Lseg = Lsup + Lusup (7)

Supervised Loss. Our supervised cost is based on the combination of the two fol-
lowing functions: (1) the weighted soft focal loss, and (2) the background focal dice loss
mentioned in Equation (3) (Lsup = LL

SI(seg)).

Unsupervised Loss. The discriminator identifier is adversarially trained for the la-
beled and unlabeled data and updated along with adversarial-Geman–McClure (adv-GM)
loss Lusup = LL

SI,DI(adv−GM) + LU
SI,DIu(adv−GM). For labeled data, the adversarial loss is

LLSI,DI(adv−GM) =

Ex∼xl
i
[DI(SI( fSKi

(xl
i)))

2] +Ey∼yl
i
[(DI(yl

i)− 1)2]

2β +Ex∼xl
i
[DI(SI( fSKi

(xl
i)))

2] +Ey∼yl
i
[(DI(yl

i)− 1)2]

(8)

Similarly, for the unlabeled data, the adversarial loss is

LUSI,DIu(adv−GM) =
Ex∼xul

i
[DIu(SI( fSKi

(xul
i )))2]

2β +Ex∼xul
i
[DIu(SI( fSKi

(xul
i )))2]

+ Ey∼ŷul
i
[(DIu(yul

i )− 1)2]

+ Ey∼ŷul
i
[(DIu(yul

i )− 1)2]

(9)

VAE Loss. For the smooth texture detail of the input data, the VAE learns factorized
representations to optimize a KL-divergence loss, given an image xul

i , and its decomposed
skeleton feature fSK (Equation (1)).

2.2.2. Reconstruction Loss

We adopt a novel reconstruction loss as a combination of structural similarity (SSIM)
and L2 loss–SL2SIM in order to enforce the similarity between recovered image and original
image for better learning the distribution of images.

SL2SIM Loss. Since the image intensities vary across imaging scanners, as a result,
there are high chances that the generative model will tend to mode collapse. This structural
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L2 similarity (SL2SIM) loss provides a similarity measure between the input image and the
reconstructed image based on high light-dark variance, contrast, and structural similarity.
The concatenated FiLM and SPADE decoder learn the parameters to reconstruct the input
image using a novel combination of structured similarity loss and L2 loss. For labeled data,
the reconstruction loss is

LLSL2SIM = Exi∼xl
i

[

1− SL2SIM
{

xl
i , (F ( fSKi

, fSEi
)

⊕ S( fSKi
, fSEi

))
}

+ α
nl

∑
i=1

∣

∣

∣

∣

∣

∣

{

xl
i − (F ( fSKi

, fSEi
)

⊕ S( fSKi
, fSEi

))
}∣

∣

∣

∣

∣

∣

2

2

]

(10)

Similarly, for unlabeled data, the reconstruction loss is

LUSL2SIM = Exi∼xul
i

[

1− SL2SIM
{

xul
i , (F ( fSKi

, fSEi
)

⊕ S( fSKi
, fSEi

))
}

+ α
nul

∑
i=1

∣

∣

∣

∣

∣

∣

{

xul
i − (F ( fSKi

, fSEi
)

⊕ S( fSKi
, fSEi

))
}∣

∣

∣

∣

∣

∣

2

2

]

(11)

where SL2SIM is the structure similarity index term and α is a regularized term.

2.3. Experiments

2.3.1. Datasets

We validate the effectiveness of CqSL on a widely adopted cardiac image segmentation
challenge dataset by conducting several comparisons to other baseline models. We use the
STACOM 2017 Automated Cardiac Diagnosis Challenge (ACDC) dataset (https://www.creatis.
insa-lyon.fr/Challenge/acdc/databases.html, accessed on 2 October 2021), consisting of
short-axis cardiac cine-MR images acquired for 100 patients (1920 labeled and 23,530
unlabeled images) divided into 5 subgroups: normal (NOR), myocardial infarction (MINF),
dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), and abnormal
right ventricle (ARV), available through the 2017 MICCAI-ACDC STACOM challenge [48].
The images were acquired over a 6 year period using two MRI scanners of different
magnetic strengths (1.5 T and 3.0 T). The images were acquired using the SSFP sequence
with spatial resolution 1.37 to 1.68 mm2/pixel and 28 to 40 frames per cardiac cycle. We
split the dataset into three sets—training (70), validation (15), and test (15).

2.3.2. Implementation Details

Input: All the cine cardiac images employed slice-wise normalization in the
range [0, 1] by subtracting the mean slice intensity from each pixel intensity, then
dividing it by the difference between the maximum and minimum slice intensity. All
images were resampled to 1.37 mm2/pixel. Images were cropped to 192× 192× 1 pixels
before feeding to the models. We applied data augmentation on-the-fly during training
as shown in Figure 7, which includes random rotations up to 90 degrees, random
zooms up to 20%, random horizontal shifts up to 20%, random horizontal and/or
vertical flips, and noise addition (Figure 7).

Baselines Architecture: As the disentangled encoder in the skeletal block, we use a
modified U-Net-like architecture, EPU-Net++, and as a sentiency encoder, we use VAE.
As the reconstruction block, we use FiLM- and SPADE-based decoder as used in [49].

Generator–Discriminator Network: Our segmentation generator network consists
of 3 convolution layers with 3× 3 kernel and {64, 64, 1} channels in the stride of 1. Each
convolution layer is followed by a batch normalization [50] layer along with a Leaky-
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ReLU [51] except the last layer. We use the structure similar to DCGAN [52] for the
discriminator network.

Figure 7. Example images of applying data augmentation via affine transformations.

EvoNorm-Projection skip connections: In our skeleton encoder, we replace the stan-
dard skip connection with a normalized-projection operation using EvoNorm2D + 1× 1−
Conv + Gaussian− dropout, as in Figure 4. This new normalization layer adds together
two types of statistical moments–batch variance, and instance variance, both of which
capture both the global and local information across images without having any explicit
activation function [53]. The proposed projection operation helps in reducing the learnable
weights and also allows intricate learnability of cross-channel information.

Additional Factors: The performance of semi-supervised models trained for image
segmentation can be significantly impacted by the proper selection of regularizer, optimizer,
and hyper-parameters. The model implemented in Keras was initialized with the He
normal initializer and trained for 100 epochs with a batch size of 4. We trained all the
components iteratively with the Adam optimizer with a 0.0001 learning rate to minimize
the objective function. All experiments were conducted on a machine equipped with
two NVIDIA RTX 2080 Ti GPU (each 11GBs memory). The detailed training procedure is
presented in Algorithm 1.

Training: In our semi-supervised setup, we trained the network on varying propor-
tions of labeled data: 1%, 10%, 20%, 30%, 50%, and 90% as a labeled set and used the rest of
the data as the training unlabeled set to hold |DL| ≤ |DUL|. In Section 3, we include an
ablation study to investigate the importance of adding different loss components in our
model CqSL which is comprised of all the three loss functions: WSBF , MIM, Adv-GM.
(Definitions are provided in Sections 2.1.2 and 2.1.3.)

We experimented an ablation study containing four of the variants of our proposed
model CqSL. The variants are described as follows: 1CqSL, without weighted-soft focal loss
(WSFL); 2CqSL, without adversarial-Geman–McClure loss (Adv-GM); 3CqSL, dice and cross-
entropy loss only; and 4CqSL, without mutual information minimizer loss (MIM). Here, we
utilize the same backbones as the baselines with the only exceptions being different loss
functions. To clarify our point, in 1CqSL, we removed the weighted soft focal loss (WSFL)
from the weighted soft background focal loss (WSBF), while keeping the background
focal dice loss (BFD), mutual information minimizer loss (MIM) and adversarial-Geman–
McClure (adv-GM) the same as before. In 2CqSL, we removed our Geman–McClure version
of adversarial loss, while keeping the regular adversarial loss, weighted soft background
focal loss (WSBF), and mutual information minimizer loss (MIM) the same as before.
Similarly, in 3CqSL, we used DICE + CE loss rather than using our novel weighted soft
background focal loss (WSBF) while keeping the mutual information minimizer loss (MIM)
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and adversarial-Geman–McClure (adv-GM) the same as before. Finally, in 4CqSL, we
removed our mutual information minimizer loss (MIM) loss, while keeping the weighted
soft background focal loss (WSBF), and adversarial Geman–McClure (adv-GM) the same
as before. Additionally, the sentiency block, Se and the skeleton block, SKe were in place.
We evaluated the performance of all four CqSL semi-supervised variants as summarized
in Tables 1–3 in the Results section, and, as illustrated later, the 1CqSL variant performed
best, but for the sake of consistency, we asses and compare the performance of all four
implemented variants.

Table 1. Quantitative evaluation of RV blood pool segmentation results achieved using four semi-

supervised variants of the proposed CqSL model in terms of mean Dice score (%) with std. dev.,

Jaccard index, Hausdorff distance (mm), precision (%) and recall (%) rate evaluated for varying

proportions of labeled data on the ACDC dataset compared across several frameworks.

Right Ventricle (RV)

Dice Jaccard HD Prec. Rec.

U-Net-90% 80.50 ± 8.45 72.03 ± 9.77 8.89 ± 8.45 90.09 94.35
U-Net-50% 79.21 ± 8.49 70.26 ± 10.69 8.90 ± 6.12 85.32 90.11
U-Net-30% 72.32 ± 10.60 66.10 ± 14.75 10.19 ± 7.43 79.50 83.45
U-Net-20% 61.29 ± 16.59 55.65 ± 18.90 12.88 ± 7.32 67.19 74.50
U-Net-10% 54.90 ± 19.66 46.89 ± 20.05 14.58 ± 9.03 60.55 63.02
U-Net-1.0% 39.02 ± 21.22 32.10 ± 22.22 15.90 ± 9.12 43.02 44.15

GAN-90% 79.0 ± 8.15 70.59 ± 10.89 9.55 ± 6.35 85.09 90.12
GAN-50% 78.76 ± 8.98 70.16 ± 11.18 9.88 ± 6.44 84.32 89.43
GAN-30% 73.97 ± 10.87 67.01 ± 13.04 10.23 ± 6.98 79.93 84.97
GAN-20% 69.92 ± 11.45 63.65 ± 16.88 11.66 ± 7.14 79.12 84.12
GAN-10% 66.33 ± 13.21 60.18 ± 19.23 11.99 ± 7.88 74.12 78.34
GAN-1.0% 62.43 ± 13.23 56.43 ± 22.12 13.43 ± 8.11 69.12 73.33

GAN+REC-90% 78.78 ± 8.11 71.13 ± 9.77 9.12 ± 6.46 86.09 90.23
GAN+REC-50% 78.98 ± 8.88 70.13 ± 11.13 9.78 ± 6.66 85.12 90.54
GAN+REC-30% 74.83 ± 10.67 68.67 ± 14.06 10.01 ± 6.98 80.12 85.32
GAN+REC-20% 71.14 ± 11.18 66.65 ± 16.44 11.34 ± 7.05 80.23 84.23
GAN+REC-10% 69.24 ± 13.78 63.23 ± 17.71 11.80 ± 7.23 75.13 79.12
GAN+REC-1.0% 64.19 ± 12.22 59.33 ± 21.01 12.91 ± 7.54 70.34 74.67

CqSL-90% 83.0 ± 6.33 77.77 ± 11.66 8.1 ± 6.00 90.78 95.12
CqSL-50% 82.72 ± 8.29 76.15 ± 11.0 8.21 ± 6.04 88.44 94.26
CqSL-30% 81.59 ± 7.20 73.27 ± 12.14 8.28 ± 6.10 85.19 92.62
CqSL-20% 81.44 ± 6.12 75.33 ± 11.52 8.56 ± 6.11 83.14 93.79
CqSL-10% 79.21 ± 9.76 71.45 ± 12.91 9.82 ± 6.78 82.40 90.93
CqSL-1.0% 75.50 ± 10.87 70.55 ± 12.58 9.87 ± 6.72 80.55 83.68

1CqSL-90% 81.88 ± 6.0 74.31 ± 11.65 8.5 ± 6.15 90.12 91.97
1CqSL-50% 82.03 ± 6.45 75.22 ± 11.24 8.49 ± 6.10 88.11 93.44
1CqSL-30% 79.25 ± 8.11 73.16 ± 8.14 8.77 ± 6.22 83.62 92.05
1CqSL-20% 80.21 ± 7.54 73.19 ± 11.04 9.01 ± 6.34 83.69 91.05
1CqSL-10% 78.58 ± 9.22 71.12 ± 11.25 9.48 ± 6.57 82.21 91.01
1CqSL-1.0% 73.90 ± 11.88 68.58 ± 13.89 9.85 ± 6.71 79.54 84.54

2CqSL-90% 81.03 ± 7.11 74.37 ± 11.48 8.74 ± 6.25 88.39 92.28
2CqSL-50% 80.65 ± 7.26 73.36 ± 12.06 8.54 ± 6.23 86.78 93.05
2CqSL-30% 78.02 ± 9.36 72.66 ± 10.55 9.35 ± 6.65 82.88 91.96
2CqSL-20% 79.55 ± 8.10 73.0 ± 11.54 9.65 ± 6.63 83.02 89.15
2CqSL-10% 78.33 ± 8.96 68.54 ± 12.89 9.77 ± 6.34 80.56 91.55
2CqSL-1.0% 71.21 ± 11.76 63.45 ± 15.91 11.82 ± 7.12 76.40 81.93

3CqSL-90% 81.13 ± 7.33 73.04 ± 12.11 8.93 ± 6.33 86.02 90.17
3CqSL-50% 79.34 ± 8.56 71.23 ± 12.87 9.05 ± 6.66 84.34 91.24
3CqSL-30% 76.77 ± 10.11 72.04 ± 11.26 9.66 ± 6.73 82.0 90.88
3CqSL-20% 79.01 ± 8.58 71.89 ± 12.88 9.52 ± 6.46 81.66 87.56
3CqSL-10% 76.55 ± 8.25 68.55 ± 13.23 10.12 ± 6.89 81.02 88.72
3CqSL-1.0% 70.41 ± 11.86 64.77 ± 15.70 12.11 ± 7.23 74.44 80.21

4CqSL-90% 79.83 ± 8.23 70.33 ± 12.66 9.25 ± 6.34 84.54 90.02
4CqSL-50% 79.02 ± 8.88 72.68 ± 12.26 9.36 ± 6.23 85.20 90.22
4CqSL-30% 75.38 ± 9.75 70.49 ± 12.0 9.52 ± 6.54 80.33 88.59
4CqSL-20% 75.77 ± 9.05 69.88 ± 13.22 10.19 ± 6.77 81.02 88.78
4CqSL-10% 72.24 ± 10.65 66.70 ± 13.56 10.55 ± 6.75 79.79 85.47
4CqSL-1.0% 68.97 ± 13.90 63.19 ± 16.50 12.88 ± 7.43 72.13 77.59
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Table 2. Quantitative evaluation of LV blood pool segmentation results achieved using four semi-

supervised variants of the proposed CqSL model in terms of mean Dice score (%) with std. dev.,

Jaccard index, Hausdorff distance (mm), precision (%) and recall (%) rates evaluated for varying

proportions of labeled data on the ACDC dataset compared across several frameworks.

Left Ventricle (LV)

Dice Jaccard HD Prec. Rec.

U-Net-90% 88.03 ± 6.81 85.09 ± 6.98 5.16 ± 5.92 97.88 98.79
U-Net-50% 86.88 ± 6.09 84.67 ± 5.36 5.29 ± 6.20 97.01 98.19
U-Net-30% 82.98 ± 8.66 80.10 ± 8.19 6.89 ± 6.75 89.66 91.05
U-Net-20% 81.29 ± 8.91 79.78 ± 9.02 8.22 ± 8.23 87.50 89.77
U-Net-10% 79.49 ± 9.56 71.29 ± 11.26 9.56 ± 9.82 83.33 86.14
U-Net-1.0% 42.56 ± 19.76 37.02 ± 21.45 14.35 ± 10.12 45.53 46.17

GAN-90% 86.15 ± 6.45 81.23 ± 8.01 5.53 ± 5.08 90.57 92.87
GAN-50% 85.34 ± 7.03 81.26 ± 8.12 5.91 ± 6.03 88.34 89.43
GAN-30% 84.03 ± 8.16 80.22 ± 9.11 6.89 ± 7.03 87.23 88.87
GAN-20% 81.90 ± 8.59 79.12 ± 10.82 7.12 ± 7.33 86.19 88.12
GAN-10% 81.78 ± 8.16 76.67 ± 14.13 8.02 ± 7.54 83.15 87.43
GAN-1.0% 75.02 ± 12.32 70.22 ± 15.12 10.89 ± 9.12 80.22 83.12

GAN+REC-90% 88.06 ± 6.11 81.94 ± 8.12 5.73 ± 5.22 91.19 93.35
GAN+REC-50% 86.19 ± 6.89 81.02 ± 8.23 5.76 ± 5.43 90.54 91.65
GAN+REC-30% 85.53 ± 7.36 80.34 ± 9.12 6.78 ± 6.34 89.76 90.34
GAN+REC-20% 83.89 ± 8.19 79.34 ± 10.22 6.88 ± 7.05 87.19 89.53
GAN+REC-10% 83.29 ± 7.16 77.56 ± 13.05 7.58 ± 8.33 85.55 89.02
GAN+REC-1.0% 76.02 ± 11.22 71.32 ± 14.22 10.04 ± 9.12 80.12 84.43

CqSL-90% 92.77 ± 4.98 85.67 ± 7.31 4.53± 4.98 96.12 99.75
CqSL-50% 92.25 ± 5.12 83.98 ± 7.98 5.23 ± 5.03 95.91 97.95
CqSL-30% 90.10 ± 5.89 82.91 ± 8.12 5.93 ± 5.23 93.50 93.79
CqSL-20% 88.98 ± 6.33 81.26 ± 8.78 6.21 ± 5.04 90.14 92.90
CqSL-10% 88.33 ± 6.39 79.92 ± 9.21 6.17 ± 6.44 89.35 92.95
CqSL-1.0% 83.21 ± 7.12 77.94 ± 10.51 7.0 ± 5.98 86.96 91.36

1CqSL-90% 92.21 ± 5.13 83.66 ± 7.45 4.88 ± 3.21 95.03 97.33
1CqSL-50% 91.0 ± 5.55 81.61 ± 8.05 5.16 ± 4.09 94.12 96.13
1CqSL-30% 89.56 ± 5.97 81.23 ± 7.89 5.89 ± 6.98 92.22 92.80
1CqSL-20% 87.28 ± 6.91 80.32 ± 8.12 6.55 ± 5.23 89.89 91.0
1CqSL-10% 87.89 ± 6.44 79.15 ± 9.30 6.05 ± 5.33 89.03 92.55
1CqSL-1.0% 81.78 ± 7.22 75.36 ± 9.20 7.88 ± 5.44 84.55 89.17

2CqSL-90% 91.45 ± 5.86 83.31 ± 7.23 4.90 ± 4.90 95.13 96.73
2CqSL-50% 90.22 ± 5.12 80.78 ± 8.34 5.54 ± 4.55 93.02 96.04
2CqSL-30% 89.11 ± 5.89 81.14 ± 8.10 5.88 ± 5.11 91.14 92.89
2CqSL-20% 87.02 ± 6.98 81.12 ± 8.77 6.74 ± 5.28 89.11 90.58
2CqSL-10% 87.15 ± 6.93 79.02 ± 8.87 6.44 ± 4.87 88.53 92.47
2CqSL-1.0% 80.80 ± 8.12 75.06 ± 10.04 8.01 ± 6.12 85.54 90.20

3CqSL-90% 91.03 ± 5.57 82.44 ± 7.87 5.32 ± 4.77 95.31 95.55
3CqSL-50% 89.79 ± 5.02 79.15 ± 8.04 5.12 ± 5.12 93.44 95.18
3CqSL-30% 89.24 ± 6.15 81.02 ± 7.95 5.71 ± 5.18 92.26 91.11
3CqSL-20% 88.19 ± 5.53 80.52 ± 8.12 6.80 ± 5.05 88.78 89.10
3CqSL-10% 86.56 ± 6.15 79.55 ± 8.45 6.56 ± 6.54 87.98 92.01
3CqSL-1.0% 79.58 ± 9.25 73.20 ± 10.87 8.64 ± 7.01 85.77 91.05

4CqSL-90% 90.55 ± 5.88 80.19 ± 8.25 6.55 ± 6.12 93.12 95.55
4CqSL-50% 89.10 ± 6.15 79.01 ± 8.77 5.54 ± 5.88 92.11 93.22
4CqSL-30% 88.01 ± 6.43 79.89 ± 8.00 5.86 ± 6.43 91.54 91.02
4CqSL-20% 87.78 ± 5.53 80.13 ± 7.72 6.91 ± 5.16 88.17 90.56
4CqSL-10% 86.0 ± 6.39 80.10 ± 8.90 6.92 ± 5.12 85.67 93.34
4CqSL-1.0% 78.13 ± 8.66 74.19 ± 11.20 9.56 ± 8.05 84.66 89.10
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Table 3. Quantitative evaluation of LV-Myocardium segmentation results achieved using four semi-

supervised variants of the proposed CqSL model in terms of mean Dice score (%) with std. dev.,

Jaccard index, Hausdorff distance (mm), precision (%) and recall (%) evaluated for varying propor-

tions of labeled data on the ACDC dataset compared to segmentation across several frameworks.

LV-Myocardium (LV-Myo)

Dice Jaccard HD Prec. Rec.

U-Net-90% 86.93 ± 5.56 84.50 ± 5.20 4.97 ± 3.76 92.32 96.54
U-Net-50% 85.82 ± 6.32 82.25 ± 7.66 5.16 ± 5.77 90.19 95.66
U-Net-30% 77.29 ± 9.19 75.49 ± 7.90 6.56 ± 5.65 87.11 89.56
U-Net-20% 76.56 ± 9.16 71.78 ± 16.20 7.69 ± 5.45 83.57 88.34
U-Net-10% 66.23 ± 15.90 60.63 ± 19.87 10.10 ± 8.55 59.34 62.08
U-Net-1.0% 29.47 ± 20.29 25.39 ± 22.50 13.95 ± 9.12 32.25 34.54

GAN-90% 84.50 ± 6.14 79.03 ± 9.17 5.89 ± 4.23 88.12 89.14
GAN-50% 81.21 ± 7.49 74.12 ± 11.77 5.45 ± 5.14 85.55 88.01
GAN-30% 78.67 ± 9.61 75.88 ± 12.75 5.19 ± 6.15 84.33 86.10
GAN-20% 77.88 ± 9.89 72.45 ± 15.91 6.01 ± 7.65 83.32 85.12
GAN-10% 75.23 ± 11.19 70.33 ± 17.19 7.87 ± 8.55 76.44 81.33
GAN-1.0% 66.02 ± 20.10 62.55 ± 20.87 12.67 ± 9.72 71.43 76.23

GAN+REC-90% 85.34 ± 6.42 77.44 ± 12.13 5.34 ± 4.37 88.44 90.33
GAN+REC-50% 82.33 ± 7.49 75.16 ± 13.16 5.81 ± 4.73 87.32 89.10
GAN+REC-30% 79.77 ± 9.21 74.10 ± 14.77 5.91 ± 5.12 86.76 88.34
GAN+REC-20% 78.43 ± 9.11 73.32 ± 15.11 6.12 ± 6.14 84.12 87.43
GAN+REC-10% 76.18 ± 11.18 72.21 ± 15.80 7.23 ± 7.34 79.43 83.53
GAN+REC-1.0% 67.52 ± 18.12 64.22 ± 19.33 12.12 ± 9.34 72.43 78.44

CqSL-90% 89.33 ± 5.11 82.03 ± 7.33 5.20 ± 5.11 93.98 96.01
CqSL-50% 87.77 ± 6.19 79.12 ± 9.0 5.88 ± 5.43 93.33 93.17
CqSL-30% 85.89 ± 7.07 77.72 ± 11.92 6.23 ± 6.14 91.20 92.25
CqSL-20% 85.55 ± 7.22 76.95 ± 12.9 6.85 ± 7.04 90.01 91.09
CqSL-10% 84.14 ± 7.64 72.76 ± 13.01 7.07 ± 8.01 88.84 90.88
CqSL-1.0% 77.65 ± 9.26 74.20 ± 11.87 10.88 ± 8.45 83.22 88.10

1CqSL-90% 88.98 ± 6.01 81.78 ± 7.63 6.11 ± 6.10 94.13 95.33
1CqSL-50% 86.55 ± 6.22 78.31 ± 9.46 5.74 ± 5.34 93.41 94.11
1CqSL-30% 86.23 ± 7.62 77.43 ± 11.89 6.43 ± 6.29 91.88 91.0
1CqSL-20% 85.10 ± 6.98 76.09 ± 12.77 6.80 ± 6.25 88.87 91.09
1CqSL-10% 84.56 ± 8.01 72.11 ± 13.54 8.13 ± 7.03 89.73 90.16
1CqSL-1.0% 75.54 ± 9.89 73.01 ± 11.56 10.05 ± 8.43 80.89 85.44

2CqSL-90% 88.44 ± 6.43 81.03 ± 7.89 6.65 ± 5.24 92.0 95.32
2CqSL-50% 86.01 ± 6.69 79.28 ± 10.02 5.65 ± 5.27 93.19 92.66
2CqSL-30% 84.93 ± 8.01 78.52 ± 11.61 6.88 ± 5.86 90.42 93.53
2CqSL-20% 85.33 ± 5.73 77.11 ± 11.59 6.32 ± 7.32 89.82 92.38
2CqSL-10% 83.02 ± 8.33 71.67 ± 14.04 8.71 ± 8.10 87.77 91.45
2CqSL-1.0% 75.0 ± 10.10 72.55 ± 11.18 10.20 ± 8.88 81.01 86.56

3CqSL-90% 87.33 ± 7.22 80.73 ± 8.10 6.43 ± 5.50 92.31 94.52
3CqSL-50% 86.43 ± 6.32 78.56 ± 10.22 5.76 ± 5.40 91.34 92.11
3CqSL-30% 83.10 ± 8.66 78.15 ± 10.78 5.92 ± 6.11 88.82 91.63
3CqSL-20% 83.00 ± 6.02 75.44 ± 13.10 6.65 ± 7.63 90.31 92.11
3CqSL-10% 82.88 ± 9.01 72.00 ± 14.66 7.98 ± 8.34 86.11 90.87
3CqSL-1.0% 73.19 ± 11.56 70.04 ± 12.93 10.78 ± 8.54 77.50 83.39

4CqSL-90% 87.44 ± 7.71 81.24 ± 7.45 6.12 ± 5.11 91.32 92.65
4CqSL-50% 86.01 ± 6.81 76.12 ± 10.64 6.01 ± 6.12 89.32 91.88
4CqSL-30% 81.98 ± 10.01 76.65 ± 11.44 5.32 ± 5.44 87.11 92.33
4CqSL-20% 84.01 ± 7.44 75.15 ± 13.19 6.72 ± 6.41 88.43 91.66
4CqSL-10% 81.97 ± 10.66 73.43 ± 13.78 6.69 ± 6.87 84.77 86.32
4CqSL-1.0% 71.21 ± 11.76 69.25 ± 13.16 11.82 ± 9.23 75.40 82.56

2.4. Evaluation Metrics

To evaluate the performance of the semantic segmentation of cardiac structures, we
use the standard metrics, including Dice score, Jaccard index, Hausdorff distance (HD),
precision (Prec), and recall (Rec).

1. Dice and Jaccard Coefficients: The Dice score is used to measure the percentage
of overlap between manually segmented boundaries and automatically segmented
boundaries of the structures of interest. Given the set of all pixels in the image, set
of foreground pixels by automated segmentation Sa

1, and the set of pixels for ground

truth S
g
1 , the Dice score can be compared with [Sa

1, S
g
1]⊆ Ω, when a vector of ground

truth labels T1 and a vector of predicted labels P1 as
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Dice(T1, P1) =
2|T1 ∩ P1|

|T1|+ |P1|
(12)

The Dice score will measure the similarity between two sets, T1 and P1, and |T1|
denotes the cardinality of the set T1 with the range of D(T1,P1) ǫ [0, 1].
The Jaccard index or Jaccard similarity coefficient is another metric which aids in
the evaluation of the overlap in two sets of data. This index is similar to the Dice
coefficient but mathematically different and typically used for different applica-
tions. For the same set of pixels in the image, Jaccard index can be written by the
following expression:

Jaccard(T1, P1) =
|T1 ∩ P1|

|T1 + P1|
(13)

2. Precision and Recall

Precision and recall are two other metrics used to measure the segmentation quality
which are sensitive to under- and over-segmentation. High values of both precision
and recall indicate that the boundaries in both segmentation agree in location and
level of detail. Precision and recall can be written as

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

where TP denotes true positive rate when a prediction-target mask pair has a score
which exceeds some predefined threshold value; FP denotes the false positive rate
when a predicted mask has no associated ground truth mask; and FN denotes the
false negative rate when a ground truth mask has no associated predicted mask.

3. Hausdorff distance (HD): Hausdorff distance (HD) measures the maximum distance
between the two surfaces. Let SA and SB be surfaces corresponding to two binary
segmentation masks, A and B, respectively. The Hausdorff distance (HD) is defined as

HD = max
(

max
pǫSA

d(p, SB), max
qǫSB

d(q, SA)
)

(16)

where d(p, S) = min qǫSd(p, q) is the minimum Euclidean distance of point p from
the points q ǫ S.

4. Image Quality Metrics:

PSNR: The peak signal-to-noise ratio (PSNR) is the most commonly used quality
assessment technique for determining the quality of lossy image compression codec
reconstruction. The signal is the original data, and the noise is the error caused by
the distortion.

5. Clinical Indices: To assess the performance of the ventricles, different indices have
been used in the literature [54], such as left ventricular volume (LVV), left ventricular
myocardial mass (LVM), stroke volume (SV), and ejection fraction (EF). The left
ventricular volume (LVV) is defined as the volume enclosed by the LV blood pool and
the myocardial mass is equal to the volume of the myocardium, multiplied by the
density of the myocardium:

Myo-Mass = Myo-Volume (cm3)× 1.06 (gram/cm3) (17)

Stroke volume (SV) is defined as the volume ejected during systole and is equal to the
difference between the end-diastolic volume (EDV) and the end-systolic volume (ESV):

SV = EDV − ESV × 100% (18)
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The ejection fraction (EF) is an important cardiac parameter quantifying the cardiac
output and defined as the ratio of the SV to the EDV:

EF =
SV

EDV
× 100% (19)

3. Results

3.1. Image Segmentation Assessment

We tested our CqSL model on varying proportions of labeled and unlabeled data
available through the STACOM 2017 ACDC cine cardiac MRI dataset. Training and valida-
tion segmentation accuracies for three different classes (RV, LV, and LV-Myo) are shown in
Figure 8 for 100 epochs. Note that the validation curves show similar trends as the training
curves (Figure 8).
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Figure 8. Representative accuracy curves showing the training and validation accuracy of three

different classes (RV blood-pool, LV blood-pool, and LV-Myocardium).

The CqSL experimental results were compared against a fully supervised U-Net model
trained from scratch, as reported in Tables 1–3. Furthermore, to explore the effectiveness
of each component in our model, we propose three different semi-supervised ablations,
i.e., model I: only a GAN architecture (Figure 3c); model II: I + reconstruction (Figure 3c,d);
model III: II + disentangler block (Figure 3a–d), which are also reported in Tables 1–3.
The detailed comparison of our model can be seen in Table 4. The segmentation perfor-
mance is evaluated both qualitatively and quantitatively. As shown in Tables 1–3, our
proposed model significantly improves the segmentation performance of right ventricle
(RV), left ventricle blood-pool (LV), and LV-Myocardium, respectively on varying pro-
portions of annotated data in terms of the Dice and Jaccard indices, Hausdorff distance,
precision and recall rates. Our CqSL model achieves a high dice score (±std. dev.) of
75.50 ± 10.9% for the RV, 83.21 ± 7.1% for the LV blood-pool and 77.65 ± 9.3% for the
LV-Myocardium even if we use only 1% labeled data.

Table 4. Our proposed CqSL model achieves 84.9% accuracy, significantly outperforming other

baselines. We incrementally add each component, aiming to study their effectiveness on the final

results; (model I: only a GAN architecture (Figure 3c); model II: GAN + reconstruction (Figure 3c,d);

model III: GAN + reconstruction + disentangled block (Figure 3a–d). ↑ denotes higher the value

better the result; ↓ denotes lower the value better the result.

Average

Models Dice ↑ Jaccard ↑ HD ↓ Prec. ↑ Rec. ↑

Model I: GAN 76.56 ± 9.97 71.74 ± 14.54 8.26 ± 7.37 82.87 ± 7.66 85.78 ± 6.34
Model II: GAN + REC 77.82 ± 9.87 73.10 ± 13.92 8.11 ± 6.74 83.84 ± 7.12 87.06 ± 5.65
Model III: GAN + REC + DISEN-
TANGLE (CqSL)

84.92 ± 6.55 77.85 ± 11.06 7.20 ± 6.06 87.76 ± 5.45 89.56 ± 5.04

Figure 9 illustrates a qualitative segmentation output that compared CqSL and two
others semi-supervised models, i.e., model I: only a GAN architecture (Figure 3c); model II:

I + reconstruction (Figure 3c,d). For simplicity, this comparison is based on 20% unlabeled
training data. As demonstrated, when only 20% of the training annotation is employed,
U-Net fails completely to segment the cardiac structures from base to apex, particularly
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RV segmentation. As shown in the figure, the segmentation results improve with each
consecutive addition of a distinct block. The GAN-only architecture performs badly, partic-
ularly during RV segmentation, whereas the addition of a reconstruction block improves
performance. Finally, adding a disentangled block to the GAN and reconstruction block
yielded the greatest results. Even the least performing version of our proposed CqSL
model (4CqSL) achieves an overall accuracy superior to the U-Net, GAN-only, as well as
GAN+REC model, confirming that the proposed model is able to effectively learn correct
features that ensure correct segmentation.

Figure 10 illustrates a qualitative segmentation output that compared CqSL and U-Net
results with increasing proportion of unlabeled training data. For simplicity, we have
shown two of our best performing models. As shown, when only 1% training annotation is
used, U-Net completely fails to segment the cardiac structures. Under similar conditions,
our model is still able to yield a high segmentation accuracy of LV, RV, and LV-Myocardium.
When the amount of labeled data increases from 1% to 10%, the U-Net model still performs
poorly, especially for RV segmentation. On the other hand, although the performance
of our model improves significantly when utilizing more than 30% annotated data, its
performance with even 1% labeled data is still satisfactory, comparable to that of semi-
supervised models, and superior to U-Net’s performance under similar conditions.

Figure 9. Representative results showing the comparison across several best performing networks,

including CqSL for the semantic segmentation of full cardiac image dataset from the base to apex

showing of RV blood-pool, LV blood-pool, and LV-Myocardium on 20% labeled data in red, green,

and yellow respectively.

We assessed the performance of our proposed CqSL cardiac image segmentation
method against the segmentation results yielded by the well-established, fully super-
vised U-Net architecture [55] in light of its effectiveness across various medical image
segmentation applications, as well as its extensive use as a baseline method for comparison
by the participants of the ACDC cardiac image segmentation challenge. Furthermore,
to explore the effectiveness of each component in our model, we experiment on three
different semi-supervised ablations, i.e., model I: only a GAN architecture; model II:

GAN + reconstruction; and model III: GAN + reconstruction + disentangler block (CqSL).
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Figure 10. Representative results showing the semantic segmentation of RV, LV blood-pool, and LV-

Myocardium on different proportion of labeled data in red, green, and yellow, respectively.

As shown in Figure 11, the accuracy of our CqSL models remains high when using
as much as 50–90% unlabeled data, which essentially implies excellent performance with
as little as as 10% annotated data. Nevertheless, both U-Net and CqSL models perform
similar to each other when the amount of annotated data increases above 90%. We plot
the mean accuracy for all the models in Figure 12 and confirm that under low amounts of
annotated data conditions, even as low as 1%, our proposed CqSL model and all four of its
semi-supervised variants (1CqSL, 2CqSL, 3CqSL, and 4CqSL) outperform GAN, GAN+REC,
as well as U-Net models for LV, RV, and LV-Myocardium. The typical segmentation contours
of complete cardiac image dataset for the mid and apical slices are shown in Figure 13.
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Figure 11. Consistent improvement in segmentation accuracy by the proposed CqSL model over

baseline semi-supervised (variants of our CqSL model: 1CqSL, 2CqSL, 3CqSL, and 4CqSL) and fully

supervised models in varying proportions of labeled training data.
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Figure 12. Evaluation on the robustness of CqSL in terms of mean accuracy over RV, LV, and LV-

Myocardium segmentation tasks on varying amounts of labeled training samples. Note significant

improvement in Dice score across all CqSL semi-supervised variants for as little as 1% unlabeled data.

Figure 13. Representative segmentation contours of a complete cardiac cycle for the middle and apex

slices showing RV and LV blood-pool, and LV-Myocardium in green, yellow, and brown, respectively,

in three different view settings (axial, sagittal, and coronal).
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3.2. Image Quality Assessment

Figure 14 illustrates a qualitative comparison between the original image slice and
the reconstructed slices generated from our proposed approach on the ACDC dataset
at the original 5 mm slice thickness. The comparison is augmented by the computed
correlation coefficients (CC) and peak signal-to-noise ratio (PSNR) shown below each
figure. As illustrated in Figure 14, our approach preserves the fine structural details and
realistic textures while remaining visually comparable to the ground truth image. Aside
from qualitative improvements, the proposed method’s CC and PSNR values also prove
that the synthesized image slices preserve the fine structural details.

Figure 14. Qualitative comparison of the original and the reconstructed slices showing that the origi-

nal images are well reconstructed by combining skeleton and sentiency information.The comparison

is augmented by the computed correlation coefficients (CC) and peak signal-to-noise ratio (PSNR).

The middle row illustrates the error images.

Table 5 shows the quantitative results of the objective quality metrics of reconstruction,
indicating that the use of feature-wise linear modulation to remove domain-invariant infor-
mation from the disentangled latent code guides the synthesis of more texture information.
Starting with the spatial factor, we change the content of the spatial channels in Figure 15
to see how the decoder has learned a correlation between the position of each channel and
different signal intensities of the skeleton parts. The sentiency factor remains constant in all
of these experiments. The first two columns show the original input and the reconstruction.
The third row is created by the RV spatial channels and disregarding (zeroing) the MYO
and LV channel. In the fourth image, we swap the RV channels with those of LV. Finally,
the fifth column is produced by considering all LV, MYO and RV channels.
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Table 5. Image reconstruction assessment: correlation coefficient (CC) and PSNR comparison between

reconstructed and input images based on 288 test sets.

Reconstruction Quality

CC (%) PSNR (dB)
n = 288 n = 288

Model II: GAN + REC 0.912 27.32
Model III: GAN + REC + DISENTANGLE (Proposed) 0.934 28.89

Figure 15. Reconstructions of a sample of input images when rearranging the spatial representation’s

channels. Rearranging the channels results in reconstructing only left ventricle blood-pool or only

right ventricle blood-pool only or all the ventricular structures.

3.3. Clinical Parameter Estimation

The performance of our developed segmentation method was also reflected in the
computed clinical indices. These clinical indices are computed using the Simpsons method
and the agreement between the ground truth and the same parameters computed using
the automated segmentation results is reported using correlation statistical analysis by
mapping the predicted volumes of the testing set onto the ground truth volumes of the
training set. As illustrated in Table 6 the agreement between our method’s prediction and
ground truth is high, characterized by a Pearson’s correlation coefficient (rho) of 0.898
(p < 0.01) for LV-EF, 0.723 for RV-EF (p < 0.1) and 0.924 (p < 0.01) for Myo-mass. There
was a slight over-estimation in the RV blood-pool segmentation also reflected in the clinical
parameters estimation.
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Table 6. The correlation between the CqSL-predicted and ground truth clinical indices is significantly

higher than the correlation between the U-Net-predicted and same ground truth clinical indices

(⋆⋆ (p < 0.01), ⋆ (p < 0.1)).

Clinical Indices of Healthy Volunteers

UNet CqSL

LV EF 0.487 0.898 ⋆⋆

RV EF 0.371 0.723 ⋆

Myo mass 0.427 0.924 ⋆⋆

Figure 16 shows a graphical comparison between the clinical parameters estimated
from the cardiac features segmented via CqSL and the same homologous parameters
estimated from the ground truth manual segmentations for both healthy volunteers and
patients featuring various cardiac conditions. As shown, the clinical parameters estimated
using our automatically segmented features show no statistically significant difference
from those estimated based on the ground truth, manually segmented features.

Figure 16. Graphical comparison showing no statistically significant differences between clinical

parameters estimated using CqSL segmentation and same parameters estimated using the ground

truth segmentation in terms of Mean (Std. Dev.) EF (mL/mL (%)) = ejection fraction, Myo-mass

(in gm) = myocardial mass.

3.4. Ablation Studies

We perform an ablation study to investigate the effect of using different loss functions
in our semi-supervised setting. We demonstrate the effect of different novel loss functions
used in CqSL model: WSBF, MIM, and Adv-GM by assessing the model performance when
each novel loss functions is removed. Figure 17 shows a graphical representation of the
results achieved on the ACDC dataset. In Figure 10, we illustrate the qualitative results on
the ACDC dataset to visualize the effect of using all of the loss components. We can observe
that the best results are achieved when all of the loss components are used. Specifically,
without MIM, the loss curve oscillates, while without WSBF, the output images deviate
drastically from the ground truth. Both the quantitative and qualitative results show that
the design of CqSL improves the preservation of the subject identity and enables more
accurate segmentation of cardiac structures.



Appl. Sci. 2022, 12, 12163 25 of 28

0 20 40 60 80 100
Number of epochs

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

CqSL (WSBF + MIM +Adv-GM)
1^CqSL (w/o weight soft focal (WSFL))
2^CqSL (w/o Adv-GM)
3^CqSL (DICE+CE only)
4^CqSL (w/o MIM )
U-Net

Figure 17. Empirical analysis showing the effect of different loss functions on the 2017 STACOM

ACDC dataset. The significant reduction of total loss in CqSL (in red) suggests the best performing

model with best learned features.

4. Conclusions and Future Work

In this paper, we propose a semi-supervised learning model (CqSL) that features
multiple novel loss functions, including mutual information minimization (MIM), which
minimizes the mutual information between the domain-invariant as well as domain-specific
features. Empirically, we show that disentanglement with mutual information can improve
the performance of the segmentation accuracy, while combined with an adversarial and a
reconstruction block. Our novel use of total loss function enforces the network to capture
both the spatial and intensity information. Our weighted soft focal loss can minimize the
class imbalance problem by applying varying weights over different classes along with a
modulating term. We apply the proposed model to cardiac image segmentation tasks with
varying proportion of labeled data.

Our proposed CqSL model achieves 85% accuracy, significantly outperforming other
baselines. We incrementally add each component, aiming to study their effectiveness on the
final results: (model I: only a GAN architecture (Figure 3c); model II: GAN + reconstruction
(Figure 3c,d); model III: GAN + reconstruction + disentangled block (Figure 3a–d).

In light of consistency, all four implemented CqSL variants are evaluated and compared
to the baselines, but as shown in Tables 1–3, the first variant (1CqS) performs best and hence
it is deemed as the most suitable and recommended CqSL framework.

The experimental results reported in this manuscript show that the proposed CqSL
framework outperforms semi-supervised learning with GANs [56] as well as fully
supervised-type models when using as little as even 1% labeled data and display sim-
ilar performance and comparable accuracy when employing more than 50% labeled
data. Unlike these, we use adversarial-Geman–McClure (adv-GM) loss to force mask
generation to be spatially aligned with the image. Furthermore, we discover that the
semi-supervised segmentation approach of Hung et al. [18] obtains results slightly infe-
rior to ours. Hung et al. reported that their adversarial model achieved a 80.63% accuracy
when trained on 20% labeled data using the ACDC dataset, whereas our model achieved
a 81.44% accuracy under similar training conditions.
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Hence, the proposed method is the first to achieve significant performance for 4D
cine cardiac MRI image segmentation with very minimal annotated data, specifically 1%
of the training dataset. This is a key feature of the proposed work and hence a significant
contribution to the medical (cardiac, in particular) image segmentation, as access to large
amounts of expert-annotated ground truth imaging data is expensive in the medical field.
Nevertheless, here we demonstrate that CqSL can still yield segmentation accuracy superior
to other semi-supervised methods while requiring minimal annotated data for training.
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