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ABSTRACT. Purpose: High-resolution late gadolinium enhanced (LGE) cardiac magnetic reso-
nance imaging (MRI) volumes are difficult to acquire due to the limitations of the
maximal breath-hold time achievable by the patient. This results in anisotropic
3D volumes of the heart with high in-plane resolution, but low-through-plane reso-
lution. Thus, we propose a 3D convolutional neural network (CNN) approach to
improve the through-plane resolution of the cardiac LGE-MRI volumes.

Approach: We present a 3D CNN-based framework with two branches: a super-
resolution branch to learn the mapping between low-resolution and high-resolution
LGE-MRI volumes, and a gradient branch that learns the mapping between the gra-
dient map of low-resolution LGE-MRI volumes and the gradient map of high-reso-
lution LGE-MRI volumes. The gradient branch provides structural guidance to the
CNN-based super-resolution framework. To assess the performance of the pro-
posed CNN-based framework, we train two CNN models with and without gradient
guidance, namely, dense deep back-projection network (DBPN) and enhanced
deep super-resolution network. We train and evaluate our method on the 2018 atrial
segmentation challenge dataset. Additionally, we also evaluate these trained mod-
els on the left atrial and scar quantification and segmentation challenge 2022 data-
set to assess their generalization ability. Finally, we investigate the effect of the
proposed CNN-based super-resolution framework on the 3D segmentation of the
left atrium (LA) from these cardiac LGE-MRI image volumes.

Results: Experimental results demonstrate that our proposed CNN method with gra-
dient guidance consistently outperforms bicubic interpolation and the CNN models with-
out gradient guidance. Furthermore, the segmentation results, evaluated using Dice
score, obtained using the super-resolved images generated by our proposed method
are superior to the segmentation results obtained using the images generated by bicu-
bic interpolation (p < 0.01) and the CNN models without gradient guidance (p < 0.05).

Conclusion: The presented CNN-based super-resolution method with gradient
guidance improves the through-plane resolution of the LGE-MRI volumes and the
structure guidance provided by the gradient branch can be useful to aid the 3D seg-
mentation of cardiac chambers, such as LA, from the 3D LGE-MRI images.
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1 Introduction

Atrial fibrillation (AF) is the most common cardiac arrhythmia encountered in clinical practice.'
It is estimated to affect 6 to 12 million people in the United States alone by the year 20507 and is
associated with a high risk of comorbidity and mortality. In AF, the electrical activity within the
atria is impaired, causing irregular and rapid heart rhythm. To restore regular heart rhythm for AF
patients, minimally invasive radiofrequency ablation therapies are viable treatment options.> AF
is associated with left atrial (LA) fibrosis/scars and inherent reduction of the measured endo-
cardial potentials.4 Hence, it is crucial to determine the extent and location of the LA fibro-
sis/scar and to identify the region of the LA that will benefit from ablation therapy, while
avoiding scars.

Late gadolinium enhanced (LGE) cardiac magnetic resonance imaging (MRI) is an estab-
lished method to identify and quantify compromised myocardial tissue. In a typical LGE-MRI
image acquisition protocol, the MRI images are acquired 15 to 20 min post-injection of a gado-
linium-based contrast agent. In LGE-MRI, the trapping and delayed wash-out of the gadolinium-
based contrast agent from the intra-cellular space of the compromised tissue enables differen-
tiation between healthy and diseased/scar/fibrotic tissues, rendering the compromised tissues
brighter than the healthy tissues.’

In recent years, LGE-MRI has been increasingly adopted to assess the extent of the fibrosis/
scars in the LA for patients with AF.* To localize and quantify LA fibrosis with high precision,
high-resolution 3D LGE-MRI images are necessary. However, due to the limitations of the maxi-
mal breath-hold time achievable by the patient, high-resolution 2D stacks of LGE-MRI images
are typically acquired, resulting in anisotropic 3D volumes of the heart. These images have high
in-plane resolution (1 to 1.5 mm), but low through-plane resolution (5 to 10 mm). Therefore, the
anisotropic 3D LGE-MRI images with poor through-plane resolution impose challenges on
downstream tasks, such as the 3D segmentation of LA cavity and fibrosis quantification.

Conventional interpolation methods, such as bilinear, spline, and Lancoz resampling meth-
ods, can be used to upsample the low-resolution volumes to high-resolution volumes, however,
these methods often cause artifacts, like blurring, and cannot recover the missing high-frequency
semantic and structural information. To address this limitation, several researchers proposed
learning-based super-resolution methods that learn the structural information between slices
using low- and high-resolution image pairs.” In recent years, increasing research efforts pro-
posed deep learning-based super-resolution algorithms for medical images,'® especially to
enhance the through-plane resolution of anisotropic brain MRI images.''!?

Subsequently, these deep learning-based super-resolution techniques have been applied to
alleviate the through-plane resolution degradation in 3D cardiac MRI volumes. In response to the
challenge of acquiring high resolution isotropic images, Steeden et al.'® demonstrated the poten-
tial of a convolutional neural network (CNN)-based approach for super-resolution reconstruction
of balanced steady state free precession (bSSFP) cardiac MRI images using synthetic training
data. Masutani et al.'” explored the feasibility of both single frame and multi-frame CNN models
to generate super-resolution bSSFP cine cardiac MRI images. Basty et al.'® showed that recurrent
neural networks can be used to reconstruct super-resolution cardiac cine MRI long-axis slices
from low-resolution acquisitions by using the temporal recurrence, thereby, using the temporal
context to improve the resolution of cardiac cine MRI volumes. Sander et al.' proposed an
unsupervised deep learning-based approach to enhance the through-plane resolution of cine car-
diac MRI volumes by leveraging the latent space interpolation ability of the autoencoders; how-
ever, large variations in anatomy between adjacent slices affect the performance of the method.
Zhao et al.> proposed a 2D CNN-based super-resolution method that takes advantage of the
high-resolution information from the in-plane data to improve the through plane resolution.
They applied this technique on cine cardiac, neural and tongue MRI images. These methods
successfully improve the through-plane resolution of cine cardiac MRI images; however, limited
efforts have been made to improve the resolution of LGE cardiac MRI images using the CNN-
based methods due to the limited availability of the high-resolution LGE MRI images for training
and validation.

To improve the through-plane resolution of LGE cardiac MRI images to aide LA segmen-
tation for AF patients, in our previous work,”! we proposed a 2D CNN-based method to enhance
the through-plane resolution of LGE cardiac MRI images by leveraging the information learnt by
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Fig. 1 Framework of the proposed dense DBPN-based super-resolution (SR) method with gra-
dient guidance.?

training short-axis 2D patches to learn the mapping from simulated low-resolution in-plane data
and their corresponding high-resolution in-plane data and using this learnt information to
enhance the poor through-plane resolution. While the proposed 2D patch-based method
improves the through-plane resolution, it ignores the global context information, as well as the
3D information provided by the LGE-MRI images that is crucial for accurate segmentation;
finally, it also requires the use of 2D patches during the inference stage, which can lead to incon-
sistencies during the fusion process.

Therefore, in our earlier work,?* we developed and presented a 3D CNN-based architecture
with gradient guidance to generate super-resolution cardiac LGE-MRI images. Here, inspired by
the improved performance of our proposed method in our earlier work,”> we extended the 3D
gradient branch that guides our 3D CNN model to “pay more attention” to the 3D structure of the
tissues in the LGE-MRI images, as illustrated in Fig. 1. Our main contributions in this work can
be summarized as follows.

1. Firstly, to enhance the resolution of 3D cardiac LGE-MRI images, we present a 3D deep
learning-based framework with two branches: a super-resolution branch with 3D dense
deep back-projection network (DBPN)* as the backbone of our CNN architecture and
an auxiliary gradient branch. As illustrated in Fig. 1, the super-resolution branch learns
the mapping between the low-resolution input image and its corresponding high-resolution
image, the gradient branch learns the mapping between the gradient map of the low-
resolution input image and the gradient map of its corresponding high-resolution image.
Here, in contrast to incorporating feature map representations from super-resolution
branch to the gradient branch only at up-projection levels, as shown in our earlier work,*
we extend the CNN architecture by incorporating the feature map representations from the
super-resolution branch to the gradient branch at every level. We evaluate the performance
of the proposed super-resolution method by training and testing them on the 2018 atrial
segmentation challenge dataset.®

2. Secondly, we further assess the performance of the proposed gradient guidance method by
replacing the dense DBPN model with the enhanced deep super-resolution (EDSR)** net-
work as the backbone of our deep learning framework.

3. Thirdly, in addition to evaluating our methods by training and testing them on the 2018
atrial segmentation challenge dataset,® we also evaluate the generalization ability of our
trained models by testing them on the left atrial and scar quantification and segmentation
challenge (LAScarQS) 2022 dataset.>>’

4. Finally, we investigate the effect of the proposed super-resolution framework on the down-
stream segmentation task, i.e., the segmentation of the LA from these LGE-MRI volumes.

2 Materials and Methods

2.1 Data
A set of 154 3D LGR-MRI volumes obtained from 60 patients with AF was available through the
2018 atrial segmentation challenge.® These clinical images were acquired with either a Siemens
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1.5 Tesla Avanto or a 3.0 Tesla Verio scanner. We split the available 154 LGE-MRI volumes to 80
for training, 20 for validation and 54 for testing.

The spatial dimensions of these LGE-MRI volumes are either 576 X 576 x 88 or
640 x 640 x 88, and feature an isotropic voxel spacing of 0.625 X 0.625 x 0.625 mm?>. To train
our CNN models, we need to simulate low-resolution LGE-MRI volumes from the available
high-resolution LGE-MRI volumes. Therefore, we first center-crop the high-resolution images
to 224 x 224 X 88 and downsample them randomly on-the-fly during training using either
Fourier or Gaussian downsampling,'> with uniform distribution. In Fourier downsampling,'*®
we block the high frequency information in the w-axis of the Fourier domain by truncating the k-
space to simulate the low-resolution data acquisition process in the Fourier domain. In Gaussian
downsampling,” we simulate low-resolution images using Gaussian blur with a standard
deviation uniformly distributed in the range of [0.5, 1.5] and downsample them using linear inter-
polation in the z-axis direction, i.e., slice-encoding direction. The Gaussian blur is applied iso-
topically, as it enables the CNN to learn the mapping between low-resolution and high-resolution
images by deblurring in all spatial directions (i.e., x, ¥, and z). We downsample the LGE-MRI
volumes using a scale factor of 2, 4, and 8. Subsequently, to train our 3D CNN models, we
generate 3D LGE-MRI patches of size 96 X 96 x 44, 96 X 96 X 22, and 96 X 96 X 11, respec-
tively, with an overlap of 33.33%.

Additionally, to evaluate the generalization ability of our trained models, we use a subset
(only the high-resolution isotropic LGE-MRI data) of the training dataset from the LAScarQS
2022 segmentation challenge dataset”’ as our external test set. These clinical images feature a
spatial resolution of 1.4 x 1.4 x 1.4 mm? and were acquired using a Philips Achieva 1.5 Tesla
scanner from patients with AF. We test the models trained on the 2018 atrial segmentation
challenge® dataset on these 30 LGE-MRI volumes from the LAScarQS 2022 segmentation
challenge dataset®~>’

2.2 Proposed CNN Framework
As illustrated in Fig. 1, our proposed CNN framework to generate super-resolution cardiac LGE-
MRI volumes consists of two branches: a super-resolution branch and a gradient branch.

2.2.1 Super-resolution branch

The super-resolution branch takes in low-resolution images I'® as input and aims to generate

super-resolution images ISR as output, given the high-resolution images IR as ground-truth. In
our work, we use the dense DBPN** model to super-resolve the low-resolution LGE-MRI vol-
umes. The dense DBPN model illustrated in Fig. 1 can be split into three parts: initial feature
extraction, back-projection and reconstruction. In the initial feature extraction stage, we construct
the initial low-resolution feature maps from /'R using 32 filters, which is then further reduced to
16 filters before entering the back-projection stage. Following the initial feature extraction step,
in the back-projection stage, we have a sequence of three up-projection and two down-projection
blocks, wherein, we adapted the block architectures from one of the earlier 3D dense DBPN
work,'? i.e., we used convolutional and transposed convolutional layers with parametric rectified
linear units as activation functions, and without the batch normalization layers. We used a kernel
size of 7X7x6,7X7x8 and 7 x 7 X 12, with anisotropic stride of 1 X 1 X2, 1 X 1 x4, and
1 x 1 x 8, and padding of 3 x 3 X 2, for the downsampling scale factor of 2, 4, and 8, respec-
tively. Here, each block has access to outputs of all the previous blocks (Fig. 1). This enables the
generation of effective feature maps.”® Here, the up- and down-projection blocks are alternating
between the construction of low-resolution and high-resolution feature maps and the number of
filters used in each projection block is set to 16. As explained by Haris et al.,?? the iterative up-
and down-sampling focuses on increasing the sampling rate of the super-resolution features at
different depths, thereby, distributing the computation of the reconstruction error to each stage.
Therefore, the multiple alternating up- and down-sampling operators enable the network to pre-
serve the high-resolution components while generating deeper features. The multiple back-
projection stages between the mutually connected up- and down-sampling operators guide the
super-resolution task by learning the non-linear relation of low-resolution and high-resolution
images. Finally, in the reconstruction stage, all the high-resolution feature maps from the
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up-projection blocks are concatenated, along with the output of the gradient branch, to generate
IR as output.

2.2.2 Gradient branch

The target of the gradient branch is to learn the mapping between the gradient map of the low-
resolution images G(I'R) and the gradient map of their corresponding high-resolution images

G(I'"R), thereby, reconstructing a super-resolution gradient map / Zﬁdiem. Here, G(-) stands for the

operation that extracts the gradient map of the images, which in our case is a Sobel filter applied
in voxel space. Similar to the super-resolution branch, we use a dense DBPN model to learn the
mapping in the gradient branch. As illustrated in Fig. 1, the gradient branch incorporates feature
map representations from the super-resolution branch by concatenation at every level, as opposed
to incorporating features by concatenation only at the up-projection level, as shown in our earlier
work.”> The advantage of this step is that it enables the reconstruction of the higher-resolution
gradient map using the rich structural information from the super-resolution branch (strong prior)
and reduces the number of parameters needed for the gradient branch. Next, the high-resolution
feature maps from the up-projection blocks of the gradient branch are concatenated and inte-
grated with the super-resolution branch by concatenation to guide reconstruction of the
super-resolution 3D LGE-MRI images. The motivation behind the integration of high-resolution
feature maps from the gradient branch to the super-resolution branch is that it can implicitly echo
if the recovered region should be sharp or smooth, thus preserving the structure of the tissue as
the CNN concentrates more on the spatial relationships of the outlines in the gradient branch.
Meanwhile, the concatenated high-resolution feature maps from the up-projection blocks of the

. . . SR
gradient branch are used to reconstruct super-resolution gradient map / eradient-

2.2.3 Objective function

Our proposed CNN model is trained using the following objective function:
L= a-ESR + ﬂ"CGradient + y"CGradientSR ) (1)

where Lgg is the L, loss computed between ISR and IR, L giene iS the Ly loss computed

between I35 ;i and G(I'®), and Laragien, denotes Ly loss between G(I°%) and G(I'"%). In

Eq. (1), the a, f, and y represent the scalar weights associated with the Lgr, Lgradient> and
LGradients, 108s functions, respectively. In all our experimental results reported in this paper, the
scalar value of a, f, and y is 1; thus, imposing more importance to the edge information.

2.3 Experiments
To evaluate the effectiveness of our proposed method, three experiments were designed.

In the first experiment, we compare the results of our proposed framework with bicubic
interpolation and dense DBPN model without gradient guidance. Additionally, to assess the
effectiveness of the gradient branch, we use the EDSR model?* as the back-bone network in
our proposed framework and compare the EDSR network with and without gradient guidance,
as well as the DBPN network with and without guidance. Here, we split the 154 LGE-MRI
dataset made available through the 2018 atrial segmentation challenge® into 80 datasets for train-
ing, 20 datasets for validation and 54 datasets for testing. Here, the training and the test sets
belong to the same challenge dataset. As discussed in Sec. 2.1, we train the models on low-
resolution LGE-MRI volumes obtained by downsampling high-resolution volumes using a scale
factor of 2, 4, and 8, respectively. We train these models on a NVIDIA RTX 2080 Ti GPU with
11 GB memory using the Adam optimizer with a learning rate of 10~* and a gamma decay of 0.5
every 15 epochs, for 50 epochs.

In the second experiment, we apply the models trained on the 2018 atrial segmentation
challenge® to test them on a subset of the LAScarQS 2022 segmentation challenge
dataset.”?” This is done to assess the generalization ability of the proposed framework. We
test the trained models on 30 LGE-MRI volumes from the LAScarQS dataset, which is the total
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number of high-resolution isotropic LGE-MRI data available in the training set of the LAScarQS
dataset.

In our third experiment, we use the super-resolved LGE-MRI volumes generated by each of
the above-mention algorithms to train the U-Net** models to segment the LA chamber, and com-
pare the segmentation results, to investigate the effect of the proposed super-resolution frame-
work on the downstream segmentation tasks. Here, all the 3D images were first resized to
96 X 96 X 64 and then, used to train a 3D U-Net model*' to segment the LA chambers. We use
the similar split, i.e., 80 for training, 20 for validation and 54 for testing from the 2018 atrial
segmentation challenge® dataset to train the U-Net models. The ground-truth LA segmentation
masks provided by the 2018 atrial segmentation challenge dataset® were manually annotated by
experts in the field and were used to train the U-Net models. While training, we augment the
LGE-MRI images randomly on-the-fly using translation operation uniformly distributed in the
range of [1,10] pixels in any spatial direction, rotation operation with the angle uniformly dis-
tributed in the range of [-180 deg, 180 deg| and gamma correction operation with the gamma
value uniformly distributed in the range of [0.75, 1.25]. These U-Nets models are trained on the
NVIDIA RTX 2080 Ti GPU with 11 GB memory using the Adam optimizer with a learning rate
of 1075 and a gamma decay of 0.99 every alternate epoch, for 100 epochs.

3 Results

3.1 Validation on 2018 Atrial Segmentation Challenge Dataset

The performance of the proposed CNN framework is evaluated by computing the mean peak
signal-to-noise ratio (PSNR) and mean structural similarity index (SSIM) between the super-
resolution 3D LGE-MRI volumes and ground-truth high-resolution 3D LGE-MRI volumes.
In Table 1 and Fig. 2, we show the super-resolution results of different methods, namely, bicubic
interpolation, EDSR model with and without gradient guidance, and dense DBPN model with
and without gradient guidance, respectively, on the 2018 atrial segmentation challenge® test set.
The super-resolution models are trained and tested on simulated low-resolution images down-
sampled by a scale factor of 2, 4 and 8, respectively. To compare the performance of the exper-
imented models, we conducted a statistical significance (paired Student’s 7-test) test. While the

Table 1 Test set evaluation on the 2018 atrial segmentation challenge dataset: mean (std-dev)
PSNR and SSIM achieved using bicubic interpolation; EDSR model with and without gradient guid-
ance; and dense DBPN model with and without gradient guidance for a downsampling scale factor
of 2, 4, and 8, respectively. The best evaluation metrics achieved are labeled in bold. Statistically
significant differences were evaluated between the CNN models with and without gradient guid-
ance using the Student’s t-test and are reported using * p < 0.05 and ** for p < 0.01.

Scale factor: 2 Scale factor: 4 Scale factor: 8
Methods PSNR SSIM PSNR SSIM PSNR SSIM
Bicubicinterpolation 26.55 0.785 22.56 0.613 19.86 0.378

(2.04) (0.085) (1.54) (0.083) (1.68)  (0.070)

EDSR?* 29.80 0.881 24.41 0.695 20.69 0.395
(1.60) (0.064) (1.70) (0.071) (1.62)  (0.043)

EDSR withgradient guidance 29.97 0.880 25.13 0.740 20.80 0.417
(2.04) (0.069) (1.48)  (0.065)**  (1.51)  (0.047)*

Dense DBPN?® 29.59 0.879 25.36 0.730 20.74 0.395
(1.80) (0.065) (1.55) (0.061) (1.48)  (0.046)

Dense DBPN with gradient guidance 30.93 0.916 26.63 0.763 20.81 0.421

(1.79°  (0.065)*  (1.48)*  (0.061)*  (1.45)  (0.048)
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Fig. 2 Comparison of (a) mean PSNR and (b) mean SSIM values achieved on the 2018 atrial
segmentation challenge dataset by bicubic interpolation, EDSR model with and without gradient
guidance, and dense DBPN model with and without gradient guidance for a downsampling scale
factor of 2, 4, and 8, respectively.

Cropped HR image slice

Bicubic EDSR EDSR with GG Dense DBPN Dense DBPN with GG
PSNR: 24.65 PSNR: 28.36 PSNR: 29.67 PSNR: 28.52 PSNR: 30.19
SSIM: 0.779 SSIM: 0.904 SSIM: 0.919 SSIM: 0.902 SSIM: 0.928

PSNR: 20.98 PSNR: 22.73 PSNR: 24.13 PSNR: 23.67 PSNR: 24.69
SSIM: 0.541 SSIM: 0.683 SSIM: 0.758 SSIM: 0.729 SSIM 0.781

PSNR: 18.14 PSNR: 19.07 PSNR: 19.39 PSNR: 19.45 PSNR: 20.83
SSIM: 0.372 SSIM: 0.397 SSIM: 0.415 SSIM: 0.398 SSIM: 0431
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Fig. 3 Visual assessment of reconstructed super-resolution images from 2018 atrial segmentation
challenge® dataset. Row 1: high-resolution (HR) LGE cardiac MRI slice along z-axis and its
cropped version (ground truth). Row 2: Low-resolution (LR) Gaussian downsampled image with
downsampling scale factor 2 upsampled by bicubic interpolation, the super-resolution image from
EDSR model, super-resolution image from EDSR model with gradient guidane (GG), the super-
resolution image from dense DBPN model, and the super-resolution image from dense DBPN
model with GG, respectively. Row 3: LR with downsampling scale factor 4 upsampled by the
above-mentioned methods. Row 4: LR with downsampling scale factor 8 upsampled by the
above-mentioned methods. The PSNR and SSIM evaluated between each super-resolved image
and the original high-resolution grounds truth image is also labeled for interpretation vis-a-vis
visual assessment.

CNN models outperform the bicubic interpolation (p < 0.01) for all the three downsampling
scale factors, our experiments show higher PSNR and SSIM for the EDSR and dense DBPN
models with gradient guidance compared to their stand-alone counterparts. In our experiments,
the dense DBPN models with gradient guidance obtained the best PSNR and SSIM values, and
are significantly (p < 0.01) better than the stand-alone EDSR model, which obtained the least
PSNR and SSIM values among the CNN models. To show the improvement in through-plane
resolution using the proposed CNN framework, in Fig. 3, we show an example of a Gaussian
downsampled low-resolution LGE cardiac MRI slice along the z-axis with its corresponding
high-resolution image slice, and the super-resolution images obtained using the above-mentioned
methods for all three downsampling scale factors.

3.2 Generalization Testing: Validation on LAScarQS Dataset

The generalization ability of our method is evaluated using the LAScarQS 2022 datase
(Table 2). The CNN models trained on the 2018 atrial segmentation challenge® were tested
on this LAScarQS 2022 dataset.”>’ Similar to the 2018 atrial segmentation challenge® data,

t25—27
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Table 2 Generalization evaluation on the LAScarQS 2022 dataset.

Scale factor: 2 Scale factor: 4 Scale factor: 8
Methods PSNR SSIM PSNR SSIM PSNR SSIM
Bicubicinterpolation 27.60 0.798 22.86 0.629 20.21 0.377

(2.21) (0.094) (1.59) (0.089) (1.78) (0.064)
EDSR?* 30.13 0.868 25.65 0.713 20.94 0.399
(1.51) (0.039) (1.50) (0.047) (1.49) (0.044)
EDSR with gradient guidance 30.44 0.902 25.94 0.760 21.57 0.424
(1.49) (0.038)" (1.42) (0.040)** (1.47) (0.045)
Dense DBPN? 30.46 0.904 24.69 0.718 20.91 0.421
(1.27) (0.033) (1.68) (0.059) (1.64) (0.056)
Dense DBPN with gradient guidance 31.69 0.925 26.39 0.784 21.03 0.423

(1.73)*  (0.038)*  (1.39)*  (0.034)*  (1.53)  (0.044)

= Bicubic

s = EDSR l = EDSR

i = EDSR with GG = = EDSR with GG
- " DBPN i = D3PN

l DBPN with GG b DBPN with GG

= Bicubic
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s
=

Lot

a 8
Scale factor Scale factor

(@) (b)

Fig. 4 Comparison of (a) mean PSNR and (b) mean SSIM values achieved on the generalization
evaluation dataset for a downsampling scale factor of 2, 4, and 8, respectively.

low-resolution images were simulated by a downsampling scale factor of 2, 4, and 8, respec-
tively, in order to compute super-resolution LGE-MRI volumes. The super-resolution results on
the LAScarQS 2022 dataset™ >’ (Fig. 4) dataset are analogous to the 2018 atrial segmentation
challenge® dataset, i.e., the CNN models outperform the bicubic interpolation results and the
PSNR and SSIM achieved by the CNN models with gradient guidance are significantly higher
than the the stand-alone CNN models. Also, similar to results obtained on 2018 atrial segmen-
tation challenge® dataset, the dense DBPN models with gradient guidance obtained significantly
(p <0.01) better PSNR and SSIM values compared to the stand-alone EDSR model, which
obtained the least PSNR and SSIM values. We also show an example of the improved
through-plane resolution on the LAScarQS 2022 dataset*>’ in Fig. 5.

3.3 Effect of Super-Resolution on Downstream Segmentation Task

To show the effect of super-resolution on downstream segmentation task, we train 3D U-Net
models to segment the LA from LGE-MRI images. Since the dense DBPN model has resulted
in higher PSNR and SSIM values compared to the EDSR models, we train the U-Net models on
the 2018 atrial segmentation challenge® dataset by simulating low-resolution images and upsam-
pling them by dense DBPN model with gradient guidance, and comparing them with the seg-
mentation results obtained by training U-Net models on images generated using dense DBPN
model without gradient guidance and bicubic interpolation. We summarize the segmentation
performance on these upsampled images in Table 3 using Dice score. We can see that the
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Fig. 5 Visual assessment of the reconstructed super-resolution images from the generalization
dataset (LAScarQS 2022 dataset).

Table 3 LA segmentation evaluation, mean (std-dev) Dice score (%) using the 2018 atrial seg-
mentation challenge dataset. U-Net models are trained on LGE-MRI volumes downsampled by a
scale factor of 2, 4, and 8, respectively, and upsampled using bicubic interpolation and dense
DBPN model with and without gradient guidance. Statistically significant differences were evalu-
ated between the dense DBPN model with and without gradient guidance using the Student’s t-test
and are reported using by * p < 0.05

Scale factor: 2 Scale factor: 4 Scale factor: 8
Methods Dice score Dice score Dice score
Bicubic interpolation 90.46 (1.98) 88.52 (1.47) 86.58 (2.49)
Dense DBPN? 94.60 (3.33) 91.96 (1.47) 91.24 (1.83)
Dense DBPN with gradient guidance 95.43 (2.01)* 93.47 (2.02)* 93.31 (2.07)*

segmentation results obtained by training the images upsampled using dense DBPN model with
gradient guidance is significantly better than bicubic interpolation (p < 0.01) and dense DBPN
model without gradient guidance (p <0.05), for all the three downsampling scale fac-
tors (Fig. 6).

3.4 Ablation Studies

In Table 4, we show the results and the number of trainable parameters of the models we trained
as part of the ablation studies we performed to understand the contributions of the various
components of the loss functions and the network. These studies were performed using the data-
set from 2018 atrial segmentation challenge® and downsampling them by a factor of 4. We show
the super-resolution results on the dense DBPN model with only Lgr as a loss function and
without gradient guidance, followed by the dense DBPN model with a.Lgg + ¥.Lgradients, 28
loss function and without gradient guidance, where Lgg is the L; loss computed between the
generated super-resolution images, I°® and ground-truth high-resolution images, I"R, and
LGradient, denotes Ly loss between G(I5R) and G(IMR), where G(-) stands for the gradient map
of the images. Next, we show the super-resolution results of the dense DBPN model with gra-
dient guidance at only up-projection levels,?* followed by the dense DBPN model with gradient
guidance at all the levels (ours). As evident in Fig. 7, the dense DBPN model with gradient
guidance at all the levels (ours) yields the highest PSNR and SSIM values across all tested
models.
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Fig. 6 Dice score comparison of U-Net models are trained on LGE-MRI volumes downsampled by
a scale factor of 2, 4, and 8, respectively, and upsampled using bicubic interpolation and dense
DBPN model with and without gradient guidance.

Table 4 Ablation study results: mean (std-dev) PSNR, SSIM, and number of trainable parameters
(in millions) achieved on the 2018 atrial segmentation challenge® test set for downsampling scale
factor of 4. The best evaluation metrics achieved are labeled in bold. Statistically significant
differences were evaluated between the dense DBPN model with only Lgg loss and rest of the
models using the Student’s t-test and are reported using * p < 0.05.

Scale factor: 4

Number of
Methods PSNR SSIM parameters
Dense DBPN Lgr 25.36 0.730 1.13
(1.55) (0.061)
Dense DBPN a.Lsg + 7.Laradientss 25.35 0.729 1.13
(1.36) (0.058)
Dense DBPN gradient guidance at up-projection 25.58 0.740 3.48
(1.59) (0.065)
Dense DBPN with gradient guidance at all levels (ours) 26.63 0.763 5.41
(1.48)* (0.061)*

3 05850
== DBPN (L_SR) = DBPN (L_SR)

29| mmm DBPN (L_SR + L_gradeint_sr) 0.825. ™™= DBPN (L_SR + L_gradeint_sr)
== DBPN with GG at up-projection m=m DBPN with GG at up-projection
28| mmm DBPN with GG at all levels | == DBPN with GG at all levels

PSNR
SsiM

Scale factor: 4 Scale factor: 4

(a) (b)

Fig. 7 Comparison of (a) mean PSNR and (b) mean SSIM values of the ablation study.
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4 Discussion

In this paper, we presented a 3D CNN-based framework with gradient guidance for super-
resolution of cardiac LGE-MRI data. There are four major contributions in this work. First,
a 3D deep learning-based architecture with two branches, a super-resolution branch and a
gradient branch, is presented, wherein the dense DBPN model is the backbone of the CNN archi-
tecture. Inspired by the effects of the gradient branch on 2D natural images’ super-resolution,*>
we exploited the structural information learnt by the gradient branch to provide structural guid-
ance to the super-resolution branch of our CNN, thus preserving the 3D cardiac structures in the
LGE-MRI images. To the best of our knowledge, this is the first work that presents a 3D
CNN-based method to improve the through-plane resolution of cardiac LGE-MRI data.
Second, we established that the presented gradient guidance method could improve the
through-plane resolution of LGE-MRI data using other CNN models, such as the EDSR model,
as the backbone of the proposed deep learning framework. Third, we demonstrated the gener-
alization ability of the proposed method by testing it on the LAScarQS 2022 dataset”*’ that was
not used while training our models. Fourth, we investigated and showed the effect of the
proposed super-resolution framework on the downstream segmentation task by training a vanilla
U-Net model to segment the LA from the super-resolved LGE-MRI volumes.

In our first experiment (Table 1), we compared the results of bicubic interpolation method
and the CNN models, with and without gradient guidance on the 2018 atrial segmentation
challenge® dataset. We can observe that the results of the CNN models with gradient guidance
are significantly better than their stand-alone counterparts for all the three downsampling scale
factors, wherein the dense DBPN model with gradient guidance provides the best super-
resolution results. This is more obvious in the SSIM comparison, as it is a combination of three
comparison measures: luminance, contrast and structure,>® and as mentioned earlier, the gradient
branch provides structural guidance to the proposed CNN framework.

In our second experiment (Table 2), we evaluated the above-mentioned models on the
LAScarQS 2022 dataset>’ to assess their generalization ability. We can observe that the results
are similar to the results achieved on the 2018 atrial segmentation challenge® datasets, where
CNN models with gradient guidance outperform their stand-alone counterparts, thus, general-
izing well. It can be observed that the PSNR and SSIM values of the models when evaluated on
the LAScarQS 2022 dataset™ >’ are higher than those achieved when the models were evaluated
on the 2018 atrial segmentation challenge® dataset. This could be attributed to the fact that the
2018 atrial segmentation challenge® dataset features a high isotropic spatial resolution of
0.625 x 0.625 x 0.625 mm?>, whereas the LAScarQS 2022 dataset™>’ feature a relatively low
high isotropic spatial resolution of 1.4 X 1.4 x 1.4 mm?>. In Figs. 3 and 5, we show an example of
an image slice along the z-axis from both 2018 atrial segmentation challenge® and LAScarQS
2022 dataset,”’ respectively. The super-resolution images generated using the CNN models
with gradient guidance show improved through-plane resolution; the reconstructed images feature
less blurring and look sharper than the images upsampled using bicubic interpolation and CNN
models without gradient guidance. In both figures, this observation is most obvious for the super-
resolution images generated from the low-resolution images downsampled by a scale factor of 4.

In our final experiment (Table 3), we investigated the effect of the super-resolution models
on the downstream segmentation task by training 3D U-Net models to segment LA from the
super-resolved LGE-MRI volumes. Since the dense DBPN models performed better than the
EDSR models in improving the through-plane resolution of LGE-MRI volumes, we used the
super-resolved images obtained using dense DBPN models with and without gradient guidance
to train the U-Net models and compared them. To serve as baseline comparison, we also train the
U-Net models using the images obtained using bicubic interpolation. We can observe that the
Dice score of the LA segmentation computed by training super-resolved images obtained from
the dense DBPN models with gradient guidance is significantly higher than the Dice score com-
puted by training super-resolved images obtained from the stand-alone dense DBPN models and
bicubic interpolation methods, for all the three downsampling scale factors, thus, corroborating
our hypothesis that providing structural guidance using the gradient branch to improve the
through-plane resolution of LGE-MRI volumes could improve the segmentation of cardiac
structures.
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One of the limitations of our work, as shown in Tables 1 and 2, is that the PSNR and SSIM
values of the super-resolved LGE-MRI volumes decrease as the downsampling scale factor
increases. This is due to the loss of information due to downsampling; however, there is a con-
siderable improvement in the Dice score associated with the segmentation of the LA from the
super-resolved images, therefore speaking for the benefit and significance of the super-resolved
images as far as improving feature segmentation and biomarker quantification. Another major limi-
tation of this work is the use of simulated low through-plane resolution images due to the lack of
real-world high-resolution and low-resolution image pair datasets. Therefore, we could not com-
prehensively assess our method on real-world low-resolution images. However, we employed two
downsampling methods: Gaussian and Fourier downsampling methods, and demonstrated the
effectiveness of our method to reliably super-resolve the simulated low-resolution images.

5 Conclusion

In this work, we presented a 3D CNN architecture for image super-resolution and demonstrated
that the proposed method can be used to improve the through-plane resolution of LGE-MRI
volumes, which in turn, enables accurate segmentation of the cardiac chambers. We also dem-
onstrated the generalization ability of our proposed approach. Our approach takes advantage of
the information learnt from the gradient branch to provide structural guidance to the super-
resolution branch; thereby, generating super-resolution 3D LGE-MRI images while preserving
the cardiac structure information.

Our results clearly show the improved PSNR and SSIM achieved via the dense DBPN with
gradient guidance (Table 1 and Fig. 2), the improved PSNR and SSIM upon generalization
(Table 2 and Fig. 4), as well as improved performance of the LA segmentation from the
super-resolved images (Table 3 and Fig. 6).

In addition, the ablation study conducted clearly showed the effect of the various losses
(Lsr> Laradient> and Lgragients,) s additions to the dense DBPN model, as well as the effect
of the gradient guidance not only at the up-projection level, but at all levels, on the quality
of the super-resolved images and the performance of the downstream segmentation task. As
shown, each of these components provide an improvement in both the PSNR and SSIM values,
with the most significant improvement being contributed by the dense DBPN with gradient guid-
ance at all levels (Table 4 and Fig. 7).
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