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ABSTRACT

Ultrasound (US) elastography is a technique that enables non-invasive quantification of material properties,
such as stiffness, from ultrasound images of deforming tissue. The displacement field is measured from the
US images using image matching algorithms, and then a parameter, often the elastic modulus, is inferred or
subsequently measured to identify potential tissue pathologies, such as cancerous tissues. Several traditional
inverse problem approaches, loosely grouped as either direct or iterative, have been explored to estimate the
elastic modulus. Nevertheless, the iterative techniques are typically slow and computationally intensive, while
the direct techniques, although more computationally efficient, are very sensitive to measurement noise and
require the full displacement field data (i.e., both vector components). In this work, we propose a deep learning
approach to solve the inverse problem and recover the spatial distribution of the elastic modulus from one
component of the US measured displacement field. The neural network used here is trained using only simulated
data obtained via a forward finite element (FE) model with known variations in the modulus field, thus avoiding
the reliance on large measurement data sets that may be challenging to acquire. A U-net based neural network
is then used to predict the modulus distribution (i.e., solve the inverse problem) using the simulated forward
data as input. We quantitatively evaluated our trained model with a simulated test dataset and observed a
0.0018 mean squared error (MSE) and a 1.14% mean absolute percent error (MAPE) between the reconstructed
and ground truth elastic modulus. Moreover, we also qualitatively compared the output of our U-net model
to experimentally measured displacement data acquired using a US elastography tissue-mimicking calibration
phantom.
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1. INTRODUCTION

Ultrasound elastography or elasticity imaging (USEI) is a powerful technique for assessing soft tissue pathology
by estimating the tissue modulus distribution from images of deforming tissue.! In compression elastography,
tissue displacement is induced by repeated compression upon the tissue surface by the US transducer itself. This
leads to an inverse problem in elasticity, where the biomechanical properties of the tissue are estimated based
on the measured displacement field. There are various direct®3 and iterative* approaches developed to solve
this inverse problem. A statistical framework for solving this inverse problem iteratively has been described by
Mohammadi et al.> Usually, these methods pose challenges in terms of real-time response and computational
cost. The direct approaches, on the other hand, require solving a differential equation, which often does not have
an exact analytical solution or may be intractable. Hence, iterative approaches might provide an approximate
solution instead, but the exhaustive iterative process increases the total computational cost.

The FE method is a numerical approach for discretizing and solving differential equations that is commonly
used to solve the forward problem, i.e., obtaining the displacement, strain or stress fields given the known material
properties and boundary conditions.® FE methods are also typically employed to solve the inverse problem in
direct and iterative approaches. Here we use a FE technique to solve the two-dimensional (plane stress) forward
elastic problem from randomly generated modulus distributions and boundary conditions. The displacement
and modulus fields generated from these FE models constitute the input and output training sets, respectively,
for our deep learning model.

In recent years, advances in deep learning algorithms have made it possible to create a complex mapping
function between the input and output images provided that there is sufficient data. Deep learning has begun
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to emerge in USEI research.” In elastography, CNNs have been applied to reconstruct strain fields from radio-
frequency data® and cGANs have been used to address the inverse problems in elastography.’

In this work, we use FE simulations to generate a dataset to train a U-net based regression architecture,
subject to a mean squared error (MSE) loss function. We then apply this model to an experimental dataset
acquired using a US elastography mimicking phantom. We evaluate our U-net model results from the simulated
data quantitatively using the MSE and mean absolute percent error (MAPE) metrics. We also evaluated the
output of our U-net model using experimental images captured using a standard US elastography tissue mimicking
phantom.

2. METHODOLOGY
2.1 FE Simulation - Forward Model

The forward model entails the generation of displacement fields using FE methods. The training and testing data
are generated from the forward solution of the FE models by varying the shape, size, location and magnitude
of the modulus of an inclusion in a background material of constant modulus. We use a linear elastic material
model to solve the boundary value problem as shown in Figure 1. The inputs for the FE model were the modulus
spatial distribution, the tissue sample geometry discretized as a FE mesh, and the boundary conditions. The FE
mesh consists of evenly distributed nodes on a homogeneous 128 x 128 Cartesian grid consisting of quadrilateral
elements. The modulus and displacement fields are discretized at the nodal locations.
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Figure 1. Generation of tissue displacement data using FEM simulations subject to known biomechanical properties (i.e.
elastic modulus distribution) and prescribed boundary conditions.

As shown in Figure 1, we first construct the modulus distribution, where we vary the shape and size of every
inclusion and fill them with the modulus values. For this, we start with a circle and vary the radius as a function
of angle by using a sum of several cosine functions with predetermined amplitudes and phases,'® given by the
equation:

5
r(0) = A(1+ ) _ Bycos(2mnf + 1)), (1)

n=1

where, B,, is the amplitude that varies between 0.25 < B,, < 0.5, v is the phase with 0 < ¢ < 27, and A
is the scaling factor with 0.113L < A < 0.225L. We also vary the location of these inclusions randomly within
the distribution space. A Gaussian filter, with a standard distribution uniformly between 0.5 and 4, was then
applied to this modulus distribution to eliminate sharp edges. This distribution of elastic modulus was meant
to mimic the variations of benign and malignant lesions typically identified during mammography screenings.

Similarly, the application of vertical compression load from the body surface can be mimicked using boundary
conditions as follows. At y =0, u, = u, = 0.0 as the bottom is fixed. Similarly, at y = L, we have —0.005 <
u; < 0.005 to account for the lateral shift of the ultrasound probe due to human error in otherwise perfect
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vertical compression. Also at y = L, we have u, = —0.01L 4+ mx + b, where b and xg is chosen from a uniform
random distribution within the range —0.005 < b < 0.005 and 0.33L < xy < 0.66L, respectively, from which we
also calculate m = b/x0. Additionally, the edges are made to be traction free. A plane stress formulation for the
constitutive elasticity relation with a Poisson’s ratio of 0.49 is used to mimic a linear elastic isotropic material.
In this work, we use only the axial (Y direction) displacement field, u,, to train our deep learning model.

We note that only displacement boundary conditions were utilized in the present study, and, as a result,
the elastic modulus of the inclusion can only be reconstructed relative to the elastic modulus of the background

tissue; essentially, the reconstructed elastic modulus of the inclusion is determined as a multiplicative factor of
the background tissue elastic modulus.'!

Since the elastic modulus is reconstructed relative to that of the background, we arbitrarily set the background
modulus to unity (E, = 1.0). We model two kinds of inclusions — a hard inclusion, whose modulus is greater than
the modulus of the background tissue, and a soft inclusion, whose modulus is lower than that of the background.
The modulus distribution for the hard inclusion lies between 1.0 and 5.0, and between 0.1 and 1.0 for the soft
inclusion. As shown in Figure 2, blue represents the elastic modulus of hard inclusions, red represents the
modulus of soft inclusions, and white represents the modulus of the background tissue. Furthermore, we also
normalize the value of the displacement distribution from 0 to 1.
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Figure 2. Examples of four simulated datasets. The tissue displacement distribution images (above) constitute the input,
and the modulus distribution images (below) constitute the output. Both images are 128 x 128 pixels in size.

Our training dataset consists of 10,000 examples featuring 5050 hard inclusion and 4950 soft inclusion datasets.
The test dataset features 1000 images consisting of 505 hard inclusion and 495 soft inclusion data. Moreover, we
also have the 45 images from experimental data acquired using a US elastography tissue mimicking phantom.

2.2 DL Model - Inverse Problem

In our deep learning approach, we utilize a U-net architecture,'? to learn the mapping between the displacement
fields and modulus field as shown in the figure 3. Similar approach was used in the Pix-to-Pix framework!3
for image-to-image translation tasks. Unlike the typical Pix-to-Pix framework that employs both generator and
discriminator components, we elect to employ only the generator component along with the mean squared error
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Figure 3. Deep learning U-NET model featuring a MSE loss function for optimization.

(MSE) loss function for optimization. The MSE loss function is calculated using:

Npizels
1 p

MSE =

(E; — BY)%, (2)

pizels =1

where Npizes is the number of pixel, to calculate the loss function between the predicted E? and the ground
truth E! modulus.

We used a batch size of 32, with 100 epochs and an Adam optimizer with a learning rate of 2 x 10~%. For data
pre-processing, we normalization the displacement fields to values between 0 and 1. In addition to optimizing,
we also used the MSE metric for the evaluation of simulated data. Furthermore, we also calculated the mean
absolute percentage error (MAPE) metric:

1 Npizels Et . Ep
MAPE = ———— <= 3
Npia:els ; Elt ’ ( )

which returns a normalized and more intuitive metric of modulus accuracy.

2.3 Phantom Experiments

In compression elastography, the operator exerts manual compression on the tissue using the ultrasound trans-
ducer. We collected ultrasound data at two different compression states using a tissue mimicking elasticity
Phantom (Elasticity QA Ultrasound Phantom CIRS 049), which contains both hard and soft spheres. The
displacement fields are calculated from the two ultrasound images using an image registration algorithm!'# 1®
and the axial displacement field u, is used as input to the trained deep learning model to obtain the modulus
predictions. For this phantom, the elastic modulus of the background was 25 x 106 KPa, 80 x 10'? KPa for the
hard inclusion, and 8 x 103 KPa for the soft inclusion. Taking the ratio of inclusions with respect to background,
we would have an expected the predicted modulus to be in the range of 2.19 to 4.84 for the hard inclusions and
0.16 to 0.58 for the soft inclusions.

We collected two datasets from the phantom experiment, one each for a hard and soft inclusion. We calculated
the average modulus value and the contrast-to-noise (CNR) ratio'® for these data using equation 4 below:

2$ — & 2
oNp= 255 4)
ot +0p

where $;,s, are the mean and d, ¢, are the standard deviation of the inclusion and background respectively. To
separate each inclusion from the background, we manually defined a circular region of interest, as shown by the
dotted circles in Figure 5.
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3. RESULTS AND DISCUSSIONS
3.1 Simulated Test Data

To analyse the predicted modulus images from our test data, we generated mask images that were used to
separate the inclusion from the background for both the ground truth (E}) and predicted (E¥) modulus images.
The mask images are generated by binarizing the modulus images using Otsu’s thresholding algorithmi The
masks are used to calculate the average modulus values for the ground truth (E?) and the predicted (EY), for
which we also compute the relative modulus error,

|Ef — EY)|

Relative Modulus Error = —
| EY|

()

We also computed the dice score which is a measure of the similarity between the ground truth and predicted
masks and is given by:

. _ 2x|EINEY|

Dice Score = EUE (6)
The dice score value ranges from 0 to 1, 0 being not similar at all to 1 being exactly similar. The dice scores we

obtained for hard and soft inclusion are reported in Table 1. To further estimate elastic modulus reconstruction

error, we calculated the MSE and MAPE between ground truth and predicted image. The average MSE obtained

was 0.0018 and the average MAPE was 1.14% for the entire test data. The average error observed for all the

hard and soft inclusions is also summarized in Table 1.

Table 1. Summary of mean and standard deviation values for ground truth and reconstructed elastic modulus for hard
and soft inclusions. Comparison metrics include mean squared error (MSE), mean absolute percent error (MAPE) and
Dice score (measure of similarity between the ground truth and predicted inclusion geometry).

Mean Relative
Modulus Error(%)

Hard 505 0.002 £0.003 | 0.93 £0.34 3.37+£2.18 0.98 £0.07
Soft 495 0.001 £0.001 | 1.34 +0.86 5.04 +£5.45 0.97 £ 0.06

Inclusion | No. of images | Mean MSE Mean MAPE(%) Mean Dice Score

An example of a hard inclusion is shown in Figure 4 (left 3 panels). For this prediction, the MSE was 0.002
and MAPE was 0.91%. The ground truth average modulus value was found to be 3.877 and the predicted value
was 3.875 with a relative error of 5.04%, and Dice score of 0.98. Similarly, an example of a soft inclusion is
shown in Figure 4 (right 3 panels). For this prediction, the MSE was 0.0006 and MAPE was 2.04%. The ground
truth average modulus was 0.504 and predicted modulus value was 0.468 with a relative error of 7.14% and a
dice score of 0.97.
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Figure 4. The ground truth and predicted modulus distribution images for hard inclusions (left 3 panels) and soft inclusion
(right 3 panels).
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From these results, our deep learning model is able to accurately modulus distribution from the axial dis-
placement fields. The high dice scores indicate a high degree of overlap between the predicted and ground truth
modulus location. Similarly, a low relative modulus error further supports the accuracy of the simulation results.
The test results are in close agreement with the expected values and have a high level of accuracy. Moreover,
this shows us that the model architecture we used is well-suited for our task and able to capture the relevant
patterns in the data. Furthermore, it demonstrates that the model has been trained on a sufficient volume of
data, enabling it to reach convergence towards optimal model parameter values.

3.2 Preliminary Phantom Results

Figure 5 shows the calculated axial displacement fields and predicted modulus for a hard sphere (left) with an
average modulus value of 4.50 (Expected range: 2.19 to 4.84), CNR of 232.53 and a soft sphere (right) with an
average modulus values of 0.40 (Expected range: 0.16 to 0.58), CNR of 15.23, both of which are within the range
of the expected values.
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Figure 5. Elastic modulus predictions from experimental data acquired using a US elastography phantom featuring both
hard (left panels) and soft inclusions (right panels).

The results in Figure 5 demonstrate that the deep learning model trained on simulated data is able to
generalize to phantom data, thanks to transferable features learned from simulated data. However, we can
observe some noise in the prediction of modulus distribution, which arises from the somewhat noisy input images.
The noise in input image is due to error introduced by the registration algorithm we used for estimating the
displacement field. Given that the simulated data is sufficiently diverse and representative of a wide variability,
the algorithm trained on simulated data should generalize well to both phantom, as well as real-world clinical
data. Another approach would be to add noise to the simulated data itself that would better mimic the real-world
setting.

4. CONCLUSION AND FUTURE WORK

We presented a deep learning method to solve the inverse problem of finding the elastic modulus distribution in
elasticity and also evaluate it’s performance both quantitatively and qualitatively. We demonstrated, using FE
simulated data, the development and preliminary evaluation of a deep learning approach capable of predicting the
elastic modulus from both simulated and experimental US elastography data. Our preliminary results suggest
that our deep learning framework can accurately predict the modulus and has the potential to be applied in real
time setting as well.

For future work, we aim to apply our model to a larger phantom set for the repeatability and also to clinical
data. Moreover, the training can also be conducted using both components of the displacement field. We also
plan to test model accuracy with different displacement estimation techniques and also compare the deep learning
approach to traditional reconstruction techniques. Additionally, we aim to improve our simulation to yield more
realistic data for training that better mimics the experimental US data, and perform noise studies for sensitivity.
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