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ABSTRACT

Stereo matching methods that enable depth estimation are crucial for visualization enhancement applications
in computer-assisted surgery (CAS). Learning-based stereo matching methods are promising to predict accurate
results for applications involving video images. However, they require a large amount of training data, and
their performance may be degraded due to domain shifts. Maintaining robustness and improving performance
of learning-based methods are still open problems. To overcome the limitations of learning-based methods, we
propose a disparity reĄnement framework consisting of a local disparity reĄnement method and a global disparity
reĄnement method to improve the results of learning-based stereo matching methods in a cross-domain setting.
Those learning-based stereo matching methods are pre-trained on a large public dataset of natural images and
are tested on a dataset of laparoscopic images. Results from the SERV-CT dataset showed that our proposed
framework can effectively reĄne disparity maps on an unseen dataset even when they are corrupted by noise,
and without compromising correct prediction, provided the network can generalize well on unseen datasets. As
such, our proposed disparity reĄnement framework has the potential to work with learning-based methods to
achieve robust and accurate disparity prediction. Yet, as a large laparoscopic dataset for training learning-based
methods does not exist and the generalization ability of networks remains to be improved, it will be beneĄcial
to incorporate the proposed disparity reĄnement framework into existing networks for more accurate and robust
depth estimation.

Keywords: Stereo Matching, Disparity ReĄnement, Endoscopy, Variational Model, Cross-domain Generaliza-
tion, Optical Flow.

1. INTRODUCTION

Depth estimation plays a key role in surgical navigation1 and visualization enhancement applications.2 Stereo
endoscopy is commonly used to enable depth estimation.3 Stereo correspondences represented by disparity maps
can be estimated via stereo matching techniques4 to provide depth measurements with known intrinsic and
extrinsic camera calibration.

In the era of deep learning, learning-based stereo matching methods are reported to achieve high performance
on several public benchmarks and outperform traditional methods.5, 6 However, their achievements are based on
several prerequisites: 1. A large amount of data is available for training. 2. The training dataset and the testing
dataset are identically distributed. Those prerequisites are not generally satisĄed in the surgical data science
arena. Obtaining a large dataset of speciĄc surgical scenes to train learning-based methods is impractical, usually
with millions of parameters, especially for fully-supervised learning methods that require accurate ground truth.
Given various texture and surgery settings, there is also no guarantee that the distribution difference between
the training dataset and the testing dataset is negligible. As a large laparoscopic dataset with accurate ground
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truth does not exist, several methods3, 7 use cross-domain datasets5, 6 for training, which may not be sufficiently
robust, as the distribution change or domain shift can jeopardize performance.8

To overcome the limitations of learning-based methods, we propose a framework for reĄnement of disparity
maps of laparoscopic images predicted from learning-based methods trained on a large stereo dataset of natural
images. The proposed disparity reĄnement framework consists of local and global reĄnement methods (LDR and
GDR).

Our contributions are summarized as follows: 1) We present a disparity reĄnement framework based on
traditional methods for learning-based stereo matching methods consisting of LDR and GDR methods in a
cross-domain setting. 2) We present an LDR method to measure the conĄdence of disparity maps and reĄne
disparity values in low conĄdence regions. The method is designed to reĄne errors concentrated in small regions
and provide a more robust initialization for the subsequent global disparity reĄnement method. 3) We present
a GDR method using our illumination invariant multi-resolution variational model to reĄne various artifacts,
especially for errors concentrated in large regions.

2. METHODOLOGY

We Ąrst use the LDR to detect low conĄdence regions on the predicted disparity map by assuming that outliers
in the disparity map strongly violate the smoothness and photometric consistency assumptions. After the
detection, the disparity values of low conĄdence regions are interpolated from the surrounding high conĄdence
regions. Subsequently, we use the GDR, which introduces a multi-resolution variational model to further reĄne
the disparity from the previous step.

2.1 Local Disparity Refinement

Several assumptions are made to estimate the conĄdence of the disparity. Firstly, we assume that the tissue
surface is relatively smooth. The pixel x should have high conĄdence in a smoothness conĄdence map Cs(x) if
the disparity value u(x) is consistent with its surrounding pixels uw(x):

Cs(x) = 1 − αs ·

∣
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∣

∣

, (1)

where uw(x) is the mean disparity value of the local window with the size w, and αs is the hyper-parameter.

Secondly, we assume that outliers in the disparity map tend to violate the photo-consistency assumption
strongly. Intensities of outliers Is(x) in the source (left) image and their matched points It(x + u(x)) in the
target (right) image would have a large difference. Due to illumination differences, the intensity values of
corresponding images may not be the same. However, it is reasonable that outliers would strongly violate this
assumption. Therefore, the photo-consistency conĄdence Cp(x) is deĄned as:

Cp(x) = 1 − αp ·
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, (2)

where αp is the hyper-parameter. Hence, pixels with incorrect disparity values have low conĄdence values in
Cp(x).

Thirdly, we assume that in specular highlights and border occlusions,9 predicted disparities would tend to be
unreliable. In specular highlights, pixel intensities are saturated and uniform. Border occlusions result from the
fact that the right camera misses some of the leftmost portions of the Ąeld of view of the left camera.

We set conĄdence values in these regions as zeros by introducing the specular highlight mask Ms(x) and the
boundary occlusions mask Mb(x):
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Ms(x) =

{

1 if S(x) > ths

0 otherwise.
(3)

Mb(x) =

{

1 if x + D(x) exists in the right image

0 otherwise.
(4)

where S(x) ∈ [0, 1] is the value in HSV color space.

The Ąnal conĄdence map Cf (x) is deĄned as the product between the above conĄdence maps and masks:

Cf (x) = Mv(x) · Ms(x) · Cp(x) · Cs(x). (5)

Pixels are selected as outliers if their conĄdence values are below the threshold value of thf . Next, we search
for inliers along with eight directions for each outlier, similar to SGM.10 Then, for each outlier, its disparity is
replaced with the median value of the eight inliers.

2.2 Global Disparity Refinement

We formulate the stereo matching as a variational problem. Disparity values u(x) between the source Is and
target It images are predicted by the minimization of an energy function composed of a data term Edata, and a
regularization term ES :

min
u

[λ Edata(u, It, Is) + ES(u)] , (6)

where λ denotes the weight between Edata and ES . Edata measures the similarity of pixels in Is and It using:

Edata(u) =

∫

Ω

♣D(P (x + u, It)) − D(P (x, Is))♣
2

dx. (7)

Here, Ω denotes the image domain, x presents the pixel location, P (x, I) is the patch that contains the local
intensities, and D is a novel illumination invariant descriptor:
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.

I(xi) ∈ [1, 2, ..., 8] denotes locations relative to the central pixel x0. D is a 8 component vector calculated using
Eq. 9 and 10. Our descriptor D is a simpler form of a descriptor proposed in.11 It represents the normalized
image gradient about the central pixel of patch P (x0) which was shown to be invariant to linear illumination
changes:

D(P (x + u, I)) = D(aP (x, I) + b). (11)

To preserve discontinuities at sharp object transitions and avoid staircasing artifacts in the in the calculated
disparity map, we use a Huber function as a regularization term:

ES =

∫

Ω

♣∇u♣ϵdx, (12)

where

♣r♣ϵ =

{

r2

2ϵ
0 ≤ ♣r♣ ≤ ϵ,

♣r♣ − ϵ
2

ϵ < ♣r♣.
. (13)

and ϵ is a small positive constant.

Finally, Eq. 6 takes the following form:

min
u

[

λ

∫

Ω

♣D(P (x + u, It)) − D(P (x, Is))♣
2

dx +

∫

Ω

♣∇u(x)♣ϵdx

]

, (14)

which is solved by applying a primal-dual minimization scheme proposed in.12 We use a coarse-to-Ąne warping
framework to tackle large displacements. A scale factor of 0.5 is used to construct an image pyramid of n levels.
At each level, we perform m warping iterations of optimizing energy functional Eq. 14. In each level, the warping
iteration is initialized with the current disparity Ąeld u, and a target image is warped towards the source image
using the current disparity map.

3. RESULTS

We use several state-of-the-art learning-based methods, including PSMnet,13 AAnet,14 LEAStereo,15 and STTR,7

to generate raw disparity maps of images from the SERV-CT3 dataset. All the above learning methods are ex-
ecuted by training their public models on the SceneFlow dataset.5 Root mean square disparity error (RMSE
Disparity) and root mean square depth error (RMSE Depth) are used to evaluate errors between estimated and
ground truth results. We examine the reĄnement performance of our proposed LDR and GDR and compare
them with the closet work SDR16 to ours. Parameters of methods used in experiments are shown in Table 1.

Table 1. Summary of parameters used in our methods.
Parameter Function Value

αs Hyper-parameter in Eq. 1 20

αp Hyper-parameter in Eq. 2 2

thf Threshold to select outliers from the final confidence map 0.5

λ Weight between data term and regularization term in Eq. 6 0.5

ϵ Hyper-parameter in Huber norm regularizer Eq. 7 0.1

m Warping iterations at each image pyramid to solve Eq. 14 50

n Levels of image pyramid to solve Eq. 14 4
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Table 2. Evaluation results on SERV-CT dataset. The statistical significance between the errors before refinement and
after refinement is identified by ∗(p < 0.05).

Occlusions included Occlusions not included
Method RMSE Disparity (pixel) RMSE Depth (mm) RMSE Disparity (pixel) RMSE Depth (mm)

PSMnet13 38.91 ± 17.11 25.16 ± 8.77 33.07 ± 16.30 23.01 ± 8.88
PSMnet13 + LDR 31.70 ± 17.57 22.55 ± 8.76 29.04 ± 16.63 21.33 ± 9.14

PSMnet13 + LDR + GDR ∗ 8.17 ± 10.38 ∗ 7.89 ± 7.85 ∗ 6.59 ± 9.99 ∗ 6.48 ± 7.69
PSMnet13 + SDR16 32.04 ± 21.03 22.30 ± 8.07 28.00 ± 19.78 20.79 ± 8.16

AAnet14 11.71 ± 7.21 13.33 ± 5.90 9.35 ± 6.20 11.85 ± 5.74
AAnet14 + LDR 9.39 ± 7.13 10.04 ± 6.72 7.53 ± 6.29 8.39 ± 6.32

AAnet14 + LDR + GDR ∗ 4.15 ± 2.08 ∗ 4.86 ± 2.70 ∗ 2.76 ± 1.43 ∗ 3.47 ± 2.40
AAnet14 + SDR16 9.22 ± 4.92 11.36 ± 4.87 6.98 ± 3.80 9.51 ± 4.60

LEAStereo15 7.79 ± 5.58 12.21 ± 7.39 6.27 ± 5.10 10.27 ± 6.69
LEAStereo15 + LDR 6.06 ± 4.66 9.66 ± 6.54 4.49 ± 3.89 7.05 ± 5.57

LEAStereo15 + LDR + GDR ∗ 3.96 ± 1.79 ∗ 4.45 ± 2.03 ∗ 2.58 ± 1.31 ∗ 3.06 ± 1.73
LEAStereo15 + SDR16 5.05 ± 2.83 7.24 ± 3.68 4.17 ± 2.38 6.42 ± 3.56

STTR7 17.22 ± 6.38 27.06 ± 5.16 4.27 ± 3.47 5.34 ± 4.00
STTR7 + LDR 13.23 ± 6.25 ∗ 22.44 ± 5.77 3.34 ± 3.13 4.20 ± 3.81

STTR7 + LDR + GDR ∗ 4.86 ± 3.04 ∗ 5.97 ± 3.57 2.95 ± 1.68 3.36 ± 1.70
STTR7 + SDR16 10.71 ± 4.84 16.38 ± 6.15 3.64 ± 3.49 4.83 ± 3.63

Quantitative results are presented in Table 2. Decreases in errors are observed after each reĄnement stage,
especially in the GDR stage. When including the occluded region in the evaluations, raw disparity maps estimated
from LEAStereo15 have the lowest 2D and 3D errors, with an RMSE of 7.79 ± 5.58 pixel (12.21 ± 7.39 mm). The
errors are minimized to 6.06 ± 4.66 and 9.66 ± 6.54 after LDR stage, and 3.96 ± 1.79 and 4.45 ± 2.03 after GDR
stage. All results from all networks have higher accuracy after excluding occluded regions, and STTR7 has the
lowest error with 4.27±3.47 pixel (5.34±4.00 mm). The results of STTR7 can be further improved to 3.34±3.13
pixel (4.20 ± 3.81 mm) at the LDR stage, and 2.95 ± 1.68 pixel and 3.36 ± 1.70 mm at the GDR stage. Our
method can also reĄne disparity maps predicted by PSMnet with signiĄcant errors. Excluding occluded regions,
errors of PSMnet are reĄned from 31.70 ± 17.57 pixels to 6.59 ± 9.99 pixels.

Figure 1. Disparity maps of learning-based methods (PSMnet,13 AAnet,14 LEAStereo,15 STTR7) and their refined results
by SDR,16 our proposed LDR, and LDR + GDR, with disparity error maps compared with ground truth. Stereo endoscopic
images and ground truth disparity map are shown on the top.

We visualize predicted disparity maps and their reĄned results by our methods in Fig. 1. We observe that raw
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disparity maps generated from the learning-based methods show signiĄcant disparity errors, especially in regions
containing imaging artifacts such as specular highlights, occlusions, low texture and illumination differences.
These error regions (the noise-corrupted regions) are characterized by spikes, strikes, and holes and are not
continuous with their surrounding areas. These imaging artifacts are common in endoscopic images but not in
the natural images that they are trained on. Small error regions can be reĄned effectively via the proposed LDR,
and SDR.16 However, they are not able to reĄne large error-corrupted areas, such as errors around boundary
occlusions. The proposed GDR could further improve the results reĄned by LDR, and furthermore, various
imaging artifacts still existing can also be effectively reĄned via the GDR.

4. CONCLUSION

We have presented a robust and accurate disparity reĄnement framework that integrates the successful use of local
and global disparity reĄnement methods for learning-based stereo matching methods in a cross-domain setting.
Applications that require visualization augmentation, such as surgical navigation and 3D organ visualization, rely
on stereo matching. Learning-based approaches produce encouraging outcomes, however, they are constrained
when used with endoscopic images for several reasons: they require a lot of training data, which is not readily
available for endoscopic medical images and their performance suffers, due to the domain gap and large number
of artifacts. Our proposed framework removes these barriers and demonstrates that by combining learning-based
and traditional methods, we can yield robust and accurate results. Our proposed method provides assistance with
applications in need of visualization enhancement that employ learning-based techniques that rely on laparoscopic
images featuring small training datasets, limited ground truth data available, and various artifacts for accurate
depth estimation.
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