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A B S T R A C T

Older adults are prone to forgetfulness and varying degrees of cognitive impairment, which can
lead to not taking medication on time, taking the wrong medication or the wrong dose, all of
which can negatively affect a person’s health and recovery from illness. Existing medication
reminders, like mobile apps and pill boxes, are neither age-friendly nor designed to minimize
the burden of documenting medication adherence. In this paper, we present a Medication
Adherence Management System (MAMS) for elders, which is based on a companion robot
and a wearable device. The MAMS addresses the key issues of safe medication management:
medication reminders, medication confirmation, and medication history recording. Human
subject tests were conducted to evaluate the performance, acceptability and usability of the
MAMS. Results from 35 human subjects showed that the average scores of the convenience,
usefulness, and adoptability of the proposed MAMS were 8.17, 8.49, and 8.23 out of 10,
respectively. The System Usability Scale (SUS) scores for the MAMS, the robot, and the wearable
device are 75.29, 78.60 and 76.40, respectively. We believe the MAMS has potential use in
future in-home geriatric care.

1. Introduction

The world’s population is aging. The number of people aged 65 or older is projected to double from 703 million in 2019 to an
stimated 1.5 billion by 2050 (Nations et al., 2019). Most of the aging population prefer to remain in their own homes. Compared to
assisted-living or long-term care facilities, one’s own home offers greater self-efficacy, personal autonomy, safety, and security at a
significantly lower cost (Secker, Hill, Villeneau, & Parkman, 2003). As people age, they usually develop age-related health problems.
In addition to physical health issues, one of the greatest challenges that makes staying at home difficult is cognitive decline and
memory loss, which contributes to error in managing many aspects of their lives, including taking their medications (Marcum,
Sevick, & Handler, 2013). Failing to take medicine on time, taking the wrong medicine or wrong dose of medicine poses significant
risk for older adult care recipients’ physical health and well-being.

A number of solutions have been proposed to assist older adults in medication self-management in home healthcare. The most
common solution is to use mobile applications (Ahmed et al., 2018). Unfortunately, most apps are only for the care recipients
to set the medication reminders themselves, which requires not only sound cognitive capacity but also sufficient hand dexterity.
Small screens, small lettering and glare from ambient lighting usually cause difficulties in using these mobile devices. In addition,
many mobile apps do not close the loop by checking to see if the older adults have taken the correct medicine in the right dosage.
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Other products, like smart pill boxes (Faisal, Ivo, & Patel, 2021), can give reminders when it is time to take medicine and log the
medication information based on the pills taken out of the boxes. However, due to limited sensing capability, these boxes can only
detect how many pills and when the pills were removed but one cannot be certain whether the pills have been actually consumed
by the users.

In recent years, many companion robots have been developed for home healthcare (Abou Allaban, Wang, & Padır, 2020). Unlike
mobile apps, companion robots are typically equipped with powerful processors and various sensors such as microphones and
cameras, making them capable of assisting older adults in their daily lives. Several companion robots adopted a table-top design, such
as Jibo (Jibo, 2023), which offers certain advantages over mobile robots, including simplified control, reduced cost and minimized
risk to user safety. These robots use their natural language processing (NLP) capabilities to engage the users in conversations. They
also use the onboard camera for object recognition. Therefore these companion robots are ideal for giving medication reminders, as
well as confirming medication taking and documenting medication administration (Broadbent, Montgomery Walsh, Martini, Loveys,
& Sutherland, 2020).

Recently the authors have developed a table-top companion robot prototype called ASCCBot (Do, 2018). In order to expand
ASCCBot’s sensing range, we added a wearable device (Liang et al., 2021) which can collaborate with the ASCCBot to achieve
ubiquitous sensing and interact with the wearer. The robot-wearable pair realizes different geriatric care functions, such as fall
detection, pain rating, cognitive and mood status assessment, food recognition, etc. (Liang et al., 2021). In this paper, we proposed
and implemented a Medication Adherence Management System (MAMS) based on this robot-wearable pair. The MAMS is capable
of medication reminder, medication confirmation, and medication history recording. By closing the medication administration loop,
the MAMS serves as an intermediary between older care recipients and their caregivers including professional healthcare providers
and informal caregivers such as family members.

This paper has four major contributions. First, contrary to other existing medication reminder systems, the MAMS is a closed-loop
medication management system that not only gives medication reminders but also confirms and records the medication for better
medication administration. Second, the MAMS integrates a friendly user interface for the caregivers to set medication reminders
and review medication history, which makes it possible for timely intervention in case of any medication adherence issues. It also
allows care recipients to set up reminders themselves through voice. Third, the MAMS possesses a multi-modality conversational
interface that combines audio and vision perception for medication management. This conversational interface is shared by the
robot, the wearable and the caregiver user interface. Fourth, user acceptance of the MAMS is quite good as we show in our study
that compared the MAMS and the most popular medication mobile apps in samples of both young users and older users.

The rest of the paper is organized as follows: Section 2 reviews the related work. Section 3 presents the overall design of the
MAMS, the hardware platform and caregiver user interface. Section 4 gives the details of the design of the conversational interface.
Section 5 describes the experiments and evaluation results. Section 6 concludes the paper and discusses the future work.

2. Related work

A significant amount of research has been done in medication management systems. The most common solutions are mobile
apps that function as medication reminders. Ahmed et al. (2018) conducted a survey and tested different free apps and found that
lmost all the apps implemented a reminder function that pushed notifications when the medication was due. Many apps played
udio that sent an alert at the preset medication time (PillReminder, 2023). Only a few provide medication confirmations that allow
lder adults or their caregivers to check medication compliance (Stinson et al., 2013). Yang, Pang, and He (2021) developed an app
that could recognize the medicine name and number of pills from a photo taken by the smartphone. However, their app lacked a
reminder function and required users to plan ahead to capture a photo before they take the medicine. A drawback of using apps on
smartphones is that it is inconvenient for older adults to use due to the small buttons and difficult-to-read fonts. Smart pill boxes offer
another solution. Faisal et al. (2021) reviewed 51 smart medication devices that could give alarm and send notifications to patients.
oading the medication into pill boxes proved challenging for older adults, as these devices require loading each individual pill into
separate receptacle, which is not convenient for those with declined hand dexterity. Moreover, most of the current devices are not
esigned to provide closed-loop medication adherence management, therefore it is difficult for caregivers to check the medication
ecords and update the medication reminders.
As home service robots could assist older adults in their daily life, several medication management systems were developed

ased on them. Rantanen, Parkkari, Leikola, Airaksinen, and Lyles (2017) deployed a medicine dispensing robot in a nursing home
nd demonstrated that the robot was easy to use for that purpose. However, no closed-loop medication management function was
eveloped besides medicine dispensing. Broadbent et al. (2020) designed a closed-loop medication management robot that sounded
n alarm bell to remind older adults to take medicine. However it still required the users to type the medication name and set up new
eminders when the prescriptions change, which was not very convenient. In addition, it lacked a medication record for caregivers to
heck whether the medicine was taken at the right time of day. Martini et al. (2022) developed a closed-loop, web-based medication
anagement application for a healthcare robot to monitor patients’ medication adherence. The medication instructions could be
rovided by pharmacists and physicians through a web browser, then the robot equipped with a medication application can remind
nd record medications. Moreover, family members and caregivers could monitor the intake of medication by the user. However,
he system could not confirm the medication, and if the patients could not hear from the robot, it is impossible to notify them.
Wearables have been developed to monitor the medication-taking behavior based on different sensing modalities. Odhiambo,
right, Corbett, and Valafar (2021) recognized medication-taking hand gestures by using a neural network with the accelerometer
2

ata from a smart watch as input. However, relying on hand gesture recognition for medication confirmation is inaccurate and
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Fig. 1. The overall design of the Medication Adherence Management System (MAMS).

roblematic. Lee and Youm (2021) designed a smart watch that integrated a camera with a Raspberry Pi Zero to monitor patients’
edication behavior. It captured videos during medication-taking and analyzed the data using deep neural networks. While the
ecognition accuracy is good at 92.7%, it is still challenging for such wearable devices to ensure that the right medication was taken
t the right dose and at the right time. Wu, Choi, and Ghovanloo (2015) designed a necklace to improve older adults’ medication
dherence by detecting whether the pills are taken by the users. However, the medicine information need to be labeled in the pill
apsule so as to be detected by the necklace, which is not convenient or human-friendly to use.
In this paper, we aimed to build a closed-loop medication management system to address the issues in the existing medication

eminder systems, which will be achieved by pairing a companion robot and a wearable device and taking advantage of
ulti-modality human–robot interaction.

. Overall design of MAMS

.1. Overview

The overall design of the MAMS is shown in Fig. 1. It consists of an ASCCBot companion robot, a Wearable Monitoring Unit
WMU) and a caregiver user interface.
The ASCCBot is a table-top conversational robot and the core of the MAMS. The medication reminders can be created by the

aregiver through a mobile app. The care recipients can also create reminders for themselves through the ASCCBot using voice.
he conversation abilities of the mobile app and the physical robot are both provided by the conversational interface module.
hen it is time to take the medicine, the Medication Reminder module sends notifications to the Conversational Interface. During
edication-taking, the robot itself, or with the assistance of the wearable device, confirms and records the time, dose, and type of
edications taken by the care recipient, which is accomplished through both conversation-based query and vision-based medicine
ecognition. The logged medication history can be reviewed by the caregiver at a later time.
The WMU, being light and compact, extends the sensing range of the robot and enables two-way communication between human

nd robot when they are not close to each other. The WMU integrates an accelerometer, a mini CMOS camera, a microphone, and a
peaker. The WMU has four functions: command-data processing, data and command transfer, image capturing, and motion-based
ctivity recognition. The WMU reminds the care recipient to take medicine by playing an audio message from the robot. Then, by
ngaging the care recipient in a conversation, the WMU captures images of the medicine and assists the care recipient in confirming
he medicine types and the doses.
The caregiver user interface allows the caregivers to create medication reminders for the care recipients and review the
edication history. It is implemented on a mobile app allowing easy access by caregivers. Four basic functions are developed on
he mobile app, which includes create, record, modify and check reminders.

.2. ASCCBot companion robot

As shown in Fig. 2, the design of the companion robot follows a philosophy of minimalism to ensure safety and affordability to
are recipients. It features a table-top style and consists of a stationary body and a rotating head with an animated face. The head
nd face create a sense of personification that appeals to older users. The robot can be positioned near the “nest spot”or preferred
esting place of an older adult. The robot consists of a Jetson NX embedded computer running Ubuntu OS and a Cortex-A53 based
3
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Fig. 2. The prototype of the ASCCBot companion robot (Erivaldo Fernandes, Do, Muniraju, Sheng, & Bishop, 2017).

anoPi M3 minicomputer running Android OS, an Intel Realsense RGB-D camera, an array of four microphones, a touchscreen, and
pair of speakers. Its head has 360-degree horizontal rotation and 60-degree vertical tilt. This robot is capable of visual perception
uch as detecting objects and natural language conversation such as speech recognition, natural language understanding and speech
ynthesis. The video demos of the ASCCBot can be found on PI’s lab website.2

.3. Wearable monitoring unit

As shown in Fig. 3, the WMU extends the sensing range of the companion robot and enables human–robot conversation when
he user is not near the robot. The WMU consists of three parts: a main control board, peripherals, and a power module. The
ain control board is a Raspberry Pi Zero computer which has an integrated WiFi module and multiple GPIO pins. The peripherals
nclude an I2S MEMS microphone, a bone conduction transducer which acts as a speaker, a Raspberry Pi Camera and a three-axis
ccelerometer. The power module contains a rechargeable battery and a wireless charger. Considering the size and capacity, a 1500
Ah Li-Po battery is adopted. The average current draw from the WMU is 180 mA. Therefore, the battery life is roughly 8 h under
ormal usage conditions. Wireless charging minimizes the manipulation of cradles and plugs. The charging module consists of two
arts, a receiver coil in the WMU and a transmitter coil outside of the WMU. Our test showed that it takes less than 1.5 h to fully
harge the battery.
The WMU is based on an open hardware architecture that allows the integration of other sensors into it. For example, vital

ign sensors such as body temperature, heart rate, blood oxygen sensors can be included if needed, which opens up many other
unctionalities for geriatric care. All the electronic components of the WMU are housed in a compact 3D-printed case which can
asily attach to human clothing through either a pin or a magnet.
In the MAMS the WMU mainly plays a role of a messenger between the robot and the care recipient when they are not close to

ach other. The WMU sends the audio collected from the care recipient and the images of the medicine to the robot for recognition.
he care recipient talks to the WMU by either pressing a button or using the key word ‘‘Hey Elsa’’ to wake up the WMU. After
hat, the WMU collects audio data from the care recipient and sends that to the robot, which handles the dialog management. The
MU can then play out the audio response received from the robot. The actions of the WMU are controlled by the Conversational
nterface.

.4. Caregiver user interface

The caregiver user interface is a mobile app that enables caregivers to create medication reminders for care recipients and check
edication compliance. The mobile app is connected to the Conversational Interface and shares the database with the robot.
The mobile app is implemented based on an open-source social app called Telegram (Telegram, 2023), which offers a friendly

nterface by supporting both voice-based or text-based medication management for caregivers. A Telegram chatbot is customized
o be the front end, which connects the caregivers and the robot through the Cloud. The back end is based on the Conversational
nterface as is used by the robot, but without a wake-up module. Multi-threaded programming is used to allow the Conversational
nterface to serve multiple caregivers at the same time.
Fig. 4 shows four conversation examples between a caregiver and the robot. Fig. 4(a) shows an example of creating a new

eminder. The caregiver can delete the information created by mistake using the ‘‘Delete’’ button or modify other information
sing the corresponding buttons. Fig. 4(b) shows the function of checking daily medication adherence. Furthermore, the medication
eminders can be modified and the medication history records can be corrected if there are errors, as can be seen in Fig. 4(c).

2 https://ascclab.org/Projects
4
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a

Fig. 3. The prototype of the wearable monitoring unit.

Fig. 4. Conversation examples of the caregiver user interface: (a) Create a reminder for patients; (b) Check daily medication adherence; (c) Modify reminders
nd history records.
5
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Fig. 5. The design of the Conversational Interface.

. Conversational interface

The Conversational Interface in the ASCCBot provides multi-modal conversation ability for human–robot interactions, including
are recipient–robot interaction and caregiver–robot interaction. The Conversational Interface consists of multiple modules and
onnects to the microphone, camera, WMU and Cloud. Fig. 5 shows the design of the Conversational Interface which combines
wo interaction modalities to manage the medication: speech and vision. During a conversation, the voice captured by the robot
icrophone or the WMUmicrophone is processed by the Automatic Speech Recognizer (ASR) module to generate the text output. The
atural Language Understanding (NLU) module recognizes user’s intent and extracts the acquired entities. The Dialog Management
DM) module generates system actions to control the dialog flow based on the obtained intent and entities, the database records,
he time checker results, and human status and actions. The DM module decides whether to activate the Medication and Human
etection (MHD) module, which checks if the user is in the camera view and recognizes the medicine types and dosages. The
atural Language Generation (NLG) module generates response utterance to the user. The Text-to-Speech Synthesizer (TTS) module
ynthesizes speech which is played back to the user or sent to the WMU or the mobile app.
The Google Cloud services are employed to implement the ASR and TTS modules. The current NLG module uses a rule-

ased method. However, a deep learning-based method can also be adopted when more training data is available. Reminders,
edication records and daily adherence reports are displayed on the touchscreen of the robot, allowing the care recipient to check
he medication history himself/herself if needed. Below we describe Natural Language Understanding, Dialog Management, and
edication and Human Detection, respectively.

.1. Natural language understanding

After the ASR module converts the user speech to a text message, the Natural Language Understanding (NLU) module is used
o understand the user’s intent and extract necessary entities related to the medication reminder. For example, when the user says
‘John needs to take flu medicine for 3 pills at 8 AM’’., the NLU module understands that the user wants to create a reminder and the
mportant slots informed by the user are medicine = ‘‘flu medicine’’, dosage = ‘‘3 pills’’ and remind time = ‘‘8 AM’’.

.1.1. Intent recognition
Intent recognition detects users’ implicit or explicit intents such are creating a new reminder, confirming a medication or other

ctions, which can be regarded as a classification problem. There are several techniques that can be used to implement intent
ecognition, such as support vector machines (SVM), Naive Bayes classifier and deep learning methods like convolutional neural
etworks (CNNs) and recurrent neural networks (RNNs). The fastText neural network (Joulin, Grave, Bojanowski, & Mikolov, 2016)
6
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is utilized in our work to implement intent recognition, which consists of an input layer, a hidden layer, and an output layer. The
input of the network is a combination of word embedding and n-gram embedding, which provides a better generalization ability.
The output is a probability of the predefined intents.

4.1.2. Slot filling
Slot filling is regraded as a Named Entity Recognition (NER) problem, which takes the word tokens as the input and generates
sequence of corresponding labels of the tokens. In traditional NER tasks, the entities are usually person’s names, locations,

nstitutional names, proper nouns, etc. There are many open-source annotated datasets to train an NER model. Deep learning
ethods like BiLSTM-CRF could have been used to train a good NER model based on the annotated data. However, in our scenario,
e do not have enough labeled training data to obtain a good slot filling model. Therefore, a rule-based method combined with a
redefined dictionary is used to acquire the slot information. Six slots are considered: ‘‘𝑝𝑎𝑡𝑖𝑒𝑛𝑡_𝑛𝑎𝑚𝑒’’, ‘‘𝑚𝑒𝑑𝑖𝑐𝑖𝑛𝑒_𝑛𝑎𝑚𝑒’’, ‘‘𝑑𝑜𝑠𝑎𝑔𝑒’’,
‘𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒’’, ‘‘𝑒𝑛𝑑_𝑡𝑖𝑚𝑒’’ and ‘‘𝑟𝑒𝑚𝑖𝑛𝑑_𝑡𝑖𝑚𝑒’’. When the intent recognition model detects that the user wants to create a reminder or
ecord medication information, the slot filling model is used to extract the necessary slots.

.2. Dialog management

The Dialog Management (DM) module generates a suitable system action to control the dialog flow, interact with the users to
ccomplish the task. In this system, the 𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑙𝑖𝑐𝑦 refers to the information provided by 𝑠𝑦𝑠𝑡𝑒𝑚 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑡𝑎𝑡𝑢𝑠, 𝑢𝑠𝑒𝑟 𝑎𝑐𝑡𝑖𝑜𝑛,
𝑖𝑚𝑒 𝑐ℎ𝑒𝑐𝑘𝑒𝑟 and 𝑀𝑒𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝐻𝑢𝑚𝑎𝑛 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 (𝑀𝐻𝐷) module.
The 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑡𝑎𝑡𝑢𝑠 includes the current task type and slot filling status. The task types are used to indicate the 𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑙𝑖𝑐𝑦 to

elect the sub-skills and the slot filling status provides a reference for the 𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑙𝑖𝑐𝑦 to decide when to stop the task. The 𝑠𝑦𝑠𝑡𝑒𝑚
𝑐𝑡𝑖𝑜𝑛 and 𝑢𝑠𝑒𝑟 𝑎𝑐𝑡𝑖𝑜𝑛 divide the system and user actions into different categories which are used by the 𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑙𝑖𝑐𝑦. The 𝑡𝑖𝑚𝑒
ℎ𝑒𝑐𝑘𝑒𝑟 module checks the reminders in the database. When it is time to take the medicine, the 𝑡𝑖𝑚𝑒 𝑐ℎ𝑒𝑐𝑘𝑒𝑟 module changes the
ystem status and sends a message to the 𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑙𝑖𝑐𝑦.
The 𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑙𝑖𝑐𝑦 controls the robot actions according to the system status, the system and user’s previous actions, the time

hecker results and the MHD recognition results. The 𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑙𝑖𝑐𝑦 handles the conversations related to the basic robot skills such
s playing music, news and weather. In this system, we created a new medication management policy to manage the care recipient’s
edication. The medication reminder or the user intent such as creating a reminder can trigger this policy. When it is triggered,
he system status is initialized to the corresponding event. For example, when the 𝑡𝑖𝑚𝑒 𝑐ℎ𝑒𝑐𝑘𝑒𝑟 module detects that it is time to take
he medicine, the 𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑙𝑖𝑐𝑦 initializes the system status to 𝑟𝑒𝑚𝑖𝑛𝑑𝑒𝑟 𝑠𝑡𝑎𝑟𝑡𝑠. Based on this system status, the policy employs the
𝐻𝐷 module to detect if the care recipient is near the robot. Upon detection, the conversation is handled by the robot. Another
xample is that when the user utterance is ‘‘please remind me to take cold medicine for 2 mg at 8 pm’’, the system status is initialized
o 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑔 𝑎 𝑟𝑒𝑚𝑖𝑛𝑑𝑒𝑟. Based on this status, the 𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑙𝑖𝑐𝑦 utilizes the slot filling module to extract entities. In this example, the
𝑒𝑑𝑖𝑐𝑖𝑛𝑒, 𝑑𝑜𝑠𝑎𝑔𝑒 and 𝑟𝑒𝑚𝑖𝑛𝑑 𝑡𝑖𝑚𝑒 slots are filled, which is not complete because of other missing slots. Therefore, the system status
ecomes 𝑛𝑜𝑡 𝑓𝑢𝑙𝑙 𝑠𝑙𝑜𝑡𝑠. Based on this status, the 𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑙𝑖𝑐𝑦 generates actions to further acquire the remaining slots until the status
ecomes 𝑓𝑢𝑙𝑙 𝑠𝑙𝑜𝑡𝑠. When the system detects the user intents such as terminating the conversation and no reply for a long time,
he 𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑙𝑖𝑐𝑦 saves the current dialog and stops the conversation. Similarly, when the user intent is 𝑎𝑠𝑘𝑖𝑛𝑔 𝑓𝑜𝑟 𝑟𝑒𝑝𝑒𝑎𝑡, the 𝑎𝑐𝑡𝑖𝑜𝑛
𝑜𝑙𝑖𝑐𝑦 checks the dialog history and generates the same action as the last one.

.3. Medication and human detection

The Medication and Human Detection (MHD) Module is used to detect the medicine types and pill count, as well as check if
he care recipient is in the camera view of the robot, which can be regarded as an object detection problem. To reduce the lag in
uman–robot interaction, we utilize the YOLO algorithm (YOLOv5) (Jocher, Stoken, Borovec, & NanoCode012, 2021) for medication
nd human detection in this system. YOLOv5 has good detection accuracy with a high inference speed which is suitable for our
obot to use. We labeled the images of common medicines, hands and people, and then fine-tuned the pre-trained YOLOv5 model. In
rder to improve the recognition result, we carried out post-processing on the detection result: when the user is asked to show robot
he medicines, only the medicines that appear in the hand are counted, if the hand is detected. We observed that this post-processing
an help improve the recognition results.

. Experimental evaluation

We conducted experiments to test the performance of the proposed MAMS and surveyed the users regarding their experience
7

ith the MAMS.
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Table 1
Intent list.
Train/Test Intent Train/Test Intent

35/4 playing news 35/4 playing games
34/4 playing music 59/5 creating a reminder
38/4 checking weather 55/5 recording medicine
36/4 telling jokes 42/4 checking reminder
36/4 taking photo 13/4 modifying reminder
47/4 translation 34/4 stopping conversation
36/4 chitchat

Table 2
The dataset information.
Objects No. of objects

Training set Test set

med_1 99 19
med_2 91 18
med_3 100 20
med_4 100 21
med_5 100 17
med_6 100 18
med_7 100 19
med_8 102 20
med_9 103 18
med_10 101 20
med_11 104 20
med_12 112 22
med_13 110 18

No. of images 811 171

5.1. Evaluation of intent recognition

5.1.1. Experimental setup
The accuracy of intent recognition in natural language understanding is critical to the system performance. We defined a total

f 13 intents, including the intents for the basic skills such as 𝑝𝑙𝑎𝑦𝑖𝑛𝑔 𝑛𝑒𝑤𝑠, 𝑝𝑙𝑎𝑦𝑖𝑛𝑔 𝑚𝑢𝑠𝑖𝑐 and 𝑐ℎ𝑒𝑐𝑘𝑖𝑛𝑔 𝑤𝑒𝑎𝑡ℎ𝑒𝑟, and the intents for
he MAMS such as 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑔 𝑎 𝑟𝑒𝑚𝑖𝑛𝑑𝑒𝑟, 𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑚𝑒𝑑𝑖𝑐𝑖𝑛𝑒, 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑎𝑡𝑖𝑜𝑛, etc. The intents and the number of training and
est samples are listed in Table 1. To improve the robustness of the system, we set the acceptance threshold of the recognition result
o be 0.80. We asked three graduate students to construct the corpus. They came up with different ways to express the 13 intents.
fter removing the duplicates, there are totally 552 samples. We used 500 sentences to train the intent recognition model and 52
tterances (4 test samples randomly selected for each intent) to test the trained model.
We used the 2-gram word-level feature for training and testing.

.1.2. Results and analysis
From the test result, we can see that the test accuracy is 98.08%. We observed that there is only one wrong recognition result,

hich is the 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑎𝑡𝑖𝑜𝑛 intent. The corresponding utterance is ‘‘quit’’. This word only appears in the test set. Using the
rained intent recognition model during the human subject evaluation experiment (Section 5.3), we only observed 3 mis-classified
intents, which is acceptable in our system’s real-world usage.

5.2. Evaluation of medication detection

5.2.1. Experimental setup
To train and test the medication detection model, we created a dataset of 13 𝑚𝑒𝑑𝑖𝑐𝑖𝑛𝑒 objects. The numbers of each medicine

in the training set and the test set are listed in Table 2. Fig. 6 shows the 13 medicines included in the dataset. We fine-tuned the
pre-trained YOLOv5 model on our dataset to enable a faster convergence. The training epoch is set to 30, the batch size is 16. An
NVIDIA RTX3060 GPU was used in the training.

5.2.2. Results and analysis
The mean precision, recall, and mAP@0.5 (Average Precision, Intersection over Union set to 0.5) obtained from the test set are

0.983, 0.985 and 0.985, respectively. Fig. 7 shows the test results obtained from the test set. Fig. 7(a) shows some detection result
samples. Fig. 7(b) is the confusion matrix. 𝐵𝐺_𝐹𝑁 means background false negative. 𝐵𝐺_𝐹𝑃 means background false positive.
8

We can observe that 10 out of 13 medicines in the test set are detected with an accuracy of 100%. There are some mis-classified
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Fig. 6. Medicines in the dataset.

Fig. 7. Test results: (a) Samples of detection result; (b) The confusion matrix.

medicines such as 𝑚𝑒𝑑_6, 𝑚𝑒𝑑_11 and 𝑚𝑒𝑑_12. The lighting condition and the viewing angles contribute to the misclassification. By
observing the wrong recognition results, we found that most of errors occur in the medicines that have the similar shapes or colors.

It is clear that misclassification of medicine is likely to occur in real environments. In order to further mitigate this problem, one
way is to let the robot send the photo of the medicine to caregivers for further confirmation and remind the user to double-check
the medicine, if the confidence of medication recognition is not high. In case of misclassification, the caregivers can correct them
and the new labels can be used to retrain the model. Another possible solution to address the misclassification problem is to use a
pill box to ensure the correct pills are taken by the user.

5.3. Human subjects evaluation

5.3.1. Experimental setup
We recruited 35 participants to test the MAMS. The human subject test is approved by the Oklahoma State University IRB office

under application No. IRB-22-252. Before the test, we briefly introduced our system and taught the participants how to wake up and
use the robot and the WMU. They all signed an informed consent form before the experiment. Fig. 8 shows some scenes of the test.
Subjects were asked to undergo three experimental scenarios. In Scenario 1, the participant is placed in front of the robot. When it
is time to take medicine, the participant talks to the robot to record the medication, while picking up the wrong dosage or wrong
medicine initially. After being reminded by the robot, the participant picks up the correct medicine, mimics the action of taking
the medicine and the robot records the medicine-taking event. In Scenario 2, the participant is in the bedroom which is far away
from the robot but still within the WiFi range. The maximum distance between the participant and the robot is basically determined
by the WiFi range. As long as the WMU and the robot can both connect to the WiFi, they can communicate with each other. The
WMU is attached to the chest of the participant and the participant follows a similar procedure as in Scenario 1, while the medicine
9
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Fig. 8. The human subjects test.

Table 3
Statistical results of the convenience, usefulness and overall rating of the MAMS and mobile App.
Metrics MAMS Mobile App

Mean Std. Dev. Mean Std. Dev.

Convenience 8.17 1.92 5.83 2.38
Usefulness 8.49 1.76 6.80 2.37
Overall rating 8.23 1.68 6.34 2.09

Table 4
Independent sample 𝑡-test results between MAMS And Mobile APP.
Metrics 𝑡 sig.(2-tailed) MD

Convenience∗∗∗ 4.533 <0.001 2.343
Usefulness∗∗∗ 3.378 <0.001 1.686
Overall rating∗∗∗ 4.164 <0.001 1.886

1 ∗𝑝 < 0.05, ∗∗𝑝 < 0.01, ∗∗∗𝑝 < 0.001.
2 MD: Mean Difference. MAMS-Mobile App.

mages are taken by the WMU. In Scenario 3, we provided the participant with an iPhone 11 which has a mobile app named Pill
eminder which ranks in the top in the category of ‘‘Medication Reminder’’ in the app store. The participants were asked to create
medication reminder for themselves for comparison purpose. After the test, the volunteers were asked to provide feedback based
n their experience with the MAMS and the mobile app through a questionnaire, which asked them to evaluate the convenience,
sefulness and overall rating of the system, ranging from 1 to 10. In addition, we used the System Usability Scale (SUS) (Bangor,
ortum, & Miller, 2009) to evaluate the usability of the MAMS and the mobile app. It includes 10 items assessed with a 5-point
ikert scale, which is a reliable tool for measuring the usability and commonly used as an industry standard.

.3.2. Results and analysis
Fig. 9 shows the age and gender distribution of the participants. There are 15 females and 20 males. The participants are aged

etween 21 and 80. There are 24 participants between 21 and 45, 11 participants between 51 and 80. It took each participant about
5 min to finish the test. We received the responses to our questionnaires from all participants. Table 3 shows the statistical results
f the convenience, usefulness and overall rating of the MAMS and the mobile app. Table 4 shows the corresponding independent
ample 𝑡-test results. Fig. 10 shows the corresponding box/swarm plot. Table 5 shows the statistical results of the SUS scores, which
are the participants’ evaluation on the whole MAMS, the robot end, the WMU and the mobile app, respectively. Table 6 shows
the independent sample 𝑡-test results among them, where MAMS_Robot means the comparison between MAMS and Robot. Table 7
shows the comparison of different metrics in different age groups. Table 8 shows the independent sample 𝑡-test results between the
two age groups, where Convenience_MAMS__Y_O means the comparison of the Convenience of MAMS between the Younger group
and the Older group. The results indicate the following:

• From Table 3, we can observe that the convenience, usefulness and overall rating of the MAMS are 8.17, 8.49 and 8.23 out of
10

10, respectively. The scores are all above 8.00. From the box/swarm plot in Fig. 10, we can observe that for the three metrics,
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Fig. 9. The age and gender distribution of the human subjects.

Fig. 10. Box/swarm plot of convenience (CONV), usefulness (USEF) and overall rating (OVRA) of the MAMS and mobile App.

Table 5
Statistical results of SUS score.
SUS score MAMS Robot Wearable device Mobile App

Mean 75.29 78.60 76.40 64.93
Std. Dev. 18.44 17.31 19.49 18.21

Table 6
Independent sample 𝑡-test results of the SUS score. Components of the MAMS minus The Mobile App.
Compare element 𝑡 sig.(2-tailed) MD

MAMS_Robot −0.831 0.204 3.314
MAMS_Mobile App∗∗ 2.365 0.01 10.357
MAMS_Wearable device −0.267 0.395 1.11
Wearable device_Mobile App∗∗ 2.766 0.004 11.471
Robot_Wearable device 0.590 0.279 2.2
Robot_Mobile App∗∗∗ 3.456 <0.001 13.670

1 ∗𝑝 < 0.05, ∗∗𝑝 < 0.01, ∗∗∗𝑝 < 0.001.
2 MD: Mean Difference: MAMS Component-Mobile App.

half of the participants rated the three metrics 9 or 10. The results indicate that the participants in our experiment regard
the MAMS as useful and convenient to use. Compared with MAMS, the mobile app achieved the convenience, usefulness and
overall rating score of 5.83, 6.80 and 6.34 out of 10, respectively. As can be seen from Table 4, all 𝑝-values are less than 0.001.
The positive t-statistic indicates that the users preferred the MAMS over the mobile app. From the perspective of the overall
participants, our system is acceptable and outperforms the commercial mobile app.

• According to the SUS assessment criteria, a SUS score above 70.00 means the system is acceptable. A SUS score above 72.00
means the system is good. As can be seen in Table 5, the mean SUS scores of the whole system, the robot end, the WMU and
the mobile app are 75.29, 78.60, 76.40 and 64.93, respectively. As can be seen from Table 6, the SUS scores for the MAMS, the
Robot, and the Wearable Device versus the App, were significant higher than that of the cellphone app (𝑝 < 0.01), indicating
that when it comes to managing their medication, subjects found the MAMS better than the mobile app.

• We can observe that the SUS score of the wearable device is not as good as the robot. First, compared with directly talking
to the robot, the response time of WMU-based medication is increased due to the transmission of the data between the robot
and the WMU. It is estimated that for each transmission, the time cost is around 2.7 s at the WiFi speed of 200 KB/s. Second,
the current size of WMU is still too big to be comfortably worn on the chest. Third, there is an issue with the wearable device
11
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Table 7
Results comparison of different age groups.
Age Metrics MAMS Mobile App

Mean Std. Dev. Mean Std. Dev.

21–45 Convenience 8.58 1.41 5.58 2.21
(𝑛 = 24) Usefulness 8.75 1.45 6.67 2.26

Overall rating 8.58 1.32 5.92 1.89
SUS 78.65 18.65 64.90 16.31

51–80 Convenience 7.27 2.57 6.36 2.77
(𝑛 = 11) Usefulness 7.91 2.26 7.09 2.70

Overall rating 7.45 2.16 7.27 2.28
SUS 67.95 16.42 65.00 22.69

Table 8
Independent sample 𝑡-test results between different age groups.
Compare element 𝑡 sig.(2-tailed) MD

Convenience_MAMS_Y_O 1.954 0.300 1.311
Usefulness_MAMS_Y_O 1.331 0.096 0.841
Overall rating_MAMS_Y_O∗ 1.914 0.032 1.128
SUS_MAMS_Y_O 1.631 0.056 10.691
Convenience_App_Y_O −0.897 0.188 −0.780
Usefulness_App_Y_O −0.485 0.315 −0.424
Overall rating_App_Y_O∗ −1.848 0.037 −1.356
SUS_App_Y_O −0.014 0.494 −0.104

1 ∗𝑝 < 0.05, ∗∗𝑝 < 0.01, ∗∗∗𝑝 < 0.001.
2 MD: Mean Difference: Young-Old.

as the participants have difficulty putting the medicine in the camera view, which makes it hard to correctly recognize the
medicines.

• Table 7 shows the comparison results of different metrics in different age groups. For the 21–45 age group, they rated the
convenience, usefulness, overall rating, and SUS of the MAMS as 8.58, 8.74 and 8.58 out of 10 and 78.65, respectively. As we
observed, the young users can easily learn how to use our MAMS and they are interested in this new technology. It is easier
for them to interact with the robot. As for the mobile app, the scores dropped by 3.00, 2.08, 2.66 and 13.75, respectively. As
for the mobile app, they did not rate it very high because they thought the mobile app is not user-friendly for older adults to
use.

• In the 51–80 age group, the four scores were lower, by 1.31, 0.84, 1.13 and 10.70, respectively, as compared with the 21–45
group. Correspondingly, acceptance of MAMS was also lower in the old as compared to the young. The four scores of MAMS
are not significantly higher than those of the mobile app. There could be multiple reasons. The first possible reason is the
cost, as older adults are more sensitive to product cost, which is an important factor that affects its acceptance. For mobile
apps, we searched in the app store about the annual subscription price of mobile apps which rank at the top in the category
of ’’Medication Reminder‘‘ and found that the subscription price varies from 2 USD to 240 USD according to the functionality
of those apps. The proposed MAMS, including the ASCCBot and WMU, apparently has a higher cost compared to the mobile
app. The proposed MAMS is developed based on the companion robot, which has many other functions for elderly care beside
medication management. We expect that customers, especially older adults will gradually accept it when the value offered by
the robot is worth the money. On the other hand, we will further work on the system to reduce the cost so that many users
can benefit from it. The second possible reason is that older adults are more reluctant to embrace new technologies as they
tend to have difficulties in using new products, which requires us to consider the user friendliness of the robot in the future
design.
Table 8 shows that on average, the differences in the convenience, usefulness and SUS do not differ significantly between
the two groups. Whereas the young preferred the MAMs over the mobile app (𝑡 = 1.9, 𝑝 < 0.032), the older group preferred
the mobile app (𝑡 = −1.8, 𝑝 < 0.037). We observed that some older adults had difficulties showing the medicine to the robot.
One older adult’s hand was shaking in doing this because of her physical condition, which reduced the medicine recognition
performance. Two older adults suggested that we mark the area on the robot face where the user can show the medicine. They
also mentioned that they felt tired when they had to show the medicine for a longer time. Overall, compared with the mobile
app, MAMS still outperforms the commercial product from the perspective of the older users. We observed that when creating
reminders using the mobile app, some older adults had to wear glasses and some needed the extra instructions because they
did not know which buttons to push. They preferred to use voice which is more user-friendly. Therefore, the four scores of
the mobile app decreased by 0.91, 0.82, 0.18 and 2.95, respectively compared with MAMS. It indicates our system is more
convenient and useful to manage older adults’ medication.

Additional insights were gained when we asked subject what they thought about how they might use the MAMS. Among the 5
articipants aged 66 and above, three preferred to use the robot to manage their medication. Among them, one has memory loss
12
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problem, one needs to take more than 5 types of medicine daily and the other one rarely takes medicine. A couple expressed that
they do not want to use the robot or the app citing that the robot reduces their feeling of independence.

Overall, as evidenced by the human subject test data, the MAMS is favorably accepted by the participants, though some
eservations and group differences are observed. Through the test, we have identified some limitations that we should work on
o improve the system. First, the Conversational Interface utilizes Google Cloud APIs to implement ASR and TTS. When the Internet
onnection is poor, the system performance gets worse and the user experience deteriorates. Second, since the wearable device
as limited computational capacity, image recognition and speech processing are implemented on the robot, which increases the
esponse time of the system on the WMU. Therefore, the interaction with the WMU is not as good as with the robot. Third, people
sually take medication in places like kitchen, dining room and bedroom. Thus, to improve the generalizability of our finding,
urther study is needed to collect medicine image data at different lighting and sound conditions. Finally, our current system cannot
e used by people with cognitive impairment such as dementia. It is desirable to improve the robot to adapt to different levels of
ognitive capacity.

. Conclusion and future work

In this paper, we presented a Medication Adherence Management System (MAMS) using a companion robot and a wearable
evice, aimed to improve medication adherence for older adult patients in their own homes. Caregivers create medication reminders
hrough the app on their mobile devices. Care recipients can also create reminders for themselves through the companion robot. The
obot, with the help of the WMU, can assist care recipients to take medicines on time in the right dosage. The design of the MAMS
s presented in terms of both hardware and software, with a focus on its Conversational Interface. We evaluated the performance
f the MAMS in terms of intent recognition in natural language processing and medication recognition. We also conducted human
ubject tests which involved three scenarios: the care recipient is in front of the robot, the care recipient is away from the robot
nd a comparison with a mobile app-based medication reminder. The post-test survey results involving 35 human subjects indicate
satisfactory user acceptance.
In the future, we will focus on the following issues: (1) Medication detection algorithm. We will add more types of medicine into

he dataset, and improve the accuracy of medicine detection in different lighting conditions and viewing angles. (2) WMU design.
e will design a smaller, lighter case for the WMU while minimizing the dimension of the circuit boards of the WMU. The main
rocessor of the WMU will be upgraded to a more powerful Raspberry Pi Zero 2 W to boost the performance. (3) More human
ubject tests. We will conduct more human subject tests, especially with older adults, in realistic home environments. More metrics
ill be used to assess the system performance, including privacy concerns, human factor issues, etc.
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