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Abstract
We present a new framework for online dense 3D reconstruction of indoor scenes by using 
only depth sequences. This research is particularly useful in cases with a poor light condition 
or in a nearly featureless indoor environment. The lack of RGB information makes long-range 
camera pose estimation difficult in a large indoor environment. The key idea of our research is 
to take advantage of the geometric prior of Manhattan scenes in each stage of the reconstruction 
pipeline with the specific aim to reduce the cumulative registration error and overall odometry 
drift in a long sequence. This idea is further boosted by local Manhattan frame growing and 
the local-to-global strategy that leads to implicit loop closure handling for a large indoor scene. 
Our proposed pipeline, namely ManhattanFusion, starts with planar alignment and local pose 
optimization where the Manhattan constraints are imposed to create detailed local segments. 
These segments preserve intrinsic scene geometry by minimizing the odometry drift even under 
complex and long trajectories. The final model is generated by integrating all local segments into a 
global volumetric representation under the constraint of Manhattan frame-based registration across 
segments. Our algorithm outperforms others that use depth data only in terms of both the mean 
distance error and the absolute trajectory error, and it is also very competitive compared with 
RGB-D based reconstruction algorithms. Moreover, our algorithm outperforms the state-of-the-art 
in terms of the surface area coverage by 10%−40%, largely due to the usefulness and effectiveness 
of the Manhattan assumption through the reconstruction pipeline.
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1. INTRODUCTION

With the prevalence of low-cost RGB-D cameras, even available in the new generation 
of smartphones, 3D sensing technologies such as face recognition, facial payment, 3D 
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modeling, semantic mapping, gesture recognition, robot navigation, and augmented and 
virtual reality are becoming increasingly feasible among consumers. In the past decade, 
there has also been extensive research on various 3D sensing applications in computer vision 
and robotics communities. Dense mapping and volumetric reconstruction of extended scale 
indoor scenes are active research topics in these communities and creating high fidelity 
dense models from RGB-D streams has become one of the most active and interesting 
research topics in many related areas. In general, in the robotics community, the research is 
focused on Simultaneous Localization and Mapping (SLAM) that generates sparse 3D maps 
using visual features and depth information where the main goal is to minimize the absolute 
trajectory error with less concern about the quality and geometric details of the reconstructed 
models [8], [19], [20], [24]. By contrast, the research objective in the computer vision 
community is often about dense volumetric reconstruction where the fidelity and quality of 
the created models are of the main interest [1], [15], [21], [47], [49].

Over the past decade, many reconstruction algorithms have been proposed for generating 
3D models from real scene objects or environments. While creating dense reconstruction 
of a single object can be performed without much difficulty, large scale indoor scene 
reconstruction particularly with complex trajectories can be a challenging task. In this 
regard, a few key research problems have been studied that led to the development of some 
new and powerful methods for 3D dense modeling. Specifically, the cumulative registration 
error and overall geometric drift are two major problems in large scale scene reconstruction. 
Researchers in both vision and robotics communities proposed various online approaches 
[1], [2], [6], [12], [19], [46], [47], [49] and offline methods [15], [21], [52] to address 
these two issues. Usually, online and real-time approaches can reconstruct a scene model 
incrementally and progressively from the input RGB-D stream where additional constraints 
(such as loop closure or visual feature matching) are used to minimize the drifting problem. 
On the other hand, the offline methods usually can generate more accurate and detailed 
models, but they require more processing time for global optimization over all input 
frames. Many existing frameworks involve both color and depth (RGB-D) data in scene 
reconstruction and some methods use only depth data. In this work, we are particularly 
interested in depth-based indoor scene reconstruction.

In this paper, we present a new pipeline, namely ManhattanFusion, for 3D dense 
reconstruction of extended scale indoor scenes from only depth data by taking advantage 
of the Manhattan World (MW) assumption [39], as shown in Fig. 1. This research is 
particularly useful in cases with a poor light condition or in a nearly featureless environment. 
The lack of RGB images makes long-range camera pose estimation difficult in large 
indoor scenes. The MW assumption available in most structured indoor scenes provides 
a reliable geometry prior for 3D scene mapping and has been used in many SLAM 
systems. Different from other approaches where the MW assumption is mainly used for 
data rectification or model representation (e.g., [22], [23], [53], [54]), our goal is to reduce 
the accumulative drift error over an extended scale by exploiting the MW assumption as 
a geometric prior at multiple stages in the proposed pipeline. Specifically, our approach 
has three major components. First, we propose a new local Manhattan frame growing 
strategy that sequentially propagates the geometric cue across depth frames to enhance 
the registration accuracy and efficiency without using any visual information. Second, we 
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further incorporate the Manhattan constraint between adjacent keyframes for local pose 
optimization that leads to accurate reconstruction of local segments. Third, we develop 
Manhattan keyframe-based model registration where geometric planar alignment between 
two local segments mitigates the discontinuity problem in large area surface reconstruction 
due to noise and error in depth data, leading to smoother and more complete planar surfaces 
in the final reconstructed model.

2 RELATED WORK

The major challenges in 3D scene reconstruction of large scale indoor environments 
include the cumulative drift due to the registration error and the inaccuracy in pose 
estimation. Specifically, in extended scale environments with complex trajectories, this 
odometry information is prone to error. There has been abundant research on 3D mapping 
and dense modeling that are motivated by minimizing this error and creating drift-free 
3D reconstruction. The acquisition of robust pose estimation is generally possible by 
using visual feature matching in conjunction with bundle adjustment [26] and/or pose 
graph optimization [27] to minimize the reprojection error or to refine pose estimation. A 
comparison between the state-of-the-art in 3D mapping and dense reconstruction systems is 
shown in Table 1, which is an extended version of the analogy performed by [50].

One of the foremost approaches that had a remarkable impact on the related research, is 
KinectFusion [3], [5]. This system demonstrated real-time dense mapping and tracking for 
volumetric reconstruction of objects and small indoor scenes. KinectFusion was further 
extended to handle large scale scenes. For example, the spatially extended KinectFusion, 
i.e., Kintinuous [9], and its extension [10] were developed for mesh mapping of large scale 
indoor environments using dynamic shift of the voxel grid in real-time. A new hierarchical 
data structure has been proposed in [14] to address the scalability problem in real-time 
volumetric surface reconstruction of large scale environments. Voxel hashing [13] proposed 
a spatial hashing scheme for scalable volumetric reconstruction in real-time. Point-based 
fusion [18] presented a new system for online reconstruction of large scale scenes without 
the need of a spatial data structure. Moving volume KinectFusion [43] was developed to 
handle large volumes in outdoor environments. The open source Kinfu large scale [40] has 
been implemented based on the Point Cloud Library (PCL) for producing textured meshes 
from large areas using handheld commodity range sensors. These reconstruction systems are 
normally limited to relatively simple trajectories and may not detect the loops and handle the 
loop closure problem in extended scale environments.

Thereafter, a number of 3D mapping and dense modeling approaches have been developed 
for handling loop closures in complicated trajectories. For example, RGB-D mapping [24], 
patch volumes [25], RGB-D SLAM [29], [30], deformation-based dense SLAM [11], and 
multi-resolution surface reconstruction [33] have been proposed to handle loop closures 
using visual feature matching or dense image registration in long trajectories and to create 
large scale maps in real-time. Many volumetric methods have also been developed to 
generate high quality reconstructions using global optimization. Offline systems such as 
elastic fragments [16], dense scene reconstruction with points of interest [15], and Redwood 
robust reconstruction [21] present the new frameworks, which can handle loop closures and 
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produce globally consistent volumetric reconstructions. A novel local-toglobal hierarchical 
optimization framework called BundleFusion has been proposed in [1] that handles loop 
closures implicitly and reintegrates the scene on the fly, and generates highly detailed dense 
models in real-time from RGB-D data.

Our ManhatanFusion approach is aimed at taking advantage of the MW assumption with 
multiple purposes to generate volumetric reconstructions of extended scale indoor scenes 
with fine-grained details. Compared with existing methods where the MW idea was used 
[22], [23], [28], [53], [54], our approach has three unique features. First, our approach 
only uses the depth data where the MW assumption plays an important role for long-range 
camera pose estimation, and local-to-global model integration along with implicit loop-
closure handling, while others mainly rely on RGB images for camera pose estimation 
and loop closure detection. Second, our approach creates a dense and detailed volumetric 
representation while others generate a CAD-like model, a floorplan model, or colored point 
clouds. Third, our Manhattan frame growing strategy propagates the geometric constraint 
across the long depth sequences, and supports pose graph optimization along with local 
model reconstruction and local-to-global model integration. This is in contrast with previous 
methods where the MW assumption is mainly used for a specific purpose, such as data 
rectification, model representation or frame alignment.

3 PROPOSED METHOD

We first provide an overview of the proposed ManhattanFusion framework. Then we 
discuss the major technical components in the pipeline, including Manhattan frame growing, 
local robust pose optimization, Manhattan frame-based model registration and final model 
integration.

3.1 Overview

The pipeline of ManhattanFusion is shown in Fig. 2. It begins by performing a preprocessing 
on depth sequences to compute the normals and depth maps. The core idea of this 
framework is using Manhattan frame growing to extend the first estimated Manhattan 
frame to the adjacent depth keyframe, leading to a rotated depth keyframe aligned with 
the dominant plane, called Manhattan keyframe (MKF), which has a significant role in all 
reconstruction steps. In our previous work [42], we perform local Manhattan frame growing 
to create regional segments as long as the dominant plane is detectable in the scene. The 
system starts creating a new local model when the dominant plane disappears or a new 
dominant plane is observed. In our new framework, to drive more accurate information and 
minimize geometric drift in each segment, we create local segments for every N consecutive 
MKFs (e.g., N = 100). According to our pose tracking, a new keyframe is identified when a 
significant translation occurs in the camera motion, then the previous Manhattan keyframe is 
extended to the new keyframe and used for local segment creation.

To facilitate the Manhattan frame growing process, we utilize surface normal adjustment 
to produce highly persistent distribution of the surface normals for Manhattan frame 
estimation [4] that yields dominant planes for each depth keyframe (as shown in Fig. 3). 
The first identified Manhattan frame will initiate the Manhattan frame growing scheme over 

Yazdanpour et al. Page 4

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2023 July 01.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



adjacent depth keyframes. Afterwards, we deploy reliable planar pre-alignment between 
MKFs across dominant planes for surface registration initialization in local segment creation 
as well as global model integration. At the same time, we construct a segmental pose 
graph and then incrementally optimize the local odometry in each local segment using 
a MKF-based constraint, which reduces considerably the overall geometric drift error 
in the final dense model. Moreover, we use local pose optimization and MKF-based 
depth-to-model registration to create robust local segments by using refined camera poses 
retrieved from the local pose optimization step. Finally, we create a complete volumetric 
representation of the scene by integrating all local segments into a global framework via 
MKF-initialized registration between consecutive segments. Our proposed approach is a 
depth-based reconstruction system and we do not use RGB channels in our pipeline. We 
present all major steps in details below.

3.2 Manhattan Frame Growing

The geometric representation of the structured indoor scenes using the Manhattan world 
assumption provides reliable information in 3D modeling, scene understanding, and 
semantic segmentation applications. The MW assumption states that all objects in an 
indoor scene are aligned with one of three mutually orthogonal planes. Estimating the 
Manhattan frame based on this assumption provides the reliable geometric properties, 
which benefits the reconstruction process of indoor environments. The Manhattan frame 
estimation methods can be classified into two groups. The first group includes the RGB-
based approaches, which rely on extracting lines, edges, and orthogonal vanishing points 
from RGB frames [38], [44]. The second group is RGB-D-based methods, which use the 3D 
perspective information like surface normals computed from point clouds or depth frames 
[36], [37]. In the majority of instances, the observed scene is not an ideal Manhattan scene 
with absolute Manhattan elements, which are aligned with the principal axes. In addition, 
due to noise, inconsistency in depth information, and computational error, estimating the 
reliable Manhattan frame can be an arduous task.

In our new framework, we propose a new Manhattan frame growing scheme to extend the 
first estimated Manhattan frame to the next identified depth keyframes along the dominant 
surface planes of the scene. This proposed technique is extended based on the original 
Manhattan frame estimation method introduced by [36]. The main idea of Manhattan frame 
estimation is to find the best rotation matrix and use it to transform the original surface 
normals to be aligned with at least one of three main perpendicular axes as follows:

MF = argmin
R,X

1
2 ∥ (R ⋅N −X) ∥F2 + λ ∥ X ∥1, 1 (1)

where N ∈ ℝ3 × m is the matrix of the original surface normals, R ∈ SO(3) is the rotation 
matrix, and X is the sparse matrix result of applying R to matrix of the surface normals N. 
The second term acts as a sparsity regularizer and is the sum of the ℓ1 norms of the columns 
in matrix X . ∥ X ∥p, q shows the ℓp, q matrix norm of X, and the parameter λ operates as a 
trade-off between sparsity and error sensitivity. This non-convex optimization problem does 
not have a globally optimal solution and the local minimum is attainable via alternating 
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optimization, where the solution for two variables R and X is updated iteratively, while the 
other variable is kept fixed. In this alternating optimization, the current estimation of the 
rotation matrix R applied to the original surface normals N is updated using the singular 
value decomposition function and the sparse matrix X is updated using a soft-thresholding 
operator to achieve a higher sparseness. Finally, the best estimated rotation matrix will be 
applied to align the surface normals to the main principal axes of the scene.

In our Manhattan frame growing strategy, we use the original Manhattan frame estimation 
method to find the best rotation matrix R for the first identified keyframe in the scene and 
then use it as a reliable initialed rotation matrix for the surface normals of the next adjacent 
depth keyframe fik as follows:

MFG = argmin
Ri,Xi

1
2‖ Xi −Ri ⋅Ni + Xi −Xi − 1 ‖F2 + λ‖Xi‖1, 1, (2)

where Ni is the matrix of the original surface normal vectors of the new keyframe, Ri is the 
rotation matrix, which is initialized from the previous desirable rotation matrix Ri − 1, Xi is 
the sparse matrix result of applying Ri to the set of surface normal vectors, and Xi − 1 is 
the sparse matrix belongs to the previous MKF. Xi should be continuance of Xi − 1 to grow 
dominant planes. The second term is used as a regularizer and helps to avoid the overfitting 
problem and to achieve the higher sparseness. We rotate every MKF to be aligned with the 
dominant plane of the scene before using in the reconstruction system, as shown in Fig. 4.

3.3 Local Robust Pose Optimization

The importance of the pose optimization and graph correction for minimizing the odometry 
drift in large scale environments has been emphasized in many SLAM-based and volumetric 
reconstruction systems. The camera tracking and pose estimation can be fulfilled based on 
the visual odometry or just depth information. The reconstructed models by visual odometry 
approaches, which use visual feature correspondences via a frame-to-frame tracking and 
matching scheme, and volumetric fusion systems with a frame-to-model tracking and 
registration model based on the geometric features, are inherently prone to accumulate the 
drift error. This problem led researchers to use different auxiliary systems like pose graph 
optimization, bundle adjustment, and loop closure detection for pose estimation correction. 
Performing global optimization over all frames is a gradual process and increases the 
computational cost.

In our local pose optimization method, each segment will be locally optimized within 
on frames by considering the additional constraint between two Manhattan keyframes. 
The local pose information is usually more reliable to be obtained and optimized. We 
incrementally optimize the pose estimates to achieve consistent frame poses. We align the 
identified depth keyframe with the estimated Manhattan frame of the scene and rely on the 
geometric similarity to find the translation between two successive Manhattan keyframes 
in order to find the definitive pose estimation and to reduce the accumulation of the local 
drift error. These geometric camera pose constraints help to have more robust and accurate 
pose estimation. Furthermore, this technique is faster than traditional SLAM-based methods 
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that use the visual feature matching and explicit loop closure detection system to refine the 
camera trajectory recursively. We optimize the pose graph through minimizing the following 
objective function:

X* = argmin
X

E(X), (3)

we formulate the objective function in the following form, where E(X) and eij are defined as:

E(X) = ∑
i, j

eijTΩijeij (4)

where

eij = f xi, xj − dij,

where X = x0,…, xn  is a set of estimated frame poses, f xi, xj  is the relative 
transformation between two consecutive poses xi and xj obtained from camera tracking 
system, dij is an observed constraint derived from two adjacent MKFs fik and fjk, and Ωij
represents uncertainty and is the covariance matrix of the relative transformation between 

consecutive frames. In the quaternion representation of pose xn = pnT , qnT
T , pn represents 

the position and qn is the orientation represented as an Eigen quaternion. Using quaternion 
can speed-up the optimization process, since this representation requires less computation 
than a regular rotation matrix. Specifically, f xi, xj  is computed from the absolute poses 

returned by the camera tracker and represented a quaternion form as f xi, xj = pijT , qijT
T , 

where pij and qij are the translation and relative rotation between two poses, respectively. 
To minimize the energy function and correct the pose estimation error, we add an observed 
Manhattan-based constraint dij from fik and fjk, which is derived from two adjacent MKFs 
and shows the transformation between these two. According to our Manhattan growing 
algorithm, a new MKF is identified when a significant translation in pose tracking occurs 
and a new node is added to the local reconstructed graph. Afterwards, dij is calculated based 
on the position and orientation information of two adjacent MKFs and the error between the 
measured and observed poses is corrected according to the assigned pose IDs to keyframes. 
We use Ceres Solver [48] for optimizing the local trajectories and to minimize sequential 
constraints between depth keyframes. We assign pose IDs to estimated MKFs and use these 
indices to retrieve the corrected pose estimations. These refined poses will be used in the 
sequential registration process in a MKF-based depth-to-model registration scheme to create 
robust fused segments.

3.4 Manhattan Keyframe-based Model Registration

We effectively enhance the robustness of keyframe registration by benefiting from the local 
geometric information of the scene. We use pre-planar alignment based on the identified 
MKFs as a robust initializer for surface registration. Using MKFs provides a reliable 
geometric constraint to reduce the overall registration error. We also assign pose IDs to 
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estimated MKFs and use these indices to retrieve the refined pose estimations from the 
local pose optimization step. These refined poses will be used in the sequential registration 
process. We initially use geometric registration to efficiently align dominant planes in two 
successive depth fik and fjk. We run the planar alignment by constraining the registration for 
those points located on the dominant plane of the consecutive MKFs. For the MKF-based 
planar alignment, the metric distance between the point sets on two dominant surfaces is 
minimized by solving:

T ij = argmin
Tij

∑
i, j

‖T ij pik − pjk‖
2, (5)

where pik ∈ Pi and pjk ∈ Pj are two set of points on the dominant planes Pi and Pj located 

in two adjacent Manhattan keyframes fik and fjk, and Tij is the transformation matrix that 
minimizes the distance between two planes. The dominant plane in each scene is first 
detected using the plane detection algorithm available in the point cloud library. It is the 
plane with the most points and is available in the sequential depth frames until a new MKF 
is identified as a dominant plane. Furthermore, after performing the planar initialization, 
point-to-plane surface registration similar to (6) is used to fully register the Manhattan depth 
keyframes. This planar alignment reduces the computational complexity and enhances the 
accuracy and speed of the surface registration by providing a robust and reliable initiation 
and reducing the number of iterations. For the final registration between local segments, 
we use the following geometric registration on the overlapping parts of two consecutive 
segments.

TS = argmin
TS

∑
i
‖Ni TS pi′ − qi′ ‖

2, (6)

where pi′ = pix′ , piy′ , piz′ , 1
T  and qi′ = qix′ , qiy′ , qiz′ , 1

T  are a sample point and its corresponding 

point on the surface of two successive local segments, Ni = Nix,Niy,Niz, 0
T  is the unit 

normal vector at destination point qi′, and TS is the transformation matrix to align two set of 

points. After performing this iterative registration, two neighbor segments will be aligned so 
that we can integrate two adjacent local segments by constraining point registration in the 
overlapping parts of two local segments.

MKF-based model registration can handle loop closure implicitly due to the continuous 
propagation of Manhattan prior segment-by-segment over a long sequence. For example, 
given the first MKF from the first segment and the last MKF from the last segment (Fig. 
5(a)), let us assume we have a loop closure between these two segments. We initially use 
geometric registration to robustly align the dominant planes (colored) extracted from two 
MKFs. Then we perform planar alignment by constraining point registration for Pi and 
Pj located on the dominant planes (Fig. 5 (b)). Then the overlap part is identified where 
point-to-plane surface registration is performed to align two local segments. As the result, 
the loop closure is handled without being detected explicitly since the drift problem is 
mitigated by sequentially applying the Manhattan prior in multiple stages (Fig. 5(d)).
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3.5 Final Model Integration

After obtaining the optimized pose estimation for each keyframe, a MKF-based depth-to-
model registration scheme using a non-uniform weighting strategy is used to integrate 
the depth keyframes into the previously reconstructed TSDF (Truncated Signed Distance 
Function) model. The TSDF model is represented in GPU memory on a volumetric grid as 
a 3D array of voxels. The integration of the new surface measurements is accomplished in 
a similar way to KinectFusion [3], [5]. Assume each voxel at location p contains a signed 
distance TSDF value υ(p) and a voxel weight w(p). To integrate an ith incoming Manhattan 
keyframe with optimized pose estimation into the reconstructed model, the value of each 
voxel is updated by:

vi(p) =
vi − 1(p)wi − 1(p) + vi(p)wi(p)

wi − 1(p) +wi(p)
, (7)

where wi(p) denotes the weighting of the TSDF to surface measurement uncertainty and is 
defined by

wi(p) = min wi − 1(p) +wi(p),wmax , (8)

In our implementation, we set wi(p) = 1, as a simple average, and wmax = 128. After this 
integration step, the 3D dense segments are reconstructed using the refined pose estimation 
results retrieved from optimized camera trajectory.

4 EXPERIMENTAL RESULTS

In this section, different types of datasets, the employed evaluation methods consisting 
of our new proposed metric, and all quantitative and qualitative experimental results are 
presented. Not only the proposed ManhattanFusion method is evaluated by comparing 
against many state-of-the-art SLAM algorithms, but also we show the progressive 
improvement over our early attempts [4], [17], [42]. Specifically, the Manhattan frame-
based reconstruction (MFR) algorithm proposed in [4] only applies the MW assumption to 
find dominant planes to assist frame alignment and point-to-plane registration. MFR was 
enhanced with pose graph optimization (MFR + PGO) in [17] with improved reconstruction 
accuracy. The Local Manhattan frame growing method (LMFG) proposed in [42] extends 
MFR + PGO sequentially and incrementally with improved accuracy and robustness and 
is able to handle loop closure implicitly. Essentially, ManhattanFusion furthers LMFG by 
introducing local model reconstruction and local-to-global integration that integrates and 
streamlines previous key techniques in one unified pipeline as presented in Fig. 2.

4.1 Datasets

We evaluated our proposed approach on a variety of synthetic and real scene datasets 
including various RGB-D sequences from indoor environments with both simple and 
complicated trajectories.

4.1.1 Synthetic Scenes—First, we have evaluated MahattanFusion performance on the 
ICL-NUIM dataset provided by [34], which has been released for the evaluation of RGB-D 
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visual odometry, 3D reconstruction and SLAM systems. This dataset includes two different 
synthetic models of two virtual indoor scenes, a living room and an office, with different 
camera trajectories. The ICL-NUIM dataset has also provided a ground truth surface model 
for the living room, for benchmarking surface reconstruction accuracy evaluation.

Then, we have used the augmented ICL-NUIM dataset provided by [21], which augmented 
two synthetic models based on the original ICL-NUIM dataset. These virtual scenes have 
a higher number of frames with longer and more complicated trajectories for the whole 
scene 3D reconstruction. The augmented ICL-NUIM dataset has also provided a dense 
point-based surface model for the office scene, which enables the measurement of the 
surface reconstruction accuracy.

4.1.2 Real World Scenes—In addition to the synthetic datasets, we have used different 
real scene sequences to evaluate the performance of our proposed approach in 3D 
reconstruction and camera tracking. We have used BundleFusion dataset provided by [1] 
that consists of eight large scale indoor environments with a high number of frames and 
very long trajectories. We have also tested our approach on a few depth sequences from 
the SceneNN dataset [45] and TUM RGB-D dataset provided by [35], which is a novel 
benchmark for the evaluation of 3D reconstructions and RGB-D SLAM algorithms.

4.2 Evaluation Methods

We have evaluated the performance of our proposed approach on multifarious synthetic and 
real depth sequences from three different perspectives, the pose tracking accuracy, the dense 
reconstruction preciseness, and the surface area coverage.

4.2.1 Absolute Trajectory Error—The global consistency of the estimated trajectory is 
very important in RGB-D mapping and dense modeling systems. The Absolute Trajectory 
Error (ATE) proposed by [35] is used to evaluate this consistency by computing the absolute 
distances of the estimated trajectory to the ground truth trajectory.

4.2.2 Surface Reconstruction Error—The Surface Reconstruction Error (SRE) is 
another metric to evaluate the performance of the SLAM-based frameworks and dense 
reconstruction systems. This evaluation provides the mean distance of the generated model 
to the ground-truth surface. In our work, we have used the CloudCompare [41] tool to 
compute the surface reconstruction accuracy.

4.2.3 Surface Area Coverage—The Surface Area Coverage (SAC) shows the 
capability of a generated model to cover the whole surface area of an indoor scene. It is 
our expectation that the local geometric information of the scene and MKF-based planar 
alignment would enable ManhattanFusion to cover more surface area and to mend holes, 
gapes, and discontinuities.

4.3 Quantitative Comparison

For the quantitative comparison, we have computed the mean distance of the generated 
models by ManhattanFusion on the original and augmented synthetic ICL-NUIM datasets 
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to the ground-truth surface for the living room and point-based dense map for the office 
and compared the results with the numeric values released by [21] and [1], as shown in 
Tables 2 and 3. Our results are compared to Kintinuous [9], DVO SLAM [19], RGB-D 
SLAM [29], MRSMap [31], ElasticFusion [6], [7], BundleFusion [1], and Redwood [21] 
on the original synthetic ICL-NUIM sequences. They are also compared to Kintinuous, 
DVO SLAM, Redwood, SUN3D SfM [20], MFR [4], MFR + PGO [17], and LMFG [42] 
on two augmented synthetic ICL-NUIM scenes. The type of the input frames are specified 
in the tables for a better comparison. ”RGB-D” means the system uses both color and 
depth information in the reconstruction process, ”D” means the system uses only depth 
information, and ”D+RGB” means the system uses depth information in the reconstruction 
pipeline and color information for loop closure detection.

It is evident that, ManhattanFusion outperforms Kintinuous, DVO SLAM, RGB-D SLAM, 
SUN3D SfM, MRSMap, Redwood, MFR, MFR + PGO, and LMFG reconstruction systems. 
In addition, it has very close results to the offline Redwood robust reconstruction and 
BundleFusion approaches. This comparison confirms that our proposed framework reduces 
the average mean distance dramatically by factors of 4.3 relative to Kintinuous and RGB-D 
SLAM, 4.1 relative to DVO SLAM, 8.5 relative to MRSMap, and 1.2 relative to Redwood 
on the original synthetic ICL-NUIM dataset. In the same way, it reduces the mean distance 
by factors of 3.3 relative to Kintinuous, 2.6 relative to DVO SLAM, 2 relative to SUN3D 
SfM, 2.7 relative to MFR, 1.4 relative to MFR + PGO, and 1.2 relative to LMFG on the 
augmented synthetic ICL-NUIM sequences and also has very close results to the Redwood 
reconstructed models. In other words, the bottom half of Table 3 also serves as an ablation 
study to show the progressive improvement from MFR to MFR + PGO, from MFR + PGO 
to LMFG, and from LMFG to ManhattanFusion.

Additionally, we further evaluate our pose tracking ability on the original and augmented 
ICL-NUIM, and TUM RGB-D trajectories. The measured absolute trajectory error shows 
our trajectory estimation performance on these datasets, which is on par with or better 
than the camera tracking of the existing state-of-the-art systems. Our computed ATE has 
a noticeable improvement compared to other approaches, near 68% improvement over 
Kintinuous, 70% over DVO SLAM, 71% over RGB-D SLAM, 92% over MRSMap, and 
63% over Redwood on the synthetic ICL-NUIM dataset, as shown in Table 4. We have also 
compared our estimated ATE on the augmented ICL-NUIM dataset, as shown in Table 5, 
and it is conspicuous that ManhattanFusion has near 69% improvement over Kintinuous, 
78% over DVO SLAM, 61% over SUN3D SfM, 14% over Redwood, and 75% over Elastic 
Fusion. Tables 6 and 7 also indicate the accuracy of our pose tracking on the TUM RGB-D 
dataset. Our approach relies only on geometric registration between depth keyframes. The 
geometric-based approaches like ManhattanFusion fail on fr3/nst sequence, since this scene 
is just a textured flat wall with lack of depth variation where our geometric-based approach 
cannot create a valid model due to the inherent ambiguity.

We have also proposed a new metric to evaluate the ability of the reconstruction process to 
cover the possible discontinuities and inconsistencies in the reconstructed surfaces. Tables 
8, 9, and 10 show the surface area coverage ability of our approach compared to the 
Redwood and BundleFusion systems on the augmented synthetic ICL-NUIM, SceneNN, and 
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BundleFusion datasets respectively. Taking advantage of the Manhattan world assumption 
available in the most indoor scenes and geometric planar alignment helps us to cover more 
areas and resolve the discontinuity problem in the planar surfaces.

4.4 Qualitative Performance

The reconstructed models from augmented ICL-NUIM and BundleFusion datasets, shown 
in Figs. 6, 7, and 8 demonstrate the robustness of our proposed approach for dense 
reconstruction of large scale indoor environments using depth sequences compared to the 
state-of-the-art reconstruction systems. Our method relies on the local geometric structure of 
the scene and local pose refinement for surface reconstruction. This precise characteristic 
helps to preserve the geometry, to mend gaps and discontinuities, and to cover more 
surface areas and generate more accurate 3D models, as shown in Fig. 9. Our system is 
geometry-based and does not use RGB channels. It fails on the apt2 depth sequences from 
BundleFusion dataset due to a significant depth gap caused by sensor occlusion.

4.5 Additional Results

We tested our framework on several real scene depth sequences. Considering the absence 
of the ground truth surface for the real environments, we just compared our dense models 
with different approaches qualitatively. For instance, Fig. 8 shows the qualitative differences 
between the reconstructed models by BundleFusion and ManhattanFusion on different depth 
sequences from BundleFusion dataset. Moreover, Fig. 11 shows 3D models generated by 
Redwood and ManhattanFusion on a few sequences from SceneNN dataset. The dense 
models created by our framework are on par with the state-of-the-art BundleFusion and 
Redwood systems in terms of quality. In addition, Fig. 10 demonstrates the advantage of 
using Manhattan keyframes in our volumetric reconstruction pipeline.

4.6 Computation Complexity

There are many factors that determine the computational complexity, among which two key 
ones are the kind of data used and the size of space volume covered. Most existing SLAM 
algorithms are based on RGB-D data which have computational advantage over those using 
depth data only (like ours), since RGB images can support efficient feature tracking and loop 
closure handling which are essential for camera pose estimation in a large environment. On 
the other hand, the quality of RGB images is influenced by light condition and the richness 
of visual features in the scene. Using depth data only has some advantages in the cases 
where the environment is almost featureless or has poor light conditions. However, depth 
data tend to be sparse and noisy which could be problematic for long-range camera pose 
optimization and large scale volume reconstruction. That is one of the main reasons why 
the famous KinectFusion works best for a relatively small volume. Our research is mainly 
focused on depth-based volumetric reconstruction for a large indoor environment where 
RGB data are not used or may not be available. Our current implementation can build the 3D 
volumetric model online with some delay depending the length of depth sequences and the 
scene complexity, and it does have potential to be real-time if it can be fully GPU-enabled. 
Given our current PC specification (CPU: Intel Core i7–4770 3.4 GHz; RAM: 20GB; GPU: 
GeForce GT 640 3GB DDR3), the delay of sequences with around 1000 frames is around 
10–15 seconds, and that of those with 6000–10000 frames is around 1–2 minutes. Moreover, 
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our research is mainly focused on the indoor scene where the MW assumption is usually 
valid. In the case where the MW assumption is weak or absent, the advantage of the 
proposed method will diminish, and it could be reduced into a KinectFusionlike framework 
that may have some limitations in handling a large environment as reported in [9], [10] .

5 CONCLUSION

We have presented a new 3D dense surface modeling framework, ManhattanFusion, for 
volumetric reconstruction of extended scale indoor environments by using only depth 
sequences. Different from other methods that apply the Manhattan World (MW) assumption 
to process RBG-D data, ManhattanFusion takes advantage of the MW assumption available 
in an indoor scene to improve the quality of scene reconstruction with a few key 
characteristics. First, it implicitly handles loop closure during the reconstruction process by 
local Manhattan frame growing and incremental local pose optimization. Second, Manhattan 
keyframes (MKFs) are estimated from depth keyframes by extending the first identified 
Manhattan frame along the main dominant axis in the scene for each local segment. These 
MKFs are not only used for planar pre-alignment to initialize depth-to-model surface 
registration as well as the final model integration, but also serve as geometric constraints 
for local pose optimization. The incorporation of MKFs in the pipeline at different stages 
reduces the accumulative registration error and improves the accuracy and fidelity of 
generated models. Third, ManhattanFusion adequately handles the discontinuity problem 
and enhances the surface area coverage in large scale scene reconstruction. The experimental 
results on both synthetic and real-world depth data demonstrate the advantage of our 
proposed approach to reduce the accumulation of the registration error and overall geometric 
drift in 3D dense modeling. Our algorithm outperforms recent ones that use depth data only 
in terms of both the mean distance error and the absolute trajectory error, and it is also 
very competitive compared with RGB-D based SLAM algorithms. Our ManhattanFusion 
algorithm also significantly outperforms the state-of-the-art in terms of the surface area 
coverage, largely due to the effectiveness and usefulness of the MW assumption through the 
reconstruction pipeline.
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Fig. 1. 
The 1st row shows (from left to right) a depth sequence with a colored Manhattan 
keyframe (MKF) and multiple local segments. The 2nd row shows the registration result 
of multiple local segments along the dominant planes (colored) in each segment and the final 
reconstructed model. The 3rd row presents the top-down view of the reconstruction model 
without using MKF and the one generated by ManhattanFusion.
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Fig. 2. 
The general overview of our proposed framework. The top part shows the process and the 
bottom part shows the output. The ManhattanFusion estimates the Manhattan keyframes 
using a Manhattan frame growing scheme over depth keyframes after a normal surface 
adjustment and use it as a reliable initial planar alignment in a keyframe to model 
registration system to create the local segments using the optimized pose estimates. The 
final volumetric model will be reconstructed by integrating the local fused models into a 
global framework.
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Fig. 3. 
Surface normals before (left) and after (right) adjustment.
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Fig. 4. 
A 2D illustration of Manhattan frame growing over two MKFs where the initial dominant 
plane is extended over two adjacent Manhattan keyframes (MKFs).

Yazdanpour et al. Page 21

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2023 July 01.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



Fig. 5. 
(a) Given two MKFs belong to two local segments in a loop closure, the dominant planes 
(red and green) are extracted in each MFK for planar alignment. (b) Point-to-plane surface 
registration in the overlapping parts. (c) A top-down view of the loop closure portion.
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Fig. 6. 
The reconstructed models of Living Room 2 (above) and Office 2 (below) by offline 
Robust Reconstruction (Redwood) [21], Local Manhattan Frame Growing (LMFG) [42], 
and ManhattanFusion.
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Fig. 7. 
The reconstructed models of Living Room 1 (above) and Office 1 (below), by Kintinuous 
[9], DVO SLAM [19], SUN3D SfM [20], Offline Robust Reconstruction (Redwood) 
with an optional refinement [21], Manhattan Frame Reconstruction (MFR) [4], MFR 
with global pose optimization [17], Local Manhattan Frame Growing (LMFG) [42], and 
ManhattanFusion.
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Fig. 8. 
The reconstructed models by BundleFusion and our approach on the BundleFusion dataset. 
The generated models by ManhattanFusion are on par with BundleFusion approach without 
using visual features and explicit loop closure detection.
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Fig. 9. 
The reconstructions created by offline robust reconstruction (Redwood) and our approach 
from Living Room 2 (left) and Office 2 (right). Our method preserves the local geometric 
structure of the planar surfaces in the scene.
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Fig. 10. 
The reconstructions created by BundleFusion and our approach from copyroom. Our method 
preserves the local geometric structure of the planar surfaces in the scene.
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Fig. 11. 
The reconstructed models created by offline Robust Reconstruction (Redwood) and our 
approach on SceneNN dataset. From left to right: Generated models from scenes 11, 16, and 
21. Our results are on par with the reconstructions generated by this offline approach.
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TABLE 2

Mean distance of the reconstructed models to the ground-truth surface (in centimeters) on the ICL-NUIM 
dataset.

Input kt0 kt1 kt2 kt3 Average

DVO SLAM [19] RGB-D 3.2 6.1 11.9 5.3 6.6

RGB-D SLAM [29] RGB-D 4.4 3.2 3.1 16.7 6.9

MRSMap [31] RGB-D 6.1 14 9.8 24.8 13.7

ElasticFusion [6], [7] RGBD 0.7 0.7 0.8 2.8 1.3

BundleFusion [1] RGB-D 0.5 0.6 0.7 0.8 0.7

Redwood [21] D+RGB 2.0 2.0 1.3 2.2 1.9

Kintinuous [9] D 1.1 0.8 0.9 24.8 6.9

ManhattanFusion D 1.4 1.1 1.7 2.2 1.6
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TABLE 3

Mean distance of the reconstructed models to the ground-truth surface (in centimeters) on the ICL-NUIM 
dataset.

Input Living Room1 Living Room2 Office1 Office2 Average

DVO SLAM [19] RGB-D 21.0 6.0 11.0 10.0 12.0

SUN3D SfM [20] RGB-D 9.0 7.0 13.0 9.0 9.5

Redwood [21] D+RGB 4.0 7.0 3.0 4.0 4.5

Kintinuous [9] D 22.0 14.0 13.0 13.0 15.5

MFR [4] D 11.3 9.1 12.8 17.0 12.6

MFR + PGO [17] D 7.2 7.6 4.7 6.5 6.5

LMFG [42] D 6.3 7.3 2.8 5.2 5.4

ManhattanFusion D 4.7 6.6 2.7 4.8 4.7
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TABLE 4

Absolute Trajectory Error of reconstructed models to the ground-truth trajectory (in centimeters) on the 
ICL-NUIM dataset.

Input kt0 kt1 kt2 kt3 Average

DVO SLAM [19] RGB-D 10.4 2.9 19.1 15.2 11.9

RGB-D SLAM [29] RGB-D 2.6 0.8 1.8 43.3 12.1

MRSMap [31] RGB-D 20.4 22.8 18.9 109 42.8

ElasticFusion [6], [7] RGB-D 0.9 0.9 1.4 10.6 3.5

BundleFusion [1] RGB-D 0.6 0.4 0.6 1.1 0.7

Redwood [21] D+RGB 25.6 3.0 3.3 6.1 9.5

Kintinuous [9] D 7.2 0.5 1.0 35.5 11.1

ManhattanFusion D 2.0 0.9 7.6 3.7 3.5
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TABLE 5

Absolute Trajectory Error of the reconstructed models to the ground-truth trajectory (in centimeters) on the 
ICL-NUIM dataset.

Input Living Room1 Living Room2 Office1 Office2 Average

DVO SLAM [19] RGB-D 102.0 14.0 11.0 11.0 34.5

SUN3D SfM [20] RGB-D 21.0 23.0 24.0 12.0 20.0

ElasticFusion [6], [7] RGB-D 62.0 37.0 13.0 13.0 31.2

BundleFusion [1] RGB-D 0.6 0.5 15.3 1.4 4.4

Redwood [21] D+RGB 10.0 13.0 6.0 7.0 9.0

Kintinuous [9] D 27.0 28.0 19.0 26.0 25.0

ManhattanFusion D 8.1 11.6 5.0 6.2 7.7
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TABLE 6

Absolute Trajectory Error of the reconstructed models to the ground-truth surface (in centimeters) on the 
TUM RGB-D dataset. BundleFusion uses a robust tracking system for relocalization using a local-to-global 
hierarchical optimization per RGB-D frames.

Input fr1/desk fr2/xyz fr3/office fr3/nst Average

DVO SLAM [19] RGB-D 2.1 1.8 3.5 1.8 2.3

RGB-D SLAM [29] RGB-D 2.3 0.8 3.2 1.7 2.0

MRSMap [31] RGB-D 4.3 2.0 4.2 201.8 53.1

Submap BA [32] RGB-D 2.2 - 3.5 - 2.9

LSD-SLAM [51] RGB-D - 1.5 - - 1.5

ElasticFusion [6], [7] RGB-D 2.0 1.1 1.7 1.6 1.6

BundleFusion [1] RGB-D 1.6 1.1 2.2 1.2 1.5

Redwood [21] D+RGB 2.7 9.1 3.0 192.9 51.9

Kintinuous [9] D 3.7 2.9 3.0 3.1 3.1

Voxel Hashing [13] D 2.3 2.2 2.3 8.7 3.9

ManhattanFusion D 2.3 1.3 2.1 - 1.9

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2023 July 01.



Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript

Yazdanpour et al. Page 36

TABLE 7

Absolute Trajectory Error of the reconstructed models to the ground-truth surface (in centimeters) on the TUM 
RGB-D dataset.

Input fr1/360 fr1/floor fr3/long office household Average

RGB-D SLAM [29] RGB-D 10.3 6.1 8.2 8.2

MF RGB-D SLAM [28] RGB-D 8.2 5.4 5.2 6.3

ManhattanFusion D 7.1 3.5 4.6 5.3
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TABLE 8

Surface Area Coverage of the reconstructed models on the Augmented Synthetic ICL-NUIM dataset.

Input Living Room1 Living Room2 Office1 Office2

Redwood [21] D+RGB 141.78 92.98 150.42 92.95

ManhattanFusion D 104.95 99.95 156.89 139.53
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TABLE 9

The comparison of surface area coverage on the SceneNN dataset.

Input Scene 11 Scene 16 Scene 21 Scene 700

Redwood [21] RGB-D 65.78 31.1 54.54 83.84

ManhattanFusion D 70.58 33.19 54.17 114.11
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TABLE 10

The comparison of surface area coverage on the BundleFusion dataset.

BundleFusion [1] ManhattanFusion

apt0 103.54 105.38

apt1 84.78 101.9

copyroom 48.39 55.72

office0 79.05 82.63

office1 81.62 101.88

office2 89.71 95.62

office3 83.67 92.61
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