
An Investigation on Hardware-Aware Vision Transformer Scaling

CHAOJIAN LI, Georgia Institute of Technology, USA

KYUNGMIN KIM, University of California, Irvine, USA

BICHEN WU, Meta, USA

PEIZHAO ZHANG, Meta, USA

HANG ZHANG, Cruise, USA

XIAOLIANG DAI, Meta, USA

PETER VAJDA, Meta, USA

YINGYAN (CELINE) LIN, Georgia Institute of Technology, USA

Vision Transformer (ViT) has demonstrated promising performance in various computer vision tasks, and recently attracted a

lot of research attention. Many recent works have focused on proposing new architectures to improve ViT and deploying it

into real-world applications. However, little effort has been made to analyze and understand ViT’s architecture design space

and its implication of hardware-cost on different devices. In this work, by simply scaling ViT’s depth, width, input size, and

other basic configurations, we show that a scaled vanilla ViT model without bells and whistles can achieve comparable or

superior accuracy-efficiency trade-off than most of the latest ViT variants. Specifically, compared to DeiT-Tiny, our scaled

model achieves a ↑ 1.9% higher ImageNet top-1 accuracy under the same FLOPs and a ↑ 3.7% better ImageNet top-1 accuracy

under the same latency on an NVIDIA Edge GPU TX2. Motivated by this, we further investigate the extracted scaling strategies

from the following two aspects: (1) “can these scaling strategies be transferred across different real hardware devices?”; and

(2) “can these scaling strategies be transferred to different ViT variants and tasks?”. For (1), our exploration, based on various

devices with different resource budgets, indicates that the transferability effectiveness depends on the underlying device together

with its corresponding deployment tool; for (2), we validate the effective transferability of the aforementioned scaling strategies

obtained from a vanilla ViT model on top of an image classification task to the PiT model, a strong ViT variant targeting

efficiency, as well as object detection and video classification tasks. In particular, when transferred to PiT, our scaling strategies

lead to a boosted ImageNet top-1 accuracy of from 74.6% to 76.7% (↑ 2.1%) under the same 0.7G FLOPs; and when transferred

to the COCO object detection task, the average precision is boosted by ↑ 0.7% under a similar throughput on a V100 GPU.

CCS Concepts: • General and reference→ Empirical studies; • Theory of computation→ Theory and algorithms for

application domains.

Additional Key Words and Phrases: deep neural network scaling, vision transformer

1 INTRODUCTION

Transformer [52], which was initially proposed for natural language processing (NLP) and is a type of deep neural

networks (DNNs) mainly based on the self-attention mechanism, has achieved significant breakthroughs in NLP

Authors’ addresses: Chaojian Li, cli851@gatech.edu, Georgia Institute of Technology, 266 Ferst Dr NW, Atlanta, Georgia, USA, 30332;

Kyungmin Kim, kyungk7@uci.edu, University of California, Irvine, 401 E. Peltason Drive, Irvine, California, USA, 92617; Bichen Wu, wbc@

meta.com, Meta, 322 Airport Blvd, Burlingame, California, USA, 94010; Peizhao Zhang, stzpz@meta.com, Meta, 322 Airport Blvd, Burlingame,

California, USA, 94010; Hang Zhang, , Cruise, 322 Airport Blvd, Burlingame, California, USA, 94010; Xiaoliang Dai, xiaoliangdai@meta.com,

Meta, 322 Airport Blvd, Burlingame, California, USA, 94010; Peter Vajda, vajdap@meta.com, Meta, 322 Airport Blvd, Burlingame, California,

USA, 94010; Yingyan (Celine) Lin, celine.lin@gatech.edu, Georgia Institute of Technology, 266 Ferst Dr NW, Atlanta, Georgia, USA, 30332.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for

third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

1539-9087/2023/8-ART

https://doi.org/10.1145/3611387

ACM Trans. Embedd. Comput. Syst.

2 • Chaojian Li, et al.

tasks. Thanks to its strong representation capabilities, many works have developed ways to apply Transformer to

computer vision (CV) tasks, such as image classification [12], object detection [6], semantic segmentation [55],

and video classification [5]. Among them, Vision Transformer (ViT) [12] stands out and demonstrates that a

pure Transformer applied directly to sequences of image patches can perform very well on image classification

tasks, e.g., achieving a comparable ImageNet [11] top-1 accuracy as ResNet [22]. Motivated by ViT’s promising

performance, a fast growing number of works follow it to explore pure Transformer architectures in order to push

forward its accuracy-efficiency trade-off and deployment into real-world applications [20, 25, 36, 50, 56], achieving

an even better performance than EfficientNetV1 [49], a widely used efficient convolutional neural network (CNN).

Im
ag

eN
et

 to
p-

1
ac

cu
ra

cy
 (%

)

FLOPs (G)

DeiT-Scaled (Ours)

PiT-Scaled (Ours)

Fig. 1. Our scaled ViT models achieve com-

parable or better accuracy-efficiency trade-off

as compared to some recent dedicatedly de-

signed ViTs and widely used CNNs.

The success of recent ViT works suggests that the model archi-

tecture is critical to ViT’s achievable performance. Therefore, in

this work we explore ViT architectures from a new perspective,

aiming to analyze and understand ViT’s architecture design space

and real hardware-cost across different devices. Despite the recent

excitement towards ViT models and the success of model scaling

for CNNs, little effort has been made into exploring ViT’s model

scaling strategies or hardware-cost.

Note that directly applying the scaling strategies for CNNs [48,

49] or Transformer on NLP tasks [23, 30] will lead to sub-

optimality, as discussed in Section 3.2. Furthermore, scaling strate-

gies targeting one device/task might not be transferable to another

device/task. Interestingly, we find that simply scaled ViT models

can achieve comparable or even better accuracy-efficiency trade-

off than dedicatedly designed ViT variants, as shown in Figure 1.

Motivated by this, we further explore the transferability of our

scaling strategies (1) across different real hardware devices and (2)

to different ViT variants and tasks. In particular, we make the following contributions:

• We show that simply scaled vanilla ViT models can achieve comparable or even better accuracy-efficiency

trade-off as compared to dedicatedly designed ViT variants [7, 9, 25, 36, 50, 51, 56, 61, 65], as illustrated in

Figure 1. Specifically, as compared to DeiT-Tiny, our scaled model achieves a ↑ 1.9% higher ImageNet top-1

accuracy under the same FLOPs and a ↑ 3.7% better ImageNet top-1 accuracy under the same latency on an

NVIDIA Edge GPU TX2.

• We study the transferability of the scaled ViT models across different devices and show that the transferability

effectiveness depends on the underlying devices and deployment tools. For example, scaling strategies

targeting FLOPs or the throughput on V100 GPU [42] can be transferred to the Pixel3 [18] device with little

or even no performance loss, but those targeting the latency on TX2 [28] may not be transferred to other

devices due to the obvious performance loss. Additionally, we provide ViT models’ cost breakdown and rank

correlation between their hardware-cost on different devices for a better understanding of it.

• We show that our scaling strategies can also be effectively transferred to different ViT variants and recognition

tasks to further boost the achieved accuracy-efficiency trade-off, e.g., achieving a ↑ 2.1% higher accuracy

under a similar FLOPs when being transferred to the PiT model and ↑ 0.7% higher average precision under a

similar inference throughput when being transferred to an object detection task.

ACM Trans. Embedd. Comput. Syst.

An Investigation on Hardware-Aware Vision Transformer Scaling • 3

2 RELATED WORKS

Vision Transformers. Transformer was first proposed for machine translation [52]. Motivated by its state-of-the-art

performance in NLP tasks, there has been a growing interest in applying the Transformer/self-attention mechanism

to CV tasks, e.g., by proposing novel attention mechanisms for CNNs [27, 34, 64], fusing Transformer and CNN

designs within the same model [4, 6, 55], or designing pure Transformer models [8, 12]. Among them, ViT [12] has

achieved state-of-the-art performance by directly applying the Transformer architecture for NLP tasks to the input

raw image patches of vision tasks. Nevertheless, ViT’s powerful performance largely depends on its pre-training on

JFT-300M [48] (a giant private labelled dataset). As such, DeiT [50] further develops an improved training recipe

(i.e., the setting of optimization hyper-parameters), including a distillation setup and stronger data augmentation

and regularization, to achieve comparable performance while removing the necessity of the costly pre-training. In

order to build more efficient ViT models, [7] leverages multiple branches to extract and fuse features at different

scales; [14, 20, 25, 36, 53] apply a pyramid-like architecture commonly used in CNNs to ViT; and [20, 36, 56]

propose more efficient attention mechanisms or feature projection blocks.

Model scaling. Prior works have explored scaling CNNs/NLP-Transformer (i.e., Transformer in NLP tasks) to

boost its accuracy or lower its computational resource requirements, e.g., ResNet can be scaled along its depth

dimension [22] and MobileNets can be scaled along its width (i.e., the number of channels) and input resolution

dimensions [26, 46]. Notably, EfficientNet further points out that it is critical to scale CNNs in a compound manner

(i.e., simultaneously scaling the model width, depth, and input resolution) and does so to achieve state-of-the-art

accuracy-efficiency trade-off [49]. Nevertheless, as [3] demonstrates, the scaling strategies obtained from a specific

model (e.g., EfficientNet-B0) can result in a sub-optimal accuracy-efficiency trade-off for another model; motivated

by this observation, they develop a more general scaling strategies extracted from grid search experiments based on

the chosen training recipe rather than a specific model, achieving an improved trade-off. In addition to scaling the

model architecture, [23, 30] show that scaling up the dataset size and the number of computations used for training

can also help to achieve a smaller cross-entropy loss for Transformer in NLP tasks. Recently, [65] demonstrates

that the accuracy of ViT will decrease when it is scaled up along only the depth dimension (i.e., number of layers),

and proposes Re-attention to resolve it.

LayerNorm

Multi-Head Attention

LayerNorm

Feed Forward

Classification Header

Split & embed

Q

K

V

Self-Attention

Linear

Linear

Linear

Linear

Fig. 2. Illustrating the effect of scaling factors on a

ViT architecture (class/distillation token is omitted

for better visual clarity).

Nevertheless, none of the prior works has targeted scaling

strategies for ViT with multiple scaling factors or study its real-

hardware efficiency across different platforms featuring diverse

computational and storage capabilities. Additionally, it is not

clear whether their insights on scaling CNNs can be directly

applied to ViT because of their different scaling factor defini-

tions, e.g., while the number of channels represents the width

in CNNs, the number of heads and embedding dimensions can

both represent the width in ViT. As such, scaling strategies ded-

icated to ViT are highly desirable and our scaling strategies can

provide unique insights to inspire more innovations towards

efficient ViT models. Although there is some model scaling

strategy explorations in [12, 63], our work distinguishes with

them in providing more discoveries and insights. Specially, we

focus more on the accuracy vs. efficiency trade-off when scal-

ing ViTs instead of merely the accuracy; and (2) provide additional analysis on the transferability of the extracted

scaling strategies across different devices, ViT variants, and tasks.

ACM Trans. Embedd. Comput. Syst.

4 • Chaojian Li, et al.

3 SCALING VIT: HOW AND WHY DO WE SCALE VIT?
In this section, we first analyze the scaling factors of ViT, then study the effectiveness of prior scaling strategies,

which are dedicated to CNNs or Transformers, on ViT, and finally present our iterative greedy search approach to

scale ViT.

3.1 Scaling factors in ViT

As analyzed in [30], the scaling factors in Transformers include the number of layers (�), the number of heads

(ℎ), the embedding dimension for each head (�), and the linear projection ratio (�). ViT, which directly adopts

the Transformer architecture for NLP tasks and splits the raw images into patches to serve as the Transformer

input, adds additional scaling factors, including image resolution (�) and patch size (�). Figure 2 illustrates and

summarizes our considered scaling factors for ViT.

3.2 Previous scaling strategies fail on ViT

CNN and ViT scaling factors do not match. Scaling strategies dedicated to CNNs [15, 48, 49] mostly come with

CNN-specific scaling factor definitions (e.g., the number of channels in convolution layers represents the model

width), which cannot be directly transferred to ViT. For example, doubling (2×) the width in CNNs can be achieved

via various combinations of the number of heads (ℎ) and embedding dimension for each head (�) in ViT.

Aspect ratio ()

Im
ag

eN
et

 to
p-

1
ac

cu
ra

cy
 (%

)

6M Params (DeiT-Tiny Level)
22M Params (DeiT-Small Level)
87M Params (DeiT-Base Level)

↑18.61%

Fig. 3. The accuracy of ViT is sensitive to the aspect ratio.

Note that the vertically aligned points are models with the same

scaling factors except image resolution (�).

Table 1. The starting point model

for our scaling method.

Num. of layers (�) 6

Num. of heads (ℎ) 2

Embedding dim. per head (�) 64

Linear projection ratio (�) 4

Image resolution (�) 160

Patch size (�) 16

FLOPs (G) 0.15

Throughput on V100 (FPS) 20086

Latency on Pixel3 (ms) 30.05

Latency on TX2 (ms) 4.42

Furthermore, there are extra scaling factors for ViT, e.g., the linear projec-

tion ratio (�) and the patch size (�), which do not exist in the scaling factors

for CNNs but are important for ViT as shown in Appendix C, thus directly

transferring the scaling strategies from CNNs to ViTs can lead to ambiguity

and sub-optimal performance.

Transformer scaling strategies for NLP is sub-optimal on ViT. [30] noted

that for NLP, model performance (i.e., accuracy or training loss) depends

“strongly on the model scale (i.e., the number of parameters), but weakly on

the model shape”. However, when scaling ViT along the factors summarized

in Figure 2, our observations suggest that this is not true for ViT. As shown

in Figure 3, when performing an extensive search on top of DeiT-Small [50]

following [48], we observe that a model’s shape has a great impact on the

ACM Trans. Embedd. Comput. Syst.

An Investigation on Hardware-Aware Vision Transformer Scaling • 5

Algorithm 1 Iterative Greedy Search

1: Step: � ← 0

2: Architecture: �← �0 (�0 is shown in Table 1)

3: Hardware-cost metric: � ()

4: Total steps in the scaling: �

5: Target hardware-cost in each step: [�1,�2, ...,��]

6: for � in [1, 2, ..., �] do

7: for scaling factor �� in [�,ℎ, �, �, � , �] do

8: ��� ← �

9: while � (���) < �� do

10: �� + +

11: end while

12: ��
��
← ���

13: end for

14: �� ← max_accuracy(��
�
, ��

ℎ
, ��

� , �
�
� , �

�
�
, ��

�)

15: �← ��

16: end for

17: Searched architectures �1, �2, ..., ��

performance. Specifically, if we change the aspect ratio, i.e., the ratio between

the embedding dimension (� × ℎ) and the number of layers (�), while keeping the model parameters the same, the

accuracy drifts as much as 18.61%. This experiment motivates exploring scaling strategies dedicated to ViT.

3.3 Our scaling method based on an iterative greedy search

Starting from a relatively small model defined in Table 1, we adopt a simple iterative greedy search to perform

the ViT scaling step by step, similar to the previous algorithms for exploring CNN design spaces and feature

selections [15, 21, 29]. The starting point model in Table 1 is selected by scaling down the baseline smallest output

model (DeiT-Tiny [50]) in all scaling factors to allow sufficient expansion steps (i.e., 3 in our experiments) from the

starting point to the smallest output model. Such a strategy is also adopted in X3D [15], which outputs the smallest

model after 5 expansion steps (i.e., 25 = 32 × larger FLOPs) from the starting point model. However, in our case,

5 expansion steps would result in a model that is too small to converge. Thus we select the starting point model

that has 3 expansion steps to the baseline smallest output model (DeiT-Tiny [15]), i.e., 23 = 8 × smaller FLOPs

than DeiT-Tiny [15]. To increase the scaling factors and scale up the model, we adopt an iterative greedy search

approach, as summarized in Algorithm 1. Specifically, we 1) start from a small model defined in Table 1; 2) in each

step of the iterative approach, we target scaling the model hardware-cost (e.g., FLOPs and latency on a specific

Table 2. Our scaled ViT models outperform DeiT on ImageNet under the same FLOPs constrains.

Model FLOPs (G) Top-1 accuracy (%) � � � � � �

DeiT-Tiny 1.26 74.5 12 3 64 4 224 16

DeiT-Scaled-Tiny 1.22 76.4 (↑1.9) 14 4 64 4 160 16

DeiT-Small 4.62 81.2 12 6 64 4 224 16

DeiT-Scaled-Small 4.79 81.6 (↑0.4) 20 4 64 4 256 16

DeiT-Base 17.66 83.4 12 12 64 4 224 16

DeiT-Scaled-Base 16.82 83.8 (↑0.4) 20 6 64 4 320 16

ACM Trans. Embedd. Comput. Syst.

6 • Chaojian Li, et al.

hardware device) to 2 × of the previous step (i.e.,
��+1

��

= 2, �� ∈ [�� ,�2, ...,��] in Algorithm 1) by increasing

one of the standalone scaling factors introduced in Section 3.1; 3) we then select the one with the best accuracy

vs. efficiency trade-off out of those architectures resulting from increasing each scaling factor standalone in the

previous step; and 4) the selected architecture from the previous step will be used as the starting point in the next

step. Thus, all the scaling factors will be explored in each step and the order to increase the factors is determined

accordingly with the iterative process. As analyzed in [3], unlike scaling strategies from specific small models or

training for a small number of epochs, scaling based on such an iterative greedy search with exhaustively training

models across a variety of scales for the full training duration can offer new perspectives and more practical scaling

strategies. Our experiments in Section 4.1 also verify that such a scaling method is simple yet effective for scaling

ViT models, and only requires training a few models during each search step. Specifically, the model exploration

space during scaling is 67 = 279936 (6 scaling factors and 7 steps in total). In contrast, our adopted iterative greedy

search approach only uses the model with the best accuracy-efficiency trade-off from the current step to be the

starting point model of the next step and thus reduces the space to 6 × 7 = 42 (6 scaling factors and 7 steps in total).

4 EXPERIMENT RESULTS

In this section, we first present experiments for evaluating the scaled vanilla ViT models resulting from the iterative

greedy search described in Section 3.3, in terms of accuracy-FLOPs trade-offs on ImageNet [11]. From this set of

experiments, we then extract a set of scaling strategies dedicated to ViT. After that, we further conduct experiments

to study the transferability of our extracted scaling strategies (1) across different devices and (2) to different ViT

variants and tasks.

FLOPs (G)

Im
ag

eN
et

 to
p-

1
ac

cu
ra

cy
 (%

)

DeiT

DeiT-Scaled

DeiT-Scaled-RP
Random permutate DeiT-Scaled

↑1.9%
↑0.5%

↑0.4%
↑0.4%

Fig. 4. Random permutation on top of the DeiT-

Scaled in Table 2, where those on the Pareto

frontier are marked as DeiT-Scaled-RP.

Table 3. Scaled ViT models after training for 1000

epochs.

Model FLOPs (G) Top-1 accuracy (%)

DeiT-Tiny 1.26 74.5

DeiT-Scaled-Tiny 1.22 76.4 (↑1.9)

DeiT-Tiny / 1000 epochs 1.26 76.6

DeiT-Scaled-Tiny / 1000 epochs 1.22 78.3 (↑1.7)

DeiT-Small 4.62 81.2

DeiT-Scaled-Small 4.79 81.6 (↑0.4)

DeiT-Small / 1000 epochs 4.62 82.6

DeiT-Scaled-Small / 1000 epochs 4.79 82.9 (↑0.3)

ACM Trans. Embedd. Comput. Syst.

An Investigation on Hardware-Aware Vision Transformer Scaling • 7

4.1 Scaling ViT towards better accuracy-FLOPs trade-offs

FLOPs (G)

Im
ag

eN
et

 to
p-

1
ac

cu
ra

cy
 (%

)

DeiT-Scaled
Scale
Scale
Scale
Scale
Scale
Scale

Scale

Scale

Scale
Scale

Scale Scale
Scale

DeiT-Scaled-Tiny

DeiT-Scaled-Small
DeiT-Scaled-Base

Fig. 5. Resulting models from our iterative greedy search, where models achieving the best

accuracy-FLOPs trade-offs are marked as DeiT-Scaled-Tiny/Small/Base. The architecture

configurations (i.e., sets of �, ℎ, �, � , � , and �) leading to these best models are extracted as

our scaling strategies dedicated to ViT.

Following the scal-

ing approach described

in Section 3.3, we

set 2× FLOPs of

the initial or selected

model from the pre-

vious step as the

target hardware-cost

in each step when

individually scaling

each factor, as sum-

marized in Figure 2.

All networks are

trained for 300 epochs

on ImageNet [11]

using the same train-

ing recipe with the

one in DeiT [50],

more details are in-

cluded in Appen-

dix D. It is worth

noting that the set-

ting of 300 epochs

for each model can-

didate is selected

based on the state-

of-the-art ViT train-

ing recipe [50] to ensure the search goal as the optimized full training accuracy-efficiency trade-offs. Although

early stopping is possible, it would result in suboptimal results because the relative performance ranking may not

correlate well with the performance ranking of the full training, as pointed out by [45, 62]. We summarize our

observations of the experiments above as follows:

Scaled ViT models outperform state-of-the-art DeiT models. As shown in Table 2, our scaled ViT models

(e.g., DeiT-Scaled-Tiny/Small/Base) achieve a ↑0.4% ∼ ↑1.9% higher top-1 accuracy on ImageNet under the

same FLOPs constraints. Specifically, our DeiT-Scaled-Tiny model chooses to use a smaller image resolution

(i.e., 160×160 vs. 224×224) and more layers and a higher number of heads as compared to the state-of-the-art

DeiT-Tiny [50] model, and thus achieves a ↑1.9% higher accuracy at the same cost in terms of FLOPs, while our

DeiT-Scaled-Small/Base models choose to use a larger image resolution (i.e., 320/256×320/256 vs. 224×224)

and more layers, together with a lower number of heads as compared to the state-of-the-art DeiT-Small/Base [50]

model, helping them to achieve a ↑0.4% higher accuracy under similar FLOPs. This set of experiments shows that

our simple search method can (1) effectively locate ViT models with better accuracy-FLOPs trade-offs and (2)

automatically adapt different scaling factors towards the optimal accuracy-FLOPs trade-offs, e.g., different model

shapes and structures at different scales of FLOPs.

Random permutation further boosts the performance. Inspired by the coarse-to-fine architecture selection

scheme adopted in [60], we further randomly permute the scaling factors (i.e., �, ℎ, �, � , � , and �) of each scaled

ACM Trans. Embedd. Comput. Syst.

8 • Chaojian Li, et al.

Table 4. Important details about the 3 hardware devices in the transferability exploration experiments.

Device Deployment tool Hardware-cost measurement tool Target application

NVIDIA V100 PyTorch PyTorch profiler Cloud services w/ strong GPUs

NVIDIA Edge GPU TX2 TensorRT TensorRT command-line wrapper Edge computing w/ weak GPUs

Google Pixel3 Tflite Tflite benchmark tools Mobile deployment w/o GPUs

model in Table 2. Specifically, we randomly change the scaling factors (e.g., multiplying by 0.8 × 1.2 × randomly

in our experiments) of the search model in each step of the iterative greedy search process while keeping their

FLOPs the same.

After the permutation, we select 24 architectures under the same target hardware-cost with the scaled model

by iterative greedy search for each scaled model. Figure 4 demonstrates that (1) such a random permutation can

slightly push forward the frontier of accuracy-FLOPs trade-off (e.g., a ↑0.4% higher accuracy under similar FLOPs

on top of the scaled models resulting from the adopted simple scaling method); and (2) our adopted iterative greedy

search alone is sufficiently effective while requiring a lower exploration cost (e.g., 6 vs. 30 (6+24) models to be

trained for each step as compared to such a search method together with the aforementioned permutation).

Scaled ViT also benefits from a longer training time. As pointed out by [50], training ViT models for more

epochs (e.g., 1000 epochs) can further improve the achieved accuracy.

To verify whether the scaled ViT models can benefit from more training epochs, we train the models in Table 2

for 1000 epochs following the training recipe in [50]. As shown in Table 3, longer training epochs also help our

scaled models (e.g., DeiT-Scaled-Tiny/Small) to achieve a higher accuracy, and thus, the advantage of our scaled

models over DeiT is consistent under both the 300-epochs and 1000-epochs training recipe, e.g., a ↑1.9% higher

accuracy over DeiT-Tiny [50] with 300 epochs vs. a ↑1.7% higher accuracy over DeiT-Tiny [50] with 1000 epochs.

Drawn insights from scaling ViT. Based on the observations from the above experiments, especially the scaling

strategies illustrated in Figure 5, we draw the following scaling insights dedicated to ViT:

(1) When targeting relatively small models (i.e., with smaller FLOPs than DeiT-Scaled-Small), the optimal

models tend to select “scaling ℎ (i.e., the number of heads)” or “scaling � (i.e., the number of layers)” and a “smaller

� (i.e., the input image resolution)” (e.g., 160 × 160 instead of the commonly used 224 × 224).

(2) When targeting relatively large models (i.e., with larger FLOPs than DeiT-Scaled-Small), the optimal models

mainly select to “scaling � (i.e., the input image resolution)”, while “slowing down scaling ℎ (i.e., number of heads)”

as compared to the case when targeting relatively small models.

4.2 Transferability of the extracted scaling strategies across different devices

To evaluate the transferability of the extracted scaling strategies across different real hardware devices, we consider

3 hardware devices which target different applications as summarized in Table 4. More details about the setup of

these devices are provided in Appendix B.

Table 5. Scaled models targeting Pixel3 are sub-optimal when executed on TX2, and vice versa.

Model
Top-1 Latency on Latency on

� � � � � �
accuracy (%) TX2 (ms) Pixel3 (ms)

Pixel3 Scaling () 74.8 20.91 181.07 16 2 108 4 160 16

TX2 Scaling () 74.0 (↓ 0.8) 14.44 (↓ 30.94%) 275.06 (↑ 51.90%) 6 4 64 16 160 16

TX2 Scaling () 78.2 23.70 456.41 10 4 64 16 160 16

Pixel3 Scaling () 77.5 (↓ 0.7) 27.43 (↑ 15.74%) 297.58 (↓ 34.80%) 16 2 142 4 160 16

ACM Trans. Embedd. Comput. Syst.

An Investigation on Hardware-Aware Vision Transformer Scaling • 9

FLOPs (G)

Im
ag

eN
et

 to
p-

1
ac

cu
ra

cy
 (%

)

1/FPS on V100

Im
ag

eN
et

 to
p-

1
ac

cu
ra

cy
 (%

)

Latency on Pixel3 (ms)

Im
ag

eN
et

 to
p-

1
ac

cu
ra

cy
 (%

)

Latency on TX2 (ms)

Im
ag

eN
et

 to
p-

1
ac

cu
ra

cy
 (%

)

(a) (b)

(c) (d)

↑3.7%

Fig. 6. Comparing the optimal models resulting from scaling for different hardware devices. FLOPs/V100/TX2/Pixel3

Scaling represents the scaling strategies obtained on FLOPs/V100/TX2/Pixel3, and DeiT models are marked as the

comparison Baseline.

4.2.1 Transferability among different devices. To obtain the hardware-dedicated scaling strategies leading to

the best accuracy-efficiency trade-off on each device, we follow the scaling search method described in Section 4.1,

but replace the target hardware-cost with (1) 0.5× throughput measured on an NVIDIA V100 GPU (i.e., V100) [42]

(2) 2× latency measured on an NVIDIA Edge GPU TX2 (i.e., TX2) [28], and (3) 2× latency measured on a

Google Pixel3 device (i.e., Pixel3) [18], to simulate the model scaling for (1) cloud services with strong GPUs,

(2) edge computing with weak GPUs, and (3) mobile deployment without GPUs, respectively. It is worth noting

that the search method is designed to match the target hardware cost instead of a uniform proxy metric. Such a

performed choice is inspired by the recent findings that the optimal architectures on different hardware devices are

usually not the same, even for the same search space [13, 33]. We then compare the scaled models that achieve

the best accuracy-efficiency trade-off on each device, as shown in Figure 6, aiming to answer “can our scaling

strategies be transferred across different real hardware devices?”. This set of comparisons provides some interesting

observations:

ACM Trans. Embedd. Comput. Syst.

10 • Chaojian Li, et al.

FLOPs
breakdown

1/FPS breakdown
on V100

Latency breakdown
on TX2

Latency breakdown
on Pixel3

83.4 % 62.5 % 34.3 % 70.5 %

14.3 %

21.1 % 13.8 % 25.0 %

2.2 % 11.1 %

5.2 %
42.7 %

9.2 %

3.3 %

1.3 %

MLP MSA-SA-MatMulMSA-SA-Reshape&Transpose&Gather Others

Fig. 7. Cost breakdown of DeiT-Tiny on different devices in terms of (1) the number of FLOPs, (2) the 1/FPS

on V100, (3) the latency on TX2, and (4) the latency on Pixel3, where MLP represents the cost of all the Linear

layers, MSA-SA-MatMul represents the cost of matrix multiplication among Q(uery), K(ey), and V(alue) in ViT’s

multi-head attention, MSA-SA-Reshape&Transpose&Gather represents the cost of merely the data movement in

ViT’s multi-head attention, and the cost of all other operators are denoted as Others.

(1) The simple scaling approach is effective on different hardware devices. From the comparison between

the scaled models with FLOPs, throughput on V100, latency on TX2, and latency on Pixel3 as the hardware-cost

during scaling (i.e., FLOPs (), V100 (), TX2 (), and Pixel3 () Scaling in Figure 6) and the state-of-the-art DeiT

model (i.e., Baseline () in Figure 6), as shown in Figure 6) (a), (b), (c), and (d), respectively, we can see that all the

device-dedicated scaled models resulting from the iterative greedy search method described in Section 3.3 achieve

a better accuracy-efficiency trade-off than the baseline DeiT, indicating the necessity of device-dedicated scaling.

Specifically, the scaled models targeting the TX2 device () can achieve a ↑ 3.7% higher accuracy under a similar

latency on TX2, as compared to the DeiT-Tiny model. This set of experiments verifies that the adopted scaling

approach is simple yet effective across different devices or targeting hardware metrics.

(2) The transferability of our scaling strategies across different devices depends on the underlying device.

From Figure 6, we can observe that (i) the scaled models directly targeting a device indeed always lead to the best

accuracy-efficiency trade-off on the device, indicating that our scaling search method can adapt to different devices;

and (ii) the performance of the device-dedicated scaled models when executed on other devices varies among

different devices together with their corresponding deployment tools. For example, when executed on the Pixel3

device (see Figure 6 (d)), as expected, the scaled models targeting the Pixel3 device (denoted as) are always on

the Pareto frontier (i.e., the best accuracy-efficiency trade-off); interestingly, the scaled models targeting FLOPs ()

and the V100 device () are also close to or even on the Pareto frontier; however, the scaled models targeting the

TX2 device () are obviously far from the Pareto frontier when executed on the Pixel3 device.

As shown in Table 5, the scaled model targeting the TX2 device () suffers from a ↓ 0.82% lower accuracy at

an even ↑ 51.90% higher latency when executed on the Pixel3 device, as compared to the scaled models directly

targeting the Pixel3 device (), and vice versa for the performance of the scaled models targeting the Pixel3 device

() when executed on the TX2 device, i.e., a ↑ 15.74% higher latency and a ↓ 0.72% lower accuracy.

This set of experiments indicates that the scaling strategies obtained when targeting FLOPs () and the V100

device () can be transferred to the Pixel3 device with little or even no performance loss, but those obtained for the

TX2 device () leads to a degraded performance when being transferred.

4.2.2 Analysis on the transferability effectiveness. To better understand why the transferability effectiveness

depends on the underlying devices, we analyze the performance of ViT models executed on different hardware

ACM Trans. Embedd. Comput. Syst.

An Investigation on Hardware-Aware Vision Transformer Scaling • 11

devices from the following two perspectives: (1) cost (e.g., latency) breakdown of the same model on different

devices and (2) the rank correlation between the hardware-cost on different devices for the same group of models.

Connection between the breakdown and the transferability effectiveness. As shown in Figure 7, the cost

breakdown of the DeiT-Tiny model suggests that the breakdown in terms of the number of FLOPs, the latency on

V100, and the latency on Pixel3 are relatively similar, e.g., the breakdown’s cosine distance between any pair among

them is smaller than 0.02, while the breakdown for the latency on TX2 is quite different from that of the number

of FLOPs, the latency on V100, and the latency on Pixel3, e.g., the breakdown’s cosine distance between the

latency on TX2 and any other metric is larger than 0.28). We conjecture the reason for the slower data movements

in TX2 is that the weaker CPU causes the larger Gather operator (e.g., operators used to reorganize tensors in a

particular order) cost percentage in TX2 as compared to Pixel 3. Specifically, we perform a more detailed analysis

in Appendix C and observe that (1) the most significant differences come from the MLP and Gather operators

between the two devices; (2) TX2 has a weaker CPU in terms of the maximum frequency as compared to Pixel3.

This breakdown analysis explains why the scaled models targeting FLOPs (denoted as), V100 (), and TX2 ()

have a different transferability performance in terms of the accuracy-latency trade-off when executed on Pixel3.

Rank correlation between the hardware-cost on different devices can also indicate the transferability

effectiveness. Besides the above analysis based on the cost breakdown on different devices using one specific

model (i.e., DeiT-Tiny), we also perform analysis based on a group of ViT models.

FLOPs 1/FPS
on V100

Latency
on TX2

Latency
on Pixel3

FL
O

Ps
1/

FP
S

on
 V

10
0

La
te

nc
y

on
 T

X2
La

te
nc

y
on

 P
ix

el
3

Fig. 8. The rank correlation coef-

ficient between the hardware-cost

on different devices.

Table 6. Transferring the scaling strategies tar-

geting DeiT [50] to PiT [25], where the resulting

models are denoted as PiT-Scaled-Tiny/XS/Small.

Model Top-1 accuracy (%) FLOPs (G)

PiT-Tiny 74.6 0.71

PiT-Scaled-Tiny 76.7 (↑ 2.1) 0.70

PiT-XS 79.1 1.40

PiT-Scaled-XS 79.5 (↑ 0.4) 1.38

PiT-Small 81.9 2.9

PiT-Small (Reproduced) 81.7 2.9

PiT-Scaled-Small 81.8 (↑ 0.1) 3.0

Following the extensive search adopted in [3], we generate

a group of ViT models by varying � in [3, 6, 12, 18, 24], ℎ in

[2, 3, 6, 8, 12], � in [32, 64, 96], � in [2, 4, 8], � in [128, 160,

224, 320], and � in [8, 16, 32], resulting in a total of 2,700

different ViT models. As shown in Figure 8, the Kendall Rank

Correlation Coefficient Coefficient [1], which is commonly

used to benchmark the effectiveness of accuracy/hardware-cost

predictors in recent neural architecture search works [10, 33,

59], between the latency on Pixel3 and TX2 (highlighted in the

red box) is the lowest one among all the coefficients. This set

of experiments indicates the weaker performance of using the

latency on TX2/Pixel3 to be the proxy metric when scaling ViT

targeting Pixel3/TX2, as compared to other device pairs, which

ACM Trans. Embedd. Comput. Syst.

12 • Chaojian Li, et al.

is consistent with our observations on the transferability performance among different devices in Section 4.2.1, i.e.,

scaled models targeting FLOPs (denoted as) and V100 (denoted as) have a better transferability performance

when executed on Pixel3 than those targeting TX2 (denoted as).

Along with the above analysis based on the (1) cost breakdown and (2) rank correlation between the hardware-

cost on different devices, we further perform a deeper analysis from the hardware device specification perspective

in Appendix C for better understanding why the transferability effectiveness depends on the underlying devices.

4.3 Transfer our scaling strategies across different models and tasks

To answer “can these scaling strategies be transferred to different ViT variants and tasks?”, we transfer the extracted

scaling strategies in Section 4.1 for DeiT [50] on ImageNet [11], as illustrated in Figure 5, to (1) PiT [25], a strong

ViT variant targeting efficiency, on ImageNet [11]; (2) COCO [35], a popular benchmark for object detection tasks,

to build the backbone of the Deformable DETR detector [66]; (3) Kinetics-400 [31], a commonly used dataset for

video classification tasks, with a TimeSFormer [5] style model extension.

Table 7. COCO [35] detection performance

(val2017) of DeiT [50] and our DeiT-Scaled models

with the Deformable DETR [66] as the detector.

Backbone
Average Throughput

precision (%) (FPS) on V100

DeiT-Tiny 35.0 13.31

DeiT-Scaled-Tiny 35.7 (↑ 0.7) 13.05

DeiT-Small 41.0 10.81

DeiT-Scaled-Small 41.7 (↑ 0.7) 9.81

4.3.1 Transfer to the PiT models. As shown in Table 6,

when being transferred to PiT [25] on ImageNet [11], the

scaling strategies obtained from targeting DeiT [50] on Im-

ageNet [11] still lead to advantageous accuracy-efficiency

trade-offs for both the PiT-Scaled-Tiny and PiT-Scaled-XS

models, e.g., a ↑ 2.1% and ↑ 0.4% higher accuracy under a

similar number of FLOPs, respectively. Although the accu-

racy improvement for PiT-Scaled-Small is not as obvious

as that for PiT-Scaled-Tiny/XS (i.e., ↑ 0.1% under similar

FLOPs), the transferred scaling strategies at least do not lead

to an inferior model architecture. More details about the

architectures of PiT-Scaled-Tiny/XS/Small are provided in

Appendix A.

Table 8. Kinetics-400 [31] video classification per-

formance (validation set) of extended DeiT [50] and

our DeiT-Scaled models with a TimeSFormer [5]

style.

Attention
Model

Top-1
FLOPs (G)

Scheme Accuracy (%)

Joint

DeiT-Tiny 67.7 19.9

DeiT-Scaled-Tiny 67.4 (↓ 0.3) 13.3 (↓ 33.2%)

DeiT-Small 71.2 56.5

DeiT-Scaled-Small 71.4 (↑ 0.2) 61.9 (↑ 9.56%)

Divided

DeiT-Tiny 68.4 13.6

DeiT-Scaled-Tiny 67.8 (↓ 0.6) 12.7 (↓ 6.62%)

DeiT-Small 71.4 50.8

DeiT-Scaled-Small 72.0 (↑ 0.6) 54.2 (↑ 6.69%)

4.3.2 Transfer to an object detection task. When trans-

ferred to object detection, DeiT [50] and our scaled DeiT-

Scaled models are inserted into Deformable DETR [66] as

the backbones, and the corresponding throughput on V100

is measured using the widely used Detectron2 tool [57]. As

listed in Table 7, our DeiT-Scaled models achieve a ↑0.7%

higher average precision under a similar inference through-

put, which is consistent with our observation on the advan-

tages of our DeiT-Scaled models over the original DeiT [50]

models in terms of classification tasks, which is discussed in

Section 4.1.

4.3.3 Transfer to an video classification task. When

transferring our scaling strategies to video classification tasks,

we follow [5] to (1) decompose an input video into a sequence of frame-level patches and feed them into a

Transformer module and (2) include two attention schemes, “Joint” (i.e., applying self-attention into space-

time tokens jointly) and “Divided” (i.e., applying spatial and temporal attentions separately), to benchmark the

performance of different models. As shown in Table 8, our DeiT-Scaled models (e.g. DeiT-Scaled-Tiny) can

reduce the FLOPs by 33.2% under a similar accuracy (67.4% vs 67.7%) as compared to DeiT-Tiny with the “Joint”

ACM Trans. Embedd. Comput. Syst.

An Investigation on Hardware-Aware Vision Transformer Scaling • 13

attention scheme, and achieve accuracy-FLOPs trade-offs at least no worse than the original DeiT [50] models in

other settings.

All the above attempts of transferring the scaling strategies, extracted from scaling vanilla ViT models on an

image classification task, into different ViT variants and tasks share the following common observations: (1) for

some cases, such a transfer still achieves advantegeous accuracy-efficiency trade-offs, even without any further

exploration of scaling strategies dedicated to the new models/tasks; and (2) for the remaining cases, the transferred

scaling strategies lead to models with accuracy-efficiency trade-offs that are on par with the corresponding vanilla

models. Notably, there is no extra exploration cost (e.g., re-extracting dedicated scaling strategies) during transfer

and thus it can provide at least a good starting point for further dedicated exploration on the new models/tasks.

5 CONCLUSION

In this work, we present the study for exploring hardware-aware ViT scaling and show that a simply scaled vanilla

ViT model can achieve a comparable or even better (e.g., up to ↑ 3.7% higher accuracy) accuracy-efficiency trade-

off as compared to dedicatedly designed state-of-the-art ViT variants. Furthermore, we extract scaling strategies

dedicated to ViT and study their transferability across different hardware devices, ViT variants, and computer

vision tasks. We believe that this work has demonstrated a promising perspective toward more efficient/accurate

ViT models and will inspire more following innovations on both new ViT models via scaling and hardware-efficient

ViT models.

ACKNOWLEDGEMENT

Chaojian Li and Yingyan (Celine) Lin would like to acknowledge the funding support from the NSF CCRI program

(Award ID: 2016727) and NSF RTML program (Award ID: 1937592).

REFERENCES
[1] Hervé Abdi. 2007. The Kendall rank correlation coefficient. Encyclopedia of Measurement and Statistics. Sage, Thousand Oaks, CA

(2007), 508–510.

[2] Junjie Bai, Fang Lu, Ke Zhang, et al. 2019. ONNX: Open Neural Network Exchange. https://github.com/onnx/onnx.

[3] Irwan Bello, William Fedus, Xianzhi Du, Ekin D Cubuk, Aravind Srinivas, Tsung-Yi Lin, Jonathon Shlens, and Barret Zoph. 2021.

Revisiting resnets: Improved training and scaling strategies. arXiv preprint arXiv:2103.07579 (2021).

[4] Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens, and Quoc V Le. 2019. Attention augmented convolutional networks. In

Proceedings of the IEEE/CVF International Conference on Computer Vision. 3286–3295.

[5] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. 2021. Is Space-Time Attention All You Need for Video Understanding? arXiv

preprint arXiv:2102.05095 (2021).

[6] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. 2020. End-to-end object

detection with transformers. In European Conference on Computer Vision. Springer, 213–229.

[7] Chun-Fu Chen, Quanfu Fan, and Rameswar Panda. 2021. Crossvit: Cross-attention multi-scale vision transformer for image classification.

arXiv preprint arXiv:2103.14899 (2021).

[8] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever. 2020. Generative Pretraining From

Pixels. In Proceedings of the 37th International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 119),

Hal Daumé III and Aarti Singh (Eds.). PMLR, 1691–1703. http://proceedings.mlr.press/v119/chen20s.html

[9] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei, Huaxia Xia, and Chunhua Shen. 2021. Twins: Revisiting

Spatial Attention Design in Vision Transformers. arXiv:2104.13840 [cs.CV]

[10] Xiaoliang Dai, Alvin Wan, P. Zhang, B. Wu, Zijian He, Zhen Wei, K. Chen, Yuandong Tian, Matthew E. Yu, Péter Vajda, and J. Gonzalez.

2020. FBNetV3: Joint Architecture-Recipe Search using Neural Acquisition Function. ArXiv abs/2006.02049 (2020).

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image database. In

2009 IEEE Conference on Computer Vision and Pattern Recognition. 248–255. https://doi.org/10.1109/CVPR.2009.5206848

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,

Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is Worth 16x16 Words: Transformers

for Image Recognition at Scale. In International Conference on Learning Representations.

ACM Trans. Embedd. Comput. Syst.

14 • Chaojian Li, et al.

[13] Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas Lane. 2020. Brp-nas: Prediction-based nas

using gcns. Advances in Neural Information Processing Systems 33 (2020), 10480–10490.

[14] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and Christoph Feichtenhofer. 2021. Multiscale

Vision Transformers. arXiv preprint arXiv:2104.11227 (2021).

[15] Christoph Feichtenhofer. 2020. X3d: Expanding architectures for efficient video recognition. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition. 203–213.

[16] Francisco Massa. 2021. Script to calculate the throughput for DeiT. https://gist.github.com/fmassa/1f4edb34ca041634c9b730473753b8ad,

accessed 2021-05-01.

[17] Google LLC. 2020. Performance measurement. https://www.tensorflow.org/lite/performance/measurement, accessed 2021-05-21.

[18] Google LLC. 2020. Pixel3 Mobile Phone. https://g.co/kgs/pVRc1Y, accessed 2020-09-01.

[19] Google LLC. 2020. TensorFlow Lite: Deploy machine learning models on mobile and IoT devices. https://www.tensorflow.org/lite,

accessed 2019-11-21.

[20] Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, and Matthijs Douze. 2021. LeViT: a Vision

Transformer in ConvNet’s Clothing for Faster Inference. arXiv preprint arXiv:2104.01136 (2021).

[21] Isabelle Guyon and Andre Elisseeff. 2003. An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 3, null (March 2003),

1157–1182.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the

IEEE conference on computer vision and pattern recognition. 770–778.

[23] Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo Jun, Tom B Brown, Prafulla Dhariwal,

Scott Gray, et al. 2020. Scaling laws for autoregressive generative modeling. arXiv preprint arXiv:2010.14701 (2020).

[24] Byeongho Heo, Sanghyuk Chun, Seong Joon Oh, Dongyoon Han, Sangdoo Yun, Gyuwan Kim, Youngjung Uh, and Jung-Woo Ha. 2020.

AdamP: Slowing down the slowdown for momentum optimizers on scale-invariant weights. arXiv preprint arXiv:2006.08217 (2020).

[25] Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, and Seong Joon Oh. 2021. Rethinking spatial dimensions

of vision transformers. arXiv preprint arXiv:2103.16302 (2021).

[26] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang,

Vijay Vasudevan, et al. 2019. Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision.

1314–1324.

[27] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and

pattern recognition. 7132–7141.

[28] NVIDIA Inc. 2020. NVIDIA Jetson TX2. (2020). https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/,

accessed 2020-09-01.

[29] A. Jain and D. Zongker. 1997. Feature selection: evaluation, application, and small sample performance. IEEE Transactions on Pattern

Analysis and Machine Intelligence 19, 2 (1997), 153–158. https://doi.org/10.1109/34.574797

[30] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and

Dario Amodei. 2020. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 (2020).

[31] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola, Tim Green, Trevor

Back, Paul Natsev, et al. 2017. The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017).

[32] Chaojian Li, Tianlong Chen, Haoran You, Zhangyang Wang, and Yingyan Lin. 2020. HALO: Hardware-Aware Learning to Optimize. In

Proceedings of the European Conference on Computer Vision (ECCV).

[33] Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran You, Qixuan Yu, Yue Wang, and Yingyan Lin. 2021.

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark. arXiv preprint arXiv:2103.10584 (2021).

[34] Xiang Li, Wenhai Wang, Xiaolin Hu, and Jian Yang. 2019. Selective kernel networks. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition. 510–519.

[35] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014.

Microsoft coco: Common objects in context. In European conference on computer vision. Springer, 740–755.

[36] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. 2021. Swin transformer: Hierarchical

vision transformer using shifted windows. arXiv preprint arXiv:2103.14030 (2021).

[37] Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017).

[38] Maxim Lukiyanov, Guoliang Hua, Geeta Chauhan, and Gisle Dankel. 2020. Introducing PyTorch Profiler - the new and improved

performance tool.

[39] NVIDIA Inc. 2020. Performance Tuning - Maximizing Performance. https://developer.ridgerun.com/wiki/index.php?title=Xavier/

JetPack_4.1/Performance_Tuning/Maximizing_Performance, accessed 2020-09-01.

[40] NVIDIA Inc. 2020. TensorRT Command-Line Wrapper: trtexec. https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/

trtexec, accessed 2021-05-21.

[41] NVIDIA Inc. 2020. TensorRT Open Source Software. https://github.com/NVIDIA/TensorRT, accessed 2020-09-01.

ACM Trans. Embedd. Comput. Syst.

An Investigation on Hardware-Aware Vision Transformer Scaling • 15

[42] NVIDIA LLC. 2020. NVIDIA V100 TENSOR CORE GPU. https://www.nvidia.com/en-us/data-center/v100/, accessed 2020-09-01.

[43] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia

Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style, high-performance deep learning library. In Advances in neural

information processing systems. 8026–8037.

[44] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. 2020. Designing network design spaces. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10428–10436.

[45] Robin Ru, Clare Lyle, Lisa Schut, Miroslav Fil, Mark van der Wilk, and Yarin Gal. 2021. Speedy performance estimation for neural

architecture search. Advances in Neural Information Processing Systems 34 (2021), 4079–4092.

[46] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. 2018. Mobilenetv2: Inverted residuals and

linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition. 4510–4520.

[47] Mennatullah Siam, Mostafa Gamal, Moemen Abdel-Razek, Senthil Yogamani, Martin Jagersand, and Hong Zhang. 2018. A comparative

study of real-time semantic segmentation for autonomous driving. In Proceedings of the IEEE conference on computer vision and pattern

recognition workshops. 587–597.

[48] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. 2017. Revisiting Unreasonable Effectiveness of Data in Deep

Learning Era. In ICCV. https://arxiv.org/abs/1707.02968

[49] Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model scaling for convolutional neural networks. In International Conference

on Machine Learning. PMLR, 6105–6114.

[50] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou. 2020. Training data-efficient

image transformers & distillation through attention. arXiv preprint arXiv:2012.12877 (2020).

[51] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. 2021. Going deeper with image transformers.

arXiv preprint arXiv:2103.17239 (2021).

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017.

Attention is all you need. arXiv preprint arXiv:1706.03762 (2017).

[53] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. 2021. Pyramid vision

transformer: A versatile backbone for dense prediction without convolutions. arXiv preprint arXiv:2102.12122 (2021).

[54] Diana Wofk, Fangchang Ma, Tien-Ju Yang, Sertac Karaman, and Vivienne Sze. 2019. Fastdepth: Fast monocular depth estimation on

embedded systems. In 2019 International Conference on Robotics and Automation (ICRA). IEEE, 6101–6108.

[55] Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi Tomizuka, Joseph Gonzalez, Kurt

Keutzer, and Peter Vajda. 2020. Visual transformers: Token-based image representation and processing for computer vision. arXiv preprint

arXiv:2006.03677 (2020).

[56] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. 2021. Cvt: Introducing convolutions to vision

transformers. arXiv preprint arXiv:2103.15808 (2021).

[57] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. 2019. Detectron2. https://github.com/facebookresearch/

detectron2.

[58] Yunyang Xiong, Hanxiao Liu, Suyog Gupta, Berkin Akin, Gabriel Bender, Pieter-Jan Kindermans, Mingxing Tan, Vikas Singh, and Bo

Chen. 2020. MobileDets: Searching for Object Detection Architectures for Mobile Accelerators. arXiv preprint arXiv:2004.14525 (2020).

[59] Shan You, Tao Huang, Mingmin Yang, Fei Wang, Chen Qian, and Changshui Zhang. 2020. GreedyNAS: Towards Fast One-Shot NAS

with Greedy Supernet. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1999–2008.

[60] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kindermans, Mingxing Tan, Thomas Huang, Xiaodan Song, Ruoming

Pang, and Quoc Le. 2020. Bignas: Scaling up neural architecture search with big single-stage models. In European Conference on

Computer Vision. Springer, 702–717.

[61] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zihang Jiang, Francis EH Tay, Jiashi Feng, and Shuicheng Yan. 2021.

Tokens-to-token vit: Training vision transformers from scratch on imagenet. arXiv preprint arXiv:2101.11986 (2021).

[62] Arber Zela, Aaron Klein, Stefan Falkner, and Frank Hutter. 2018. Towards automated deep learning: Efficient joint neural architecture and

hyperparameter search. arXiv preprint arXiv:1807.06906 (2018).

[63] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. 2021. Scaling vision transformers. arXiv preprint arXiv:2106.04560

(2021).

[64] Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Haibin Lin, Zhi Zhang, Yue Sun, Tong He, Jonas Mueller, R Manmatha, et al.

2020. Resnest: Split-attention networks. arXiv preprint arXiv:2004.08955 (2020).

[65] Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang, Xiaochen Lian, Qibin Hou, and Jiashi Feng. 2021. Deepvit: Towards deeper vision

transformer. arXiv preprint arXiv:2103.11886 (2021).

[66] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. 2020. Deformable DETR: Deformable Transformers for

End-to-End Object Detection. arXiv preprint arXiv:2010.04159 (2020).

ACM Trans. Embedd. Comput. Syst.

16 • Chaojian Li, et al.

A ARCHITECTURE CONFIGURATIONS OF PIT-SCALED-TINY/XS/SMALL

Table 9. Architecture configuration of PiT-Scaled-Tiny/XS/Small, including image resolution (�), spatial size (i.e., # of

spatial tokens), # of layers (�), # of heads (ℎ), and the embedding dimension for each head (�). Here, ℎ in the PiT

models has to be in ℎ-2ℎ-4ℎ format (e.g., 2-4-8 in PiT-Tiny).

Model FLOPs (G) Top-1 accuracy (%) � Spatial size � ℎ �

DeiT-Tiny 1.26 74.5 224 14 × 14 12 3 64

DeiT-Scaled-Tiny 1.22 76.4 (↑ 1.9) 160 10 × 10 14 4 64

PiT-Tiny 0.71 74.6 224

27 × 27 2 2 32

14 × 14 6 4 32

7 × 7 4 8 32

PiT-Scaled-Tiny 0.70 76.7 (↑ 2.1) 160

19 × 19 2 3 32

10 × 10 7 6 32

5 × 5 4 12 32

PiT-XS 1.41 79.1 224

27 × 27 2 2 48

14 × 14 6 4 48

7 × 7 4 8 48

PiT-Scaled-XS 1.38 79.5 (↑ 0.4) 160

19 × 19 2 3 48

10 × 10 6 6 48

5 × 5 4 12 48

DeiT-Small 4.62 81.2 224 14 × 14 12 6 64

DeiT-Scaled-Small 4.79 81.6 (↑ 0.4) 256 16 × 16 20 4 64

PiT-Small 2.90 81.7 224

27 × 27 2 3 48

14 × 14 6 6 48

7 × 7 4 12 48

PiT-Scaled-Small 3.04 81.8 (↑ 0.1) 256

31 × 31 3 2 48

16 × 16 10 4 48

8 × 8 6 8 48

Here we provide more details regarding how we transfer our extracted strategies to other ViT models, e.g., the

PiT models. Specifically, to obtain the corresponding PiT-Scaled-Tiny/XS/Small models based on the baseline

PiT-Tiny/XS/Small models and extracted scaling strategies, we 1) locate the most suitable architecture configuration

in our scaling strategies to be used in the new variant, i.e., DeiT-Scaled-Tiny corresponds to PiT-Tiny/XS, and

DeiT-Scaled-Small corresponds to PiT-Small, considering that PiT-Tiny/XS/Small are designed to be at a scale

similar to DeiT-Tiny/Small [25]); 2) adjust the scaling factors which are the same in both DeiT and the new variant

baseline models to match the located architecture configuration in the previous step, e.g., adjusting � from 224 to 160

in PiT-Tiny to build PiT-Scaled-Tiny; and 3) scale down/up the remaining scaling factors if the transferred models

cost more/less FLOPs than the new variant baseline models, e.g., scaling up ℎ from 2-4-8 to 3-6-12 in PiT-Tiny to

build PiT-Scaled-Tiny. The details of the finally obtained PiT-Scaled-Tiny/XS/Small models are summarized in

Table 9.

ACM Trans. Embedd. Comput. Syst.

An Investigation on Hardware-Aware Vision Transformer Scaling • 17

B DEVICES SETUP

B.1 NVIDIA V100

Device specifications and target applications. NVIDIA V100 (V100) [42] is one of the most advanced data center

GPUs that accelerate deep learning applications for cloud services and powered by 5120 NVIDIA CUDA cores and

640 NVIDIA Tensor cores. In all our experiments, we use the 16GB HBM2 GPU memory configuration type V100.

Pre-measurement setup. The V100 GPU system consists of an Intel Xeon Bronze 3204 Processor and 21GB

RAM that are able to provide a high processing throughput (i.e., frames per second) of the given DNN models.

Measurement pipeline. Following [50], we use the maximum power-of-two batch size that can fit in the memory

when measuring the throughput with the officially provided PyTorch profiler [38] based on on the PyTorch scripts

provided in [16].

B.2 NVIDIA Edge GPU TX2

Device specifications and target applications. NVIDIA Edge GPU TX2 (TX2) [28] consists of a quad-core Arm

Cortex-A57, a dual-core NVIDIA Denver2, a 256-core Pascal GPU, and a 8GB 128-bit LPDDR4. It is commonly

used in IoT and self-driving environments [32, 47, 54], working as an edge computing platform with a relatively

weak GPU.

Pre-measurement setup. In order to make full use of its resource following [54], we enable jetson_clock [39]

on TX2, pre-setting it into a max-N mode and adjusting the fan speed to 100%.

Measurement pipeline. When we measure the latency of a specific model on TX2, the model definition in

PyTorch [43] will be 1) exported into the onnx format [2] and 2) passed to the TensorRT command-line wrapper [40],

an officially provided binary file, to be executed by TensorRT [41] that is a C++ library for high-performance

inference on NVIDIA GPUs. The corresponding latency is directly reported by the TensorRT command-line

wrapper [40].

B.3 Google Pixel3

Device specifications and target applications. Google Pixel3 (Pixel3) [18] consists of a quad-core 2.5 GHz Kryo

385 Gold CPU, a quad-core 1.6 GHz Kryo 385 Silver CPU, and a 4GB RAM. It is one of the latest Pixel mobile

phones, which is widely used as the benchmark platform for deep learning targeting mobile devices [19, 26, 58].

Pre-measurement setup. In order to reduce the variance of the measured latency, the Pixel3 device is pre-

configured to only use its big cores to perform the network inference, following the settings in [17, 58].

Measurement pipeline. To operate a given model in Pixel3, the model will be 1) converted into the tflite

format [19] and 2) passed to the tflite benchmark tools [17] that are an officially provided binary file for fairly

benchmarking different models in tflite. The corresponding latency is then directly reported by the tflite benchmark

tools [17].

C ANALYSIS ON THE TRANSFERABILITY ACROSS DIFFERENT DEVICES FROM THE
HARDWARE DEVICE SPECIFICATIONS PERSPECTIVE

By observing the specifications of different hardware devices, which is summarized in Table 10, and the detailed

cost breakdown on different devices in Table 11, we can conclude that (1) the most significant differences come

from the MLP and MSA-Gather operators for all the three devices, e.g., MSA-Gather costs much more (36.38% vs.

<0.01%) and MLP costs much less (34.31% vs. 62.50%/69.40%) in TX2 than in Pixel3/V100 and (2) TX2 has

the weakest CPU in terms of the maximum frequency among the three devices. Thus, we conjecture the slow data

movements in TX2 due to the weakest CPU cause the largest MSA-Gather cost percentage in TX2 among these

devices. This can explain that the scaling strategies obtained when targeting FLOPs and V100 can be transferred

ACM Trans. Embedd. Comput. Syst.

18 • Chaojian Li, et al.

to Pixel3 with little or even no performance loss,but those obtained for TX2 cannot do that, as mentioned in

Section 4.2.

Interestingly, by comparing the extracted scaling strategies for V100 and TX2, we can observe that the scaled

ViT in TX2 tends to enlarge more on linear projection ratio (�), which will not increase the cost of self-attention,

as compared to the scaled ViT in V100 (16 vs. 4) under a similar accuracy (78.17% vs. 78.10%), as shown in

Table 12. This matches the observation that the self-attention costs a large portion of the cost on TX2 (e.g., 56.48%

for DeiT-Tiny) in Table 11.

D IMPLEMENTATION DETAILS

In this section, we provide the implementation details of our experiments, including (1) our scaled ViT [12, 50]

models on ImageNet [11] dataset in Section 4.1 and 4.2, (2) our scaled PiT [25] models on ImageNet [11] dataset

in Section 4.3.1, (3) our scaled ViT [12, 50] models on COCO [35] dataset in Section 4.3.2, and (4) our scaled

ViT [12, 50] models on Kinetics-400 [31] dataset in Section 4.3.3.

Scaled ViT models on ImageNet dataset. All the scaled ViT [12, 50] models on ImageNet [11] dataset reported

in Section 4.1 and 4.2 follow the same training recipe (including the data pre-processing) with the one proposed

in [50], i.e., training on ImageNet for 300 epochs (1000 epochs for models in Table 3) with batch size as 1024,

AdamW optimizer [37], learning rate as 0.001, cosine learning rate decay, weight decay as 0.05, 5 warmup epochs,

and distillation from RegNetY-16GF [44].

Scaled PiT models on ImageNet dataset. To make a fair comparison with PiT [25] models, all our scaled PiT

models (i.e., PiT-Scaled-Tiny/XS/Small in Table 6) follow the training recipe (including the data pre-processing) in

PiT [25], which uses the same learning rate, weight decay, warmup epochs, total epochs, and distillation settings

with [50], but using AdamP [24] as the optimizer instead of AdamW [37].

Scaled ViT models on COCO dataset. Following the training recipe (including the data pre-processing)

described in [66], all the models are pre-trained on ImageNet [11] first, and then trained on COCO [35] dataset for

50 epochs with Adam optimizer, learning rate as 0.0002, weight decay 0.0001, and the learning rate is decayed at

the 40-th epoch by a factor of 0.1. Note that when adapting the models pre-trained on ImageNet[11] to COCO [35],

we scale the positional embeddings of ViT via bilinear interpolation to match the differences of image resolutions

and use the feature map before the final classifier and layernorm layer as the input feature map to the Deformable

DETR header.

Scaled ViT models on Kinetics-400 dataset. For Kinetics-400 [31] dataset, we follow the training recipes

(including the data pre-processing) in [5] to start from the ImageNet [11] pre-trained models. Then clips of size

8×224×224 with frames sampled as a rate of 1/32 are used for training. All models are trained for 15 epochs with

learning rate as 0.005, batch size as 16, SGD optimizer with momentum 0.9, and the learning rate is decayed

at the 10-th and 14-th epoch by a factor of 0.1. We also include both the “Joint” (i.e., applying self-attention

into space-time tokens jointly) and “Divided” (i.e., applying spatial and temporal attentions separately) attention

Table 10. Specifications of the hardware devices in the transferability exploration experiments.

Specifications NVIDIA V100 System (V100) NVIDIA Edge GPU TX2 (TX2) Google Pixel3 (Pixel3)

GPU Architecture NVIDIA Volta NVIDIA Pascal Qualcomm Adreno

CUDA Cores 5120 256 -

CPU AMD EPYC 7742 NVIDIA Denver 2/ARM® Cortex®-A57 Kryo 385 Gold/Kryo 385 Silver

CPU Max Frequency 3.4 GHz 2 GHz/2 GHz 2.8 GHz/1.7 GHz

GPU/SoC Memory 16 GB 8 GB 4 GB

Power Consumption 300 W 15 W 18 W

ACM Trans. Embedd. Comput. Syst.

An Investigation on Hardware-Aware Vision Transformer Scaling • 19

Table 11. Detailed cost breakdown of DeiT-Tiny on different devices for the operators of (1) multi-layer perceptron

(MLP), (2) layer normalization (LayerNorm), (3) matrix multiplication in multi-head self-attention (MSA-MatMul),

(4) softmax in multi-head self-attention (MSA-Softmax), (5) reshape and transpose in multi-head self-attention

(MSA-Reshape&Transpose), (6) gather in multi-head self-attention (MSA-Gather), and (7) others.

Operators 1/FPS on V100 (%) Latency on TX2 (%) Latency on Pixel3 (%)

MLP 62.50 34.31 69.40

LayerNorm 8.95 6.38 1.59

MSA-MatMul 17.65 8.03 21.36

MSA-Softmax 3.48 5.75 3.20

MSA-Reshape&Transpose 5.17 6.32 3.30

MSA-Gather <0.01 36.38 <0.01

Others 2.20 2.82 1.26

Table 12. Detailed architecture configurations of the scaled ViT models with throughput (i.e., FPS) on V100 (V100

Scaling) and latency on TX2 (TX2 Scaling) as the hardware-cost during scaling, respectively.

Metrics V100 Scaling TX2 Scaling

Accuracy (%) 78.10 78.17

FPS on V100 2488.81 1984.10

Latency on TX2 (ms) 25.18 23.70

Num. of layers (�) 13 10

Num. of heads (ℎ) 5 4

Embedding dim. per head (�) 64 64

Linear projection ratio (�) 4 16

Image resolution (�) 160 160

Patch size (�) 16 16

Table 13. Random permutation further boosts the performance of the scaled models.

Model FLOPs (G) Top-1 accuracy (%) � � � � � �

DeiT-Tiny 1.26 74.5 12 3 64 4 224 16

DeiT-Scaled-Tiny 1.22 76.4 (↑1.9) 14 4 64 4 160 16

DeiT-Scaled-Tiny-RP 1.22 76.9 (↑2.4) 17 4 60 5 171 19

DeiT-Small 4.62 81.2 12 6 64 4 224 16

DeiT-Scaled-Small 4.79 81.6 (↑0.4) 20 4 64 4 256 16

DeiT-Scaled-Small-RP 4.79 82.0 (↑0.8) 21 4 68 5 210 15

schemes describled in [5] to make a more fair comparison with the baseline models which use DeiT [50] models as

backbones.

E ARCHITECTURES COMPARISON BETWEEN THE SCALED MODELS AND THE
RANDOMLY PERMUTATED MODELS

To further explore why the architectures with the best accuracy vs. efficiency trade-off after the random permutation

on top the scaled models can achieve better performance than the scaled models, as shown in Figure 4 of the main

content, here we summarize their performance and architectures details in Table 13. As compared to the scaled

models (i.e., DeiT-Scale-{Tiny, Small}), those architectures with the best accuraccy vs. efficiency trade-off after

random permutation (i.e., DeiT-Scale-{Tiny, Small}-RP) adopt different scaling factors except the number of heads.

ACM Trans. Embedd. Comput. Syst.

	Abstract
	1 Introduction
	2 Related works
	3 Scaling ViT: How and Why do we scale vit?
	3.1 Scaling factors in ViT
	3.2 Previous scaling strategies fail on ViT
	3.3 Our scaling method based on an iterative greedy search

	4 Experiment results
	4.1 Scaling ViT towards better accuracy-FLOPs trade-offs
	4.2 Transferability of the extracted scaling strategies across different devices
	4.3 Transfer our scaling strategies across different models and tasks

	5 Conclusion
	References
	A Architecture configurations of PiT-Scaled-Tiny/XS/Small
	B Devices setup
	B.1 NVIDIA V100
	B.2 NVIDIA Edge GPU TX2
	B.3 Google Pixel3

	C Analysis on the transferability across different devices from the hardware device specifications perspective
	D Implementation details
	E Architectures comparison between the scaled models and the randomly permutated models

