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Abstract—1In this paper, we proposed a Q-learning based
algorithm to trade off the activity recognition accuracy, energy
cost, privacy concerns and robot resource consumption in
monitoring activities of daily living (ADLs) for elderly care
using a wearable device and a companion robot. The robot
uses a Q-learning algorithm to decide when to turn on what
sensors for data collection by considering the above four
criteria. The wearable device follows the robot’s decision to
turn on the relevant sensors to collect data which are sent
back to the robot for activity recognition. First, we described
the overall design of the system in which a wearable device
and a companion robot collaborate for activity monitoring.
Second we developed the Q-learning framework based on the
knowledge of transition motions. Third, we trained the model
and evaluated the proposed method using offline data and real
time data collected from our smart home testbed. The results
showed that the proposed method could recognize ADLs with
high accuracy while saving about half energy compared with
periodic methods. The results from real time evaluation showed
that the activity detection rate is about 85%.

I. MOTIVATION

Activities of daily living (ADLs) monitoring is critical
to maintaining the independence and well-being of elderly
individuals [1]. Knowing older adults’ daily routine allows
caregivers and family members to understand the health
status and detect potential health problems of the older adults
for timely intervention. Various technologies, such as internet
of things (IoTs) and smart homes, have been developed
for ADL monitoring. Ambient sensors [2] like video cam-
eras and passive infrared motion sensors were employed in
activity monitoring. However, it is difficult to install and
maintain a monitoring system with many distributed sensors,
which may pose serious privacy concerns, making them not
acceptable by the older adults [3].

On the other hand, wearable devices like smart watches
and smart phones are nowadays a part of people’s daily life,
which can be used for activity monitoring [4]. Smart watches
can collect multimodal data to recognize the activities as
it integrates cameras, microphones and motion sensors. For
example, smart phones were used to collect heart rate and
motion data for activity monitoring [5]. However, a common
issue with wearable devices is energy consumption, espe-
cially when they need to collect and process large amount
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of data for ADL recognition. Thus, it is critical for wearable
devices to collaborate with a more powerful computing re-
source to accomplish the recognition task. Since companion
robots have been used in home care applications [6] [7], the
collaboration between wearable devices and robots for ADL
monitoring could achieve high recognition accuracy while
reducing energy consumption.

In our previous work [8] [9], we have built a collaborative
system for elderly care using a wearable device and a
companion robot. The system mainly uses the wearable
device to collect data and the robot to process the data for
daily activities monitoring. In this paper, we consider the
scenario that both the robot and the wearable device can
collect data for activity recognition. In order to trade off
activity recognition accuracy, energy cost, privacy concerns
and robot resource consumption, the system learned a Q
table to decide how to trigger the sensors given the current
context. The major contributions of this paper are as follows:
First, we developed a dynamic Bayesian network (DBN)
based method to recognize the activities in daily life. Second,
since transition motions usually indicate a change in daily
activities, we treat these motions as part of the state in a
reinforcement learning framework to trigger sensors so as
to balance the activity recognition accuracy, energy cost,
privacy protection and robot resource consumption. Third,
we tested the proposed method with both offline and real-
time methods in our smart home testbed.

The rest of this paper is organized as follows: Section
II introduces the related work. Section III describes the
overall design of the Collaborative Activity Monitoring Sys-
tem (CAMS) and the proposed method and algorithm for
energy-efficient ADL monitoring. Section IV demonstrates
the experimental setup and simulation results. Section V
concludes the paper and discusses the future work.

II. RELATED WORK
A. Activity Monitoring

A significant amount of research work has been done in
the field of daily activity monitoring using various technolo-
gies such as environmental sensors, wearable devices and
robots. Environmental sensors are embedded into homes to
collect data related to a persons’ activity, including cameras,
microphones, and passive infrared motion(PIR) sensors. In
the CASAS project [10], multiple sensors including infrared
motion sensors, door sensors and temperature sensors were
deployed in the apartments for ADL monitoring. However,
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Fig. 1: The overall design of the CAMS.

the installation of distributed sensors can be costly, and main-
taining the sensors can also be challenging. Nevertheless,
privacy concern is the main obstacle for older adults to
accept video-based or sound-based activity monitoring [3],
especially when they are conducting certain activities such
as using bathrooms. Companion robots and social robots
are beginning to enter our daily life. With their powerful
computing abilities and various onboard sensors, these robots
could monitor older adults’ activities and support them in
their daily life [6] [11]. Georgiou ef al. [12] developed a pet-
like robot for fall detection. The robot could use its camera to
recognize the activities of the person in front of it. However,
using cameras again may cause privacy concerns to the user.
In addition, due to the limited sensing range, the robot cannot
get data if the user is far from the robot, for example, in
another room. Wearable sensing and computing is becoming
a promising way to monitor human activities in daily life
[13]. For example, De et al. [14] implemented a multimodal
activity recognition system by employing an accelerometer,
temperature, humidity, and atmosphric pressure sensors. As a
result, fusing multiple sensors could increase the recognition
accuracy but at the expense of power consumption.

B. Energy Consumption Problem For Activity Monitoring

Energy consumption is a critical issue for wearable device
based activity monitoring. Several projects adopted a periodic
sampling method to collect data in order to save energy
[15]. However, due to the periodic sampling nature, their
method could miss some short-duration activities. Recently,
reinforcement learning (RL) has been used for energy man-
agement [16]. For example, Possas et al. [17] used smart
glasses for data collection and activity recognition. They
utilized RL to make decisions and turn on vision or motion
sensors based on the types of activities. The method was
evaluated on a small dataset. In this paper, considering that
motion data is highly correlated to human daily activities
and could be used to classify different motion actions, we
propose to use Q learning to save energy and achieve good
performance in ADL monitoring.
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Fig. 2: The prototype of the WMU and the ASCC companion
robot [18].

III. METHODOLOGY
A. Overall Design of CAMS

As shown in Fig. 1, the CAMS consists of a WMU, a
companion robot, and a healthcare management system. As
shown in Fig. 2, the WMU consists of three parts: the main
control board based on a Raspberry Pi Zero, the battery
and the housing. We integrate a camera, an accelerometer,
a microphone and a speaker onto the board. With an Intel
Realsense RGB-D camera and four microphones on the head,
the robot can collect images and audio data for activity
recognition. As shown in Fig. 1, the robot runs the RL based
sensor selection algorithm to turn on the relevant sensors
for data collection and activity recognition. Based on the
decision, the system either turns on robot sensors or sends
the commands to trigger the WMU sensors. As the WMU
has limited computational resources, the data collected by
the WMU will be sent to the robot for processing.

In human daily life, body motion varies when humans
are conducting different activities, especially when transit-
ing between different activities. Fig. 3 shows the changes
of motion actions when conducting different activities.The
transition motions would be the key to trigger the sensors and
detect the corresponding activities. By default, the motion
sensor is on. By monitoring the transition motion and other
contextual information including current activities, battery

735
Authorized licensed use limited to: Oklahoma State University. Downloaded on January 28,2024 at 03:09:52 UTC from IEEE Xplore. Restrictions apply.



Hallway

Kitchen

Fig. 3: The transition samples between activities.

life and robot’s sensor trigger times, the agent uses the Q-
Table to take actions to recognize the activities and save
energy. We also consider the privacy issues when turning on
sensors. For example, when in the bathroom, the WMU is
a better choice to detect the activities rather than the robot.
As more sensor trigger times mean more data to store on the
robot, the consumption of robot resources is also considered.
Then the accumulated reward is calculated from each time
step. Finally, we train a Q network using an offline dataset.

B. Activity Recognition

Bayesian rule describes how to achieve the posterior
probability given the evidence and the prior knowledge. In
home environments, different daily activities take place at
different locations, resulting in different types of sounds and
body movements. As shown in Fig 4, the evidence data
location L, object Oy, sound event S; and body action By
are dependent on activity A, based on the Bayesian rule we
have,

P(At‘Lt, Ot, St, Bt) X P(Lt, Ot, St, Bt‘At) . P(At)

Here, we have:

P(A(| L, Oy, Sy, By) : the posterior probability.

P(L;, Oy, Si, B, |A) : the Likelihood function.

P(A,): the prior probability of A;.

With respect to the independent conditions, we have:

P(Ln Oy, S, Bt|At) =

P(L[|A[) 'P(Ot|At) : P(Sl|Al) 'P(Bt|Al) o

In this study, we estimated the duration of each activity by
analyzing the dataset and combined the time label to generate
the activity prior knowledge when updating the probability

of At.
° P(At+1/AD) @

CLOCXEIM) ) p(Geep ey

Fig. 4: The graphical representation of Dynamic Bayesian
Network model for activity recognition.

Moreover, in human’s daily life, the activities have se-
quential constraints, which can be modelled by a Dynamic
Bayesian Network (DBN) model. As shown in Fig. 4, there
are two parts in the DBN: the state transition model and the
observation model. As shown in Fig. 5, the daily activities are
modeled as hidden transition states, while the environment
information - such as locations, nearby objects, sound events,

and body actions recognized by the neural network models,
along with the time label, are considered as observations. To
recognize a target activity, we calculate the probabilities of
each possible activity with a given sequence of observations,
and the activity with the highest probability is the recognized
activity.

Hidden
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Bathroom
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Object: Toilet Object: Cups
Motion: Standing Motion: Sitting
Sound: Washing-hand||Sound: Drinking

Location: Kitchen ||Location: Livingroom|gpcervable
Object: Book State
Motion: Sitting of HMM

Sound: Quiet

Fig. 5: An example of activities in the DBN.

C. Reinforcement Learning

Reinforcement learning (RL) is a branch of machine
learning which makes decisions through trial and error by
interacting with the environment. As shown in Fig. 6, in
the RL process, an agent tries to learn an optimal policy
which maximizes a cumulative reward by taking actions and
observing the corresponding feedback from the environment.
In this study, the energy consumption problem in daily activ-
ity monitoring is modelled as a Markov decision problem, in
which the agent’s next state depends only on the current state.
The definition of state, action, reward and policy learning are
as follows.

1) Goal:

o Maximize the activity detection ratio
o Minimize energy consumption

o Alleviate the privacy concerns

o Minimize robot resource consumption

2) State:

o Transition Motion

o Current Activity

e WMU Sensor Trigger Times

« Robot Sensor Trigger Times

3) Action:

o Robot Sensor: Turn on the camera and microphone on
the robot

o WMU Sensor: Turn on the camera and microphone on
the WMU

o Do Nothing

For the state, we have different types of common transition
motions: Walk to Walk, Walk to Stand, Stand to Stand,
Stand to Walk, Stand to Sit, Sit to Sit, Sit to Stand. We
use the WMU sensor trigger times to represent the energy
consumption of the battery, the robot sensor trigger times to
represent the resources consumed on the robot. The agent
chooses actions based on the states. For the actions, Do
Nothing means we neither turn on the robot sensors nor the
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Fig. 6: The architecture of the RL based sensor selection
algorithm.

WMU sensors, which saves energy during the activities. As
transition motions such as Stand to Stand, Sit to Sit are very
common, we need to figure out how to trigger the actions
in order to balance the energy consumption and activity
detection ratio.

4) Reward: A reward is used to estimate the benefit of
a chosen action given the state. Based on the reward, the
agent could learn how to select an action and get the optimal
policy of the system. In this paper, accuracy of activity
recognition, energy cost, privacy concerns and robot resource
consumption are considered as the benefits. For each activity,
accuracy of activity recognition depends on the activities and
the data collected by the sensors, and energy cost depends
on the amount of data collected and sent by the WMU. The
resource consumption is represented by the times to turn on
the sensors on the robot. For privacy concerns, we predefine
some activities which could cause the privacy concerns when
using the robot to capture the data. In order to learn how to
use transition motions to detect the new activities, we added
the factor ’extra_reward’. In summary, triggering less sensors
and detecting the activity with higher accuracy will get more
rewards. Table I shows the reward formula.

TABLE I: Pseudo Code for Reward Formula.

# energy_cost: energy cost for data collection using the WMU sensors

# resource_cost: resource cost for data collection using the robot sensors

# activity_detected: 1: if activity is recognized, 0: otherwise

# privacy_occur: 1: if privacy violation occurs, 0: otherwise

# w_energy: the weight of energy cost and resource cost

# w_accuracy: the weight of accuracy

# w_privacy: the weight of privacy concern

# w_resource_cost: the weight of robot resource cost

# ExtraR: the extra reward when new activity is detected

1. initialization;

2. reward = -(energy_cost -w_energy)
+ activity_detected -w_accuracy — privacy-occur - w-privacy
- resource_cost -w_resource_cost;

3. if new activity detected then

4.  reward = reward + ExtraR

5. end if

5) Policy Learning: In RL, how to learn an optimal policy
that maps the state to a probability distribution of actions is
important and challenging. In this paper, we employed the

Q-learning algorithm [19], which is a model-free and off-
policy RL algorithm. The Q table is the mapping between
the states and the actions, whose values can be adjusted
based on the feedback from the environment, and it uses the
Bellman Equation from Dynamic Programming to optimize
the collective rewards. The equation of updating Q values is
as follows:

Qlst,ar) = Qse,ar) + «
mazQ(si41, arr1) — Q(se, at)],

where Q is the action-value function with parameters state
s¢ and action a;, « is the learning rate, R(s;, a;) is the reward
obtained in the state transition from s; to s;y1, € is the
discount factor.

[R(St, at) + €

IV. EXPERIMENTAL EVALUATION
A. Evaluation of Location and Motion Action Recognition

1) Test setup: We implemented two CNN models for loca-
tion recognition and motion action recognition, respectively,
YOLOvV3 was adopted for object recognition. To train the
location and motion action recognition model, totally six
locations and six motion actions are listed for classification,
as shown in Table II. For motion action recognition, each
sample contains 2 seconds of motion data. The proposed
CNN models run on a computer with a 16-core Intel 19
CPU and an Nvidia Geforce RTX 3070 GPU, the Python
and the Tensorflow version are 3.7 and 2.8.0, respectively.
Fig. 7 shows the location samples from the robot view and
the WMU view, respectively.

Bathroom 2arogm Kichen
Iwr ‘ iiniy

rea
(b) WMU View

oar.

AT
(a) Robot View

Fig. 7: The samples of locations and activities from offline
dataset.

2) Results and Analysis: The overall accuracy of the
location recognition model is 95% and the confusion matrix
is shown in Fig. 8. We can see that the bedroom was
sometimes recognized as a hallway or a door, which is due to
the fact that the wall of the bedroom is similar to the wall of
the hall or the door area. Similarly, the overall accuracy of the
motion action recognition model is 98% and the confusion
matrix is shown in Fig. 9. Specially, walking actions could
be recognized correctly which is important to detecting new
activities.

B. RL Model Performance Evaluation

1) Test setup: To evaluate the proposed algorithm, we
conducted simulation experiments on the open smart home
CASAS project [10]. Milan is selected which contains 15
activities performed over a span of 3 months in a smart home
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TABLE II: The Dataset of Locations and Motion Actions

Location Motion Actions
Location Samples Motion Action | Samples
Bathroom 332 Sitting 52353
Bedroom 864 Jumping 52353
Kitchen 1207 Standing 52353
Living room | 1375 Walking 52353
Hallway 280 Jogging 52353
Door Area 430 Laying 52353

Fig. 8: The confusion matrix of location recognition. Robot
view(Left), WMU view(Right).

59 o o o o o
Jogging -] (0.00) (0.00) (0.00) (0.00) (0.00)
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Fig. 9: The confusion matrix of motion action recognition.

where sensors are deployed at different locations. We also
used the Milan dataset to calculate the prior activity prob-
ability distribution in the Bayesian network. We collected
the offline dataset based on the date of 2009-12-11 and the
activities are listed in Table III. The model was trained in
Python3.8 on the same computer. Then, we tested the model
on the data of 2009-12-11 using two different methods:

1) Periodic: The sensors are triggered periodically.

2) RL-Based: The sensors are triggered based on the
predication from the RL Model.

2) Results and Analysis: The training results are shown in
Fig. 10 and Fig. 11. We set the weights of accuracy, energy
cost, privacy concern, and robot resource cost with 0.1, 0.4,
0.45, 0.05 respectively, which means we care more about the
energy consumption and the privacy issue since the image
recognition results are good with both WMU and robot data.
We can see that the model converged in 3000 episodes. From
Fig. 11, the trigger times of the WMU sensor converged
to around 60, which is similar to the number of activities
of the dataset. Also, the privacy violation occurring times
converged as well.

As shown in Table. IV, for the periodic sampling method,

TABLE III: Activity and Duration (in minutes).

Activity Min | Mean | Max
Bed-to-Toilet 0.5 0.9 6.2
Chores(Vacuum Cleaning) 2.4 26.3 74.1
Desk Activity 0.5 10.8 52.8
Dining_Rm_Activity 2.35 12.2 36.7
Eve_Meds 0.2 0.5 2.1
Guest_Bathroom 0.2 2.1 16.1
Kitchen_Activity 0.2 12.3 107.2
Leave_Home 0.2 19.7 154.2
Master_Bathroom 0.2 4.9 45.1
Meditate 1.5 6.4 14.9
Watch TV 2.1 34.3 154.3
Read 1.5 23.8 123.0
Morning_Meds 0.2 1.0 4.4
Master_Bedroom_Activity 0.2 18.6 85.2
Note: The Duration is with minute. - - -

when the trigger times decrease, the detection ratio decreases
as well. Compared to a period of 2 minutes, the proposed
method achieves a detection ratio of 83% with the same
trigger times, which is better than the 70% achieved by the
periodic method. Furthermore, to achieve a similar detection
ratio of 85%, the periodic method with a 1-minute period
requires the WMU sensor to be triggered 811 times. The
proposed method can save 47% energy while maintaining
the same level of detection accuracy.

s

Fig. 11: Robot Sensor Trigger Times, WMU Sensor Trigger
Times and Privacy Violation Occurring Times.

TABLE IV: Results between Randomly Periodic Method and
the Proposed Method.

Method Detection Ratio | Trigger Times
0.5 Mins(Period) 89% 1530

1 Mins(Period) 85% 811

2 Mins(Period) 70% 406

3 Mins(Period) 68% 271
Proposed 83% 429
Real-time 85% -

Finally, we conducted a real-time test in the smart home
testbed in our lab. Each activity lasted about 1-2 mins. The
results showed that we detected 40 out of 47 activities (85%
detection ration) and only missed 7 activities, which are
shown as blue and yellow dots in Fig. 12. The blue dots
represent the misclassified activities. When the real activity
should be a ‘Read’ activity, the system recognized it as
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‘Desk_Activity’. The yellow dots show the activities we
missed, which is because no data was collected. One reason
is that the transition motion actions were not detected as short
walk (Usually walk less than 1 second) can not be treated
as a walk, while the agent generated the Q-table based on
the transition motion, these activities include Read (8:50:06),
Leave_Home (8:58:07), Master_Bedroom_Activity (9:00:06),
Guest_bathroom (9:03:52), Guest_bathroom (9:10:38). An-
other reason is the poor WiFi connection, which caused the
data unable to be transmitted to the server for processing.
It showed time-out when transmitting data during activity
Guest_bathroom (9:14:43). Generally, during the real time
test, the sensors on the WMU and the robot were triggered by
67 and 95 times, respectively. During the test, we found that
the transition motion types including ‘stand to walk’, ‘walk
to stand’, ‘stand to sit” and ‘sit to stand’ are helpful to detect
the segmentation of the activities, the ‘walk to stand‘ motion
can indicate that human may transit to a new location, but
usually after detecting the ‘stand to sit’, we can understand
what activities was conducted.
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Fig. 12: The distribution of activities during one day, Watch TV(3),
Kitchen_Activity(4), Leave_Home(6), Read(7), Guest_-Bathroom(8),
Desk_Activity(10), Master_-Bedroom_Activity(14).

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a Q learning based algorithm to
balance the recognition accuracy, energy cost, privacy con-
cerns and robot resource consumption for ADL monitoring
in a collaborative monitoring system consisting of a wearable
device and a companion robot. The robot runs the Q learning
algorithm to decide when to turn on what sensors to collect
data. The wearable device executes the commands received
from the robot to turn on the relevant sensors and send back
to the robot for activity recognition. Reinforcement learning
is used to solve the problem. We trained the model based on
an offline dataset by reenacting the open CASAS dataset. In
the offline test, the results show that the proposed method
could detect 39 out of 47 while triggering the WMU sensors
429 times which saves 47% energy compared with the
periodic method. In the real time evaluation, the results show
that the activity detection ratio is 85%. Though this research
work is promising, there are some drawbacks in this system
that could be improved in the future. Particularly, we will
work on these following issues: 1) Activity recognition. We

will develop more advanced multi-modal activity recognition
algorithms using motion, visual and audio data collected by
the wearable device. 2) RL based method. We will analyze
and improve the current model to include more states and
actions in the RL framework.
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