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Abstract— In this paper, we proposed a Q-learning based
algorithm to trade off the activity recognition accuracy, energy
cost, privacy concerns and robot resource consumption in
monitoring activities of daily living (ADLs) for elderly care
using a wearable device and a companion robot. The robot
uses a Q-learning algorithm to decide when to turn on what
sensors for data collection by considering the above four
criteria. The wearable device follows the robot’s decision to
turn on the relevant sensors to collect data which are sent
back to the robot for activity recognition. First, we described
the overall design of the system in which a wearable device
and a companion robot collaborate for activity monitoring.
Second we developed the Q-learning framework based on the
knowledge of transition motions. Third, we trained the model
and evaluated the proposed method using offline data and real
time data collected from our smart home testbed. The results
showed that the proposed method could recognize ADLs with
high accuracy while saving about half energy compared with
periodic methods. The results from real time evaluation showed
that the activity detection rate is about 85%.

I. MOTIVATION

Activities of daily living (ADLs) monitoring is critical

to maintaining the independence and well-being of elderly

individuals [1]. Knowing older adults’ daily routine allows

caregivers and family members to understand the health

status and detect potential health problems of the older adults

for timely intervention. Various technologies, such as internet

of things (IoTs) and smart homes, have been developed

for ADL monitoring. Ambient sensors [2] like video cam-

eras and passive infrared motion sensors were employed in

activity monitoring. However, it is difficult to install and

maintain a monitoring system with many distributed sensors,

which may pose serious privacy concerns, making them not

acceptable by the older adults [3].

On the other hand, wearable devices like smart watches

and smart phones are nowadays a part of people’s daily life,

which can be used for activity monitoring [4]. Smart watches

can collect multimodal data to recognize the activities as

it integrates cameras, microphones and motion sensors. For

example, smart phones were used to collect heart rate and

motion data for activity monitoring [5]. However, a common

issue with wearable devices is energy consumption, espe-

cially when they need to collect and process large amount
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of data for ADL recognition. Thus, it is critical for wearable

devices to collaborate with a more powerful computing re-

source to accomplish the recognition task. Since companion

robots have been used in home care applications [6] [7], the

collaboration between wearable devices and robots for ADL

monitoring could achieve high recognition accuracy while

reducing energy consumption.

In our previous work [8] [9], we have built a collaborative

system for elderly care using a wearable device and a

companion robot. The system mainly uses the wearable

device to collect data and the robot to process the data for

daily activities monitoring. In this paper, we consider the

scenario that both the robot and the wearable device can

collect data for activity recognition. In order to trade off

activity recognition accuracy, energy cost, privacy concerns

and robot resource consumption, the system learned a Q

table to decide how to trigger the sensors given the current

context. The major contributions of this paper are as follows:

First, we developed a dynamic Bayesian network (DBN)

based method to recognize the activities in daily life. Second,

since transition motions usually indicate a change in daily

activities, we treat these motions as part of the state in a

reinforcement learning framework to trigger sensors so as

to balance the activity recognition accuracy, energy cost,

privacy protection and robot resource consumption. Third,

we tested the proposed method with both offline and real-

time methods in our smart home testbed.

The rest of this paper is organized as follows: Section

II introduces the related work. Section III describes the

overall design of the Collaborative Activity Monitoring Sys-

tem (CAMS) and the proposed method and algorithm for

energy-efficient ADL monitoring. Section IV demonstrates

the experimental setup and simulation results. Section V

concludes the paper and discusses the future work.

II. RELATED WORK

A. Activity Monitoring

A significant amount of research work has been done in

the field of daily activity monitoring using various technolo-

gies such as environmental sensors, wearable devices and

robots. Environmental sensors are embedded into homes to

collect data related to a persons’ activity, including cameras,

microphones, and passive infrared motion(PIR) sensors. In

the CASAS project [10], multiple sensors including infrared

motion sensors, door sensors and temperature sensors were

deployed in the apartments for ADL monitoring. However,
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Fig. 1: The overall design of the CAMS.

the installation of distributed sensors can be costly, and main-

taining the sensors can also be challenging. Nevertheless,

privacy concern is the main obstacle for older adults to

accept video-based or sound-based activity monitoring [3],

especially when they are conducting certain activities such

as using bathrooms. Companion robots and social robots

are beginning to enter our daily life. With their powerful

computing abilities and various onboard sensors, these robots

could monitor older adults’ activities and support them in

their daily life [6] [11]. Georgiou et al. [12] developed a pet-

like robot for fall detection. The robot could use its camera to

recognize the activities of the person in front of it. However,

using cameras again may cause privacy concerns to the user.

In addition, due to the limited sensing range, the robot cannot

get data if the user is far from the robot, for example, in

another room. Wearable sensing and computing is becoming

a promising way to monitor human activities in daily life

[13]. For example, De et al. [14] implemented a multimodal

activity recognition system by employing an accelerometer,

temperature, humidity, and atmosphric pressure sensors. As a

result, fusing multiple sensors could increase the recognition

accuracy but at the expense of power consumption.

B. Energy Consumption Problem For Activity Monitoring

Energy consumption is a critical issue for wearable device

based activity monitoring. Several projects adopted a periodic

sampling method to collect data in order to save energy

[15]. However, due to the periodic sampling nature, their

method could miss some short-duration activities. Recently,

reinforcement learning (RL) has been used for energy man-

agement [16]. For example, Possas et al. [17] used smart

glasses for data collection and activity recognition. They

utilized RL to make decisions and turn on vision or motion

sensors based on the types of activities. The method was

evaluated on a small dataset. In this paper, considering that

motion data is highly correlated to human daily activities

and could be used to classify different motion actions, we

propose to use Q learning to save energy and achieve good

performance in ADL monitoring.

Fig. 2: The prototype of the WMU and the ASCC companion

robot [18].

III. METHODOLOGY

A. Overall Design of CAMS

As shown in Fig. 1, the CAMS consists of a WMU, a

companion robot, and a healthcare management system. As

shown in Fig. 2, the WMU consists of three parts: the main

control board based on a Raspberry Pi Zero, the battery

and the housing. We integrate a camera, an accelerometer,

a microphone and a speaker onto the board. With an Intel

Realsense RGB-D camera and four microphones on the head,

the robot can collect images and audio data for activity

recognition. As shown in Fig. 1, the robot runs the RL based

sensor selection algorithm to turn on the relevant sensors

for data collection and activity recognition. Based on the

decision, the system either turns on robot sensors or sends

the commands to trigger the WMU sensors. As the WMU

has limited computational resources, the data collected by

the WMU will be sent to the robot for processing.

In human daily life, body motion varies when humans

are conducting different activities, especially when transit-

ing between different activities. Fig. 3 shows the changes

of motion actions when conducting different activities.The

transition motions would be the key to trigger the sensors and

detect the corresponding activities. By default, the motion

sensor is on. By monitoring the transition motion and other

contextual information including current activities, battery
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Fig. 3: The transition samples between activities.

life and robot’s sensor trigger times, the agent uses the Q-

Table to take actions to recognize the activities and save

energy. We also consider the privacy issues when turning on

sensors. For example, when in the bathroom, the WMU is

a better choice to detect the activities rather than the robot.

As more sensor trigger times mean more data to store on the

robot, the consumption of robot resources is also considered.

Then the accumulated reward is calculated from each time

step. Finally, we train a Q network using an offline dataset.

B. Activity Recognition

Bayesian rule describes how to achieve the posterior

probability given the evidence and the prior knowledge. In

home environments, different daily activities take place at

different locations, resulting in different types of sounds and

body movements. As shown in Fig 4, the evidence data

location Lt, object Ot, sound event St and body action Bt

are dependent on activity At, based on the Bayesian rule we

have,

P (At|Lt, Ot, St, Bt) ∝ P (Lt, Ot, St, Bt|At) · P (At)
Here, we have:

P(At|Lt, Ot, St, Bt) : the posterior probability.
P(Lt, Ot, St, Bt |At) : the Likelihood function.
P(At): the prior probability of At.

With respect to the independent conditions, we have:

P (Lt, Ot, St, Bt|At) =

P (Lt|At) · P (Ot|At) · P (St|At) · P (Bt|At)
(1)

In this study, we estimated the duration of each activity by

analyzing the dataset and combined the time label to generate

the activity prior knowledge when updating the probability

of At.

Fig. 4: The graphical representation of Dynamic Bayesian

Network model for activity recognition.

Moreover, in human’s daily life, the activities have se-

quential constraints, which can be modelled by a Dynamic

Bayesian Network (DBN) model. As shown in Fig. 4, there

are two parts in the DBN: the state transition model and the

observation model. As shown in Fig. 5, the daily activities are

modeled as hidden transition states, while the environment

information - such as locations, nearby objects, sound events,

and body actions recognized by the neural network models,

along with the time label, are considered as observations. To

recognize a target activity, we calculate the probabilities of

each possible activity with a given sequence of observations,

and the activity with the highest probability is the recognized

activity.

Fig. 5: An example of activities in the DBN.

C. Reinforcement Learning

Reinforcement learning (RL) is a branch of machine

learning which makes decisions through trial and error by

interacting with the environment. As shown in Fig. 6, in

the RL process, an agent tries to learn an optimal policy

which maximizes a cumulative reward by taking actions and

observing the corresponding feedback from the environment.

In this study, the energy consumption problem in daily activ-

ity monitoring is modelled as a Markov decision problem, in

which the agent’s next state depends only on the current state.

The definition of state, action, reward and policy learning are

as follows.

1) Goal:
• Maximize the activity detection ratio

• Minimize energy consumption

• Alleviate the privacy concerns

• Minimize robot resource consumption

2) State:
• Transition Motion

• Current Activity

• WMU Sensor Trigger Times

• Robot Sensor Trigger Times

3) Action:
• Robot Sensor: Turn on the camera and microphone on

the robot

• WMU Sensor: Turn on the camera and microphone on

the WMU

• Do Nothing

For the state, we have different types of common transition

motions: Walk to Walk, Walk to Stand, Stand to Stand,
Stand to Walk, Stand to Sit, Sit to Sit, Sit to Stand. We

use the WMU sensor trigger times to represent the energy

consumption of the battery, the robot sensor trigger times to

represent the resources consumed on the robot. The agent

chooses actions based on the states. For the actions, Do
Nothing means we neither turn on the robot sensors nor the
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Fig. 6: The architecture of the RL based sensor selection

algorithm.

WMU sensors, which saves energy during the activities. As

transition motions such as Stand to Stand, Sit to Sit are very

common, we need to figure out how to trigger the actions

in order to balance the energy consumption and activity

detection ratio.

4) Reward: A reward is used to estimate the benefit of

a chosen action given the state. Based on the reward, the

agent could learn how to select an action and get the optimal

policy of the system. In this paper, accuracy of activity

recognition, energy cost, privacy concerns and robot resource

consumption are considered as the benefits. For each activity,

accuracy of activity recognition depends on the activities and

the data collected by the sensors, and energy cost depends

on the amount of data collected and sent by the WMU. The

resource consumption is represented by the times to turn on

the sensors on the robot. For privacy concerns, we predefine

some activities which could cause the privacy concerns when

using the robot to capture the data. In order to learn how to

use transition motions to detect the new activities, we added

the factor ’extra reward’. In summary, triggering less sensors

and detecting the activity with higher accuracy will get more

rewards. Table I shows the reward formula.

TABLE I: Pseudo Code for Reward Formula.

# energy cost: energy cost for data collection using the WMU sensors
# resource cost: resource cost for data collection using the robot sensors
# activity detected: 1: if activity is recognized, 0: otherwise
# privacy occur: 1: if privacy violation occurs, 0: otherwise
# w energy: the weight of energy cost and resource cost
# w accuracy: the weight of accuracy
# w privacy: the weight of privacy concern
# w resource cost: the weight of robot resource cost
# ExtraR: the extra reward when new activity is detected
1. initialization;
2. reward = -(energy cost ·w energy)

+ activity detected ·w accuracy − privacy occur · w privacy
- resource cost ·w resource cost;

3. if new activity detected then
4. reward = reward + ExtraR
5. end if

5) Policy Learning: In RL, how to learn an optimal policy

that maps the state to a probability distribution of actions is

important and challenging. In this paper, we employed the

Q-learning algorithm [19], which is a model-free and off-

policy RL algorithm. The Q table is the mapping between

the states and the actions, whose values can be adjusted

based on the feedback from the environment, and it uses the

Bellman Equation from Dynamic Programming to optimize

the collective rewards. The equation of updating Q values is

as follows:

Q(st, at) = Q(st, at) + α · [R(st, at) + ε ·
maxQ(st+1, at+1)−Q(st, at)],

where Q is the action-value function with parameters state

st and action at, α is the learning rate, R(st, at) is the reward

obtained in the state transition from st to st+1, ε is the

discount factor.

IV. EXPERIMENTAL EVALUATION

A. Evaluation of Location and Motion Action Recognition

1) Test setup: We implemented two CNN models for loca-

tion recognition and motion action recognition, respectively,

YOLOv3 was adopted for object recognition. To train the

location and motion action recognition model, totally six

locations and six motion actions are listed for classification,

as shown in Table II. For motion action recognition, each

sample contains 2 seconds of motion data. The proposed

CNN models run on a computer with a 16-core Intel i9

CPU and an Nvidia Geforce RTX 3070 GPU, the Python

and the Tensorflow version are 3.7 and 2.8.0, respectively.

Fig. 7 shows the location samples from the robot view and

the WMU view, respectively.

Fig. 7: The samples of locations and activities from offline

dataset.

2) Results and Analysis: The overall accuracy of the

location recognition model is 95% and the confusion matrix

is shown in Fig. 8. We can see that the bedroom was

sometimes recognized as a hallway or a door, which is due to

the fact that the wall of the bedroom is similar to the wall of

the hall or the door area. Similarly, the overall accuracy of the

motion action recognition model is 98% and the confusion

matrix is shown in Fig. 9. Specially, walking actions could

be recognized correctly which is important to detecting new

activities.

B. RL Model Performance Evaluation

1) Test setup: To evaluate the proposed algorithm, we

conducted simulation experiments on the open smart home

CASAS project [10]. Milan is selected which contains 15

activities performed over a span of 3 months in a smart home
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TABLE II: The Dataset of Locations and Motion Actions

Location Motion Actions
Location Samples Motion Action Samples
Bathroom 332 Sitting 52353
Bedroom 864 Jumping 52353
Kitchen 1207 Standing 52353
Living room 1375 Walking 52353
Hallway 280 Jogging 52353
Door Area 430 Laying 52353

Fig. 8: The confusion matrix of location recognition. Robot

view(Left), WMU view(Right).

Fig. 9: The confusion matrix of motion action recognition.

where sensors are deployed at different locations. We also

used the Milan dataset to calculate the prior activity prob-

ability distribution in the Bayesian network. We collected

the offline dataset based on the date of 2009-12-11 and the

activities are listed in Table III. The model was trained in

Python3.8 on the same computer. Then, we tested the model

on the data of 2009-12-11 using two different methods:

1) Periodic: The sensors are triggered periodically.

2) RL-Based: The sensors are triggered based on the

predication from the RL Model.

2) Results and Analysis: The training results are shown in

Fig. 10 and Fig. 11. We set the weights of accuracy, energy

cost, privacy concern, and robot resource cost with 0.1, 0.4,

0.45, 0.05 respectively, which means we care more about the

energy consumption and the privacy issue since the image

recognition results are good with both WMU and robot data.

We can see that the model converged in 3000 episodes. From

Fig. 11, the trigger times of the WMU sensor converged

to around 60, which is similar to the number of activities

of the dataset. Also, the privacy violation occurring times

converged as well.

As shown in Table. IV, for the periodic sampling method,

TABLE III: Activity and Duration (in minutes).

Activity Min Mean Max
Bed-to-Toilet 0.5 0.9 6.2
Chores(Vacuum Cleaning) 2.4 26.3 74.7
Desk Activity 0.5 10.8 52.8
Dining Rm Activity 2.35 12.2 36.7
Eve Meds 0.2 0.5 2.1
Guest Bathroom 0.2 2.1 16.1
Kitchen Activity 0.2 12.3 107.2
Leave Home 0.2 19.7 154.2
Master Bathroom 0.2 4.9 45.1
Meditate 1.5 6.4 14.9
Watch TV 2.1 34.3 154.3
Read 1.5 23.8 123.0
Morning Meds 0.2 1.0 4.4
Master Bedroom Activity 0.2 18.6 85.2
Note: The Duration is with minute. - - -

when the trigger times decrease, the detection ratio decreases

as well. Compared to a period of 2 minutes, the proposed

method achieves a detection ratio of 83% with the same

trigger times, which is better than the 70% achieved by the

periodic method. Furthermore, to achieve a similar detection

ratio of 85%, the periodic method with a 1-minute period

requires the WMU sensor to be triggered 811 times. The

proposed method can save 47% energy while maintaining

the same level of detection accuracy.

Fig. 10: Accumulated rewards.

Fig. 11: Robot Sensor Trigger Times, WMU Sensor Trigger

Times and Privacy Violation Occurring Times.

TABLE IV: Results between Randomly Periodic Method and

the Proposed Method.

Method Detection Ratio Trigger Times
0.5 Mins(Period) 89% 1530
1 Mins(Period) 85% 811
2 Mins(Period) 70% 406
3 Mins(Period) 68% 271
Proposed 83% 429
Real-time 85% -

Finally, we conducted a real-time test in the smart home

testbed in our lab. Each activity lasted about 1-2 mins. The

results showed that we detected 40 out of 47 activities (85%

detection ration) and only missed 7 activities, which are

shown as blue and yellow dots in Fig. 12. The blue dots

represent the misclassified activities. When the real activity

should be a ‘Read’ activity, the system recognized it as
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‘Desk Activity’. The yellow dots show the activities we

missed, which is because no data was collected. One reason

is that the transition motion actions were not detected as short

walk (Usually walk less than 1 second) can not be treated

as a walk, while the agent generated the Q-table based on

the transition motion, these activities include Read (8:50:06),

Leave Home (8:58:07), Master Bedroom Activity (9:00:06),

Guest bathroom (9:03:52), Guest bathroom (9:10:38). An-

other reason is the poor WiFi connection, which caused the

data unable to be transmitted to the server for processing.

It showed time-out when transmitting data during activity

Guest bathroom (9:14:43). Generally, during the real time

test, the sensors on the WMU and the robot were triggered by

67 and 95 times, respectively. During the test, we found that

the transition motion types including ‘stand to walk’, ‘walk

to stand’, ‘stand to sit’ and ‘sit to stand’ are helpful to detect

the segmentation of the activities, the ‘walk to stand‘ motion

can indicate that human may transit to a new location, but

usually after detecting the ‘stand to sit’, we can understand

what activities was conducted.

Fig. 12: The distribution of activities during one day, Watch TV(3),
Kitchen Activity(4), Leave Home(6), Read(7), Guest Bathroom(8),
Desk Activity(10), Master Bedroom Activity(14).

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a Q learning based algorithm to

balance the recognition accuracy, energy cost, privacy con-

cerns and robot resource consumption for ADL monitoring

in a collaborative monitoring system consisting of a wearable

device and a companion robot. The robot runs the Q learning

algorithm to decide when to turn on what sensors to collect

data. The wearable device executes the commands received

from the robot to turn on the relevant sensors and send back

to the robot for activity recognition. Reinforcement learning

is used to solve the problem. We trained the model based on

an offline dataset by reenacting the open CASAS dataset. In

the offline test, the results show that the proposed method

could detect 39 out of 47 while triggering the WMU sensors

429 times which saves 47% energy compared with the

periodic method. In the real time evaluation, the results show

that the activity detection ratio is 85%. Though this research

work is promising, there are some drawbacks in this system

that could be improved in the future. Particularly, we will

work on these following issues: 1) Activity recognition. We

will develop more advanced multi-modal activity recognition

algorithms using motion, visual and audio data collected by

the wearable device. 2) RL based method. We will analyze

and improve the current model to include more states and

actions in the RL framework.
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