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Abstract—Distributed and decentralized multi-agent optimiza-
tion (DMAO) algorithms enable the control of large-scale grid-
edge resources, such as electric vehicles (EVs), to provide power
grid services. Despite its great scalability, DMAO is funda-
mentally prone to cyber attacks as it is highly dependent on
frequent peer-to-peer communications. Existing cyber-security
research in this regard mainly focuses on broad-spectrum attacks
aiming at jeopardizing the entire control system while losing the
possibility of achieving specific attacking purposes. This paper,
for the first time, explores novel for-purpose algorithmic attacks
that are launched by participating agents and interface with
DMAO to achieve self-interest attack purposes. A decentralized
EV charging control problem is formulated as an illustrative use
case. Theoretical for-purpose attack vectors with and without the
stealthy feature are devised. Simulations on EV charging control
show the practicability of the proposed algorithmic for-purpose
attacks and the impacts of such attacks on distribution networks.

Index Terms—algorithmic cyber attack, cyber security, decen-
tralized optimization, EV charging control.

I. INTRODUCTION

The ever-growing electric vehicle (EV) penetration demands
advanced control mechanisms to alleviate the negative impacts
on distribution networks and increase power system flexibility
[1]. Despite the related research progress, scalability and
cyber security remain two major barriers to the large-scale
deployment of EV charging control [2], [3]. Control scalability
ensures a timely engagement of significant power flexibility for
grid service participation, while cyber security ensures data
integrity as well as reliability of the distribution network.

Centralized control structures, due to the curse of scala-
bility, are not suitable for large-scale EV charging control.
In contrast, distributed and decentralized multi-agent opti-
mization (DMAO) has presented outstanding scalability [4],
[5] and is capable of integrating privacy-preserving measures
[6], thus are attracting growing attention. In [4], [7], [8],
the alternating direction method of multipliers (ADMM) was
used to construct scalable distributed EV charging control
schemes. In another research line, authors of [5], [9] devel-
oped the shrunken-primal-dual subgradient (SPDS) algorithms
to construct decentralized EV charging control frameworks.
Represented by ADMM and SPDS, DMAO algorithms have
undoubtedly achieved control scalability, however, must rely
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on iterative updates and frequent peer-to-peer communication,
leading these algorithms prone to cyber attacks.

In the presence of malicious parties, once the transmitted
information is obtained, altered, or jeopardized, cyber attackers
can easily breach the entire operating system. Like other
controllable grid-edge devices, EVs and their supply equip-
ment are connected via the internet of things and are highly
dependent on communication systems, leading EV charging
control systems vulnerable to data manipulations [10]. Cyber
security in DMAOs has recently attracted attention due to the
vast use of decentralized and distributed control in industrial
applications [11]. However, only a few works have attempted
to investigate algorithmic cyber attacks that are integrated into
DMAOs. The first attempt was made in [12], where the weak-
nesses of ADMM-based methods to various algorithmic attack
vectors, including local problem distortion, noise injection, and
coupling constraint distortion, were explored. However, only
iterative noise injection attacks for convergence jeopardy were
investigated through convexity-based methods. Du et al. in
[13] investigated the impacts of data deception and denial of
service (DoS) on ADMM-based smart grid state estimation.
Unfortunately, the proposed attacks have noticeable impacts
on the system, thus lacking stealthiness.

Besides the limited advancement in algorithmic cyber at-
tacks, two practical issues remain untouched in general cyber-
security research. First, most existing work only focuses on
broad-spectrum attacks, e.g., DoS and noise injection, that aim
at jeopardizing control stability [3], lowering the algorithm
performance [14], and/or preventing convergence [15]. These
attacks, unfortunately, cannot be adopted by internal attackers,
i.e., algorithm participants, who want to achieve personal goals
but still follow the algorithm. Second, most existing attack
vectors have observable impacts on the system or the false
data injected by attackers are noticeable [13], [16], making
them easy to be detected by general detection methods [17],
[18]. Very few attempts were made to develop stealthy algo-
rithmic attacks that are capable of concealing their impacts. In
[19], a reachability-based synthesis was developed to generate
transient attacks that find attack parameters to avoid detection.
Despite the detection avoidance performance, the proposed
cyber-attack can only be used for overall system jeopardy
rather than personal gain.

In this paper, we focus on the stealthy for-purpose algorith-
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mic attack that targets the DMAO iterations and can be im-
posed by algorithm participants. The contribution of this paper
is three-fold: (1) A novel for-purpose algorithmic cyber attack,
which allows attackers to manipulate the DMAO algorithm
to gain sophisticated personal benefits, is explored; (2) Two
practical self-interest attack vectors in EV charging control are
investigated. Their corresponding impacts on the distribution
network are analyzed; (3) A novel mechanism is developed to
grant stealthy features to the proposed algorithmic attacks. The
proposed methods are rather general for DMAO algorithms –
EV charging control is used in this paper for better illustration.

II. EV CHARGING CONTROL SCHEME

A. Distribution network and EV charging model

This paper adopts the LinDisFlow model [20] to represent
a linear relationship between EV charging power and squared
nodal voltage magnitudes. In a distribution network with n
buses, at time t, the LinDistFlow model gives

V (t) = V0 − 2RP (t)− 2XQ(t), (1)

where P (t) ∈ Rn and Q(t) ∈ Rn denote the real and reactive
power consumption of all buses, respectively, V (t) ∈ Rn

contains the squared voltage magnitudes of all buses, and
V0 = V 2

0 1n ∈ Rn denotes the slack constant voltage
magnitude vector with V0 being the voltage magnitude at the
feeder head. R and X are the adjacency matrices defined as

R ∈ Rn×n, Rνκ =
∑

(ν,κ)∈Eν∩Eκ

rνκ,

X ∈ Rn×n, Xνκ =
∑

(ν,κ)∈Eν∩Eκ

xνκ,
(2)

where rν,κ and xν,κ are the resistance and reactance of line
(ν, κ), respectively, and Eν and Eκ are the line sets connecting
the feeder head to bus ν and κ, respectively [21].

The power consumption at each node consists of the base-
line and EV charging load. Assuming the EVs only consume
real power, at node l, we have pl(t) = pl,b(t) + pl,EV (t) and
ql(t) = ql,b(t), where pl,b(t), ql,b(t), and pl,EV (t) denote the
real baseline power, reactive baseline power, and EV charging
power, respectively. Let Vb(t) denote the squared voltage drop
caused by the baseline load, (1) can be rewritten as

V (t) = V0 − Vb(t)− 2RpEV (t), (3)

where pEV (t) = [p1,EV (t) p2,EV (t) · · · pn,EV (t)]
T. Sup-

pose sl EVs are connected to node l, we have pl,EV (t) =∑sl
l̂=1

P̃l,l̂cl,l̂(t), where cl,l̂(t) and P̃l,l̂ denote the charging
rate and maximum charging power of the l̂th EV connected
to node l. Re-indexing cl,l̂ and P̃l,l̂ with i = 1, . . . , s by
following the ascending orders of l and l̂, and defining
G = ⊕n

l=1Gl ∈ Rn×s and P̃ = ⊕s
i=1P̃i ∈ Rs×s, we have

V (t) = V0 − Vb(t)− 2RGP̃C(t), (4)

where Gl = 1T
sl

is the charging power aggregation vector,
C(t) = [c1(t) c2(t) · · · cs(t)]

T ∈ Rs, and ⊕ denotes matrix

direct sum. Further let D ∈ Rn×s denote −2RGP̃ , yd(t)
denote V0 − Vb(t) and y(t) denote V (t), we have

y(t) = yd(t) +DC(t). (5)

Let SOCi,ini and SOCi,des denote the initial and the
desired SOC of the ith EV, respectively, and Êi denotes
the battery capacity of ith EV. Then the total battery energy
required by the ith EV is Ei,req = Êi(SOCi,des−SOCi,ini).

B. Valley filling problem

The goal of valley filling is to use the aggregated EV
charging power to fill the overnight electricity use valley. The
valley-filling problem can be modeled as an optimal power
flow problem that minimizes the variance of the aggregated
total load. Let T be the valley filling period, then the charging
profile of the ith EV is represented as Ci = [ci(t) ci(t +
1) · · · ci(t + T − 1)]T ∈ RT . In a centralized fashion, let
C = [CT

1 · · ·CT
s ]

T ∈ RsT denote the collection of all EVs’
charging profiles, the valley-filling problem is formulated as

min
C

F(C) = 1

2

∥∥∥∥∥Pb +
s∑

i=1

P̃iCi

∥∥∥∥∥
2

2

(6a)

s.t. Ci ∈ Ci, ∀i ∈ 1, 2, ..., s, (6b)

Yb −
n∑

i=1

DiCi ≤ 0, (6c)

where Pb = [Pb(t) Pb(t+ 1) · · · Pb(t+ T − 1)]T ∈ RT is
the aggregated baseline load profile of the entire distribution
network. The constraint set Ci guarantees the ith EV can be
charged to the desired SOC by the end of the valley filling
period, which takes the form of

Ci := {Ci|0 ≤ Ci ≤ 1, Ei,req − B̂i,lCi = 0}, (7)

where B̂i,l = 1sBi,l, Bi,l = [Bi,c Bi,c · · · Bi,c] ∈ Rs×T ,
Bi,c ∈ Rs denotes the the ith column of the matrix B =
⊕s

i=1Bi, Bi = −ηi∆tP̃i, ηi is the charging efficiency, ∆t
is the sampling time, and 1s = [1 · · · 1] ∈ R1×s. Eqn. (6c)
ensures all nodal voltage magnitudes stay above the lower
bound, where Yb denotes v2V0 − Yd, Yd = [yd(t) yd(t +
1) · · · yd(t+T −1)]T ∈ RnT , v is the bus voltage magnitude
lower bound, Di = Di ⊕Di · · · ⊕ Di ∈ RsT×T denotes the
mapping between EV charging power and the nodal voltage
magnitudes, and D = [D1 D2 · · · Ds].

C. Decentralized EV charging control

To achieve control scalability, we adopt SPDS [5] to solve
(6) in a decentralized way. With the relaxed Lagrangian of
problem (6) defined as

L(C,λ) = F(C) + λT
(
Yb −

n∑
i=1

DiCi

)
, (8)

each EV iteratively updates the primal variable by following

C(k+1)
i =ΠCi

(
1

τC
ΠCi

(
τCC(k)

i −αi,k∇CiL(C
(k),λ(k))

))
,

(9)
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where τC is the primal shrinking parameter and αi,k is the
primal update step size. Similarly, SPDS iteratively updates
the dual variable by following

λ(k+1) = ΠD

(
1

τλ
ΠD

(
τλλ

(k) + βk▽λL(C(k),λ(k))
))

, (10)

where λ ∈ RnT is the dual variable associated with (6c), τλ
is the dual shrinking parameter, and βi,k is the dual update
step size. Under Slater condition, D is non-empty [22].

By implementing SPDS in EV charging control, individual
EV chargers only need to share their own C(k)

i with the system
operator. The system operator computes the Lagrange gradient
and λ(k) and broadcasts them to all EVs. This process will
continue until the tolerance ∥C(k+1) − C(k)∥2 drops below a
threshold. The convergence of SPDS is proved in [5].

III. FOR-PURPOSE ALGORITHMIC CYBER ATTACKS

As aforementioned, one common issue of existing cyber-
attack studies is that the goals of the attackers are not self-
beneficial or rather realistic, and because of the noticeable
impacts, they are more likely detectable. To resolve this
issue, we will devise a new algorithmic attack – for-purpose
cyber attack, where the attacker injects deliberate data into
the DMAO iterations to gain self-beneficial results without
affecting algorithm convergence or making noticeable changes.
The presented cyber attack enables multiple attack scenarios.
Specifically, in EV charging control, EVs can inject sophisti-
cated data into their own and/or others’ communication chan-
nels to achieve personal benefits without affecting algorithm
convergence. Due to the page limit, we only consider the
scenario where attackers manipulate their own data.

A. Self-interest algorithmic attack vectors

Suppose the ith EV wants to pursue a self-interest objective
represented as ω1G(Ci), where ω1 > 0 denotes the power of
the self-interest attack. We have the following theorems.
Theorem 1: An internal attacker who follows SPDS algorithm
can deviate the optimal solution of the problem in (6) towards
its convex interest function G(Ci) by only modifying its local
primal update direction by ω1∇CiG(Ci), i.e.,

C(k+1)
i = ΠCi

(
1

τC
ΠCi

(
τCC(k)

i − αi,k∇Ci
L̃(C(k),λ(k))

))
,

(11)
where L̃(C(k),λ(k)) = L(C(k),λ(k)) + ω1G(Ci) while the
algorithm convergence is guaranteed. ■
Proof: Locally modifying the ith EV’s primal update as in
(11) is equivalent to modifying the problem in (6) to

min
C

F(C) + ω1G(Ci) (12a)

s.t. (6b), (6c). (12b)

Therefore, following the convergence proof of SPDS [5],
as long as G(Ci) is convex and ω1 > 0, the algorithm
convergence is guaranteed. Because the voltage constraints
remain unchanged, the converged results satisfy the global
voltage requirements. Since, in each iteration, the ith EV’s

primal update is re-directed to honor the descending direction
of G(Ci), the converged results are in favor of the ith EV. □
Theorem 2: Given G(Ci) ≥ 0 for all feasible Ci, the optimal
solution for the problem in (12) differs from the optimal
solution for problem (6) and the difference is bounded by
ω1 max{G(C), ∀Ci ∈ S}. ■
Proof: Let C∗ ∈ RsT×1 denote the optimal solution of the
attack-free problem in (6) with feasible region S, then

F(C∗) ≤ F(C), ∀C ∈ S. (13)

Further, let Ĉ be the optimal solution of the attacked problem
(12) with the same feasible region S. Since for all feasible Ci,
G(Ci) ≥ 0 and ω1 > 0, it follows that

F(Ĉ) ≤ F(Ĉ) + ω1G(Ĉi). (14)

Therefore, it can be readily derived that

F(C∗) ≤ F(Ĉ) ≤ F(Ĉ) + ω1G(Ĉi), (15)

indicating that the optimal value of the attack-free problem
(6) is always no greater than the optimal value of the attacked
problem (12). According to multi-objective optimization the-
ories, a Pareto-optimal set is the set of all optimal solutions
such that no other solution can improve one objective function
without deteriorating another [23]. Therefore, based on (15),
the Pareto-optimal set for F(C)+ω1G(Ci) will always contain
the Pareto-optimal set for F(C). Hence, C∗ and Ĉ cannot
belong to the same Pareto-optimal set, and they must be
different. Note that the upper bound for the total deviation
from the original optimal solution after the attack is dependent
on the attack function and power, G(Ci) and ω1. Generally,
based on (15), this upper bound can be calculated as

F(C∗)−F(Ĉ) ≤ ω1G(Ĉi) ≤ ω1 max{G(Ci), ∀C ∈ S}. (16)

□
The assumption of non-negative self-interest objective in

Theorem 2 is generally true for most attacking purposes. In
what follows, we present two possible scenarios. Linear G(Ci)
that may violate this assumption will be studied in future work.

1) Smooth-charging attack: In this case, the ith EV aims to
converge to a relatively smoother charging profile to preserve
the battery’s state of health (SOH). To this end, the ith EV
can modify its local primal update to

C(k+1)
i =ΠCi

(
1

τC
ΠCi

(
τCC(k)

i − αi,k∇CiL(C
(k),λ(k))

− 2αi,kω1C(k)
i

))
.

(17)

As shown in the proof of Theorem 1, if the ith EV injects
2ω1C(k)

i in every iteration, the overall EV charging control
problem is equivalent to adding ω1∥Ci∥22 to the objective
function to flatten the ith EV’s charging profile. The impacts of
the charging profile change of the ith EV on the valley-filling
performance will be compensated for by other EVs.
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2) Rush-charging attack: In this scenario, the ith EV aims
to charge as soon as possible. To this end, it needs to
inject 2ω1A

TAC(k)
i at each primal update iteration, where

A ∈ RT×T is a diagonal matrix with each element

At̂,t̂ =

{
m, if t̂ ≤ td
M, otherwsie

(18)

Herein, 0 < m ≪ M and td denotes the attacker’s desired
termination time to reach SOCi,des. According to Theorem 1,
this is equivalent to adding ω1∥ACi∥22 to the objective function
of problem (6). Entries in A with smaller values will force the
corresponding elements in Ci to be maximized, and vice versa,
to achieve the rush-charging goal.

B. Stealthy for-purpose algorithmic attack vector

Though the attack vectors developed in Section III-A can as-
sist individual EVs to attain self-interest objectives, according
to Theorem 2, the deviations in the objective value, reflected
by the impaired valley filling performance, may inform the
system operator about the existence of cyber attacks. There-
fore, in order to remain stealthy, it is critical to develop an
attacking mechanism to minimize the deviation of the post-
attack results from the true optimal solution. To this end, it
is ideal for the ith EV to launch an attack that equivalently
converts the EV charging control problem (6) to

min
C

F(C) + ω1G(Ci) + ω2∥C − C∗∥22 (19a)

s.t. (6b), (6c), (19b)

where C∗ denotes the true optimal solution of problem (6).
To realize this, the ith EV needs to inject ω1∇Ci

G(C(k)
i )+

2ω2I
T
i (C

(k)−C(ℓ)) into its primal update, where Ii ∈ RsT×T

denotes a block matrix whose ith block is an identity matrix
I ∈ RT×T and others are zeros. Two challenges exist: First,
the attacker is not able to obtain C∗ after launching the
attacks. Second, the second term in the injected malicious
data requires knowledge of other EVs’ intermediate decision
variables. Herein, for the purpose of exploring the existence
of stealthy algorithmic attacks, we assume that an attacker is
capable of wiretapping the communication channels between
other EVs and the system operator, which resolves the second
challenge. This assumption will be lifted in future work.

Though it is impossible to obtain C∗ of the attack-free
problem, it is possible for the ith EV to make an estimation. In
the convergence of DMAO algorithms, with an overwhelming
possibility, all decision variables converge or meet the stopping
criterion at the same time. Based on this, the ith EV (the
attacker) first pre-determines a threshold ϵ∗att for the difference
between two consecutive iterations ϵ(ℓ)att = ∥C(ℓ+1)

i −C(ℓ)
i ∥2. At

the beginning of valley filling, the ith EV allows the algorithm
to run normally without launching any attack. As the iteration
goes, once ϵ

(ℓ)
att drops below ϵ∗att in the ℓth iteration, the ith

EV regards the algorithm “converged” and wiretaps other EVs’
communication channels to obtain C(ℓ) which will be used as
an approximation of C∗. At any iteration k after the (ℓ+1)th

iteration, the ith EV launches the stealthy attack by injecting
ω1∇CiG(C

(k)
i ) + 2ω2I

T
i (C

(k) − C(ℓ)) into its primal update.
By implementing this stealthy attacking mechanism, the

attacker can achieve personal benefit while manipulating the
post-attack converged solution to be close enough to the
original optimal solution that the system operator is hard to
detect any unusual anomaly. The attackers could tune the
stealthy level ω2 in addition to their personal benefit attack
power ω1 to balance the trade-off between gaining extra
personal benefits and being more stealthy.
Remark 1: ϵ∗att should not be too small, i.e., the approxima-
tion cannot be too accurate; otherwise, the algorithm would
stop at full convergence before the ith EV launches the attack.
Remark 2: The attacker must continuously wiretap other EVs’
communication channels after the ℓth iteration.

IV. SIMULATION RESULTS

The performance of different for-purpose attacks will be
demonstrated through simulations of controlling 500 EVs
connected to a modified IEEE 13-bus test feeder [5]. Note
that, Nodes 1 and 6 have no EV connected, and each of
the other nodes is connected with 50 EVs equipped with
level-2 chargers, i.e., P̃i = 6.6 kW. Battery capacities are
uniformly distributed in [18, 20] kWh. Initial and designated
SOCs are uniformly distributed in [0.3, 0.5] and [0.7, 0.9], re-
spectively. Primal and dual step sizes are empirically tuned to
αi,k = 2.8× 10−10 and βk = 1.8, respectively. The shrinking
parameters are empirically chosen as τC = τλ = 0.974.
The maximum iteration number is set to kmax = 25. The
convergence tolerance is chosen as ϵ = 1×10−4. The voltage
lower bound is set to 0.954 p.u. The valley-filling period is
from 19:00 to 8:00 the next day, which has been divided into
52 time periods with 15-minute lengths. The baseline load data
is scaled while collected from Southern California Edison [24].

A. Attack-free scenario

By running SPDS to solve the attack-free problem in (6), the
charging profiles of all 500 EVs are shown in Fig. 1. It can be

Fig. 1. Charging profiles of all EVs in the attack-free scenario.

readily observed that all EVs stay idle before 22:30 and start
charging after that to fill the valley. If EVs are grouped into
four groups, i.e., Group 1 (1-200), Group 2 (201-300, 451-
500), Group 3 (301-400), and Group 4 (401-450), according
to their geographic locations, we can notice that the charging
profiles of EVs in the same group have the same trend. The
valley filing performance and the nodal voltage magnitudes
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under the attack-free scenario are shown in Fig. 2 and Fig.
3, respectively. It can be observed that the total load profile

19:00 21:00 23:00 1:00 3:00 5:00 7:00

Hour
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 (

k
W

)
Baseline load

Attack-free total load

Stealthy smooth-charging total load

Smooth-charging total load

Rush-charging total load

Fig. 2. Baseline load and total load under different attacks.

becomes flat and stays at 1, 958 kW after 22:30, and all nodal
voltage magnitudes are maintained above 0.954 p.u.

0.95

0.96

0.97

0.98

0.99

Attack-free Smooth-charging

19:00 21:00 23:00 1:00 3:00 5:00 7:00
Hour

0.95

0.96

0.97

0.98

0.99

Rush-charging

19:00 21:00 23:00 1:00 3:00 5:00 7:00
Hour

Stealthy smooth-charging

Fig. 3. Nodal voltage magnitudes. Star-marked lines represent the baseline
case, and solid lines represent the case with controlled EV charging loads.

B. Smooth-charging attack

To better illustrate the smooth-charging attack, the first 50
EVs are selected as attackers. The self-interest attack power is
set to ω1 = 1×105 to make attacking impacts observable. Fig.
4 shows the charging profiles of all EVs, where the attackers

Fig. 4. Charging profile of all EVs under smooth-charging attacks.

charge for all the time periods at almost a constant charging
rate between 0.15 to 0.3. Meanwhile, the charging profiles of

other EVs have no significant changes. Non-attacker EVs in
the first Group charge at higher rates from 00:00 to 4:00 in
contrast to the attack-free scenario as they need to compensate
for the 50 attackers in achieving valley filling.

As shown in Fig. 2, the valley filling objective can still
be fulfilled under smooth-charging attacks. However, unlike
the attack-free scenario, the controlled total load is slightly
higher than the baseline load before 22:15 as the attackers
start charging from the beginning. The flat value of the total
load after 22:30 is 0.5% lower than that of the attack-free
scenario. The voltage behaviors under smooth-charging attacks
are similar to those in the attack-free scenario, which can be
found in Fig. 3. If the system operator only monitors the nodal
voltages, this attack is not making any suspicious impact.

C. Rush-charging attack

To better illustrate the rush-charging attack, 50 EVs in
Group 4 are selected as attackers. The self-interest attack
power is set to ω1 = 1, while td = 25, m = 0.2, and
M = 1 × 105. Fig. 5 shows the charging profiles of all EVs

Fig. 5. Charging profile of all EVs under rush-charging attacks.

in this scenario. It can be observed that the attackers in Group
4 start to charge at full power starting from 21:00 until they
reach their SOCdes before 2:00. The spike increase in the
charging profiles of these 50 EVs led to lower EV charging
rates in Groups 2 and 3 during the attacking period.

The valley-filling performance under rush-charging attack
can be found in Fig. 2, which presents the impaired per-
formance. The total load is not entirely flattened, with the
maximum value hitting 1, 920 kW while the final value being
1, 961 kW. Unlike the smooth-charging attack, the voltage
behaviors are very distinguishable in this case, as shown in
Fig. 3. Though all the nodal voltages are still above 0.954 p.u.,
sudden drops and increases exist due to the rush charging.

D. Stealthy smooth-charging attack

In this case, ϵ∗att is set to 1.1 × 10−4, leading the attacker
to choose C(19) as the approximated optimal solution. We
adopt the same setup for the smooth-charging attack of the
first 50 EVs and set the stealthy attack power to ω2 = 100.
The charging profiles of all EVs in this scenario can be found
in Fig. 6, which shows smooth charging is realized for the first
50 EVs. The charging profiles of the attackers also follow the
trend of other EVs in Group 1, which differentiates from the
results shown in Fig. 4.

The optimal values, i.e., the value of F(·), under the
attack-free, non-stealthy smooth-charging attack, and stealthy
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Fig. 6. Charging profiles of all EVs under stealthy smooth-charging attacks.

smooth-charging attack scenarios are 8.48866×106, 8.5089×
106, and 8.5022× 106, respectively, where the differences are
unnoticeable. Let C∗ denote the attack-free optimal solution
and define ζ = ∥Ĉ−C∗∥2 as an indicator for stealthiness where
Ĉ is the optimal solution under attacks. The values of ζ under
the non-stealthy smooth-charging attack and stealthy smooth-
charging attack scenarios are 13.02 and 6.44, respectively,
indicating 49% improvement in stealthiness.

The valley filling performance and nodal voltage behaviors
are shown in Fig. 2 and Fig. 3, respectively. Compared with the
non-stealthy case, less total load deviation at the beginning can
be observed. At 21:30, the total loads of the non-stealthy and
stealthy scenarios are 2, 570 kW and 2, 553 kW, respectively,
while the baseline load is 2, 537 kW, indicating 48% lower
load deviation. Compared to that of the non-stealthy case,
the nodal voltages in the stealthy case have around 57% less
deviation from the attack-free case. These results imply that
the proposed stealthy attacking mechanism can effectively
reduce the deviations from the truly optimal operation, thus
improving attacking stealthiness.

V. CONCLUSION

This paper inaugurated for-purpose algorithmic attacks that
target general DMAO algorithms. By utilizing the for-purpose
algorithmic attacks, algorithm participants can achieve self-
interest purposes without affecting the algorithm convergence.
Attack vectors with and without the stealthy feature were the-
oretically investigated and illustrated through a decentralized
EV charging control problem. The efficacy of the proposed for-
purpose algorithmic attack was verified through EV charging
control simulations. This paper is one of the first steps in
bringing awareness of cyber attacks launched by DMAO
participants and integrated into the algorithms. Comprehensive
theoretical analyses will be provided in future work.
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