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ABSTRACT

Ecosystem ‘‘hot spots’’ and ‘‘hot moments’’—re-

spectively, places and times of disproportionately

high biogeochemical activity—are an important

and often invoked concept in ecosystem science.

Despite the popularity of the concept, there is no

standard approach to quantifying hot spots and hot

moments, hindering progress in understanding the

phenomenon. For example, lack of a standard

quantitative approach hinders advances arising

from synthesis across datasets and studies poten-

tially representing different processes, ecosystem

types, places, and times. We present an approach to

quantifying hot spots and hot moments based on

the skewness and kurtosis of data distributions. Our

approach explicitly tests for the presence of hot

spots and/or hot moments, as well as identifies

observations regarded as hot spots and/or hot mo-

ments. We apply our method to three case studies

representing different ecosystem contexts and focal

variables: soil pore space CO2 concentrations in a

humid temperate watershed; dissolved oxygen

saturation in a hypereutrophic, shallow lake; and

seagrass metabolism on the coast of a tropical is-

land. A rarefaction-based sensitivity analysis

showed how detection of HSHM using our methods

can be sensitive to changes in spatial and temporal

sampling regimes, depending on the behavior of

the system. To facilitate adoption of our approach,

we provide the R package ‘‘hotspomoments’’ to

implement the method. Adoption of a standard

quantitative approach to hot spots and hot mo-

ments would advance ecosystem science.

Key words: biogeochemistry; control points; dis-

solved oxygen; CO2 efflux; net ecosystem produc-

tion.

HIGHLIGHTS

� ‘‘Hot spots’’ and ‘‘hot moments’’ are key con-

cepts but difficult to quantify

� The skewness and kurtosis of data distributions

yield a quantitative approach

� Three empirical case studies demonstrate the

approach in diverse contexts
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INTRODUCTION

Understanding the magnitude and drivers of spatial

and temporal variability in biogeochemical rates is

a central question in ecosystem ecology. Locations

within a landscape or ecosystem that contain dis-

proportionately high process rates (hot spots; HS)

or periods of time during which rates are high (hot

moments; HM) are important for characterizing the

overall biogeochemical behavior of an ecosystem

(McClain and others 2003) and understanding ex-

tremes in other ecosystem components (Batt and

others 2017). These patches and periods, or control

points, are driven by spatial connectivity and the

movement of reactants or products over time

(Bernhardt and others 2017). By definition, HS and

HM (and the combination, HSHM) are spatially and

temporally rare and therefore difficult to quantify.

However, quantitative descriptions of this form of

spatiotemporal heterogeneity are needed to im-

prove both conceptual and numerical ecosystem

models (Bernhardt and others 2017). Although

rare, because HSHM are uncommonly large, they

have major impacts on overall ecosystem dynam-

ics, and hence models that account for HSHM

poorly cannot provide an accurate picture of sys-

tem behavior. With the advent of new sensor

technologies, remote sensing, and other tools, we

are well-positioned to quantify HSHM dynamics

and uncover the mechanisms that generate them.

However, although McClain and others (2003)

formalized the HSHM concept, there is still not a

widely used, statistically rigorous method for

identifying HSHM in ecosystems (Bernhardt and

others 2017). This impedes our ability to system-

atically and comparatively study the mechanisms

underpinning HSHM, how these processes scale in

space and time, and our ability to predict when and

where HSHM occur.

Although there is currently no standard quanti-

tative definition of HSHM (Bernhardt and others

2017; Kannenberg and others 2020), several ap-

proaches have been used, many relying on identi-

fying extreme values from a data distribution (see

Bernhardt and others 2017). For example, Kan-

nenberg and others (2020) considered values more

than two standard deviations from the mean to be

HSHM; Yu and others (2013) considered observa-

tions in the 4th quartile of the distribution HSHM;

and Darrouzet-Nardi and Bowman (2011) devel-

oped a mathematical definition to identify obser-

vations that are both outliers and

disproportionately large. Other frameworks, such

as those based on the Pareto distribution, are also

useful for characterizing extreme values (for

example, Carpenter and others 2015), but may

require more observations than are in many

ecosystem science datasets to robustly implement.

One shortcoming of existing approaches is that

they largely assume, rather than explicitly test, that

HSHM are present in the data and instead focus on

identifying which observations can be considered

HSHM. Using for illustration the definition of

HSHM as two standard deviations from the mean,

nearly any dataset of sufficient sample size will

have observations more than two standard devia-

tions from the mean, even if these are not suffi-

ciently large to make disproportionate

contributions to the total. Hence, a widely appli-

cable test explicitly for the presence of HSHM could

improve quantification of the phenomenon by

limiting qualitative or ad hoc approaches that are

likely to be inconsistent across studies.

We propose an approach using the skewness and

kurtosis of distributions of ecosystem measure-

ments to detect if HSHM are present in the system,

and to identify which observations constitute

HSHM (Figure 1). HSHM are inherently extreme

observations (McClain and others 2003), and

skewness and kurtosis can be thought of as quan-

tifying the degree to which a distribution of

observations is dominated by values in the tails

(extremes). Here, skewness corresponds to whether

a distribution is dominated by values in the upper

or lower tails: for two distributions of equal vari-

ance but unequal skewness, the more skewed will

have a greater magnitude and higher density (for

example, a fatter tail) of extreme values. Kurtosis

can describe when more symmetric distributions

have many and/or more extreme observations in

both tails (that is, the distribution is leptokurtic).

Considering both left- and right-skewed distribu-

tions and kurtosis accommodates process rates such

as net ecosystem production (NEP), which may be

positive or negative and for which a set of obser-

vations can contain extreme values in one or both

directions. To move beyond simple description, we

test whether skewness and/or kurtosis are signifi-

cantly greater than expected if HSHM were not

present by comparing against a reference distribu-

tion using a parametric bootstrapping procedure.

Observations constituting HSHM can be identified

by comparison to a reference distribution or other

methods of identifying extreme values. Once

identified, the location and timing of HSHM, and

their relationships to other ecosystem variables and

processes can be examined to yield inference into

the underlying hydrologic, ecophysiological, and

biogeochemical mechanisms of ecosystem HSHM.
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Below, we present details of an approach to use

distributional skewness and kurtosis for quantify-

ing ecosystem hot spots and hot moments (HSHM)

and apply it to three empirical case studies repre-

senting different ecosystem contexts and focal

variables: seagrass metabolism on the coast of a

tropical island, soil pore space CO2 concentrations

in a humid temperate watershed, and dissolved

oxygen saturation in a hypereutrophic, shallow

lake. Using the largest dataset (lake dissolved oxy-

gen saturation), we assessed the robustness of re-

sults generated under our new method to

uncertainty arising from loss of observations. Our

approach is flexible to a wide range of applications

and provides a standard quantitative approach to

quantifying HSHM that can facilitate advances in

understanding ecosystem HSHM across scales,

especially through syntheses involving multiple

variables, ecosystems, or time periods.

METHODS

Algorithm Implementation

Here, we present algorithms that operationalize the

conceptual approach described above, using the

statistical moments skewness and kurtosis of data

distributions to (a) infer whether a set of biogeo-

chemical observations contain HSHM; and (b)

identify observations constituting HSHM. These

algorithms are generic, and we believe they can be

applied to nearly any set of biogeochemical obser-

vations, taken over space (HS), time (HM), or both

(HSHM).

To infer whether a set of biogeochemical obser-

vations contains HSHM, we first test for skewness

by measuring the sample skewness of the obser-

vations and assessing the statistical rarity relative to

a reference distribution using a parametric boot-

strapping procedure. We define sample skewness as

the quantity

skewness ¼ n n� 1ð Þ
n� 2

� �1=2
1
n

Pn
i¼1

xi � xð Þ3

1
n�1

Pn
i¼1

xi � xð Þ2

� �3=2

0
BBB@

1
CCCA;

where n is the number of observations in the da-

taset; xi is the ith observation of variable x; and x is

the mean (Joanes and Gill 1998). Our parametric

bootstrapping procedure compares the skewness of

the input data to a distribution of ‘‘surrogate’’

skewness values obtained by computing the

skewness of many (say, 1000) realizations of n

random deviates from a reference statistical distri-

bution corresponding to a null model of no HSHM.

Here, we use as the reference distribution the

normal distribution with mean and variance equal

to those of the sample x; further discussion of this

choice is provided below. The rank of the skewness

of the input data relative to the skewness of the

surrogate datasets can then be used to assess the

statistical significance of the skewness of the input

data, to an acceptable level of certainty. For

example, if the quantile of the empirical skewness

in the distribution of surrogates is > 0.95, this

could be considered statistically significant at

p < 0.05 using a one-tailed test. Correspondingly,

a quantile of < 0.05 would constitute statistical

significance in left-skewed data, such as for quan-

tities like net ecosystem exchange (NEE) or net

ecosystem production (NEP) where positive/nega-

tive values indicate uptake/release (or vice versa).

If the data are not significantly left- or right-

skewed, it could be the case—especially with vari-

ables for which positive/negative values indicate

uptake/release or vice versa—that both uptake and

release HSHM are present in the same set of

observations. A leptokurtic distribution, producing

proportionally more and more extreme outliers,

would be consistent with this. We measure this

property of excess kurtosis within a sample as,

kurtosis ¼
1
n

Pn
i¼1

xi � xð Þ4

1
n

Pn
i¼1

xi � xð Þ2

� �2
� 3;

where, as above, n is the number of observations in

a sample of observations x and x is the mean of the

sample. We use the same parametric bootstrapping

procedure to assess the significance of excess kur-

tosis. Note that in this case, we focus on whether

the quantile of empirical excess kurtosis in the

distribution of surrogates is > 0.95 (or some other

appropriate high threshold) since excess kurtosis

systematically less than the reference distribution

corresponds to a platykurtic distribution having

proportionately few and lower-magnitude extreme

values (that is, no HSHM). In practice, the choice of

whether to prefer a kurtosis-based test over a

skewness-based test depends primarily on whether

the empirical data distribution is approximately

symmetric and whether low/negative extremes of

the focal variable are meaningful.

In these tests, we use normal distributions with

equal mean and variance to the focal empirical

dataset as the reference representing no HSHM.

The normal distribution was selected because it is

not skewed and has no excess kurtosis, so any
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skewness or kurtosis in the surrogates arises from

random variation, but the mean and variance can

be preserved. Although normally distributed data

can contain positive and negative extreme values

(its theoretical bounds are - ¥ to + ¥), we con-

sider it an appropriate null model representing a

lack of HSHM because of the rarity of those values.

Considering that < 4.6% of values in a normal

distribution are more than two standard deviations

from the mean, and < 0.3% of values more than

three standard deviations, we consider extreme

values for normally distributed data too rare to

disproportionately affect overall ecosystem

dynamics, unlike for skewed or leptokurtic distri-

butions which have a larger proportion of extreme

values. Moreover, for finite sample sizes (typically,

10 s to 100 s of observations for ecological data), a

small number of extrema consistent with a normal

distribution likely should not be considered robust

evidence for presence of HSHM, because poorly

replicated extremes may be indistinguishable from

measurement error (Hollinger and Richardson

2005). Testing against other null models might

sometimes be more appropriate, and in that case,

our general approach could straightforwardly be

adapted to test against a different statistical distri-

bution or data generating model. For example, if

the process rate or state variable is bounded by a

certain interval (for example, must be greater than

or equal to zero, such as for denitrification) and the

set of observations includes a substantial propor-

tion near the lower bound, it may be useful to test

against a statistical distribution that reflects this.

The truncated normal distribution is one possibility.

If HSHM are detected in the data due to signifi-

cant skewness or excess kurtosis, the observations

constituting HSHM can be identified using an

extension of the logic underpinning our test for

HSHM presence. Observations constituting HSHM

will be those that are more extreme than expected

to occur in an appropriate reference distribution. As

above, we use a normal distribution with identical

mean and variance to the input data as our refer-

ence, because it has no skew or excess kurtosis.

Then, we select a quantile corresponding to rarity

in the reference distribution, such as 0.05 (lower

tail extremes, for example, HSHM sinks) or 0.95

(upper tail extremes) and consider more extreme

observations than that quantile to reflect HSHM.

This approach is agnostic as to whether the extreme

values reflect HS, HM, or a combination of the two.

This depends in part on the sampling design or data

structure. For example, some datasets contain

observations through time or across space only

depending on sampling regime and data pre-treat-

ment. For datasets having both spatial and tempo-

ral resolution, whether extreme values are

concentrated in space or time can signal whether

HS or HM predominate in the system. Attributes of

the HSHM observations and potentially data on

other covariates can then be used to learn about

the nature, causes, and consequences of HSHM.

An implementation of these methods for the R

environment for statistical computing is available

at < https://github.com/jonathan-walter/hotspo

moments >.

Case Studies

We gathered three exemplary datasets from a

variety of ecosystems to demonstrate the use of the

algorithm described above. The example datasets

are from terrestrial, freshwater, and marine

ecosystems and potentially contain HS, HM, or HS

and HM. The methods described above were ap-

plied to each of the data sets to test for the presence

of HSHM using a normal reference distribution.

Analysis code and data visualization are available

at < https://github.com/jonathan-walter/hotspo

moments-ms > . The details of data collection and

analysis are briefly described below.

Soil pore space CO2 concentrations

Weimer Run is a 374 ha humid, temperate water-

shed located in the Little Canaan Wildlife Man-

agement Area (West Virginia, USA) within the

Allegheny highlands of the Appalachian Mountain

chain (Atkins and others 2015). Sample plots were

arranged in a factorial experimental design with

three replicates of three different vegetation cover

types (that is, closed-canopy, forest gap, and closed-

canopy with shrub layer) at three elevation levels

(that is, low = 975 m, medium = 1050 m, and

high = 1170 m) for 3 9 3 9 3 = 27 plots design

(Atkins and others 2015). Soil pore space CO2

concentrations were measured using the methods

outlined in Pacific and others (2008) adapted from

Andrews and Schlesinger (2001) using an infrared

gas analyzer (IRGA) coupled with a custom in situ

gas well, equilibrated with the atmosphere. Each

gas well was placed at 5 and 20 cm depths in the

soil. Measurements of soil CO2 concentrations were

taken using a handheld IRGA (model GM70 with

M170 pump and GMP 221 CO2 probe, Vaisala,

Finland) with 2–5 min allowed for recirculation

after which stabilized values were recorded (Pacific

and others 2008). Soil CO2 pore space was mea-

sured approximately weekly during the growing

season (May–September) and monthly during the

non-growing season from 2010 to 2012 in 27 plots
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located across the watershed. Because the data

distribution was right-skewed, we used skewness in

the test for HSHM presence and the 0.95 quantile

of the reference distribution to identify HSHM

observations.

Dissolved oxygen saturation in a shallow lake

Swan Lake (Iowa, USA) is a 40.5 ha, hypereu-

trophic lake located in a 311 ha watershed domi-

nated by row crop agriculture (Ortiz and Wilkinson

2021). Dissolved oxygen availability is a key reac-

tant controlling the rates of other redox-sensitive

biogeochemical processes. Dissolved oxygen satu-

ration was measured at 98 locations on Swan Lake,

17 times between day of year (DOY) 135 and 265 in

2018 (Ortiz and Wilkinson 2019). The dissolved

oxygen saturation measurements were made at

each sampling station 0.25 m below the surface of

the water using an optical DO sensor on a YSI Pro

DSS multiparameter sonde (Yellow Springs, Ohio

USA) (Ortiz and Wilkinson 2021). The sensor was

calibrated immediately preceding each sampling

date. The spatial sampling occurred between 09:00

and 14:00 apart from the first two sampling events

which lasted until 16:00. The 98 sampling stations

were evenly spaced across the surface of the lake in

a 65 9 65 m grid and the order of sampling (north

to south) remained constant over the course of the

summer. Additionally, the presence or absence of

rooted submerged and floating leaf macrophytes

was noted at each sampling station for each event

beginning on DOY 177 when the plants were large

enough to be consistently observed. The macro-

phyte presence data were used to generate an in-

dex ranging 0–100% based on the percentage of

sampling dates that rooted macrophytes were ob-

served at each sampling location and could be

contributing to spatial and temporal heterogeneity

in dissolved oxygen saturation. The macrophyte

presence index was interpolated to a 25 9 25 m

grid for visualization to aid in the interpretation of

dissolved oxygen HSHM. Because the data distri-

bution was right-skewed, we used skewness in the

test for HSHM presence and the 0.95 quantile of

the reference distribution to identify HSHM obser-

vations.

Seagrass metabolism in response to simulated grazing

Green turtles (Chelonia mydas) in the Caribbean

exhibit a distinct foraging strategy among seagrass

herbivores, in which they graze seagrass blades

within an area to short heights above the substrate

surface (Bjorndal 1980). To investigate the effect of

this foraging strategy on ecosystem metabolism, ten

plots (2 9 2 m) were set up in a shallow seagrass

meadow in Little Cayman, Cayman Islands (John-

son and others 2017). Five plots were experimen-

tally clipped to simulate grazing, and five plots

served as an unclipped reference. Net ecosystem

metabolism was measured weekly in each plot for

12 weeks during summer 2016 (May–August)

using light and dark incubation chambers. Cham-

bers were deployed before 11:30 each day so that

incubations encompassed solar maximum, and

metabolic rates were estimated from the change in

dissolved oxygen (DO) concentration within

chambers over the incubation period. Dissolved

oxygen concentration was measured immediately

following water sample collection using a YSI

ProODO handheld optical DO meter (Yellow

Springs Instruments, Yellow Springs, Ohio USA).

Additional meadow (for example, seagrass biomass,

blade length, shoot density) and environmental

(for example, temperature, irradiance) character-

istics were measured on a weekly or bi-weekly

basis as potential drivers of variation in metabolic

rates (Johnson and others 2017). Because the data

distribution was approximately symmetric and the

focal variable contained positive and negative val-

ues corresponding to sinks and sources, we used

kurtosis in the test for HSHM presence and the

0.025 and 0.975 quantiles of the reference distri-

bution to identify sink and source HSHM observa-

tions.

Sensitivity Analysis

Because HSHM are by definition rare events, one

challenge associated with their study is that a

sampling regime might fail to capture places and/or

times corresponding to HSHM, and that statistical

methods for their detection might be highly sensi-

tive to the inclusion/exclusion of particular obser-

vations. An optimal method should be largely

robust to changes in data density so long as the

sampling regime is sufficient to capture the HSHM.

To examine this, we used the Swan Lake DO data

to perform a rarefaction analysis in which we

iteratively and randomly removed observations

from up to 2/3 of sampling locations or sampling

dates, and quantified change in the detected pres-

ence of HSHM and which observations were iden-

tified as HSHM. Although the observed changes are

specific to this dataset and may not fully generalize

to others capturing different phenomena using a

different sampling regime, an understanding of

how the sampling regime interacts with ecosystem

dynamics to influence detection of HSHM can aid

in study design and interpretation (for example,
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informing repeated measures sampling, plot loca-

tion, sampling intervals).

To test the sensitivity of conclusions about HSHM

to spatial sampling regime, we iteratively removed

observations from n randomly selected locations,

where n is the set of integers ranging from 1 to 2/3

the total number of sampling locations (here, n = 1,

2, …, 65), up to 100 times each. For each down-

sampled dataset, we tested for the presence of

HSHM based on distributional skewness, consider-

ing the presence of HSHM statistically significant if

the quantile of the empirical down-sampled

skewness exceeded that of 95% of surrogates. We

also identified HSHM observations as those

exceeding the 95th percentile of a normal distri-

bution with mean and variance equal to that of the

down-sampled dataset.

We evaluated consistency in the overall conclu-

sion of whether the data reflect HSHM in terms of

the proportion of down-sampled datasets in which

the HSHM test was the same as, non-significant, or

different (for example, significant positive skew to

significant negative skew), as a function of the

number of dropped sampling locations. We evalu-

ated consistency in the identification of HSHM

observations in terms of the proportion of HSHM

observations identified in the full dataset that were

identified in the down-sampled dataset (not

counting those that were directly removed by the

down-sampling procedure), as well as the ratio of

the number of HSHM observations identified in the

down-sampled dataset that were not included in

the HSHM from the full dataset to the number of

HSHM from the full dataset that were present in

the down-sampled dataset.

The same procedure was used to test sensitivity

to changes in the temporal spatial regime, substi-

tuting ‘‘sampling dates’’ for ‘‘locations.’’ Here, the

number of dropped sampling dates n = 1, 2,... 11.

RESULTS

Soil pore space CO2 concentrations

Soil CO2 concentrations at 5 cm (skewness = 6.16,

p < 0.001) and 20 cm (skewness = 5.60,

p < 0.001) had significantly right-skewed distri-

butions (Figure 2a), indicating the presence of

HSHM. Although more HSHM were identified at

5 cm (n = 23, 574 total observations than 20 cm

(n = 15, 583 total observations), the timing and

location of HSHM were generally consistent be-

tween the two depths. At both depths, HSHM were

observed on 14 or more sampling dates and at no

more than three plots per sampling date; however,

HSHM were at least twice as common at a single

low-elevation, open canopy plot than any other

plot (Figure 2b). Thus, this system is characterized

more so by HS of biogeochemical activity than by

HM, likely a function of the strong controls on

ecosystem functioning exerted by complex topog-

raphy (Riveros-Iregui and McGlynn 2009; Atkins

and others 2015).

Dissolved oxygen saturation in a shallow
lake

The distribution of DO saturation with all sampling

events and measurements pooled (n = 1665 mea-

surements) was significantly skewed to the right

(Figure 3a). The 8.5% of supersaturated DO values

that contributed to the right-skew of the data dis-

tribution were from four sampling events, two

early in the summer (DOY 142 and 156; 5.1 and

33.7% of measurements, respectively) and two

mid-summer (DOY 184 and 192; 24.5 and 81.4%

Figure 1. Illustration of a right-skewed (green), b left-skewed (orange), and c leptokurtic (lilac) distributions in

comparison to a Gaussian (normal) distribution (dashed black).
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of measurements, respectively) (Figure 3b). DOY

191 was a HM of DO supersaturation in Swan Lake

as 80 out of the 98 measurements contributed

significantly to the right-skew of the distribution.

Only measurements from the northern-most por-

tion of the lake were not HS on this sampling date.

However, the spatial heterogeneity of DO super-

saturation values that contributed to the right-skew

from the other three sampling events was much

higher. Mapping the location of those points re-

vealed that there were HS of DO supersaturation

that coincided with areas of the lake with high

rooted macrophyte occurrence (Figure 3b).

Seagrass metabolism in response
to simulated grazing

The distribution of net ecosystem production (NEP)

measurements (Figure 4a) across experimental

plots and sampling dates (n = 91), was not signifi-

cantly right- or left-skewed (skewness = 0.25,

p = 0.16) nor was the distribution significantly

leptokurtic (excess kurtosis = - 0.53, p = 0.87).

NEP is strongly correlated with aboveground bio-

mass in these tropical seagrass ecosystems (Johnson

and others 2017), and the approximately normal

distribution of NEP data was likely driven in part by

the distribution in seagrass biomass among plots.

While biomass was lower in clipped plots than

reference plots (a direct result of clipping), biomass

varied among plots within a treatment (clipped and

reference), resulting in only certain times or areas

of very high or very low seagrass biomass. Despite

the lack of evidence for HSHM overall, we identi-

fied negative (carbon source) and positive (carbon

sink) extreme values using the HSHM identifica-

tion method to illustrate how testing for HSHM

presence and identification of extreme values can

jointly support conclusions about HSHM. Because

tests for HSHM presence were non-significant for

this case study, we refer to the identified observa-

tions as ‘extremes’ rather than HSHM as in the

other case studies. There were four instances when

a plot was identified as an extreme of NEP (4.4% of

measurements). Two positive (carbon sink) ex-

tremes occurred in the same reference plot (plot

10) in consecutive sampling weeks (6 and 7), while

two negative (carbon source) extremes occurred

during sampling week 9 (one clipped plot (plot 3)

and one reference plot (plot 8); Figure 4b). Mea-

surements in week 9 occurred on a cloudy day,

resulting in decreased rates of production and re-

duced NEP across all plots. High sediment organic

matter content in plots 3 and 8 may have fueled

higher respiration rates and led to their identifica-

tion as HSHM for negative NEP. Consistent with

the non-significant HSHM presence tests, only a

single plot was identified more than once (that is,

weak evidence for HS), and on only one sampling

date were there two plots identified at the same

time (that is, weak evidence for HM).

Figure 2. a Distribution of empirical soil CO2 pore space concentrations compared to a reference Gaussian distribution

(black dashed line) with equal mean and variance. Tick marks indicate values of identified HSHM. b Total number of soil

CO2 pore space concentration HSHM identified in the Weimer Run Watershed, WV at the replicate level where each point

represents three plots per elevation (as labelled) and vegetation cover combination (indicated based on point shape. The

preponderance of HSHM at low elevation open canopy plots indicates that this system is best characterized by HS.
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Sensitivity Analyses

Tests for whether the lake dissolved oxygen dataset

contained HSHM were highly robust to removal of

observations by location and by sampling date, and

the identification of specific observations as HSHM

was substantially robust to removal of observations

by location. However, identification of specific

observations as HSHM was not robust to removal of

observations by sampling date, likely because this

system was better characterized by the presence of

HM, that is, all HSHM observations occurred on 4

of 17 sampling dates and across many locations.

Thus, our approach satisfies the characteristic of an

optimal quantitative method for HSHM that it be

robust to data density provided that the sampling

regime is sufficient to capture the dynamics of the

system.

When removing observations by location,

skewness of the down-sampled dataset was nearly

always within ± 0.05 (95% CI = 0.63–0.73) of the

original value (0.68) and the skewness of the

down-sampled dataset was always greater than that

of the reference distribution; thus, the conclusion

that the overall data distribution reflects the pres-

ence of HSHM did not change. The proportion of

HSHM observations identified in both the down-

sampled and original datasets was consistently high

(95% CI = 0.92–1.00) and the number of false

positives relative to the number of original HSHM

retained in the down-sampled dataset was consis-

tently low (95% CI = 0.00–0.08) (Figure 5a–d).

When removing observations by sampling date,

much larger differences in skewness emerged (95%

CI = 0.15–1.19) and 7 of 1017 (6.9%) of down-

sampled datasets had negative (left) skew; how-

ever, > 97% of down-sampled datasets were more

right-skewed than the reference distribution

Figure 3. a Histogram of empirical DO saturation values

overlain by a reference Gaussian distribution (black

dashed line) having equal mean and variance. Black

ticks indicate identified HSHM. b The 98 sampling

locations on Swan Lake (Iowa, USA) and the associated

macrophyte cover. c Spatiotemporal distribution of

HSHM shown as circles with colors corresponding to

the date when the location was identified as an HSHM.

Concentric circles indicate that a sampling point was

identified as an HSHM observation on multiple sampling

dates. The predominance of HSHM on 4 of 17 sampling

dates, combined with one or more HSHM occurring at

many locations indicates that this system is characterized

primarily by HM.

Figure 4. Seagrass metabolism (NEP, mmol C m-2 d-1)

in ten experimental plots across ten sampling weeks. a

Histogram of empirical values overlain by a reference

Gaussian distribution with equal mean and variance to

the empirical distribution. Extreme negative and positive

values are identified, respectively, by red and blue points.

b NEP values across plots and sampling weeks. Extremes

are indicated with an asterisk. White cells are times when

metabolism measurements are missing for a given plot.

The fact that no plots or sampling weeks predominate the

set of extreme observations supports the conclusion from

the test for HSHM presence that this case study does not

reflect HSHM.
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Figure 5. Sensitivity of Swan Lake dissolved oxygen HSHM results to removal of observations by site (a–d) and by date

(e–h). a, e Histogram of dataset skewness when up to 2/3 of observations of sampling sites and sampling dates,

respectively, are removed from the dataset. b, f Histogram of quantiles of the empirical skewness to that of surrogates,

corresponding to a significance test for the presence of HSHM. c, g Proportional agreement between the original results

and the results with down-sampling by site and date. The solid lines indicate the median, and the dashed lines indicate

0.05 and 0.95 quantiles. d, h Proportional disagreement between the original results and the results with down-sampling

by site and date. Lines coded as in (c, g).
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(a = 0.05, one-tailed test), so in general, overall

conclusions about the data distribution reflecting

that HSHM were present did not change. However,

there was broad disagreement in which observa-

tions were identified as HSHM, as the proportion of

HSHM observations identified in both the down-

sampled and original datasets was commonly ex-

tremely low (median = 0.04, 95% CI = 0.00–0.79)

and the number of false positives relative to the

number of original HSHM retained in the down-

sampled dataset often indicated more disagreement

than there were original HSHM retained in the

down-sampled data (median = 0.85, 95% CI =

0.01–1.45) (Figure 5e–h).

DISCUSSION

A standard method for identifying whether hot

spots and/or hot moments (HSHM) are present in a

set of observations and quantifying which locations

and times qualify as HSHM is necessary for

improving our conceptual and quantitative models

of ecosystem processes (Bernhardt and others

2017). The statistical approach presented here

provides a method for systematically and compar-

atively studying HSHM both within and among

ecosystems. Additionally, the sensitivity analysis

provides information about sampling design while

evaluating the robustness of HSHM identification at

the spatiotemporal scales sampled. As demon-

strated in three case studies, this quantitative ap-

proach to identifying if, when, and where HSHM

occur can be used to advance our understanding of

the underlying hydrologic and biogeochemical

drivers of these rare events.

Relative to other quantitative approaches to

HSHM used previously (for example, Darrouzet-

Nardi and Bowman 2011; Yu and others 2013;

Kannenberg and others 2020), a key advance of

our approach is an explicit test for the presence of

HSHM. We accomplish this by considering differ-

ences between an empirical data distribution and a

reference distribution representing a null hypoth-

esis of no HSHM. We used a normal distribution in

our analyses because it has no skew or excess

kurtosis but preserves the mean and variance of the

empirical data. However, use of other statistical

distributions or data-generating models is consis-

tent with our approach and could be appropriate

for certain applications. Other approaches common

in the literature focus on identifying which obser-

vations constitute HSHM by means of identifying

extreme values (for example, Darrouzet-Nardi and

Bowman 2011; Yu and others 2013; Kannenberg

and others 2020). We presented an approach to

identifying HSHM based on extremes of the refer-

ence distribution that is logically consistent with

our test for HSHM presence, but we acknowledge

that different approaches to identifying extreme

values can produce consistent results that results

are inherently sensitive to user-specified thresh-

olds, and that which approach is superior in a given

context is not yet well-defined. We encourage

further testing and comparison to support the

overall goal of identifying the best standard for a

quantitative definition of HSHM that can be

straightforwardly applied across systems and data-

sets.

The HSHM behaviors in the case studies pre-

sented here were driven by a combination of

hydrological and biological activity. Among the

case studies, the HSHM method identified when

observations were dominated by HS (soil CO2), HM

(lake dissolved oxygen), or neither (seagrass me-

tabolism). The low elevation, open canopy plot

with high CO2 concentrations in soil pores at

Weimer Run is an example of a permanent control

point (sensu Bernhardt et al. 2017) where the

combination of continuous hydrologic delivery of

reactants and optimal environmental conditions

sustained high rates of CO2 production (Pacific and

others 2009; Atkins and others 2015). Conversely,

despite documented spatial heterogeneity (Ortiz

and Wilkinson 2021), dissolved oxygen saturation

in Swan Lake was best characterized by temporal

variability. The HM of dissolved oxygen saturation

in Swan Lake on DOY 191 was the result of a

biological activated control point driven by a

cyanobacteria bloom coinciding with the peak

timing of macrophyte production (Ortiz and others

2020). This HM of dissolved oxygen availability

across almost the entire lake bed likely also stim-

ulated activated control points of internal phos-

phorus loading (Albright and Wilkinson 2022)

driven by the spatial heterogeneity of sediment

phosphorus composition (Albright and others

2022). Finally, simulated grazing of seagrass

meadows by green turtles through blade clipping

did not induce HS or HM of metabolism within the

study meadow despite a drastic reduction in pho-

tosynthetic biomass. Although NEP was reduced in

clipped plots, the observations did not skew the

distribution or generate kurtotic characteristics.

Based on this experiment and analysis, it is possible

that green turtle grazing alone does not create HS

of organic carbon remineralization and loss from

seagrass sediments (Johnson and others 2017).

As these case studies illustrate, the HSHM iden-

tification method presented here can be broadly

applied across ecosystems and observations. How-

1376 J. A. Walter and others



ever, as with any statistical tool, it is necessary for

the investigator to interpret the identified HSHM in

the context of their data and knowledge of the

ecosystem. The sensitivity analysis presented here

was designed to aid investigators in evaluating the

robustness of identifying observations as HSHM

and assessing sampling design for their own study

system. For example, the locations identified as HS

in the Swan Lake dissolved oxygen data set were

robust to the down-sampling rarefaction analysis

(Figure 5c) while the HM were much more sensi-

tive (Figure 5g). As sample days were removed, the

median disagreement (between the down-sampling

and full dataset) is above 50% after removing only

two dates, while the removal of 2/3 of sample

locations does not increase disagreement past 5%.

We interpret this as further evidence that ecosys-

tem processes resulting in extreme dissolved oxy-

gen observations in Swan Lake are more likely to

vary in time than space and that higher frequency

observations may be necessary to further resolve

the drivers of HM of dissolved oxygen production

in the ecosystem This is one example of how the

sensitivity analysis can be used by investigators to

develop understanding of how the sampling regime

interacts with ecosystem dynamics to influence

detection of HSHM, aiding study design and inter-

pretation.

The potential uses of standard quantitative tools,

such as those presented here, for studying HSHM

have major potential to advance ecosystem science.

Coupled with the growing availability of data on

ecosystem rates and processes, including increas-

ingly long temporal extents, such tools can be used

to answer important questions about how common

HSHM are in general, and whether their occur-

rence is changing, potentially due to climate

change or anthropogenic alterations of biogeo-

chemical cycles. Once identified, analyses of the

relationship between HSHM and variables repre-

senting, for example, meteorology and biogeo-

chemical rates or concentrations, can shed light on

the mechanisms and consequences of HSHM. In

this study, we used our familiarity with these sys-

tems to make some inferences about how spatial

environmental heterogeneity and other events

taking place in these ecosystems may have led to

occurrence of HSHM. Given the availability of data

on relevant covariates, formal statistical analyses

could be used to strengthen inference into mech-

anisms of HSHM. While linear modelling ap-

proaches common in ecosystem ecology and

biogeochemistry can likely be fruitful, other less

common approaches may be well-suited to the

study of HSHM. For example, statistical methods

suited to examining the effects of covariates on

extreme values such as quantile regression (Koen-

ker and Hallock 2001; Cade and Noon 2003), cer-

tain copulas (Ghosh and others 2020), and the

partial Spearman correlation (Ghosh and others

2020) could be particularly useful since HSHM are

themselves extreme values.

Biogeochemical HS spots and HM are an impor-

tant, widely invoked concept in ecosystem science,

but the depth and breadth of understanding of

HSHM have been limited by a lack of standard

quantitative definitions (Bernhardt and others

2017). Our proposed approach to testing for and

identifying HSHM based on the skewness and

kurtosis of data distributions could yield the stan-

dard quantitative approach the field presently

lacks. One key advantage of our approach is that

we provide an explicit test for the presence of

HSHM, rather than assuming HSHM are present

and identifying extreme values after the fact. Three

case studies demonstrated how our approach can

be applied to studying HSHM in a variety of

ecosystems, variables, and study designs. We

encourage the research community to evaluate and

adopt quantitative HSHM definitions, and we pro-

vide algorithms in the form of an R package

(‘‘hotspomoments’’) to facilitate uptake of the ap-

proach presented here.
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