Ecosystems (2023) 26: 1367-1378 ( )
https://doi.org/10.1007/s10021-023-00839-z ECOS ' STEMSl o
eck Tor

© 2023 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature | updates

Toward a Standardized Method
for Quantifying Ecosystem Hot Spots
and Hot Moments

Jonathan A. Walter,"?*® Robert A. Johnson,® Jeff W. Atkins,*
David A. Ortiz,”> and Grace M. Wilkinson?®"®

Center for Watershed Sciences, University of California-Davis, Davis, California 95616, USA; *Department of Environmental Sci-
ences, University of Virginia, Charlottesville, Virginia, USA; *Department of Integrative Biology, University of Wisconsin-Madison,
Madison, Wisconsin, USA; “USDA Forest Service, Southern Research Station, New Ellenton, South Carolina, USA; °Center for
Limnology, University of Wisconsin-Madison, Madison, Wisconsin, USA

ABSTRACT
Ecosystem ‘“‘hot spots” and ‘‘hot moments”’—re- representing different ecosystem contexts and focal
spectively, places and times of disproportionately variables: soil pore space CO, concentrations in a
high biogeochemical activity—are an important humid temperate watershed; dissolved oxygen
and often invoked concept in ecosystem science. saturation in a hypereutrophic, shallow lake; and
Despite the popularity of the concept, there is no seagrass metabolism on the coast of a tropical is-
standard approach to quantifying hot spots and hot land. A rarefaction-based sensitivity analysis
moments, hindering progress in understanding the showed how detection of HSHM using our methods
phenomenon. For example, lack of a standard can be sensitive to changes in spatial and temporal
quantitative approach hinders advances arising sampling regimes, depending on the behavior of
from synthesis across datasets and studies poten- the system. To facilitate adoption of our approach,
tially representing different processes, ecosystem we provide the R package ‘‘hotspomoments’” to
types, places, and times. We present an approach to implement the method. Adoption of a standard
quantifying hot spots and hot moments based on quantitative approach to hot spots and hot mo-
the skewness and kurtosis of data distributions. Our ments would advance ecosystem science.
approach explicitly tests for the presence of hot
spots and/or hot moments, as well as identifies Key words: biogeochemistry; control points; dis-
observations regarded as hot spots and/or hot mo- solved oxygen; CO, efflux; net ecosystem produc-
ments. We apply our method to three case studies tion.
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INTRODUCTION

Understanding the magnitude and drivers of spatial
and temporal variability in biogeochemical rates is
a central question in ecosystem ecology. Locations
within a landscape or ecosystem that contain dis-
proportionately high process rates (hot spots; HS)
or periods of time during which rates are high (hot
moments; HM) are important for characterizing the
overall biogeochemical behavior of an ecosystem
(McClain and others 2003) and understanding ex-
tremes in other ecosystem components (Batt and
others 2017). These patches and periods, or control
points, are driven by spatial connectivity and the
movement of reactants or products over time
(Bernhardt and others 2017). By definition, HS and
HM (and the combination, HSHM) are spatially and
temporally rare and therefore difficult to quantify.
However, quantitative descriptions of this form of
spatiotemporal heterogeneity are needed to im-
prove both conceptual and numerical ecosystem
models (Bernhardt and others 2017). Although
rare, because HSHM are uncommonly large, they
have major impacts on overall ecosystem dynam-
ics, and hence models that account for HSHM
poorly cannot provide an accurate picture of sys-
tem behavior. With the advent of new sensor
technologies, remote sensing, and other tools, we
are well-positioned to quantify HSHM dynamics
and uncover the mechanisms that generate them.
However, although McClain and others (2003)
formalized the HSHM concept, there is still not a
widely used, statistically rigorous method for
identifying HSHM in ecosystems (Bernhardt and
others 2017). This impedes our ability to system-
atically and comparatively study the mechanisms
underpinning HSHM, how these processes scale in
space and time, and our ability to predict when and
where HSHM occur.

Although there is currently no standard quanti-
tative definition of HSHM (Bernhardt and others
2017; Kannenberg and others 2020), several ap-
proaches have been used, many relying on identi-
fying extreme values from a data distribution (see
Bernhardt and others 2017). For example, Kan-
nenberg and others (2020) considered values more
than two standard deviations from the mean to be
HSHM; Yu and others (2013) considered observa-
tions in the 4th quartile of the distribution HSHM;
and Darrouzet-Nardi and Bowman (2011) devel-
oped a mathematical definition to identify obser-
vations that are both outliers and
disproportionately large. Other frameworks, such
as those based on the Pareto distribution, are also
useful for characterizing extreme values (for

example, Carpenter and others 2015), but may
require more observations than are in many
ecosystem science datasets to robustly implement.
One shortcoming of existing approaches is that
they largely assume, rather than explicitly test, that
HSHM are present in the data and instead focus on
identifying which observations can be considered
HSHM. Using for illustration the definition of
HSHM as two standard deviations from the mean,
nearly any dataset of sufficient sample size will
have observations more than two standard devia-
tions from the mean, even if these are not suffi-
ciently large to  make  disproportionate
contributions to the total. Hence, a widely appli-
cable test explicitly for the presence of HSHM could
improve quantification of the phenomenon by
limiting qualitative or ad hoc approaches that are
likely to be inconsistent across studies.

We propose an approach using the skewness and
kurtosis of distributions of ecosystem measure-
ments to detect if HSHM are present in the system,
and to identify which observations constitute
HSHM (Figure 1). HSHM are inherently extreme
observations (McClain and others 2003), and
skewness and kurtosis can be thought of as quan-
tifying the degree to which a distribution of
observations is dominated by values in the tails
(extremes). Here, skewness corresponds to whether
a distribution is dominated by values in the upper
or lower tails: for two distributions of equal vari-
ance but unequal skewness, the more skewed will
have a greater magnitude and higher density (for
example, a fatter tail) of extreme values. Kurtosis
can describe when more symmetric distributions
have many and/or more extreme observations in
both tails (that is, the distribution is leptokurtic).
Considering both left- and right-skewed distribu-
tions and kurtosis accommodates process rates such
as net ecosystem production (NEP), which may be
positive or negative and for which a set of obser-
vations can contain extreme values in one or both
directions. To move beyond simple description, we
test whether skewness and/or kurtosis are signifi-
cantly greater than expected if HSHM were not
present by comparing against a reference distribu-
tion using a parametric bootstrapping procedure.
Observations constituting HSHM can be identified
by comparison to a reference distribution or other
methods of identifying extreme values. Once
identified, the location and timing of HSHM, and
their relationships to other ecosystem variables and
processes can be examined to yield inference into
the underlying hydrologic, ecophysiological, and
biogeochemical mechanisms of ecosystem HSHM.
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Below, we present details of an approach to use
distributional skewness and kurtosis for quantify-
ing ecosystem hot spots and hot moments (HSHM)
and apply it to three empirical case studies repre-
senting different ecosystem contexts and focal
variables: seagrass metabolism on the coast of a
tropical island, soil pore space CO, concentrations
in a humid temperate watershed, and dissolved
oxygen saturation in a hypereutrophic, shallow
lake. Using the largest dataset (lake dissolved oxy-
gen saturation), we assessed the robustness of re-
sults generated under our new method to
uncertainty arising from loss of observations. Our
approach is flexible to a wide range of applications
and provides a standard quantitative approach to
quantifying HSHM that can facilitate advances in
understanding ecosystem HSHM across scales,
especially through syntheses involving multiple
variables, ecosystems, or time periods.

METHODS
Algorithm Implementation

Here, we present algorithms that operationalize the
conceptual approach described above, using the
statistical moments skewness and kurtosis of data
distributions to (a) infer whether a set of biogeo-
chemical observations contain HSHM; and (b)
identify observations constituting HSHM. These
algorithms are generic, and we believe they can be
applied to nearly any set of biogeochemical obser-
vations, taken over space (HS), time (HM), or both
(HSHM).

To infer whether a set of biogeochemical obser-
vations contains HSHM, we first test for skewness
by measuring the sample skewness of the obser-
vations and assessing the statistical rarity relative to
a reference distribution using a parametric boot-
strapping procedure. We define sample skewness as
the quantity
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where 7 is the number of observations in the da-
taset; x; is the ith observation of variable x; and x is
the mean (Joanes and Gill 1998). Our parametric
bootstrapping procedure compares the skewness of
the input data to a distribution of ‘‘surrogate’”
skewness values obtained by computing the
skewness of many (say, 1000) realizations of »
random deviates from a reference statistical distri-

bution corresponding to a null model of no HSHM.
Here, we use as the reference distribution the
normal distribution with mean and variance equal
to those of the sample x; further discussion of this
choice is provided below. The rank of the skewness
of the input data relative to the skewness of the
surrogate datasets can then be used to assess the
statistical significance of the skewness of the input
data, to an acceptable level of certainty. For
example, if the quantile of the empirical skewness
in the distribution of surrogates is > 0.95, this
could be considered statistically significant at
p < 0.05 using a one-tailed test. Correspondingly,
a quantile of < 0.05 would constitute statistical
significance in left-skewed data, such as for quan-
tities like net ecosystem exchange (NEE) or net
ecosystem production (NEP) where positive/nega-
tive values indicate uptake/release (or vice versa).
If the data are not significantly left- or right-
skewed, it could be the case—especially with vari-
ables for which positive/negative values indicate
uptake/release or vice versa—that both uptake and
release HSHM are present in the same set of
observations. A leptokurtic distribution, producing
proportionally more and more extreme outliers,
would be consistent with this. We measure this
property of excess kurtosis within a sample as,

g

where, as above, 7 is the number of observations in
a sample of observations x and x is the mean of the
sample. We use the same parametric bootstrapping
procedure to assess the significance of excess kur-
tosis. Note that in this case, we focus on whether
the quantile of empirical excess kurtosis in the
distribution of surrogates is > 0.95 (or some other
appropriate high threshold) since excess kurtosis
systematically less than the reference distribution
corresponds to a platykurtic distribution having
proportionately few and lower-magnitude extreme
values (that is, no HSHM). In practice, the choice of
whether to prefer a kurtosis-based test over a
skewness-based test depends primarily on whether
the empirical data distribution is approximately
symmetric and whether low/negative extremes of
the focal variable are meaningful.

In these tests, we use normal distributions with
equal mean and variance to the focal empirical
dataset as the reference representing no HSHM.
The normal distribution was selected because it is
not skewed and has no excess kurtosis, so any
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skewness or kurtosis in the surrogates arises from
random variation, but the mean and variance can
be preserved. Although normally distributed data
can contain positive and negative extreme values
(its theoretical bounds are — e to + o), we con-
sider it an appropriate null model representing a
lack of HSHM because of the rarity of those values.
Considering that < 4.6% of values in a normal
distribution are more than two standard deviations
from the mean, and < 0.3% of values more than
three standard deviations, we consider extreme
values for normally distributed data too rare to
disproportionately  affect overall ecosystem
dynamics, unlike for skewed or leptokurtic distri-
butions which have a larger proportion of extreme
values. Moreover, for finite sample sizes (typically,
10 s to 100 s of observations for ecological data), a
small number of extrema consistent with a normal
distribution likely should not be considered robust
evidence for presence of HSHM, because poorly
replicated extremes may be indistinguishable from
measurement error (Hollinger and Richardson
2005). Testing against other null models might
sometimes be more appropriate, and in that case,
our general approach could straightforwardly be
adapted to test against a different statistical distri-
bution or data generating model. For example, if
the process rate or state variable is bounded by a
certain interval (for example, must be greater than
or equal to zero, such as for denitrification) and the
set of observations includes a substantial propor-
tion near the lower bound, it may be useful to test
against a statistical distribution that reflects this.
The truncated normal distribution is one possibility.

If HSHM are detected in the data due to signifi-
cant skewness or excess kurtosis, the observations
constituting HSHM can be identified using an
extension of the logic underpinning our test for
HSHM presence. Observations constituting HSHM
will be those that are more extreme than expected
to occur in an appropriate reference distribution. As
above, we use a normal distribution with identical
mean and variance to the input data as our refer-
ence, because it has no skew or excess kurtosis.
Then, we select a quantile corresponding to rarity
in the reference distribution, such as 0.05 (lower
tail extremes, for example, HSHM sinks) or 0.95
(upper tail extremes) and consider more extreme
observations than that quantile to reflect HSHM.
This approach is agnostic as to whether the extreme
values reflect HS, HM, or a combination of the two.
This depends in part on the sampling design or data
structure. For example, some datasets contain
observations through time or across space only
depending on sampling regime and data pre-treat-

ment. For datasets having both spatial and tempo-
ral resolution, whether extreme values are
concentrated in space or time can signal whether
HS or HM predominate in the system. Attributes of
the HSHM observations and potentially data on
other covariates can then be used to learn about
the nature, causes, and consequences of HSHM.

An implementation of these methods for the R
environment for statistical computing is available
at < https://github.com/jonathan-walter/hotspo
moments >.

Case Studies

We gathered three exemplary datasets from a
variety of ecosystems to demonstrate the use of the
algorithm described above. The example datasets
are from terrestrial, freshwater, and marine
ecosystems and potentially contain HS, HM, or HS
and HM. The methods described above were ap-
plied to each of the data sets to test for the presence
of HSHM using a normal reference distribution.
Analysis code and data visualization are available
at < https://github.com/jonathan-walter/hotspo
moments-ms > . The details of data collection and
analysis are briefly described below.

Soil pore space CO, concentrations

Weimer Run is a 374 ha humid, temperate water-
shed located in the Little Canaan Wildlife Man-
agement Area (West Virginia, USA) within the
Allegheny highlands of the Appalachian Mountain
chain (Atkins and others 2015). Sample plots were
arranged in a factorial experimental design with
three replicates of three different vegetation cover
types (that is, closed-canopy, forest gap, and closed-
canopy with shrub layer) at three elevation levels
(that is, low =975 m, medium = 1050 m, and
high = 1170 m) for 3 x 3 x 3 =27 plots design
(Atkins and others 2015). Soil pore space CO,
concentrations were measured using the methods
outlined in Pacific and others (2008) adapted from
Andrews and Schlesinger (2001) using an infrared
gas analyzer (IRGA) coupled with a custom in situ
gas well, equilibrated with the atmosphere. Each
gas well was placed at 5 and 20 cm depths in the
soil. Measurements of soil CO, concentrations were
taken using a handheld IRGA (model GM70 with
M170 pump and GMP 221 CO, probe, Vaisala,
Finland) with 2-5 min allowed for recirculation
after which stabilized values were recorded (Pacific
and others 2008). Soil CO, pore space was mea-
sured approximately weekly during the growing
season (May-September) and monthly during the
non-growing season from 2010 to 2012 in 27 plots
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located across the watershed. Because the data
distribution was right-skewed, we used skewness in
the test for HSHM presence and the 0.95 quantile
of the reference distribution to identify HSHM
observations.

Dissolved oxygen saturation in a shallow lake

Swan Lake (Iowa, USA) is a 40.5 ha, hypereu-
trophic lake located in a 311 ha watershed domi-
nated by row crop agriculture (Ortiz and Wilkinson
2021). Dissolved oxygen availability is a key reac-
tant controlling the rates of other redox-sensitive
biogeochemical processes. Dissolved oxygen satu-
ration was measured at 98 locations on Swan Lake,
17 times between day of year (DOY) 135 and 265 in
2018 (Ortiz and Wilkinson 2019). The dissolved
oxygen saturation measurements were made at
each sampling station 0.25 m below the surface of
the water using an optical DO sensor on a YSI Pro
DSS multiparameter sonde (Yellow Springs, Ohio
USA) (Ortiz and Wilkinson 2021). The sensor was
calibrated immediately preceding each sampling
date. The spatial sampling occurred between 09:00
and 14:00 apart from the first two sampling events
which lasted until 16:00. The 98 sampling stations
were evenly spaced across the surface of the lake in
a 65 x 65 m grid and the order of sampling (north
to south) remained constant over the course of the
summer. Additionally, the presence or absence of
rooted submerged and floating leaf macrophytes
was noted at each sampling station for each event
beginning on DOY 177 when the plants were large
enough to be consistently observed. The macro-
phyte presence data were used to generate an in-
dex ranging 0-100% based on the percentage of
sampling dates that rooted macrophytes were ob-
served at each sampling location and could be
contributing to spatial and temporal heterogeneity
in dissolved oxygen saturation. The macrophyte
presence index was interpolated to a 25 x 25 m
grid for visualization to aid in the interpretation of
dissolved oxygen HSHM. Because the data distri-
bution was right-skewed, we used skewness in the
test for HSHM presence and the 0.95 quantile of
the reference distribution to identify HSHM obser-
vations.

Seagrass metabolism in response to simulated grazing

Green turtles (Chelonia mydas) in the Caribbean
exhibit a distinct foraging strategy among seagrass
herbivores, in which they graze seagrass blades
within an area to short heights above the substrate
surface (Bjorndal 1980). To investigate the effect of
this foraging strategy on ecosystem metabolism, ten

plots (2 x 2 m) were set up in a shallow seagrass
meadow in Little Cayman, Cayman Islands (John-
son and others 2017). Five plots were experimen-
tally clipped to simulate grazing, and five plots
served as an unclipped reference. Net ecosystem
metabolism was measured weekly in each plot for
12 weeks during summer 2016 (May—August)
using light and dark incubation chambers. Cham-
bers were deployed before 11:30 each day so that
incubations encompassed solar maximum, and
metabolic rates were estimated from the change in
dissolved oxygen (DO) concentration within
chambers over the incubation period. Dissolved
oxygen concentration was measured immediately
following water sample collection using a YSI
ProODO handheld optical DO meter (Yellow
Springs Instruments, Yellow Springs, Ohio USA).
Additional meadow (for example, seagrass biomass,
blade length, shoot density) and environmental
(for example, temperature, irradiance) character-
istics were measured on a weekly or bi-weekly
basis as potential drivers of variation in metabolic
rates (Johnson and others 2017). Because the data
distribution was approximately symmetric and the
focal variable contained positive and negative val-
ues corresponding to sinks and sources, we used
kurtosis in the test for HSHM presence and the
0.025 and 0.975 quantiles of the reference distri-
bution to identify sink and source HSHM observa-
tions.

Sensitivity Analysis

Because HSHM are by definition rare events, one
challenge associated with their study is that a
sampling regime might fail to capture places and/or
times corresponding to HSHM, and that statistical
methods for their detection might be highly sensi-
tive to the inclusion/exclusion of particular obser-
vations. An optimal method should be largely
robust to changes in data density so long as the
sampling regime is sufficient to capture the HSHM.
To examine this, we used the Swan Lake DO data
to perform a rarefaction analysis in which we
iteratively and randomly removed observations
from up to 2/3 of sampling locations or sampling
dates, and quantified change in the detected pres-
ence of HSHM and which observations were iden-
tified as HSHM. Although the observed changes are
specific to this dataset and may not fully generalize
to others capturing different phenomena using a
different sampling regime, an understanding of
how the sampling regime interacts with ecosystem
dynamics to influence detection of HSHM can aid
in study design and interpretation (for example,
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informing repeated measures sampling, plot loca-
tion, sampling intervals).

To test the sensitivity of conclusions about HSHM
to spatial sampling regime, we iteratively removed
observations from »n randomly selected locations,
where 7 is the set of integers ranging from 1 to 2/3
the total number of sampling locations (here, n = 1,
2, ..., 65), up to 100 times each. For each down-
sampled dataset, we tested for the presence of
HSHM based on distributional skewness, consider-
ing the presence of HSHM statistically significant if
the quantile of the empirical down-sampled
skewness exceeded that of 95% of surrogates. We
also identified HSHM observations as those
exceeding the 95th percentile of a normal distri-
bution with mean and variance equal to that of the
down-sampled dataset.

We evaluated consistency in the overall conclu-
sion of whether the data reflect HSHM in terms of
the proportion of down-sampled datasets in which
the HSHM test was the same as, non-significant, or
different (for example, significant positive skew to
significant negative skew), as a function of the
number of dropped sampling locations. We evalu-
ated consistency in the identification of HSHM
observations in terms of the proportion of HSHM
observations identified in the full dataset that were
identified in the down-sampled dataset (not
counting those that were directly removed by the
down-sampling procedure), as well as the ratio of
the number of HSHM observations identified in the
down-sampled dataset that were not included in
the HSHM from the full dataset to the number of
HSHM from the full dataset that were present in
the down-sampled dataset.

The same procedure was used to test sensitivity
to changes in the temporal spatial regime, substi-

Right-skewed

Left-skewed

tuting ‘““sampling dates”” for “locations.” Here, the
number of dropped sampling dates » = 1, 2,... 11.

REsuLTs
Soil pore space CO, concentrations

Soil CO, concentrations at 5 cm (skewness = 6.16,
p < 0.001) and 20 cm (skewness = 5.60,
p < 0.001) had significantly right-skewed distri-
butions (Figure 2a), indicating the presence of
HSHM. Although more HSHM were identified at
5cm (n =23, 574 total observations than 20 cm
(n =15, 583 total observations), the timing and
location of HSHM were generally consistent be-
tween the two depths. At both depths, HSHM were
observed on 14 or more sampling dates and at no
more than three plots per sampling date; however,
HSHM were at least twice as common at a single
low-elevation, open canopy plot than any other
plot (Figure 2b). Thus, this system is characterized
more so by HS of biogeochemical activity than by
HM, likely a function of the strong controls on
ecosystem functioning exerted by complex topog-
raphy (Riveros-Iregui and McGlynn 2009; Atkins
and others 2015).

Dissolved oxygen saturation in a shallow
lake

The distribution of DO saturation with all sampling
events and measurements pooled (7 = 1665 mea-
surements) was significantly skewed to the right
(Figure 3a). The 8.5% of supersaturated DO values
that contributed to the right-skew of the data dis-
tribution were from four sampling events, two
early in the summer (DOY 142 and 156; 5.1 and
33.7% of measurements, respectively) and two
mid-summer (DOY 184 and 192; 24.5 and 81.4%
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Figure 2. a Distribution of empirical soil CO2 pore space concentrations compared to a reference Gaussian distribution
(black dashed line) with equal mean and variance. Tick marks indicate values of identified HSHM. b Total number of soil
CO, pore space concentration HSHM identified in the Weimer Run Watershed, WV at the replicate level where each point
represents three plots per elevation (as labelled) and vegetation cover combination (indicated based on point shape. The
preponderance of HSHM at low elevation open canopy plots indicates that this system is best characterized by HS.

of measurements, respectively) (Figure 3b). DOY
191 was a HM of DO supersaturation in Swan Lake
as 80 out of the 98 measurements contributed
significantly to the right-skew of the distribution.
Only measurements from the northern-most por-
tion of the lake were not HS on this sampling date.
However, the spatial heterogeneity of DO super-
saturation values that contributed to the right-skew
from the other three sampling events was much
higher. Mapping the location of those points re-
vealed that there were HS of DO supersaturation
that coincided with areas of the lake with high
rooted macrophyte occurrence (Figure 3b).

Seagrass metabolism in response
to simulated grazing

The distribution of net ecosystem production (NEP)
measurements (Figure 4a) across experimental
plots and sampling dates (z = 91), was not signifi-
cantly right- or left-skewed (skewness = 0.25,
p =0.16) nor was the distribution significantly
leptokurtic (excess kurtosis = — 0.53, p = 0.87).
NEP is strongly correlated with aboveground bio-
mass in these tropical seagrass ecosystems (Johnson
and others 2017), and the approximately normal
distribution of NEP data was likely driven in part by
the distribution in seagrass biomass among plots.
While biomass was lower in clipped plots than
reference plots (a direct result of clipping), biomass
varied among plots within a treatment (clipped and
reference), resulting in only certain times or areas

of very high or very low seagrass biomass. Despite
the lack of evidence for HSHM overall, we identi-
fied negative (carbon source) and positive (carbon
sink) extreme values using the HSHM identifica-
tion method to illustrate how testing for HSHM
presence and identification of extreme values can
jointly support conclusions about HSHM. Because
tests for HSHM presence were non-significant for
this case study, we refer to the identified observa-
tions as ‘extremes’ rather than HSHM as in the
other case studies. There were four instances when
a plot was identified as an extreme of NEP (4.4% of
measurements). Two positive (carbon sink) ex-
tremes occurred in the same reference plot (plot
10) in consecutive sampling weeks (6 and 7), while
two negative (carbon source) extremes occurred
during sampling week 9 (one clipped plot (plot 3)
and one reference plot (plot 8); Figure 4b). Mea-
surements in week 9 occurred on a cloudy day,
resulting in decreased rates of production and re-
duced NEP across all plots. High sediment organic
matter content in plots 3 and 8 may have fueled
higher respiration rates and led to their identifica-
tion as HSHM for negative NEP. Consistent with
the non-significant HSHM presence tests, only a
single plot was identified more than once (that is,
weak evidence for HS), and on only one sampling
date were there two plots identified at the same
time (that is, weak evidence for HM).
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Figure 3. a Histogram of empirical DO saturation values
overlain by a reference Gaussian distribution (black
dashed line) having equal mean and variance. Black
ticks indicate identified HSHM. b The 98 sampling
locations on Swan Lake (Iowa, USA) and the associated
macrophyte cover. ¢ Spatiotemporal distribution of
HSHM shown as circles with colors corresponding to
the date when the location was identified as an HSHM.
Concentric circles indicate that a sampling point was
identified as an HSHM observation on multiple sampling
dates. The predominance of HSHM on 4 of 17 sampling
dates, combined with one or more HSHM occurring at
many locations indicates that this system is characterized
primarily by HM.

Sensitivity Analyses

Tests for whether the lake dissolved oxygen dataset
contained HSHM were highly robust to removal of
observations by location and by sampling date, and
the identification of specific observations as HSHM
was substantially robust to removal of observations
by location. However, identification of specific
observations as HSHM was not robust to removal of
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Figure 4. Seagrass metabolism (NEP, mmol C m~2 d™')
in ten experimental plots across ten sampling weeks. a
Histogram of empirical values overlain by a reference
Gaussian distribution with equal mean and variance to
the empirical distribution. Extreme negative and positive
values are identified, respectively, by red and blue points.
b NEP values across plots and sampling weeks. Extremes
are indicated with an asterisk. White cells are times when
metabolism measurements are missing for a given plot.
The fact that no plots or sampling weeks predominate the
set of extreme observations supports the conclusion from
the test for HSHM presence that this case study does not
reflect HSHM.

observations by sampling date, likely because this
system was better characterized by the presence of
HM, that is, all HSHM observations occurred on 4
of 17 sampling dates and across many locations.
Thus, our approach satisfies the characteristic of an
optimal quantitative method for HSHM that it be
robust to data density provided that the sampling
regime is sufficient to capture the dynamics of the
system.

When removing observations by location,
skewness of the down-sampled dataset was nearly
always within £ 0.05 (95% CI = 0.63-0.73) of the
original value (0.68) and the skewness of the
down-sampled dataset was always greater than that
of the reference distribution; thus, the conclusion
that the overall data distribution reflects the pres-
ence of HSHM did not change. The proportion of
HSHM observations identified in both the down-
sampled and original datasets was consistently high
(95% CI =0.92-1.00) and the number of false
positives relative to the number of original HSHM
retained in the down-sampled dataset was consis-
tently low (95% CI = 0.00-0.08) (Figure 5a-d).

When removing observations by sampling date,
much larger differences in skewness emerged (95%
CI =0.15-1.19) and 7 of 1017 (6.9%) of down-
sampled datasets had negative (left) skew; how-
ever, > 97% of down-sampled datasets were more
right-skewed than the reference distribution
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Figure 5. Sensitivity of Swan Lake dissolved oxygen HSHM results to removal of observations by site (a—d) and by date
(e-h). a, e Histogram of dataset skewness when up to 2/3 of observations of sampling sites and sampling dates,
respectively, are removed from the dataset. b, f Histogram of quantiles of the empirical skewness to that of surrogates,
corresponding to a significance test for the presence of HSHM. ¢, g Proportional agreement between the original results
and the results with down-sampling by site and date. The solid lines indicate the median, and the dashed lines indicate
0.05 and 0.95 quantiles. d, h Proportional disagreement between the original results and the results with down-sampling
by site and date. Lines coded as in (c, g).
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(x = 0.05, one-tailed test), so in general, overall
conclusions about the data distribution reflecting
that HSHM were present did not change. However,
there was broad disagreement in which observa-
tions were identified as HSHM, as the proportion of
HSHM observations identified in both the down-
sampled and original datasets was commonly ex-
tremely low (median = 0.04, 95% CI = 0.00-0.79)
and the number of false positives relative to the
number of original HSHM retained in the down-
sampled dataset often indicated more disagreement
than there were original HSHM retained in the
down-sampled data (median = 0.85, 95% CI =
0.01-1.45) (Figure 5e-h).

DiscussioN

A standard method for identifying whether hot
spots and/or hot moments (HSHM) are present in a
set of observations and quantifying which locations
and times qualify as HSHM is necessary for
improving our conceptual and quantitative models
of ecosystem processes (Bernhardt and others
2017). The statistical approach presented here
provides a method for systematically and compar-
atively studying HSHM both within and among
ecosystems. Additionally, the sensitivity analysis
provides information about sampling design while
evaluating the robustness of HSHM identification at
the spatiotemporal scales sampled. As demon-
strated in three case studies, this quantitative ap-
proach to identifying if, when, and where HSHM
occur can be used to advance our understanding of
the underlying hydrologic and biogeochemical
drivers of these rare events.

Relative to other quantitative approaches to
HSHM used previously (for example, Darrouzet-
Nardi and Bowman 2011; Yu and others 2013;
Kannenberg and others 2020), a key advance of
our approach is an explicit test for the presence of
HSHM. We accomplish this by considering differ-
ences between an empirical data distribution and a
reference distribution representing a null hypoth-
esis of no HSHM. We used a normal distribution in
our analyses because it has no skew or excess
kurtosis but preserves the mean and variance of the
empirical data. However, use of other statistical
distributions or data-generating models is consis-
tent with our approach and could be appropriate
for certain applications. Other approaches common
in the literature focus on identifying which obser-
vations constitute HSHM by means of identifying
extreme values (for example, Darrouzet-Nardi and
Bowman 2011; Yu and others 2013; Kannenberg
and others 2020). We presented an approach to

identifying HSHM based on extremes of the refer-
ence distribution that is logically consistent with
our test for HSHM presence, but we acknowledge
that different approaches to identifying extreme
values can produce consistent results that results
are inherently sensitive to user-specified thresh-
olds, and that which approach is superior in a given
context is not yet well-defined. We encourage
further testing and comparison to support the
overall goal of identifying the best standard for a
quantitative definition of HSHM that can be
straightforwardly applied across systems and data-
sets.

The HSHM behaviors in the case studies pre-
sented here were driven by a combination of
hydrological and biological activity. Among the
case studies, the HSHM method identified when
observations were dominated by HS (soil CO,), HM
(lake dissolved oxygen), or neither (seagrass me-
tabolism). The low elevation, open canopy plot
with high CO, concentrations in soil pores at
Weimer Run is an example of a permanent control
point (sensu Bernhardt et al. 2017) where the
combination of continuous hydrologic delivery of
reactants and optimal environmental conditions
sustained high rates of CO, production (Pacific and
others 2009; Atkins and others 2015). Conversely,
despite documented spatial heterogeneity (Ortiz
and Wilkinson 2021), dissolved oxygen saturation
in Swan Lake was best characterized by temporal
variability. The HM of dissolved oxygen saturation
in Swan Lake on DOY 191 was the result of a
biological activated control point driven by a
cyanobacteria bloom coinciding with the peak
timing of macrophyte production (Ortiz and others
2020). This HM of dissolved oxygen availability
across almost the entire lake bed likely also stim-
ulated activated control points of internal phos-
phorus loading (Albright and Wilkinson 2022)
driven by the spatial heterogeneity of sediment
phosphorus composition (Albright and others
2022). Finally, simulated grazing of seagrass
meadows by green turtles through blade clipping
did not induce HS or HM of metabolism within the
study meadow despite a drastic reduction in pho-
tosynthetic biomass. Although NEP was reduced in
clipped plots, the observations did not skew the
distribution or generate kurtotic characteristics.
Based on this experiment and analysis, it is possible
that green turtle grazing alone does not create HS
of organic carbon remineralization and loss from
seagrass sediments (Johnson and others 2017).

As these case studies illustrate, the HSHM iden-
tification method presented here can be broadly
applied across ecosystems and observations. How-
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ever, as with any statistical tool, it is necessary for
the investigator to interpret the identified HSHM in
the context of their data and knowledge of the
ecosystem. The sensitivity analysis presented here
was designed to aid investigators in evaluating the
robustness of identifying observations as HSHM
and assessing sampling design for their own study
system. For example, the locations identified as HS
in the Swan Lake dissolved oxygen data set were
robust to the down-sampling rarefaction analysis
(Figure 5c) while the HM were much more sensi-
tive (Figure 5g). As sample days were removed, the
median disagreement (between the down-sampling
and full dataset) is above 50% after removing only
two dates, while the removal of 2/3 of sample
locations does not increase disagreement past 5%.
We interpret this as further evidence that ecosys-
tem processes resulting in extreme dissolved oxy-
gen observations in Swan Lake are more likely to
vary in time than space and that higher frequency
observations may be necessary to further resolve
the drivers of HM of dissolved oxygen production
in the ecosystem This is one example of how the
sensitivity analysis can be used by investigators to
develop understanding of how the sampling regime
interacts with ecosystem dynamics to influence
detection of HSHM, aiding study design and inter-
pretation.

The potential uses of standard quantitative tools,
such as those presented here, for studying HSHM
have major potential to advance ecosystem science.
Coupled with the growing availability of data on
ecosystem rates and processes, including increas-
ingly long temporal extents, such tools can be used
to answer important questions about how common
HSHM are in general, and whether their occur-
rence is changing, potentially due to climate
change or anthropogenic alterations of biogeo-
chemical cycles. Once identified, analyses of the
relationship between HSHM and variables repre-
senting, for example, meteorology and biogeo-
chemical rates or concentrations, can shed light on
the mechanisms and consequences of HSHM. In
this study, we used our familiarity with these sys-
tems to make some inferences about how spatial
environmental heterogeneity and other events
taking place in these ecosystems may have led to
occurrence of HSHM. Given the availability of data
on relevant covariates, formal statistical analyses
could be used to strengthen inference into mech-
anisms of HSHM. While linear modelling ap-
proaches common in ecosystem ecology and
biogeochemistry can likely be fruitful, other less
common approaches may be well-suited to the
study of HSHM. For example, statistical methods

suited to examining the effects of covariates on
extreme values such as quantile regression (Koen-
ker and Hallock 2001; Cade and Noon 2003), cer-
tain copulas (Ghosh and others 2020), and the
partial Spearman correlation (Ghosh and others
2020) could be particularly useful since HSHM are
themselves extreme values.

Biogeochemical HS spots and HM are an impor-
tant, widely invoked concept in ecosystem science,
but the depth and breadth of understanding of
HSHM have been limited by a lack of standard
quantitative definitions (Bernhardt and others
2017). Our proposed approach to testing for and
identifying HSHM based on the skewness and
kurtosis of data distributions could yield the stan-
dard quantitative approach the field presently
lacks. One key advantage of our approach is that
we provide an explicit test for the presence of
HSHM, rather than assuming HSHM are present
and identifying extreme values after the fact. Three
case studies demonstrated how our approach can
be applied to studying HSHM in a variety of
ecosystems, variables, and study designs. We
encourage the research community to evaluate and
adopt quantitative HSHM definitions, and we pro-
vide algorithms in the form of an R package
(“hotspomoments’’) to facilitate uptake of the ap-
proach presented here.
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