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Abstract—We live in an era of unprecedented technology. 
Millions of users depend on information technology to carry out 
their daily lives and large-scale commercial and industrial 
operations are no exception. At the same time, the rapidly growing 
interconnectivity of IT systems and the surge in cybercrime since 
the pandemic have rendered industry-standard hardware and 
software components increasingly vulnerable to malicious attacks. 
Cyber defense is a coordinated act of resistance that intends to 
understand the capabilities and motives of attackers in order to 
secure our country’s data and more importantly, the livelihoods of 
our citizens. This research aims to contribute to the progress of 
cybersecurity and defense technology as a whole by focusing on a 
dynamic aspect of malware: digital unwanted advertisements. It 
presents a novel approach to automating the analysis of malicious 
content on the internet by web scraping ads of the popular search 
engine Google to extract relevant data (URL, Company, Title, 
Product Desc.), building machine learning models (supervised & 
unsupervised) to classify and make predictions on that data, and 
creating a web application for end users to access. The results 
show that our tool can detect trends within the features with 
limited false positives, paving the way for us to make predictions 
on whether the advertisements are desirable or unwanted. The 
research concludes that in this time and age, it is extremely 
important to protect against fraud, especially by adhering to 
cybersecurity’s best practices and to think about threats in more 
global terms. Our hope with this research is to prompt action to 
ensure society continues to improve in IT resilience. 

Keywords—machine learning, data science, cybersecurity, 
Google Ad, malicious URL, shortening service 

I. INTRODUCTION 

In recent times, online advertising has become the 
predominant strategy for business marketing, which greatly 
impacts the day-to-day activities of online users, such as 
entertainment, communication, banking, and e-commerce. 
Unfortunately, due to the low cost of digital advertising and lack 
of user knowledge on installing adware software, online 
platforms are flooded with unwanted and malignant 
advertisements that devalue the user experience and deliver 
complex malicious activities—such as malware, scam, and 
phishing. 

More and more, attackers are targeting unsuspecting users 
by purchasing Google Adverts based on specific keywords that 
point to compromised websites. A 2020 investigation [1] carried 

out by British magazine Which, determined that it was possible 
to create a credible fake Google ad in just a few hours. With the 
only requirement being a Gmail address, Journalist Andrew 
Laughlin managed to promote his fake mineral water brand, 
Remedii, and accompanying online service, Natural Hydration, 
with little to no identification or vetting. In the span of a month, 
the Google ads gained nearly 100,000 impressions for queries 
such as “bottled water” and “hydration advice.” 

Therefore, in the absence of digital ad verification, 
cybercriminals across the world can utilize Google Ads’ pay-
per-click (PPC) model [2] to trick users into giving up 
confidential information such as login credentials, account 
details, and Personal Identifiable Information (PII), which are 
then used to hijack accounts, drain crypto wallets, and build data 
points on future victims. A recent malicious phishing attack [3] 
in early April 2022 targeted Trezor (crypto wallet) users who 
searched for Trezor-related keywords on Google and were met 
with ads impersonating the website pop-up. If the victim entered 
their wallet recovery seed phrase, their crypto wallets would be 
drained empty by the scammers. 

Furthermore, a study on “bad” advertisements [4] by Eric 
Zeng from the University of Washington concluded that a 
significant proportion of users fail to recognize certain types of 
media as ads, which allow common forms of online advertising 
fraud—phishing for user credentials, stealing money from 
legitimate advertising campaigns, and/or promoting a fake e-
commerce site—to be as lucrative as they are today. Through no 
fault of their own, a consumer’s unfamiliarity with cybersecurity 
best practices or trusting attitude toward a brand that is subject 
to data breaches, among other things, may give cybercriminals 
an unforeseen advantage in today’s world. 

The exposure of a multimillion-dollar ad fraud scheme [5] 
by BuzzFeed News in mid-October 2018, may lend us a hand in 
understanding how these fraudsters evade current, industry-level 
fraud detection systems. Utilizing the data of real human users 
on 125 Android apps and websites, they programmed bots to 
mimic human user behavior and stole close to $10 million from 
Google’s ad networks and partners. This invokes an important 
question: To what extent has cyberattacks evolved in regards to 
our ability to detect it? How can we, as a society, improve in 
cybersecurity vigilance and develop the necessary technologies 
to remedy this disparity? 
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Addressing this problem at a fundamental level would 
require significant changes to the digital advertising ecosystem 
and education sphere, perhaps ensuring proper implementation 
of ad verification or allocating resources to students and 
employees about how to protect their digital assets from 
vulnerabilities. 

Our aim in this paper is more modest, yet it retains the 
motivation of informing and protecting the individual consumer 
in the modern online environment. To do this, we must first 
understand the current, real-world statistical context of 
malicious activities: the target distribution of benign to malign 
advertisements; their URLS—which when run through 
supervised machine learning models with a focus on feature 
extraction (discussed in more detail below) allows us to make 
conclusions about what exactly constitutes a spoofed URL. 

Then, we propose an exploratory detection system for 
potentially malicious advert URLs, which to be practically 
useful, has to satisfy three requirements: the data collection has 
to be automated to avoid bias, since Google returns personalized 
results based on a number of factors; the features have to be 
significant in order for trends in the data to be observed; and the 
ML models have to be accurate in order to produce better 
predictions. 

We achieve this by blending three fields of study, or key 
methodology aspects: 

1. Data Science Aspect: Built a web scraper to scrape 
potentially malicious advertisements on popular search 
engine Google, using BeautifulSoup, a parsing library, 
based on user-inputted keywords. Extract relevant data 
(URL, Company, Title, and Product Description) to a 
csv file for data analysis by inspecting each search 
query’s web page component. Data is structured with a 
dictionary so that for every keyword, the top-
performing companies will be recorded along with the 
number of times it appears at the top. 

2. Machine Learning-Focused Aspect: Employ an end-
to-end Scikit-learn workflow: (1) Getting the data ready 
— cross-validation based on a 70-30% train/test split, 
(2) Choosing the right ML algorithms, (3) Handling 
NaN & categorical data — preprocessing, (4) Fitting the 
models & making predictions, (5) Evaluating the 
models — accuracy score & silhouette score, and (6) 
Displaying the results with plots. 

We examine two datasets, an extremely large collection 
of 651,191 URLS with the classification “benign,” 
“defacement,” “phishing,” and “malware” published on 
Kaggle in 2021 [6], and our own 614-count, scraped 
dataset with an assortment of sample key words, 
including “nft,” “cloud computing services,” and 
“artificial intelligence software.” 

Feature engineering includes extracting three types of 
features: Lexical, such as URL length, number of digits 
& letter characters, symbols (@, ?, #, %, and more), the 
presence of an HTTPS and shortening service; Host-
Based, such as domain name; and Content, such as 
having an IP address. 

All supervised & unsupervised machine learning 
algorithms, including but not limited to Random Forest 
Classification and K-means Clustering, are built and 
evaluated according to their accuracy, or silhouette 
score, to predict and identify patterns. 

3. Web Development Aspect: Develop a user-friendly 
web application to allow users to input certain keywords 
and the number of times to scrape into the ML model in 
order to receive an unbiased sample. Users will have the 
ability to display and view their results through the data 
structure. 

To motivate our approach more succinctly, we break down 
the structure of a URL in Section II and discuss manipulation 
techniques that effectively deter human detection. Section III 
provides details on our web scraping algorithm (including the 
random sampling technique) and supervised learning approach, 
along with the results of our feature engineering. We evaluate 
our exploratory detection system in Section IV with a large-scale 
experiment on our own scraped dataset and demonstrate its 
ability to detect anomalies in the data. Lastly, we discuss the 
results in Section V and outline conclusions and future directions 
in Section VI. 

The significance of our contributions is as follows: 

 We present an exploratory detection system for detecting 
malicious advertisement URLs that uses an automated 
technique of data collection. 

 Our feature engineering procedure returns significant 
results, which allow our supervised learning approach to 
exceed expectations; among the three classifiers we 
consider, Random Forest performs the best (91.4% 
accuracy), though the others contribute sufficient 
findings. 

 Our unsupervised anomaly detection approach and best-
performing K-means model (with a 0.447 silhouette 
score) suggests interesting relationships between a 
malicious URL and certain features. 

 We strive to put power back in online users’ hands and allow 
them to understand the media they interact with day-to-day. We 
work toward a future in cybersecurity where malicious activity 
is detected and curbed before it has a chance to inflict damage—
a future where AI will aid humans in the pursuit of automating 
Internet safety. 

II. BACKGROUND 

A. Breaking Down the Structure of a URL 

To set the scene, we discuss the components of a URL and 
the cybersquatting techniques that render manual human 
detection of malicious URLs infeasible. This reasoning is 
applied to our rationale that machine learning-backed systems 
are necessary to aid the everyday user navigate the online 
sphere. 

The different parts of the URL are listed below [7]: 

1. The protocol: Describes the way a browser should 
retrieve information from a web source, e.g., HTTPS, 
HTTP, which differ by being secure/not secure, & FTP. 
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2. The hostname: Is made of the domain name and 
subdomain name. 

a. The domain name consists of the second-level 
domain which is the name of your website & 
the top-level domain which specifies the type 
of website, e.g., .com, .edu. This combination 
is the only unique part of the URL. 

b. The subdomain is a specific “zone” inside the 
website. 

3. The path: A path on a personal computer to a specific 
file, indicating what resource is obtained from the 
website. 

 

Fig. 1. URL structure 

The correct way to read a URL is from right to left starting 
with the hostname. The key to identifying a malicious URL is 
its unique domain name, which takes us to the actual website. 
Consider two URLs: 

ftp://ftp.microsoft.com/software/patches/fixit.exe 

Here, the domain or website is Microsoft.com and the 
protocol is FTP. This URL is legitimate. 

http://securitycenter.microsoft.us.admin-mcas-gov.ms 

In this case, it would be ill-advised to assume the word 
“microsoft” inside the URL proves its legitimacy. The actual 
website is admin-mcas-gov.ms with the second-level domain 
being “admin-mcas-gov” and the top-level domain being “ms.” 
This is a phishing URL. 

B. Hacking the Human Brain 

Let’s review some manipulation techniques that scammers 
implement when cybersquatting—which refers to the 
unauthorized registration and use of Internet domain names that 
are identical or similar to trademarks, service marks, company 
names, or personal names. 

1. Subdomain Cybersquatting: This technique targets 
users’ habit of reading English from left to right. As they 
encounter a recognizable brand name, they tend to 
immediately trust the URL. 

2. TLD (Top Level Domain) Cybersquatting: This 
technique involves mimicking a company’s website 
URL in whole save for the top-level domain. Customers 
are tricked into believing the copy is the real deal. 

3.  Typosquatting: A basic technique that counts on users 
making typos when writing popular domain names, e.g., 
yutube, goggle, micosoft. Similarly, similar-domain 
cybersquatting focuses on the similarity of the domain, 

e.g., cnn-news.com (added “-news”) or Facebook1.com 
(added digit “1”). 

4. Suggestive words: Words related to inputting 
credentials for some service, e.g., “login,” “bank,” and 
“activate,” are likely to be used in phishing URLs. 

5. Short URLs: This technique hides the true URL by 
using a short redirect URL, e.g., tinyurl, bit.ly. 

C. Malvertising vs. Google Ad Scams 

Malvertising, or malicious advertising, [8] is known widely 
as a cyberattack in which perpetrators inject malicious code into 
legitimate digital ads. Attackers may perform the following 
when a user views the advert with or without clicking on it: 

1. A “drive-by download” where malware is installed on 
the computer, made possible due to browser 
vulnerabilities. 

2. Forced redirect of the browser to a malicious site; may 
be operated by an attacker to carry out a phishing scam. 

3. Display of unwanted advertising, malicious content, or 
pop-ups via JavaScript. 

For the purpose of this paper, we will only consider fake 
Google advertisements [9] that are bought by fraudsters for a 
variety of reasons: 

1. Cryptocurrency Phishing Scams: Scammers use 
domain spoofing (aka cybersquatting) with similar 
URLs to impersonate well-known digital crypto wallet 
brands like Phantom and MetaMask. 

2. Brand Impersonation: Scammers pass themselves off 
as existing brands by stealing product photos and other 
intellectual property that appear on their Google Ads. 

3. Spoof Websites: Scammers take brand impersonation 
one step further by replicating an entire brand’s website. 

4. Counterfeiting: Scammers can use fake Google ads to 
direct consumers to websites that sell counterfeit 
products, which usually reflect poorly on the real brand. 

 

Fig. 2. Search campaign ad example for keyword “cybersecurity” 

Let’s take a step back and rationalize our research approach 
and goals in this new context. The greatest tool we have in 
predicting malevolence, without a doubt, is a website or advert’s 
URL—where a conscious human eye can set to uncovering a 
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scammer’s handiwork. However, in 2022 alone, the total cost of 
ad fraud for businesses and consumers was $81 billion [10]. This 
number is predicted to increase to $100 billion by 2023 due to 
the never-ending advancement in technology. Organizations and 
individuals without advanced fraud prevention solutions or 
skills will be exposed to attacks around the globe. Our mission, 
simply, is to inform the everyday user of how to safeguard their 
digital assets, to remind businesses to keep their staff trained and 
up to date in order to protect their customers, and to remind 
society to remain vigilant of everyday processes—even 
something seemingly safe as Google Ads. 

III. METHODS 

A. Web Scraping Algorithm 

The Google Ads URL web scraper was developed to 
automatically and repeatedly collect Google advertisements 
based on a list of predetermined keywords. This list, included 
below, was compiled through a surveying process amongst 
peers; with the conditions to providing a “keyword” indicated 
on the Google Form as “tech” or “product-like”. 

"nft," "cloud computing services," "malware," "app 
development," "cryptocurrency," "web design," "web 
development," "resume building," "infographic maker," "job 
search sites," "job search," "internship search," "online news," 
"academic poster template," "video editing software," "photo 
editing software," "color correction software," "photoshop 
software," "augmented reality software," "artificial 
intelligence software," and "adobe software.” 

The overall workflow of the Google Ads URL static web 
scraper contains eight steps (refer to GitHub for full 
documentation [11]): 

1. Import libraries requests, json, tldextract, bs4, & csv. 

2. Specify a user agent [12] to mitigate bot-blocking. 

3. Fetch the HTML code for entire Google search query 
web page with the Requests library; the get() method is 
used to send a GET request to the selected data source. 
The payload is our targeted keyword. 

4. Write source code to HTML file. 

5. Check valid request & feed the fetched HTML to 
BeautifulSoup [13] object.  

6. Scrape both top and bottom advertisements & extract 
relevant data (Title, URL, Company, & Product 
description)—utilizing Chrome’s Inspect Element 
mode (Ctrl + Shift + I) will aid in the process of finding 
the unique JavaScript class ID. The find() method finds 
the first tag with the specified id. Implement try-except 
functions to avoid crashing the program. 

7. Write data elements to a CSV file with the Csv library. 

8. Loop n number of times to obtain more accurate data. 

 

For further keyword and competitor analysis, which is 
implemented in the web app, refer to the two steps below: 

9. Determine absolute-top advertisement company—to 
elaborate, Google ads claim a top spot (ads positioned 
above search results) by meeting the Ad Rank 
thresholds [14], a combination of bid, auction time, and 
quality. 

10. Display to nested dictionary: total absolute-top ads & 
number of search result ads for a certain company—for 
a certain keyword. 

We ran our Python script in Visual Studio Code on our list 
of 21 tech-related keywords, for a total of 10 replications—
meaning our web scraper fetched the search results of each 
keyword 10 times; we expect this repetition will account for 
duplicate advertisements and present anomalies that may be our 
target malicious ads. The program had a run-time of 
approximately 1-2 minutes, however, was capable of producing 
a 614-count “scraped” dataset that was later applied to our 
unsupervised ML models. 
 

Fig. 3. Scraped dataset 

B. Supervised Learning Approach 

Human beings are always on the search for tools and 
techniques that reduce the effort of performing a task efficiently. 
In Machine Learning, algorithms are designed to learn by 
themselves using past experience, to be capable of reacting and 
responding to new conditions. When it comes to fraud detection, 
ML can identify hidden patterns that have not been previously 
recognized and parallel the skill of today’s cybercriminals. 

Our choice of classifiers is determined by the corpus of 
labeled data available online. For the purpose of this study, we 
examined an extremely large collection of 651,191 URLs, out of 
which 428,103 are benign/safe URLs, 96,457 are defacement 
URLs, 94,111 are phishing URLs, and 32,520 are malware 
URLs. This archive was published to Kaggle [6] by Manu 
Siddhartha in 2021, incorporating several existing URL datasets, 
and consists of two columns: URL & Type (benign, defacement, 
phishing, or malware). 

Since the goal of our exploratory detection system is to 
highlight hidden patterns in the data amongst certain URL 
features and detect anomalies, it is essential to understand the 
real-world statistical context of these malicious activities. 
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Fig. 4. Target distribution of Kaggle dataset 

The End-to-End Scikit-Learn Workflow of our Supervised 
Learning approach contains eight steps (refer to GitHub for full 
documentation [11]): 

1. Import libraries pandas, numpy, preprocessing, 
LogisticRegression, RandomForestClassifier, 
DecisionTreeClassifier, plt, sns, accuracy_score, & 
confusion matrix, among others. 

2. Read Kaggle malicious URLs CSV file into Pandas [15] 
dataframe with the read_csv() method & display head. 

3. Data preprocessing: Handling NaN (missing data) with 
the isnull() method, Omitting (www.) with the replace() 
method, & Extracting features (detailed below): 

Our feature engineering [16] approach involves extracting 
lexical, host-based, and content-based features from the labeled 
URL strings in order to identify its malevolence. Definitions and 
justifications are provided for all three categories: 

 Lexical features: These refer to statistical features 
extracted from the literal string. The motivation for 
including lexical features is based on the fact that 
malicious URLs have a different appearance to benign 
URLs, therefore, we can extract statistical properties that 
quantify this difference. Features chosen are: 

o URL Length, Symbols (‘@’, ‘?’, ‘-‘, ‘=’, ‘.’, 
‘#’, ‘%’, ‘+’, ‘$’, ‘!’, ‘*’, ‘,’, ‘//’), Presence of 
HTTPS, Digit Count, Letter Count, Presence 
of Shortening Service, & Presence of IP 
Address 

 Host-based features: These are obtained from the host-
name properties of the URL and provide information 
about the host of the webpage, e.g., country of 
registration, open ports, etc. They can demonstrate a 
certain characteristics that malicious and benign sites 
have a reputation of having. Features chosen are: 

o Domain & Abnormal URL 

 Content-based features: These are obtained from the 
webpage’s HTML code, which capture the structure and 
content embedded in it. Similar to host-based features, 
they capture characteristics found in compromised 
pages. We did not consider any content-based features. 

In analyzing the results from our preliminary feature 
extraction, we have made small but startling conclusions:  

 Malicious URLs are generally shorter than benign URLs. 

 Malicious URLs have an average of at least two periods, 
while benign URLs have at least one period in them (as 
expected). 

 Malicious URLs contain certain “red flag” or suggestive 
keywords, including the names of a legitimate company 
they are targeting. 

These findings are consistent with other peer-reviewed 
conference papers [17] [18] on the topic of feature extraction for 
phishing URLs and npm packages. 

However, contrary to expectations, the feature “presence of 
a shortening service” did not yield any significant or noticeable 
results (present in approximately 40,000 URLS or 6%). A URL 
shortener [19] is a website or plugin that is designed to reduce 
lengthy and complex links. Today, they are popular for social 
media applications like Twitter which only allow up to 140 
characters in a tweet. 

URL shorteners work in a sequence of steps: 

1. The user inserts a lengthy link into a link shortener 
website/plugin. The link gets sent to a server for 
validation. 

2. The server inserts the link into a database and generates 
a shortcode (identification code) in the form of a short 
link.  

3. When a user inserts a shortened URL into a web 
browser, the server receives the request and retrieves 
the original URL. 

It is worth emphasizing that while a shortening service can 
offer numerous benefits, scammers and hackers will abuse them 
to redirect users to look-a-like websites or install malware onto 
their victims’ personal devices. Even LinkedIn has a feature [20] 
that automatically shortens URLs that are longer than 26 
characters; a shortened link will start with “lnkd.in” followed by 
a random string of characters. 

It is challenging to determine where the web browser will 
take you if the unique domain name is stripped away. For this 
reason, the “presence of a shortening service” feature became 
our focused area of interest. 

 

Fig. 5. Seaborn heatmap of features (values near 1.0 are positively correlated) 
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Continuing our workflow: 

4. Getting the data ready — Set ‘X’ equal to the URL 
‘Type’ object and ‘Y’ equal to ‘Category’ multiclass 
which defines “benign” as ‘0’, “defacement” as ‘1’, 
“phishing” as ‘2’, and “malware” as ‘3’.  

Perform cross-validation based on a 70-30% train/test 
split [21] with the train_test_split() method. This allows 
us to train our classifiers using a training set of 520,952 
URLs and a testing set of 130,239 URLs. 

5. We sought learning algorithms that could: (1) Handle 
imbalanced data well due to the small proportions of 
malicious data available, and (2) Accurately 
classify/predict an input into its category. In the end, the 
ML algorithms [22] that satisfied the constrains were: 

a. Logistic Regression: Used to determine if an 
input belongs to a certain group or not. 

b. Decision Trees: Classifiers that are used to 
determine what category an input falls into by 
traversing the leaves and nodes of a tree. 

c. Random Forest: A collection of many 
decision trees from random subsets in the data, 
resulting in a combination of trees that may be 
more accurate in prediction. 

6. Fitting the models on the training sets & making 
predictions on the testing sets. 

7. Evaluating the models — Calculate accuracy score with 
the accuracy_score() method. The Logistic Regression, 
Decision Trees, & Random Forest models have the 
accuracy scores of 79.7%, 90.8%, & 91.4%, 
respectively. To increase our models’ accuracies, we 
can tune the hyperparameters and repeat the process 
until we achieve the desired performance. 

8. Displaying the results with a Seaborn heatmap  [23] for 
each model’s confusion matrix. Add labels (Predicted 
Classification & Actual Classification), and data count. 
Our best-performing model has a large percentage of its 
values in the true negatives (TN) & true positives (TP) 
region—denoted by the diagonal section. 

 

Fig. 6. Best-performing Random Forest Seaborn heatmap 

 To contrive excellent results in the latter half of our research, 
we must first understand the real-world distribution of benign to 
malign URLs. We have taken a deep dive into the statistics—
out of a large collection of 651,191 URLs, 34.3% are malicious 
(a surprising amount), and confirmed the power of today’s 
leading machine learning algorithms. We have no doubt that AI 
and ML will continue to disrupt and transform every single 
segment of society. 

IV. EVALUATION 

A. Unsupervised Learning Approach 

While motivating and presenting the details of our approach 
above, we have argued that its design makes it practically useful 
in terms of automation, significance, and accuracy. Now, we 
will support these claims with an experimental study that aims 
to answer the following research questions: 

1. Does our exploratory detection system automate and 
detect a wide range of malicious advertisement URLs? 

2. Does it detect significant patterns and anomalies based 
on the shortening service feature? 

3. Are clustering results cohesive and separated 
(validation metrics) enough to be useful? 

To answer these questions, we conducted a large-scale 
experiment on our 614-count “scraped” Google Ad URLs 
dataset to assess performance and accuracy. The End-to-End 
Scikit-Learn Workflow of our Unsupervised Learning approach 
contains eight steps—similar to Supervised Learning, with 
minor tweaks (refer to GitHub for full documentation): 

1. Import libraries pandas, numpy, preprocessing, 
LabelEncoder, StandardScaler, KMeans, 
GaussianMixture, PCA, plt, sns, silhouette_score, & 
confusion_matrix, among others. 

2. Read Scraped URLs CSV file into Pandas dataframe 
with the read_csv() method & display head. 

3. Data preprocessing: Handling NaN (missing data) with 
the isnull() method, Omitting (www.) with the replace() 
method, & Extracting features (detailed above in 
Section III B). 

In analyzing the single feature, “presence of a 
shortening service”, we concluded that our tiny sample 
of 614 URLs (not even 0.01% of the full 651,191 URLs 
sample studied earlier), was a close-to-ideal 
representation of the other. How? We performed a 
mathematical calculation on the distribution of URLs 
with and without a shortening service and found that 
approximately 75 URLS or 12% of the data contained 
the service. According to the principles of statistics [24], 
larger samples are a closer approximation of the real-
world population, which accounts for the discrepancy. 
These findings were fascinating. 

4. Getting the data ready — Set ‘X’ equal to relevant 
features, “URL,” “Company,” “Title,” “URL_Len,” 
“Letters,” and “Shortening_Service”.  
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Perform Label Encoding (scikit-learn library) [25] on 
categorical features (URL, Company, Title, & 
Product_Description), which assigns each label to a 
unique integer based on alphabetical ordering; preferred 
over One-Hot Encoding due to its high performance on 
a large number of categories). 

Perform a Standard Scalar [26] transformation on all 
categories to standardize, i.e. μ = 0 and σ = 1 our 
features, individually; to make the data the same scale 
and dimension. This procedure is recommended after 
label encoding. 

5. We sought learning algorithms that could: (1) Handle 
imbalanced data well due to the small proportions of 
malicious data available, and (2) Accurately 
classify/predict an input into its category. In the end, the 
ML algorithms that satisfied the constrains were: 

a. K-Means: Finds similarities between objects 
and groups them into K different clusters. 

b. Gaussian Mixture: Assumes all data points 
are generated from a mixture of a finite number 
of Gaussian distributions with unknown 
parameters.    

6. For K-Means (only), find distribution of raw data & 
apply Dimensionality Reduction [27] with Principal 
Component Analysis (PCA)—which will reduce the 
dimensionality of a dataset that contains a large number 
of variables, while retaining as much variance as 
possible. Reduce to six variables (URL, Company, 
Title, URL_Len, Letters, and Shortening_Service) & 
plot seperable data. 

7. Find optimal number of clusters via the Elbow method 
[28]—used to find the “elbow” point where adding 
additional data samples does not change cluster 
membership; vs. Silhouette Score—determines large 
gaps between each sample within one cluster and across 
different clusters. Plotting with plt (matplotlib library) 
aids in the process of choosing ‘k’ number of clusters. 

Fig. 7. K-Means Elbow Method graph 

 K-Means Elbow method finds k = 4 while Silhouette 
analysis finds k = 10. We choose to initialize 4 random 
clusters—along the variables “URL” and 
“Shortening_Service”. 

Iterate through each centroid and data point, calculate the 
distance between them, and assign to a significant cluster 
[29]. Once the difference between the previously-defined 
centroids and current ones reach zero, stop. 

Visualize the clusters once more. 

Fig. 8. K-Means clustering technique 

 Gaussian Mixture Elbow method finds k = 10 while 
Silhouette analysis finds k = 5 based on the lowest BIC 
score. 

8. Fit the models on the data, with the optimal number of 
clusters. 

9. Evaluate the models — Calculate silhouette score with 
the silhouette_score() method. This evaluation metric 
has a range of 1 to -1; values close to zero indicate that 
data points are overlapping between clusters. The K-
Means and Gaussian Mixture models have the 
silhouette scores of 0.45 and 0.42, respectively. 

10. Display the results with a Seaborn scatterplot for each 
model. Add x & y (URL & Shortening_Service), and 
cluster labels. Our best-performing model denotes high 
cohesion (similarity between the members of a group) 
within each cluster and separation (difference in 
groups) between the well-defined clusters. (Hint: Think 
of soccer player uniforms—cohesion is represented by 
a red jersey for each player in Team A, while separation 
is achieved if Team A wears red and Team B wears blue 
on the field.) 

 

 

 

 

 

 

 

 

 

0701
Authorized licensed use limited to: California State University Fullerton. Downloaded on January 28,2024 at 17:11:49 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 9. Best-performing K-Means Seaborn scatterplot 

Let’s briefly cover the basics of Anomaly Detection [30] and 
quantify the value of our findings with real-world data. 
Anomalies, or outliers, are data patterns that deviate from the 
standard behavior of the rest of the data. To identify them, we 
use an excellent metric called Modified Z-score (zmod), which 
is the distance between each cluster’s point and their respective 
cluster’s centroid, and determine a threshold (>3). Across all 4 
K-means clusters, URLs that have a zmod greater than 3 can be 
linked with having a shortening service present—represented by 
the shortening_service values being > 0.15 or < -0.10. The visual 
representation of the points as outliers (approximately 6%) 
further confirms this. 

Two cases from our scraped dataset are given which 
highlight the precision of our detection approach: 

www.opensea.io/nft-worlds/collection 

A manual check of the URL structure and website 
destination leads us to believe our learning model correctly 
predicted its benevolence. 

business.linkedin.com/linkedin/jobs 

 This suspicious URL reveals a 404 Page Not Found error 
and contains a subdomain registered as “business” as well as a 
misleading 2nd level domain “linkedin”. Our model tagged this 
URL as an anomaly, and it may as well be a scammer’s 
discontinued attempt at imitating the world’s leading 
professional networking site. 

In summary, we conducted an experiment to study the 
practicality of our exploratory detection system in terms of 
automation, significance, and accuracy. In our initial trials of 
building our unsupervised ML models in Jupyter Notebook, we 
ran our web scraper bot many times and checked the resulting 
dataset for quality and singularity; while our list of keywords 
typically concerned themselves with a complimentary list of 
dominating companies, the data varied in size. Hence, we can 
answer RQ1 in the affirmative: our exploratory detection system 
automates and detects a wide range of malicious advertisement 
URLs. Furthermore, as discussed above, our K-Means 
clustering model created four well-defined clusters with a 
silhouette score of 0.45, and detects significant anomalies based 
on the shortening service feature. Based on these findings, we 
can give a cautiously positive answer to RQ2 and RQ3. 

B. User-Friendly Web Application 

The interactive Google Ads-scraping keyword analysis web 
application was developed to aid end-users in analyzing 
competitors for keywords of their choice. Users have the 
capability to input keywords and select the number of times the 
list is scraped by our aforementioned web scraper. The resulting 
statistics including the advert’s “company”, “absolute-top ad”, 
and “ad-count” associated with each company, as well as “top 
performers” and “total-ad-count” for each keyword is displayed 
through the data structure. 

The overall workflow of the Google Ads-scraping keyword 
analysis web app contains five steps (refer to GitHub for full 
documentation): 

1. Import libraries streamlit, pandas, streamlit_tags, + all 
included in Section III A. 

2. Build Title component with the titlte() method, User 
slider widget (to specify number of times keyword 
scraping is run) with slider(), and Keywords list for 
suggested inputs and user inputs appended via st_tags(). 

3. Build Submit button to call adScraper function and 
display dictionary with button() method. 

4. Define function to house the algorithm of web scraper 
along with success message, “Keyword scraping 
completed successfully!” and dictionary data structure. 
Include Progress Bar initialized to 0 which updates by 
0.5 * two parameters after each search query iteration. 
Use the subheader() and progress() methods. 

5. Define new function to turn Json to Pandas data frame. 

Fig. 10. Web application dashboard 

We developed our Keyword Analysis web application with 
Visual Studio Code and Streamlit [31], an open-source app 
framework for data science and machine learning 
implementations—with adaptations from Andrew-FungKinHo 
on GitHub [32]. Our mission with this is to help the common 
user understand how different companies compete and utilize 
the  Google Ads platform to promote their services. Significant 
Inferences can be made about certain industries and up-and-
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coming businesses by configuring the right selection of 
keywords. The possibilities are endless. 

V. DISCUSSION 

In this section we review the types of malicious 
advertisements our models found, take a closer look at the 
Google search algorithm, and touch on tweaks to our approach 
that we investigated but were shown to be unsuccessful. 

It is not within the scope of our unsupervised learning 
approach to classify each anomaly as defacement, phishing, or 
malware like the Kaggle dataset had; however, we can make a 
human inference based on our knowledge of existing malicious 
activity. For example, a URL that contains a shortening service 
like Case 2 in Section IV A, will likely be a phishing scam 
directed at users that cannot differentiate between the well-
known source and the scam. On the other hand, websites that 
make use of the HTTP protocol instead of HTTPS in their URLs 
may be subject to a defacement attack from a malicious party as 
the connection is not secure. By understanding different key 
features and the weaknesses they project on a brand, we as 
consumers can determine the authenticity of a digital 
advertisement. 

Next, we will discuss an intriguing discovery, or rather 
confirmation of a well-known theory within the world of search 
engines. On Google’s Privacy & Terms [33] page, we find a 
passage that reads, “The location used and stored with your Web 
& App Activity can come from signals like the device’s IP 
address, your past activity, or from your device, if you’ve chosen 
to turn on your device’s location settings,” and later, a tip about 
Location History to “help advertisers measure how often an 
online ad campaign helps drive traffic to physical stores or 
properties.” This may explain why on the job search we are 
directed to companies hiring in our proximity! 

The same conclusion is reached within our data science 
approach. Figure 11 shows a bar graph of the Top 20 Titles 
Present in our dataset of scraped URLs. Upon analyzing the 
graph, we see certain location-specific keywords like 
“Huntington Beach,” “UC Irvine”, and “KCAL9 News,” which 
indicates that Google had built us a comprehensive user profile 
to fine tune our search results. Lo and behold, the web scraper 
script was run on a personal laptop within the SoCal region. 

Fig. 11. Top 20 Titles Bar Graph 

Lastly, we attempted several tweaks in our code and 
algorithms that did not prove successful. Literature 
recommended building a K-Nearest Neighbors model, however, 
we did not find it to provide an advantage in our experiment. 
Additionally, we had planned to collect real user data from peers 
at a scientific conference via our web application, however, 
without proper back-end implementation on the Cloud, their 
data could not be stored. We plan to navigate this issue in future 
works. 

VI. CONCLUSION 

Since the mid-1990s, the Internet has developed rapidly and 
impacted almost if not all aspects of society, for better or for 
worse. In investigating malware and the relationships between, 
for example, the surge in cryptocurrency and the rise in 
cyberattacks, as well as cybersecurity best practices, it led us to 
a realization that we have reached a point of no return in 
technology. Our digital footprint, the things we shop for, our 
ideas and opinions, our locations—everything is tracked and 
stored in some company’s database ready to become the new 
baseline. As users, our data has become the new gold. And 
hackers want to steal it. 

We have presented a three-prong exploratory detection 
system to scrape diverse Google Ads data, predict malign URLs 
and detect anomalies in a supervised and unsupervised ML 
approach, and help end-users understand the current advertising 
industry via an interactive web application. Our best-performing 
classifiers are trained on known samples of malicious and 
benign URLs and comparatively, unknown real-world Google 
advert URLs. It works on a set of features extracted using 
various data engineering techniques such as selecting relevant 
features, handling missing data, encoding, and normalizing. 

We have presented an evaluation of our approach employing 
three different kinds of classification algorithms and two 
clustering algos: Logistic Regression, Random Forest, and 
Decision Tree, as well as K-Means and Gaussian Mixture. In our 
experiments, all techniques successfully predicted data labels 
and to a degree of accuracy and detected previously unknown 
malicious URLs, or anomalies—with Random Forest and K-
Means outperforming the others. While all models produced 
false positives, their precision can be dramatically improved by 
continually retraining the models. Furthermore, we have shown 
that our exploratory detection system is automotive, significant, 
and accurate which suggests it is practically useful. 

For future work, we plan to do an extensive investigation on 
real-world fraudulent digital advert methods employed by 
scammers and the real process by which search engines are 
posted to analyze the root cause of the problem. We would like 
to expand the scope of the data collected from Google Ads to 
competitor search engines (Yahoo, Bing) which also suffer from 
tempering and better ensure random sampling via traditional 
surveying and Google Trends.  Another area worth exploring is 
how to implement the backend via Cloud Computing tools, i.e., 
AWS Lambda or Microsoft Azure. The frontend web 
application may be deployed via an Extract-Transform-Load 
(ETL) process using Apache Airflow. Finally, it would be a 
great achievement if we could apply our ML techniques to our 
web application and create an environment where users can 
validate their own set of advertisement URLs in real-time. 
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Ultimately, the key to preventing cyberattacks is to remain 
vigilant of everyday processes—even something seemingly safe 
as Google Ads may contain weak points that can be targeted by 
cybercriminals looking for easy money. On the consumer level 
of society, it is essential to keep users informed and trained to 
protect their digital assets, while businesses and companies must 
keep their industry-level systems up to date in order. Trust goes 
hand in hand with security. 
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