2023 IEEE 13th Annual Computing and Communication Workshop and Conference (CCWC) | 979-8-3503-3286-5/23/$31.00 ©2023 IEEE | DOI: 10.1109/CCWC57344.2023.10099325

Data Science Analysis of Malicious Advertisements
and Threat Detection Automation for Cybersecurity
Progress

Doina Bein
Department of Computer Science
California State University,

Sandra Nguyen
Department of Computer Science
California State University,

Fullerton Fullerton
Fullerton, USA Fullerton, USA
sand.nguyen9@csu.fullerton.edu dbein@fullerton.edu

Abstract—We live in an era of unprecedented technology.
Millions of users depend on information technology to carry out
their daily lives and large-scale commercial and industrial
operations are no exception. At the same time, the rapidly growing
interconnectivity of IT systems and the surge in cybercrime since
the pandemic have rendered industry-standard hardware and
software components increasingly vulnerable to malicious attacks.
Cyber defense is a coordinated act of resistance that intends to
understand the capabilities and motives of attackers in order to
secure our country’s data and more importantly, the livelihoods of
our citizens. This research aims to contribute to the progress of
cybersecurity and defense technology as a whole by focusing on a
dynamic aspect of malware: digital unwanted advertisements. It
presents a novel approach to automating the analysis of malicious
content on the internet by web scraping ads of the popular search
engine Google to extract relevant data (URL, Company, Title,
Product Desc.), building machine learning models (supervised &
unsupervised) to classify and make predictions on that data, and
creating a web application for end users to access. The results
show that our tool can detect trends within the features with
limited false positives, paving the way for us to make predictions
on whether the advertisements are desirable or unwanted. The
research concludes that in this time and age, it is extremely
important to protect against fraud, especially by adhering to
cybersecurity’s best practices and to think about threats in more
global terms. Our hope with this research is to prompt action to
ensure society continues to improve in IT resilience.

Keywords—machine learning, data science,
Google Ad, malicious URL, shortening service

cybersecurity,

[. INTRODUCTION

In recent times, online advertising has become the
predominant strategy for business marketing, which greatly
impacts the day-to-day activities of online users, such as
entertainment, communication, banking, and e-commerce.
Unfortunately, due to the low cost of digital advertising and lack
of user knowledge on installing adware software, online
platforms are flooded with unwanted and malignant
advertisements that devalue the user experience and deliver
complex malicious activities—such as malware, scam, and
phishing.

More and more, attackers are targeting unsuspecting users
by purchasing Google Adverts based on specific keywords that
point to compromised websites. A 2020 investigation [1] carried

979-8-3503-3286-5/23/$31.00 ©2023 IEEE

out by British magazine Which, determined that it was possible
to create a credible fake Google ad in just a few hours. With the
only requirement being a Gmail address, Journalist Andrew
Laughlin managed to promote his fake mineral water brand,
Remedii, and accompanying online service, Natural Hydration,
with little to no identification or vetting. In the span of a month,
the Google ads gained nearly 100,000 impressions for queries
such as “bottled water” and “hydration advice.”

Therefore, in the absence of digital ad verification,
cybercriminals across the world can utilize Google Ads’ pay-
per-click (PPC) model [2] to trick users into giving up
confidential information such as login credentials, account
details, and Personal Identifiable Information (PII), which are
then used to hijack accounts, drain crypto wallets, and build data
points on future victims. A recent malicious phishing attack [3]
in early April 2022 targeted Trezor (crypto wallet) users who
searched for Trezor-related keywords on Google and were met
with ads impersonating the website pop-up. If the victim entered
their wallet recovery seed phrase, their crypto wallets would be
drained empty by the scammers.

Furthermore, a study on “bad” advertisements [4] by Eric
Zeng from the University of Washington concluded that a
significant proportion of users fail to recognize certain types of
media as ads, which allow common forms of online advertising
fraud—phishing for user credentials, stealing money from
legitimate advertising campaigns, and/or promoting a fake e-
commerce site—to be as lucrative as they are today. Through no
fault of their own, a consumer’s unfamiliarity with cybersecurity
best practices or trusting attitude toward a brand that is subject
to data breaches, among other things, may give cybercriminals
an unforeseen advantage in today’s world.

The exposure of a multimillion-dollar ad fraud scheme [5]
by BuzzFeed News in mid-October 2018, may lend us a hand in
understanding how these fraudsters evade current, industry-level
fraud detection systems. Utilizing the data of real human users
on 125 Android apps and websites, they programmed bots to
mimic human user behavior and stole close to $10 million from
Google’s ad networks and partners. This invokes an important
question: To what extent has cyberattacks evolved in regards to
our ability to detect it? How can we, as a society, improve in
cybersecurity vigilance and develop the necessary technologies
to remedy this disparity?

695

Authorized licensed use limited to: California State University Fullerton. Downloaded on January 28,2024 at 17:11:49 UTC from IEEE Xplore. Restrictions apply.

Addressing this problem at a fundamental level would
require significant changes to the digital advertising ecosystem
and education sphere, perhaps ensuring proper implementation
of ad verification or allocating resources to students and
employees about how to protect their digital assets from
vulnerabilities.

Our aim in this paper is more modest, yet it retains the
motivation of informing and protecting the individual consumer
in the modern online environment. To do this, we must first
understand the current, real-world statistical context of
malicious activities: the target distribution of benign to malign
advertisements; their URLS—which when run through
supervised machine learning models with a focus on feature
extraction (discussed in more detail below) allows us to make
conclusions about what exactly constitutes a spoofed URL.

Then, we propose an exploratory detection system for
potentially malicious advert URLs, which to be practically
useful, has to satisfy three requirements: the data collection has
to be automated to avoid bias, since Google returns personalized
results based on a number of factors; the features have to be
significant in order for trends in the data to be observed; and the
ML models have to be accurate in order to produce better
predictions.

We achieve this by blending three fields of study, or key
methodology aspects:

1. Data Science Aspect: Built a web scraper to scrape
potentially malicious advertisements on popular search
engine Google, using BeautifulSoup, a parsing library,
based on user-inputted keywords. Extract relevant data
(URL, Company, Title, and Product Description) to a
csv file for data analysis by inspecting each search
query’s web page component. Data is structured with a
dictionary so that for every keyword, the top-
performing companies will be recorded along with the
number of times it appears at the top.

2. Machine Learning-Focused Aspect: Employ an end-
to-end Scikit-learn workflow: (1) Getting the data ready
— cross-validation based on a 70-30% train/test split,
(2) Choosing the right ML algorithms, (3) Handling
NaN & categorical data — preprocessing, (4) Fitting the
models & making predictions, (5) Evaluating the
models — accuracy score & silhouette score, and (6)
Displaying the results with plots.

We examine two datasets, an extremely large collection
of 651,191 URLS with the classification “benign,”
“defacement,” “phishing,” and “malware” published on
Kaggle in 2021 [6], and our own 614-count, scraped
dataset with an assortment of sample key words,
including “nft,” “cloud computing services,” and
“artificial intelligence software.”

Feature engineering includes extracting three types of
features: Lexical, such as URL length, number of digits
& letter characters, symbols (@, ?, #, %, and more), the
presence of an HTTPS and shortening service; Host-
Based, such as domain name; and Content, such as
having an IP address.

All supervised & unsupervised machine learning
algorithms, including but not limited to Random Forest
Classification and K-means Clustering, are built and
evaluated according to their accuracy, or silhouette
score, to predict and identify patterns.

3. Web Development Aspect: Develop a user-friendly
web application to allow users to input certain keywords
and the number of times to scrape into the ML model in
order to receive an unbiased sample. Users will have the
ability to display and view their results through the data
structure.

To motivate our approach more succinctly, we break down
the structure of a URL in Section II and discuss manipulation
techniques that effectively deter human detection. Section II1
provides details on our web scraping algorithm (including the
random sampling technique) and supervised learning approach,
along with the results of our feature engineering. We evaluate
our exploratory detection system in Section IV with a large-scale
experiment on our own scraped dataset and demonstrate its
ability to detect anomalies in the data. Lastly, we discuss the
results in Section V and outline conclusions and future directions
in Section V1.

The significance of our contributions is as follows:

e We present an exploratory detection system for detecting
malicious advertisement URLs that uses an automated
technique of data collection.

e Our feature engineering procedure returns significant
results, which allow our supervised learning approach to
exceed expectations; among the three classifiers we
consider, Random Forest performs the best (91.4%
accuracy), though the others contribute sufficient
findings.

e Our unsupervised anomaly detection approach and best-
performing K-means model (with a 0.447 silhouette
score) suggests interesting relationships between a
malicious URL and certain features.

We strive to put power back in online users’ hands and allow
them to understand the media they interact with day-to-day. We
work toward a future in cybersecurity where malicious activity
is detected and curbed before it has a chance to inflict damage—
a future where Al will aid humans in the pursuit of automating
Internet safety.

II. BACKGROUND

A. Breaking Down the Structure of a URL

To set the scene, we discuss the components of a URL and
the cybersquatting techniques that render manual human
detection of malicious URLs infeasible. This reasoning is
applied to our rationale that machine learning-backed systems
are necessary to aid the everyday user navigate the online
sphere.

The different parts of the URL are listed below [7]:

1. The protocol: Describes the way a browser should
retrieve information from a web source, e.g., HTTPS,
HTTP, which differ by being secure/not secure, & FTP.

696

Authorized licensed use limited to: California State University Fullerton. Downloaded on January 28,2024 at 17:11:49 UTC from IEEE Xplore. Restrictions apply.

2. The hostname: Is made of the domain name and
subdomain name.

a. The domain name consists of the second-level
domain which is the name of your website &
the top-level domain which specifies the type
of website, e.g., .com, .edu. This combination
is the only unique part of the URL.

b. The subdomain is a specific “zone” inside the
website.

3. The path: A path on a personal computer to a specific
file, indicating what resource is obtained from the
website.

§7 INTEZER

37 level 2 level op-level
domair domai
L .

otoral directory file

domain

T 7 e 1 ey T .

https://www.intezer.com/blog/examplepath.html

sut

name

Fig. 1. URL structure

The correct way to read a URL is from right to left starting
with the hostname. The key to identifying a malicious URL is
its unique domain name, which takes us to the actual website.
Consider two URLs:

ftp://ftp.microsoft.com/software/patches/fixit.exe

Here, the domain or website is Microsoft.com and the
protocol is FTP. This URL is legitimate.

http://securitycenter.microsoft.us.admin-mcas-gov.ms

In this case, it would be ill-advised to assume the word
“microsoft” inside the URL proves its legitimacy. The actual
website is admin-mcas-gov.ms with the second-level domain
being “admin-mcas-gov”’ and the top-level domain being “ms.”
This is a phishing URL.

B. Hacking the Human Brain

Let’s review some manipulation techniques that scammers
implement when cybersquatting—which refers to the
unauthorized registration and use of Internet domain names that
are identical or similar to trademarks, service marks, company
names, or personal names.

1. Subdomain Cybersquatting: This technique targets
users’ habit of reading English from left to right. As they
encounter a recognizable brand name, they tend to
immediately trust the URL.

2. TLD (Top Level Domain) Cybersquatting: This
technique involves mimicking a company’s website
URL in whole save for the top-level domain. Customers
are tricked into believing the copy is the real deal.

3. Typosquatting: A basic technique that counts on users
making typos when writing popular domain names, e.g.,
yutube, goggle, micosoft. Similarly, similar-domain
cybersquatting focuses on the similarity of the domain,

e.g., cnn-news.com (added “-news”) or Facebook1.com
(added digit “17).

4. Suggestive words: Words related to inputting
credentials for some service, e.g., “login,” “bank,” and
“activate,” are likely to be used in phishing URLs.

5. Short URLs: This technique hides the true URL by
using a short redirect URL, e.g., tinyurl, bit.ly.

C. Malvertising vs. Google Ad Scams

Malvertising, or malicious advertising, [8] is known widely
as a cyberattack in which perpetrators inject malicious code into
legitimate digital ads. Attackers may perform the following
when a user views the advert with or without clicking on it:

1. A “drive-by download” where malware is installed on
the computer, made possible due to browser
vulnerabilities.

2. Forced redirect of the browser to a malicious site; may
be operated by an attacker to carry out a phishing scam.

3. Display of unwanted advertising, malicious content, or
pop-ups via JavaScript.

For the purpose of this paper, we will only consider fake
Google advertisements [9] that are bought by fraudsters for a
variety of reasons:

1. Cryptocurrency Phishing Scams: Scammers use
domain spoofing (aka cybersquatting) with similar
URLs to impersonate well-known digital crypto wallet
brands like Phantom and MetaMask.

2. Brand Impersonation: Scammers pass themselves off
as existing brands by stealing product photos and other
intellectual property that appear on their Google Ads.

3. Spoof Websites: Scammers take brand impersonation
one step further by replicating an entire brand’s website.

4. Counterfeiting: Scammers can use fake Google ads to
direct consumers to websites that sell counterfeit
products, which usually reflect poorly on the real brand.

cybersecurity

Google

h and Engineerin
ming For Today's Engineering Te«

Fig. 2. Search campaign ad example for keyword “cybersecurity”

Let’s take a step back and rationalize our research approach
and goals in this new context. The greatest tool we have in
predicting malevolence, without a doubt, is a website or advert’s
URL—where a conscious human eye can set to uncovering a

697

Authorized licensed use limited to: California State University Fullerton. Downloaded on January 28,2024 at 17:11:49 UTC from IEEE Xplore. Restrictions apply.

scammer’s handiwork. However, in 2022 alone, the total cost of
ad fraud for businesses and consumers was $81 billion [10]. This
number is predicted to increase to $100 billion by 2023 due to
the never-ending advancement in technology. Organizations and
individuals without advanced fraud prevention solutions or
skills will be exposed to attacks around the globe. Our mission,
simply, is to inform the everyday user of how to safeguard their
digital assets, to remind businesses to keep their staff trained and
up to date in order to protect their customers, and to remind
society to remain vigilant of everyday processes—even
something seemingly safe as Google Ads.

III. METHODS

A. Web Scraping Algorithm

The Google Ads URL web scraper was developed to
automatically and repeatedly collect Google advertisements
based on a list of predetermined keywords. This list, included
below, was compiled through a surveying process amongst
peers; with the conditions to providing a “keyword” indicated
on the Google Form as “tech” or “product-like”.

"nft," "cloud computing services," "malware," "app
development," "cryptocurrency,” "web design," "web
development,” "resume building," "infographic maker,"” "job

search sites," "job search,” "internship search,” "online news,"
"academic poster template," "video editing software,” "photo
editing software,” "color correction software," "photoshop
software,” "augmented reality software,” "artificial

intelligence software,” and "adobe software.”

The overall workflow of the Google Ads URL static web
scraper contains eight steps (refer to GitHub for full
documentation [11]):

1. Import libraries requests, json, tldextract, bs4, & csv.
2. Specify auser agent [12] to mitigate bot-blocking.

3. Fetch the HTML code for entire Google search query
web page with the Requests library; the get() method is
used to send a GET request to the selected data source.
The payload is our targeted keyword.

4. Write source code to HTML file.

5. Check valid request & feed the fetched HTML to
BeautifulSoup [13] object.

6. Scrape both top and bottom advertisements & extract
relevant data (Title, URL, Company, & Product
description)—utilizing Chrome’s Inspect Element
mode (Ctrl + Shift + I) will aid in the process of finding
the unique JavaScript class ID. The find() method finds
the first tag with the specified id. Implement try-except
functions to avoid crashing the program.

7. Write data elements to a CSV file with the Csv library.

8. Loop n number of times to obtain more accurate data.

For further keyword and competitor analysis, which is
implemented in the web app, refer to the two steps below:

9. Determine absolute-top advertisement company—to
elaborate, Google ads claim a top spot (ads positioned
above search results) by meeting the Ad Rank
thresholds [14], a combination of bid, auction time, and
quality.

10. Display to nested dictionary: total absolute-top ads &
number of search result ads for a certain company—for
a certain keyword.

We ran our Python script in Visual Studio Code on our list
of 21 tech-related keywords, for a total of 10 replications—
meaning our web scraper fetched the search results of each
keyword 10 times; we expect this repetition will account for
duplicate advertisements and present anomalies that may be our
target malicious ads. The program had a run-time of
approximately 1-2 minutes, however, was capable of producing
a 614-count “scraped” dataset that was later applied to our
unsupervised ML models.

URL Company Title

us.questtips.com/nft questtips NFT Marketplace - Nft

us.myfindly.com/nft_marketplace myfindly Nft - Build A NFT Marketplace

www.mastercard.us/crypto N - Simplifying NFT Purchases - Maste..

www.techinnovations.info/what_is/nft techinnovations ~ What is NFT? - NFT Explained - techinnovations..

A @ ™ 2 o

us.questtips.com/nft guesttips NFT Marketplace - Nft

609 www.pdf-suite.com/complete-pdfleditor-pro pdf-suite Download PDF Pro, preferred to - other PDF app..

610 www pdfpro10.com/ pdfpro10 Download PDF Pro Version 10 - Old Version: Sub..

611 www adobe com/ adobe Adobe® - Official Site - Explore New Updates

612 www pdf-suite comicomplete-pdfleditor-pro pdfsuite Download PDF Pro, preferred to - other PDF app.

613 www expert-pdf com/convert-pdffexpert-pdf expert-pdf Expert PDF Software - Immediate download - exp.

Fig. 3. Scraped dataset

B. Supervised Learning Approach

Human beings are always on the search for tools and
techniques that reduce the effort of performing a task efficiently.
In Machine Learning, algorithms are designed to learn by
themselves using past experience, to be capable of reacting and
responding to new conditions. When it comes to fraud detection,
ML can identify hidden patterns that have not been previously
recognized and parallel the skill of today’s cybercriminals.

Our choice of classifiers is determined by the corpus of
labeled data available online. For the purpose of this study, we
examined an extremely large collection of 651,191 URLSs, out of
which 428,103 are benign/safe URLs, 96,457 are defacement
URLs, 94,111 are phishing URLs, and 32,520 are malware
URLs. This archive was published to Kaggle [6] by Manu
Siddhartha in 2021, incorporating several existing URL datasets,
and consists of two columns: URL & Type (benign, defacement,
phishing, or malware).

Since the goal of our exploratory detection system is to
highlight hidden patterns in the data amongst certain URL
features and detect anomalies, it is essential to understand the
real-world statistical context of these malicious activities.

698

Authorized licensed use limited to: California State University Fullerton. Downloaded on January 28,2024 at 17:11:49 UTC from IEEE Xplore. Restrictions apply.

Target Count in Dataset

uuuuuu

uuuuuu

nnnnn

Benign (428103) Defacement (36457) Phishing (94111) Malware (32520)

Fig. 4. Target distribution of Kaggle dataset

The End-to-End Scikit-Learn Workflow of our Supervised
Learning approach contains eight steps (refer to GitHub for full
documentation [11]):

1. Import libraries pandas, numpy, preprocessing,
LogisticRegression, RandomForestClassifier,
DecisionTreeClassifier, plt, sns, accuracy score, &
confusion matrix, among others.

2. Read Kaggle malicious URLs CSV file into Pandas [15]
dataframe with the read csv() method & display head.

3. Data preprocessing: Handling NaN (missing data) with
the isnull() method, Omitting (www.) with the replace()
method, & Extracting features (detailed below):

Our feature engineering [16] approach involves extracting
lexical, host-based, and content-based features from the labeled
URL strings in order to identify its malevolence. Definitions and
justifications are provided for all three categories:

e Lexical features: These refer to statistical features
extracted from the literal string. The motivation for
including lexical features is based on the fact that
malicious URLs have a different appearance to benign
URLs, therefore, we can extract statistical properties that
quantify this difference. Features chosen are:

o URL Length, Symbols (‘@’, “?’, *-*, =",
W%, A0, c, ek e ‘//’) Presence of
HTTPS, D1g1t Count, Letter Count, Presence
of Shortening Service, & Presence of IP
Address

e Host-based features: These are obtained from the host-
name properties of the URL and provide information
about the host of the webpage, e.g., country of
registration, open ports, etc. They can demonstrate a
certain characteristics that malicious and benign sites
have a reputation of having. Features chosen are:

o Domain & Abnormal URL

e Content-based features: These are obtained from the
webpage’s HTML code, which capture the structure and
content embedded in it. Similar to host-based features,
they capture characteristics found in compromised
pages. We did not consider any content-based features.

In analyzing the results from our preliminary feature
extraction, we have made small but startling conclusions:

e Malicious URLs are generally shorter than benign URLs.

e Malicious URLs have an average of at least two periods,
while benign URLSs have at least one period in them (as
expected).

e Malicious URLs contain certain “red flag” or suggestive
keywords, including the names of a legitimate company
they are targeting.

These findings are consistent with other peer-reviewed
conference papers [17] [18] on the topic of feature extraction for
phishing URLs and npm packages.

However, contrary to expectations, the feature “presence of
a shortening service” did not yield any significant or noticeable
results (present in approximately 40,000 URLS or 6%). A URL
shortener [19] is a website or plugin that is designed to reduce
lengthy and complex links. Today, they are popular for social
media applications like Twitter which only allow up to 140
characters in a tweet.

URL shorteners work in a sequence of steps:

1. The user inserts a lengthy link into a link shortener
website/plugin. The link gets sent to a server for
validation.

2. The server inserts the link into a database and generates
a shortcode (identification code) in the form of a short
link.

3. When a user inserts a shortened URL into a web
browser, the server receives the request and retrieves
the original URL.

It is worth emphasizing that while a shortening service can
offer numerous benefits, scammers and hackers will abuse them
to redirect users to look-a-like websites or install malware onto
their victims’ personal devices. Even LinkedIn has a feature [20]
that automatically shortens URLs that are longer than 26
characters; a shortened link will start with “Inkd.in” followed by
a random string of characters.

It is challenging to determine where the web browser will
take you if the unique domain name is stripped away. For this
reason, the “presence of a shortening service” feature became
our focused area of interest.

Fig. 5. Seaborn heatmap of features (values near 1.0 are positively correlated)

Authorized licensed use limited to: California State University Fullerton. Downloaded on January 28,2024 at 17:11:49 UTC from IEEE Xplore. Restrictions apply.

Continuing our workflow:

4. Getting the data ready — Set ‘X’ equal to the URL
‘Type’ object and Y’ equal to ‘Category’ multiclass
which defines “benign” as ‘0’°, “defacement” as ‘1°,
“phishing” as 2’, and “malware” as ‘3’.

Perform cross-validation based on a 70-30% train/test
split [21] with the train_test split() method. This allows
us to train our classifiers using a training set of 520,952
URLs and a testing set of 130,239 URLs.

5. We sought learning algorithms that could: (1) Handle
imbalanced data well due to the small proportions of
malicious data available, and (2) Accurately
classify/predict an input into its category. In the end, the
ML algorithms [22] that satisfied the constrains were:

a. Logistic Regression: Used to determine if an
input belongs to a certain group or not.

b. Decision Trees: Classifiers that are used to
determine what category an input falls into by
traversing the leaves and nodes of a tree.

c. Random Forest: A collection of many
decision trees from random subsets in the data,
resulting in a combination of trees that may be
more accurate in prediction.

6. Fitting the models on the training sets & making
predictions on the testing sets.

7. Evaluating the models — Calculate accuracy score with
the accuracy_score() method. The Logistic Regression,
Decision Trees, & Random Forest models have the
accuracy scores of 79.7%, 90.8%, & 91.4%,
respectively. To increase our models’ accuracies, we
can tune the hyperparameters and repeat the process
until we achieve the desired performance.

8. Displaying the results with a Seaborn heatmap [23] for
each model’s confusion matrix. Add labels (Predicted
Classification & Actual Classification), and data count.
Our best-performing model has a large percentage of its
values in the true negatives (TN) & true positives (TP)
region—denoted by the diagonal section.

- 80000

Accuracy Score: 0.9143267377667211

-70000
o- 83867.000
- 60000

- 7 18496.000 59.00 50000

~- 40000

Actual Classification

~ 6953.000 915.000 10793.000 175.000

-30000

- 20000
- 32.00f 5925.000

- 10000
1 2
Predicted Classification

Fig. 6. Best-performing Random Forest Seaborn heatmap

To contrive excellent results in the latter half of our research,
we must first understand the real-world distribution of benign to
malign URLs. We have taken a deep dive into the statistics—
out of a large collection of 651,191 URLs, 34.3% are malicious
(a surprising amount), and confirmed the power of today’s
leading machine learning algorithms. We have no doubt that Al
and ML will continue to disrupt and transform every single
segment of society.

IV. EVALUATION

A. Unsupervised Learning Approach

While motivating and presenting the details of our approach
above, we have argued that its design makes it practically useful
in terms of automation, significance, and accuracy. Now, we
will support these claims with an experimental study that aims
to answer the following research questions:

1. Does our exploratory detection system automate and
detect a wide range of malicious advertisement URLs?

2. Does it detect significant patterns and anomalies based
on the shortening service feature?

3. Are clustering results cohesive and
(validation metrics) enough to be useful?

separated

To answer these questions, we conducted a large-scale
experiment on our 614-count “scraped” Google Ad URLs
dataset to assess performance and accuracy. The End-to-End
Scikit-Learn Workflow of our Unsupervised Learning approach
contains eight steps—similar to Supervised Learning, with
minor tweaks (refer to GitHub for full documentation):

1. Import libraries pandas, numpy, preprocessing,
LabelEncoder, StandardScaler, KMeans,
GaussianMixture, PCA, plt, sns, silhouette_score, &
confusion_matrix, among others.

2. Read Scraped URLs CSV file into Pandas dataframe
with the read_csv() method & display head.

3. Data preprocessing: Handling NaN (missing data) with
the isnull() method, Omitting (www.) with the replace()
method, & Extracting features (detailed above in
Section III B).

In analyzing the single feature, “presence of a
shortening service”, we concluded that our tiny sample
of 614 URLSs (not even 0.01% of the full 651,191 URLs
sample studied earlier), was a close-to-ideal
representation of the other. How? We performed a
mathematical calculation on the distribution of URLs
with and without a shortening service and found that
approximately 75 URLS or 12% of the data contained
the service. According to the principles of statistics [24],
larger samples are a closer approximation of the real-
world population, which accounts for the discrepancy.
These findings were fascinating.

4. Getting the data ready — Set ‘X’ equal to relevant
features, “URL,” “Company,” “Title,” “URL Len,”
“Letters,” and “Shortening_Service”.

700

Authorized licensed use limited to: California State University Fullerton. Downloaded on January 28,2024 at 17:11:49 UTC from IEEE Xplore. Restrictions apply.

Perform Label Encoding (scikit-learn library) [25] on
categorical features (URL, Company, Title, &
Product Description), which assigns each label to a
unique integer based on alphabetical ordering; preferred
over One-Hot Encoding due to its high performance on
a large number of categories).

Perform a Standard Scalar [26] transformation on all
categories to standardize, i.e. p = 0 and o = 1 our
features, individually; to make the data the same scale
and dimension. This procedure is recommended after
label encoding.

We sought learning algorithms that could: (1) Handle
imbalanced data well due to the small proportions of
malicious data available, and (2) Accurately
classify/predict an input into its category. In the end, the
ML algorithms that satisfied the constrains were:

a. K-Means: Finds similarities between objects
and groups them into K different clusters.

b. Gaussian Mixture: Assumes all data points
are generated from a mixture of a finite number
of Gaussian distributions with unknown
parameters.

For K-Means (only), find distribution of raw data &
apply Dimensionality Reduction [27] with Principal
Component Analysis (PCA)—which will reduce the
dimensionality of a dataset that contains a large number
of variables, while retaining as much variance as
possible. Reduce to six variables (URL, Company,
Title, URL Len, Letters, and Shortening Service) &
plot seperable data.

Find optimal number of clusters via the Elbow method
[28]—used to find the “elbow” point where adding
additional data samples does not change -cluster
membership; vs. Silhouette Score—determines large
gaps between each sample within one cluster and across
different clusters. Plotting with plt (matplotlib library)
aids in the process of choosing ‘k’ number of clusters.

The Elbow Method Graph

9000
8000
7000
6000

WCSS

5000
4000
3000
2000

1000

2 4 6 8 10
Number of clusters

Fig. 7. K-Means Elbow Method graph

K-Means Elbow method finds k = 4 while Silhouette
analysis finds k = 10. We choose to initialize 4 random
clusters—along the variables “URL” and
“Shortening_Service”.

Iterate through each centroid and data point, calculate the
distance between them, and assign to a significant cluster
[29]. Once the difference between the previously-defined
centroids and current ones reach zero, stop.

Visualize the clusters once more.

Randomly-Initialized Centroids

L L
0.15 ® L)
L]
0.10 . ®
L
g . . ® &
2 005 ~ , % ° .
v, o * o S o ° °
=4 ®co gt "% e 23 .
< LA T
€ 000 LX) o, ® o P, 00
g o ® '.'. " ’. [T Y
w ° ce
& 0.05 B ..::‘ DI e
=V Bl LJ
° L LA ®e
-0.10 i w . .
-3 -2 -1 0 1 2 3 4
URL

L4 o
015 ® °
©
0.10 ., et
L
] o . ® S
§ oos oo e, e .
L] L] £
g e L e
€ 000 00 PO 0 %, o Y
g /Y ofe ° OQ > E]
& .05 Jteme et oy
= o ®%
° N 4 2 ®e
-0.10 o @ - .
-3 -2 -1 0 1 2 3 4
URL

Fig. 8. K-Means clustering technique

10.

Gaussian Mixture Elbow method finds k = 10 while
Silhouette analysis finds k = 5 based on the lowest BIC
score.

Fit the models on the data, with the optimal number of
clusters.

Evaluate the models — Calculate silhouette score with
the silhouette score() method. This evaluation metric
has a range of 1 to -1; values close to zero indicate that
data points are overlapping between clusters. The K-
Means and Gaussian Mixture models have the
silhouette scores of 0.45 and 0.42, respectively.

Display the results with a Seaborn scatterplot for each
model. Add x & y (URL & Shortening_Service), and
cluster labels. Our best-performing model denotes high
cohesion (similarity between the members of a group)
within each cluster and separation (difference in
groups) between the well-defined clusters. (Hint: Think
of soccer player uniforms—cohesion is represented by
ared jersey for each player in Team A, while separation
is achieved if Team A wears red and Team B wears blue
on the field.)

701

Authorized licensed use limited to: California State University Fullerton. Downloaded on January 28,2024 at 17:11:49 UTC from IEEE Xplore. Restrictions apply.

K-Means Scatter Plot

[=] =]
i -
o v

=
o
vl

Shortening_Service
o
o
o

-0.05

-0.10 o

Fig. 9. Best-performing K-Means Seaborn scatterplot

Let’s briefly cover the basics of Anomaly Detection [30] and
quantify the value of our findings with real-world data.
Anomalies, or outliers, are data patterns that deviate from the
standard behavior of the rest of the data. To identify them, we
use an excellent metric called Modified Z-score (zmod), which
is the distance between each cluster’s point and their respective
cluster’s centroid, and determine a threshold (>3). Across all 4
K-means clusters, URLs that have a zmod greater than 3 can be
linked with having a shortening service present—represented by
the shortening_service values being > 0.15 or <-0.10. The visual
representation of the points as outliers (approximately 6%)
further confirms this.

Two cases from our scraped dataset are given which
highlight the precision of our detection approach:

www.opensea.io/nft-worlds/collection

A manual check of the URL structure and website
destination leads us to believe our learning model correctly
predicted its benevolence.

business.linkedin.com/linkedin/jobs

This suspicious URL reveals a 404 Page Not Found error
and contains a subdomain registered as “business” as well as a
misleading 2™ level domain “linkedin”. Our model tagged this
URL as an anomaly, and it may as well be a scammer’s
discontinued attempt at imitating the world’s leading
professional networking site.

In summary, we conducted an experiment to study the
practicality of our exploratory detection system in terms of
automation, significance, and accuracy. In our initial trials of
building our unsupervised ML models in Jupyter Notebook, we
ran our web scraper bot many times and checked the resulting
dataset for quality and singularity; while our list of keywords
typically concerned themselves with a complimentary list of
dominating companies, the data varied in size. Hence, we can
answer RQ1 in the affirmative: our exploratory detection system
automates and detects a wide range of malicious advertisement
URLs. Furthermore, as discussed above, our K-Means
clustering model created four well-defined clusters with a
silhouette score of 0.45, and detects significant anomalies based
on the shortening service feature. Based on these findings, we
can give a cautiously positive answer to RQ2 and RQ3.

B. User-Friendly Web Application

The interactive Google Ads-scraping keyword analysis web
application was developed to aid end-users in analyzing
competitors for keywords of their choice. Users have the
capability to input keywords and select the number of times the
list is scraped by our aforementioned web scraper. The resulting
statistics including the advert’s “company”, “absolute-top ad”,
and “ad-count” associated with each company, as well as “top
performers” and “total-ad-count” for each keyword is displayed
through the data structure.

The overall workflow of the Google Ads-scraping keyword
analysis web app contains five steps (refer to GitHub for full
documentation):

1. Import libraries streamlit, pandas, streamlit_tags, + all
included in Section Il A.

2. Build Title component with the titlte() method, User
slider widget (to specify number of times keyword
scraping is run) with slider(), and Keywords list for
suggested inputs and user inputs appended via st_tags().

3. Build Submit button to call adScraper function and
display dictionary with button() method.

4. Define function to house the algorithm of web scraper
along with success message, “Keyword scraping
completed successfully!” and dictionary data structure.
Include Progress Bar initialized to 0 which updates by
0.5 * two parameters after each search query iteration.
Use the subheader() and progress() methods.

5. Define new function to turn Json to Pandas data frame.

& Malicious Advertisements and
Threat Detection Automation

!
blockchain X

Submit

Scraping for the following keywords: ['nft, ‘cryptocurrency) ‘mal

Progress:

Fig. 10. Web application dashboard

We developed our Keyword Analysis web application with
Visual Studio Code and Streamlit [31], an open-source app
framework for data science and machine learning
implementations—with adaptations from Andrew-FungKinHo
on GitHub [32]. Our mission with this is to help the common
user understand how different companies compete and utilize
the Google Ads platform to promote their services. Significant
Inferences can be made about certain industries and up-and-

702

Authorized licensed use limited to: California State University Fullerton. Downloaded on January 28,2024 at 17:11:49 UTC from IEEE Xplore. Restrictions apply.

coming businesses by configuring the right selection of
keywords. The possibilities are endless.

V. DISCUSSION

In this section we review the types of malicious
advertisements our models found, take a closer look at the
Google search algorithm, and touch on tweaks to our approach
that we investigated but were shown to be unsuccessful.

It is not within the scope of our unsupervised learning
approach to classify each anomaly as defacement, phishing, or
malware like the Kaggle dataset had; however, we can make a
human inference based on our knowledge of existing malicious
activity. For example, a URL that contains a shortening service
like Case 2 in Section IV A, will likely be a phishing scam
directed at users that cannot differentiate between the well-
known source and the scam. On the other hand, websites that
make use of the HTTP protocol instead of HTTPS in their URLs
may be subject to a defacement attack from a malicious party as
the connection is not secure. By understanding different key
features and the weaknesses they project on a brand, we as
consumers can determine the authenticity of a digital
advertisement.

Next, we will discuss an intriguing discovery, or rather
confirmation of a well-known theory within the world of search
engines. On Google’s Privacy & Terms [33] page, we find a
passage that reads, “The location used and stored with your Web
& App Activity can come from signals like the device’s IP
address, your past activity, or from your device, if you’ve chosen
to turn on your device’s location settings,” and later, a tip about
Location History to “help advertisers measure how often an
online ad campaign helps drive traffic to physical stores or
properties.” This may explain why on the job search we are
directed to companies hiring in our proximity!

The same conclusion is reached within our data science
approach. Figure 11 shows a bar graph of the Top 20 Titles
Present in our dataset of scraped URLs. Upon analyzing the
graph, we see certain location-specific keywords like
“Huntington Beach,” “UC Irvine”, and “KCAL9 News,” which
indicates that Google had built us a comprehensive user profile
to fine tune our search results. Lo and behold, the web scraper
script was run on a personal laptop within the SoCal region.

Top 20 Titles Present

Huntington Beach, CA Jobs - $19-57/Hr: Hiring Immediately
Become a Web Developer - UC Irvine

pS Free Malware Removal 2022 - 100% Free Malware Removal
NFT Marketplace - Nft

Mastercard - Simplifying NFT Purchases - MasterCard.us

CBS2 KCAL News Los Angeles - CBS Los Angeles Breaking News
Design Your Own Website - Squarespace© Website Builder
Build an Al-Driven Application - Utilize Free Al & ML Services
Adobe Photoshop - Photo & Design Software

APEX Cloud Services - Dell APEX Cloud Services - dell.com

Bp 10 Photo Editing Software - These Are The Best Programs
Malwarebytes - Free Download - Free Malware Check & Removal
Free Resume Builder - Fastest Resume Builder Online

Free Online Resume Builder - Build A Resume In 15 Minutes

p 10 Best Free Anti-Malware - 100% Free Anti-Malware (2022)
p 5 Best Website Builders - Website Designs 2022 Winner
Jobs, Employment in Orange County, CA | Indeed.com

Nft - Build A NFT Marketplace

Jobs, Employment in Huntington Beach, CA | Indeed.com

Best Video Editing Software - Top 8 Video Editor 2022

2 4 6 8
Title

0 12 4 16

Fig. 11. Top 20 Titles Bar Graph

Lastly, we attempted several tweaks in our code and
algorithms that did not prove successful. Literature
recommended building a K-Nearest Neighbors model, however,
we did not find it to provide an advantage in our experiment.
Additionally, we had planned to collect real user data from peers
at a scientific conference via our web application, however,
without proper back-end implementation on the Cloud, their
data could not be stored. We plan to navigate this issue in future
works.

VI. CONCLUSION

Since the mid-1990s, the Internet has developed rapidly and
impacted almost if not all aspects of society, for better or for
worse. In investigating malware and the relationships between,
for example, the surge in cryptocurrency and the rise in
cyberattacks, as well as cybersecurity best practices, it led us to
a realization that we have reached a point of no return in
technology. Our digital footprint, the things we shop for, our
ideas and opinions, our locations—everything is tracked and
stored in some company’s database ready to become the new
baseline. As users, our data has become the new gold. And
hackers want to steal it.

We have presented a three-prong exploratory detection
system to scrape diverse Google Ads data, predict malign URLs
and detect anomalies in a supervised and unsupervised ML
approach, and help end-users understand the current advertising
industry via an interactive web application. Our best-performing
classifiers are trained on known samples of malicious and
benign URLs and comparatively, unknown real-world Google
advert URLs. It works on a set of features extracted using
various data engineering techniques such as selecting relevant
features, handling missing data, encoding, and normalizing.

We have presented an evaluation of our approach employing
three different kinds of classification algorithms and two
clustering algos: Logistic Regression, Random Forest, and
Decision Tree, as well as K-Means and Gaussian Mixture. In our
experiments, all techniques successfully predicted data labels
and to a degree of accuracy and detected previously unknown
malicious URLSs, or anomalies—with Random Forest and K-
Means outperforming the others. While all models produced
false positives, their precision can be dramatically improved by
continually retraining the models. Furthermore, we have shown
that our exploratory detection system is automotive, significant,
and accurate which suggests it is practically useful.

For future work, we plan to do an extensive investigation on
real-world fraudulent digital advert methods employed by
scammers and the real process by which search engines are
posted to analyze the root cause of the problem. We would like
to expand the scope of the data collected from Google Ads to
competitor search engines (Yahoo, Bing) which also suffer from
tempering and better ensure random sampling via traditional
surveying and Google Trends. Another area worth exploring is
how to implement the backend via Cloud Computing tools, i.e.,
AWS Lambda or Microsoft Azure. The frontend web
application may be deployed via an Extract-Transform-Load
(ETL) process using Apache Airflow. Finally, it would be a
great achievement if we could apply our ML techniques to our
web application and create an environment where users can
validate their own set of advertisement URLSs in real-time.

703

Authorized licensed use limited to: California State University Fullerton. Downloaded on January 28,2024 at 17:11:49 UTC from IEEE Xplore. Restrictions apply.

Ultimately, the key to preventing cyberattacks is to remain
vigilant of everyday processes—even something seemingly safe
as Google Ads may contain weak points that can be targeted by
cybercriminals looking for easy money. On the consumer level
of society, it is essential to keep users informed and trained to
protect their digital assets, while businesses and companies must
keep their industry-level systems up to date in order. Trust goes
hand in hand with security.

ACKNOWLEDGMENTS

The research presented in this paper is part of the ASSURE-
US Summer Research Experiences and is entirely supported by
the National Science Foundation for the project Building
Capacity: Advancing Student Success in Undergraduate
Engineering and Computer Science Award #1832536.

REFERENCES

[11 Andrew Laughlin, Fake ads; real problems: how easy is it to post scam
adverts on Facebook and Google?, July 2020, [online] Available:
https://www.which.co.uk/news/article/fake-ads-real-problems-how-easy-
is-it-to-post-scam-adverts-on-google-and-facebook-aBRVx1e3HVF5

[2] Tony Tran, A Beginner’s Guide to Using Google Ads (Previously
Google Adwords), September 2020, [online] Available:
https://blog.hootsuite.com/google-ads/

[3] Nikhil Panwar, How Scammers Use Google Ads to Target Brands &
Customers, May 2022, [online] Available:
https://securityboulevard.com/2022/05/how-scammers-use-google-ads-
to-target-brands-customers/

[4] Eric Zeng, Tadayoshi Kohno, Franziska Roesner, What Makes a “Bad”
Ad? User Perceptions of Problematic Online Advertising, 2021, In
Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems (CHI ‘21), Association for Computing Machinery,
New York, NY, USA, Article 361, 1-24.
https://doi.org/10.1145/3411764.3445459

[5] Craig Silverman, Apps Installed on Millions of Android Phones Tracked
User Behavior To Execute A Multimillion-Dollar Ad Fraud Scheme,
October 2018, [online] Availabe:
https://www.buzzfeednews.com/article/craigsilverman/how-a-massive-
ad-fraud-scheme-exploited-android-phones-to

[6] Manu Siddhartha, Malicious URLSs dataset, 2022, [online] Available:
https://www.kaggle.com/datasets/sid32 l axn/malicious-urls-dataset

[7] Daniel Pienica, URL Analysis 101: A Beginner’s Guide to Phishing
URLSs, February 2022, [online] Available:
https://www.intezer.com/blog/malware-analysis/url-analysis-phishing-
part-1/

[8] Malvertising, December 2019, [online] Available:
https://www.imperva.com/learn/application-security/malvertising/

[9] Krynn Hanold, How to report fake Google ads that pretend to be your

brand, November 2022, [online] Available:

https://www.redpoints.com/blog/report-fake-google-
ads/#:~:text=There%20have%20been%20numerous%?20reports.they%20
are%20the%20real%20company

Artyom Dogtiev, Ad Fraud Statistics, January 2023, [online] Available:

https://www.businessofapps.com/ads/ad-fraud/research/ad-fraud-

statistics/

[10

[er

[1

—

Nguyen (2022) data-science-analysis-of-malicious-ads-and-threat-

detection-automation-for-cybersecurity-progress [source code],

https://github.com/alpacalin/data-science-analysis-of-malicious-ads-and-

threat-detection-automation-for-cybersecurity-progress

[12] How to Fake and Rotate User Agents Using Python 3, January 2023,
[online] Available: https://www.scrapehero.com/how-to-fake-and-rotate-
user-agents-using-python-3/

[13] Beautiful Soup Documentation, [online] Available:
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

[14] Ad Rank thresholds: Definition, [online] Available:

https://support.google.com/google-ads/answer/7634668

[15] User Guide#, [online] Available:
https://pandas.pydata.org/docs/user_guide/index.html

[16] Ruth Eneyi Ikwu, Extracting Feature Vectors From URL Strings For
Malicious URL Detection, Aug 2021, [online] Available:
https://towardsdatascience.com/extracting-feature-vectors-from-url-
strings-for-malicious-url-detection-cbafc24737a

[17] URL Shorteners: Pros and Cons, December 2022, [online] Available:
https://easydmarc.com/blog/url-shorteners-pros-and-cons/

[18] A. Sejfia, M. Schafer, Practical Automated Detection of Malicious npm
Packages, 2022 IEEE/ACM 44™ International Conference on Software
Engineering (ICSE), Pittsburgh, PA, USA, 2022, pp. 1681-1692,
https://doi.org/10.1145/3510003.3510104

[19] Ciza Thomas, Detection of phishing URLSs using machine learning
techniques, December 2013, [online] Available:
https://www.researchgate.net/publication/269032183 Detection_of phis

hing URLs using_machine_learning_techniques

[20] Short URLs in shared posts: LinkedIn Help, [online] Available:
https://www.linkedin.com/help/linkedin/answer/a521889/short-urls-in-
shared-posts?lang=en

[21] Giorgos Myrianthous, How to Split a Dataset Into Training and Testing
Sets with Python, April 2021, [online] Available:
https://towardsdatascience.com/how-to-split-a-dataset-into-training-and-

testing-sets-
b146b1649830#:~:text=The%20simplest%20way%20t0%20split,the%2

Operformance%200f%200ur%20model

[22] What are Machine Learning Models? December 2022, [online]
Available: https://www.databricks.com/glossary/machine-learning-
models#:~:text=A%20machine%20learning%20model%20is.sentences
%2001%20combinations%200f%20words

[23] Dennis T, Confusion Matrix Visualization, July 2019, [online]
Available: https://medium.com/@dtuk81/confusion-matrix-
visualization-fc31e3f30fea\

[24] Lecture4, [online] Available:
https://web.pdx.edu/~newsomj/pa551/lecture4.htm#:~:text=Larger%20s
amples%20more%20closely%20approximate,the%20sample%20size%2
0is%20large

[25] Alakh Sethi, One-Hot Encoding vs. Label Encoding using Scikit-Learn,
March 2020, [online] Available:
https://www.analyticsvidhya.com/blog/2020/03/one-hot-encoding-vs-
label-encoding-using-scikit-learn/

[26] sklearn.preprocessing.StandardScaler, [online] Available: https:/scikit-
learn.org/stable/modules/generated/sklearn.preprocessing. StandardScale
r.html

[27] Natasha Sharma, K-Means Clustering Explained, November 2022,
[online] Available: https:/neptune.ai/blog/k-means-
clustering#:~:text=K %2 Dmeans%?20is%20a%20centroid,of%20groups
%20in%20the%20dataset. https://towardsdatascience.com/dimension-
reduction-techniques-with-python-f36¢a7009¢e5¢

[28] Ajitesh Kumar, Elbow Method vs Silhouette Score — Which is Better?,
November 2021, [online] Available: https://vitalflux.com/elbow-
method-silhouette-score-which-
better/#:~:text=The%20elbow%20method%20is%20used.cluster%20or
%20across%20different%20clusters

[29] Natasha Sharma, K-Means Clustering Explained, November 2022,
[online] Available: https:/neptune.ai/blog/k-means-
clustering#:~:text=K %2Dmeans%20is%20a%20centroid.of%20groups
%20in%20the%20dataset

[30] Issac Arroyo, Unsupervised Anomaly detection on Spotify data: K-
Means vs Local Outlier Factor, February 2022, [online] Available:
https://towardsdatascience.com/unsupervised-anomaly-detection-on-
spotify-data-k-means-vs-local-outlier-factor-f96ae783d7a7

[31] APIreference, [online] Available: https://docs.streamlit.io/library/api-

reference

[32] FungKinHo (2022) Youtube [source code], https://github.com/Andrew-
FungKinHo/YouTube

[33] Google Privacy Policy, How Google uses location information, [online]
Available: https:/policies.google.com/technologies/location-data?hl=en-

us

704

Authorized licensed use limited to: California State University Fullerton. Downloaded on January 28,2024 at 17:11:49 UTC from IEEE Xplore. Restrictions apply.

