

Effect of ambient gas and crystal features on Doppler ultrasound twinkling of pathological mineralizations

Eric Rokni,^{1,a} and Julianna C. Simon¹

¹ Graduate Program in Acoustics, The Pennsylvania State University, University Park, PA, 16802, USA

Color Doppler twinkling on kidney stones and other pathological mineralizations is theorized to arise from stable microbubbles, which suggests twinkling will be sensitive to ambient gas. Here, cholesterol, calcium phosphate, and uric acid crystals were imaged with ultrasound in water while varying oxygen, carbon dioxide, and nitrogen levels. Twinkling was found to increase on cholesterol in elevated oxygen, cholesterol and calcium phosphate in elevated carbon dioxide, and no crystals in elevated nitrogen. These results support the crevice microbubble theory of twinkling and suggest gases may be varied to enhance twinkling on some mineralizations.

^a Email: roknieric@gmail.com

1 I. INTRODUCTION

2 Minerals can form in the body from pathologies that cause either an oversaturation of
3 chemicals (e.g. kidney stones or gout) or cellular deposition (e.g. heterotopic ossification or
4 breast microcalcifications).¹⁻⁴ In addition to kidney stones which can form from a variety of
5 chemicals, mineralizations can form from calcium phosphate as heterotopic ossification or
6 breast microcalcifications, cholesterol as atherosclerosis or gallstones, or uric acid as gout.
7 Current methods for detecting pathological mineralizations either expose patients to ionizing
8 radiation, are expensive, or have low sensitivities.^{1,3} The color Doppler ultrasound twinkling
9 artifact, or twinkling, can aid in the detection of pathological mineralizations and is theorized to
10 arise from ultrasound scattering off microbubbles stabilized in crevices.^{5,6} Pathological
11 mineralizations form with different crystal structures in a variety of environments (e.g. urine,
12 synovial fluid, soft tissue) which can influence how bubbles form.⁷ Similarly, dissolved gases in
13 the surrounding environment will also influence the bubbles that form on mineralizations,
14 which would, in turn, affect twinkling. The goal of this paper is to determine how crystal
15 microstructures and gas affect twinkling on lab-grown crystals.

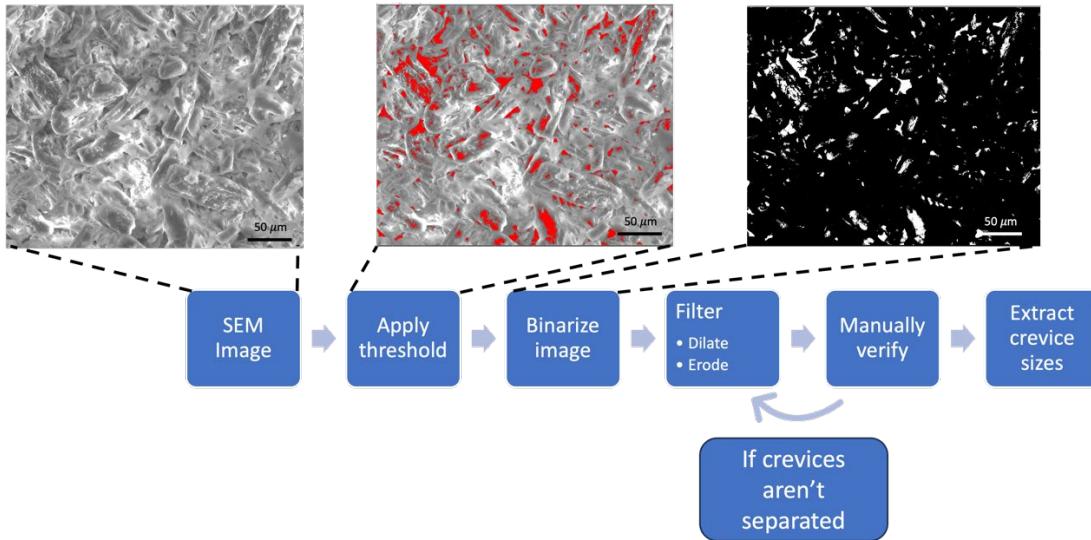
16 Twinkling was first noted on kidney stones in 1996⁸ but has since been found on breast
17 microcalcifications, encrusted catheters, and, more recently, crystals grown *in vitro*.^{7,9,10}
18 Twinkling can improve the sensitivity and specificity of ultrasound to diagnose mineralizations;
19 however, inconsistencies in the appearance of twinkling have led researchers to search for
20 strategies to improve twinkling, such as modifying respiratory gases.¹¹ On kidney stones in pigs
21 (implanted) and humans (naturally occurring), breathing oxygen (O₂) was found to increase
22 twinkling, whereas pigs breathing carbon dioxide (CO₂) was found to decrease twinkling.^{12,13}

23 These results suggest that urine and kidney stones are sensitive to changes in respiratory gases.
24 However, O₂ and CO₂ levels in the pig urine did not track as expected based on the gas the pigs
25 inhaled, so it is unclear which gases were present on the kidney stone.

26 Understanding how and where bubbles can form on different mineralizations is also
27 important to understanding how twinkling might be influenced by changing ambient gases.
28 Previous theoretical studies suggest that microscopic crevices can act as nucleation sites for
29 cavitation bubbles by stabilizing gas pockets against dissolution.¹⁴⁻¹⁶ More recent experimental
30 work shows that micron sized crevices etched into solid structures can stabilize bubbles for
31 interaction with driving ultrasound fields.¹⁷ Crevice microbubbles have been visualized directly
32 and indirectly on the surface of and inside kidney stones using lithotripter pulses to enlarge
33 bubbles along with high-speed photography, environmental scanning electron microscopy
34 (ESEM), and micro-computed tomography (μCT).^{6,18} Unlike kidney stones which are often
35 composed of many chemicals held together by an organic mesh, other pathological
36 mineralizations are primarily composed of a single chemical with limited organic material.⁴
37 Therefore, identifying features on crystals that could harbor bubbles is important towards
38 understanding twinkling on pathological mineralizations.

39 In this paper, cholesterol, calcium phosphate, and uric acid crystals were grown *in vitro*
40 and imaged with SEM and μCT to examine features that could harbor stable microbubbles. The
41 same crystals were exposed to elevated levels of CO₂, O₂, and N₂ while imaging with Doppler
42 ultrasound to investigate the effect of each gas on twinkling. We hypothesize that twinkling on
43 all crystals will increase in elevated O₂ and decrease in elevated CO₂ but will be unaffected by

44 elevated N₂ levels. Additionally, we hypothesize that cholesterol will have the most surface
45 crevices and internal pores that can harbor bubbles.


46 **II. MATERIALS AND METHODS**

47 **A. Crystal growth**

48 Cholesterol, calcium phosphate, and uric acid crystals, all commonly found in pathological
49 mineralizations, were grown according to Rokni et al. (2023).⁷ In brief, supersaturated solutions
50 of each chemical were brought to a specific pH and temperature to allow for crystal nucleation
51 and aggregation. For calcium phosphate and uric acid crystals, the pH was adjusted using 0.1 M
52 sodium hydroxide (Belle Chemical, Billings, MT, USA) and measured with an EcoSense® pH 10A
53 meter (YSI, Yellow Springs, OH, USA). Wooden hemispheres (diameter = 1 cm) or carbon fiber
54 rods (diameter = 2 mm) were added to the uric acid solution for a controlled nucleation site.
55 Crystal composition was confirmed using Raman Spectroscopy (Horiba Labram HR evolution,
56 Kyoto, Japan).

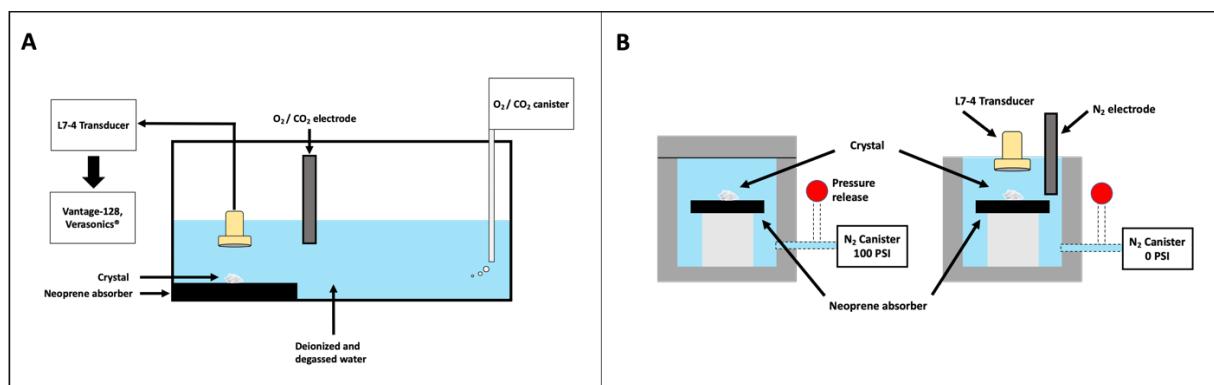
57 **B. Evaluating crystal microstructure**

58 Two representative crystals of each composition were imaged with an SEM (FEI Quanta
59 250, Philips, Amsterdam, Netherlands) at 20 kV to evaluate surface microstructure. All SEM
60 images were analyzed with ImageJ (NIH, Bethesda, MD, USA). The surface area and number of
61 crevices over two representative portions of each crystal were measured using the method
62 described by Hojat et al. (2023).¹⁹ Briefly, a threshold was applied to the image to segment the
63 crevices from the surrounding crystal. The image was then binarized and morphologically
64 filtered using *Dilate* or *Erode* in ImageJ to separate individual crevices, which were verified
65 manually. Finally, the *Analyze Particles* tool was used to extract all crevice sizes (Fig. 1).

66

67 Fig. 1. Flowchart describing the image processing used to segment crevices from SEM images.

68 One other representative crystal of each composition was imaged with μ CT. Calcium
 69 phosphate and cholesterol crystals were imaged underwater with a v|tome|x L300 machine (8
 70 μ m voxel size; GE, Boston, NY, USA). For finer resolution, uric acid crystals grown on carbon
 71 fiber rods were imaged in air with an Xradia 620 Versa machine (1.2 μ m voxel size; ZEISS,
 72 Oberkochen, Germany). Single μ CT slices were saved using ImageJ while internal pore volumes
 73 were calculated using Avizo[®] (ThermoFisher Scientific, Waltham, MA, USA). A median filter was
 74 applied to reduce noise and scans were segmented into 'crystal' and 'pore' based on thresholds
 75 set by the density of the surrounding environment. Only relative density values were necessary
 76 to differentiate pores so the μ CT machines were not calibrated to give an absolute color scale.


77 **C. Evaluating the effect of gases on twinkling**

78 All Doppler ultrasound imaging was performed using a Verasonics[®] research ultrasound
 79 system (Vantage-128, Verasonics[®], Kirkland, WA, USA) with an L7-4 transducer (Philips/ATL,
 80 Bothell, WA, USA; flash mode, elevation focus of 30 mm, and -6 dB azimuthal angle of 1.7°). The

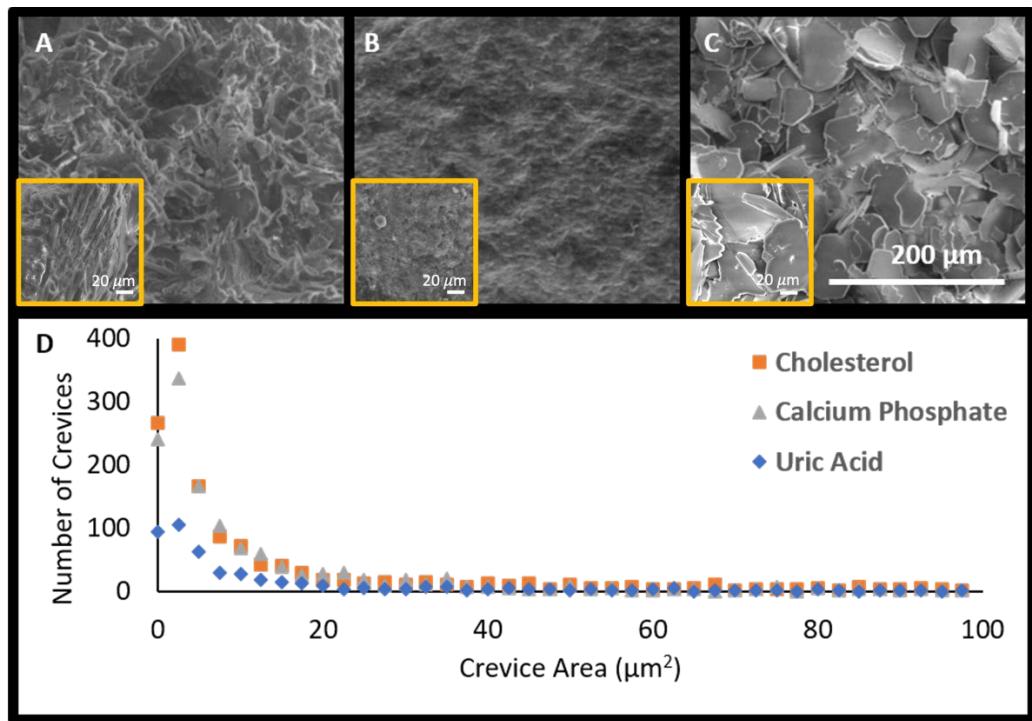
81 pulsing scheme consisted of 7 Doppler ensembles with 12 cycles each at a center frequency of
82 5.2 MHz repeated at 3 kHz. This transducer and frequency were chosen to provide the best
83 tradeoff between twinkling and resolution.¹⁸ For the Doppler transmit voltage of 28.3 V, the
84 Doppler waveform was measured in degassed and deionized water using a golden capsule
85 hydrophone (HGL-Series, Onda, Sunnyvale, CA, USA) and was found to have maximum peak
86 Doppler pressures of $p_+ \approx 3.6$ MPa and $p_- \approx 3.1$ MPa. Doppler settings were consistent between
87 the same crystal but varied slightly (± 0.3 MPa) between crystal types to ensure maximum
88 Doppler signal without saturation. The Doppler in-phase quadrature (IQ) data was saved for
89 analysis at ~ 1.5 fps.

90 Doppler ultrasound imaging was performed on five crystals of each composition. Crystals of
91 the same composition were chosen to have similar maximum dimensions (cholesterol crystals \approx
92 10 mm, calcium phosphate crystals \approx 5 mm, uric acid crystals \approx 0.3 mm grown on 8 mm wooden
93 balls). Before imaging, crystals were submerged in water for >1 week and degassed in a
94 desiccant chamber at ~ 0.01 MPa absolute for >2 hours prior to imaging. As a control, crystals
95 were initially imaged in filtered (>5 μm) deionized water initially degassed to <2 mg/L dissolved
96 O₂ concentration (Extech 407510 Dissolved Oxygen Meter, Extech, Waltham, MA, USA), <12
97 mg/L CO₂ (MI-720 Micro-Carbon Dioxide Electrode, Microelectrodes Inc., Bedford, NH, USA),
98 and <4 mg/L dissolved nitrate (Thomas Brand Nitrate Ion Electrode, Thomas Scientific,
99 Swedesboro, NJ, USA). To increase the concentration of O₂ and CO₂, the respective gas was
100 bubbled through the water (Fig. 2a). O₂ was added to the water in 5 intervals to reach
101 concentrations of 200 mg/L. In separate experiments, CO₂ was added in 5 intervals to produce
102 concentrations of 11-125 mg/L. At each interval, crystals were allowed to reach equilibrium for

103 >20 min (i.e. scans produced repeatable results) and then imaged at the same location while
 104 saving IQ data for 1 min. To image crystals in elevated N₂, water was pressurized with nitrogen
 105 in a custom pressure chamber (Fig. 2b).⁷ First, the water was pressurized to ~0.8 MPa absolute
 106 using nitrogen. After returning to ambient conditions, nitrate levels were continuously
 107 measured to approximate dissolved N₂ while saving to the computer at 1 point per second
 108 (pHenomenal MU1600H, VWR, Radnor, PA, USA). Nitrate levels were measured instead of
 109 actual dissolved N₂ as no probes exist to directly measure N₂. Simultaneously, crystals were
 110 imaged with Doppler ultrasound for 2 min while saving IQ data, which allowed for direct
 111 comparison between dissolved N₂ levels and twinkling. At least 15 min after dissolved N₂
 112 returned to the original levels, crystals were again imaged in the same location while saving IQ
 113 data for 1 min as the control. For all changes in gas, twinkling on each crystal was calculated by
 114 summing the Doppler power within a region of interest (ROI) box around the crystal. To allow
 115 for comparison between crystal types, the Doppler power was normalized by dividing the mean
 116 Doppler power across each crystal type at every gas interval by the mean Doppler power of the
 117 control (i.e. <2 mg/L O₂, <12mg/L CO₂, <4 mg/L nitrate).

118
 119 Fig. 2 (a) Experimental arrangement for increasing dissolved O₂ or CO₂ concentrations in water
 120 while imaging crystals with Doppler ultrasound. (b) Experimental arrangement for increasing

121 dissolved N₂ concentrations prior to imaging crystals. Water was pressurized with N₂ (left) and
122 crystals were imaged after the pressure was released (right).

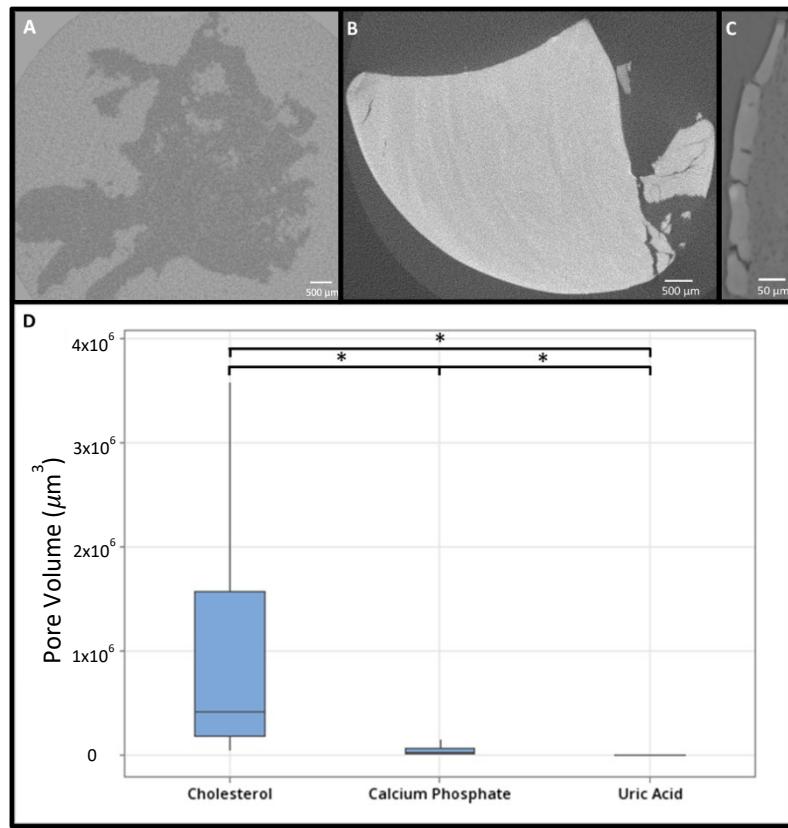

123 **D. Statistical analysis**

124 All statistical analyses were performed using Minitab (Minitab, State College, PA, USA).
125 A Ryan-Joiner test was used to check all distributions for normality. Internal pore sizes were
126 compared using a Kruskal-Wallis test with post-hoc Dunn tests. One-way ANOVAs and post-hoc
127 Dunnett tests were used to compare the effect of each gas on twinkling to the control. Values
128 of p<0.05 indicate statistical significance.

129 **III. RESULTS**

130 **A. Evaluating crystal microstructure**

131 All crystals imaged with SEM contained many crevices that could harbor stable bubbles (Fig.
132 3a-c). Across a surface area of ~0.16 mm², cholesterol crystals had ~1300 crevices with a
133 median crevice area of 3.80 μm² (IQR = 11.25 μm²). These crevices were described as deep as
134 the bottom of the crevices were not visible on the SEM image. Across the same surface area of
135 ~0.16 mm², calcium phosphate crystals had ~1200 crevices with a median crevice area of 4.34
136 μm² (IQR = 10.98 μm²). These crevices were described as shallow as the bottom of all these
137 crevices were visible on the SEM image. Across the same surface area of ~0.16 mm², uric acid
138 crystals had ~500 crevices, mostly in between individual crystals, with a median crevice area of
139 4.83 μm² (IQR = 12.68 μm²). These crevices were of mixed depths, as only some of the crevice
140 bottoms could be viewed on the SEM images. The distribution of crevice sizes for all crystals
141 was not normally distributed (p<0.01) as ~70% of all crevices fell below 10 μm² (Fig. 3d).

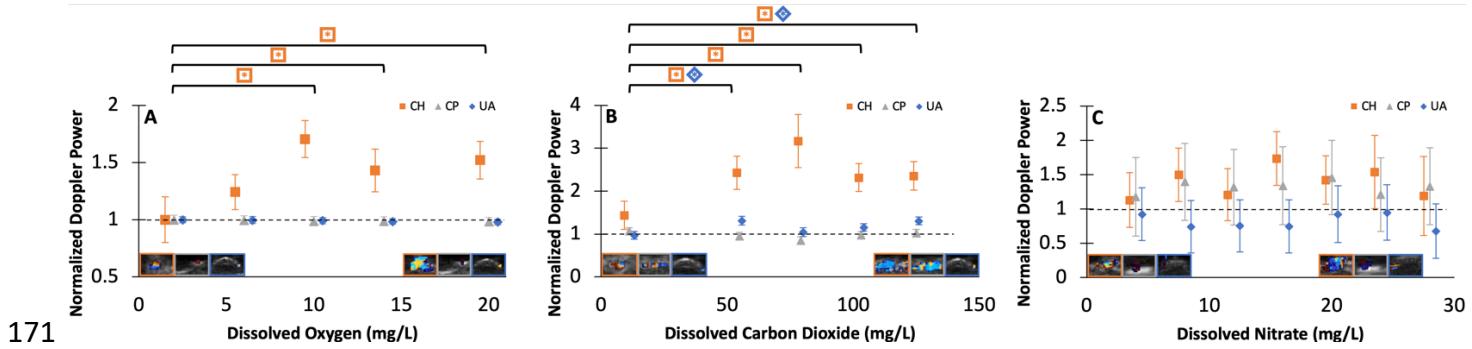


142

143 Fig. 3. (color online) Representative scanning electron microscopy images of (A) cholesterol, (B)
 144 calcium phosphate, and (C) uric acid. Zoomed in portions of each crystal are presented in the
 145 lower left corner with the yellow border. (D) A histogram comparing the number and area of
 146 crevices for each crystal type.

147 The internal structures noted on the μ CT scans varied drastically between crystal types (Fig.
 148 4a-c). The distributions of pore volumes for all crystals were not normally distributed ($p<0.01$).
 149 Cholesterol had 117 pores with a median volume of $41000 \mu\text{m}^3$ (IQR= $139000 \mu\text{m}^3$) that ran
 150 throughout the entire volume of the crystal. Calcium phosphate had 141 pores with a median
 151 volume of $2600 \mu\text{m}^3$ (IQR = $6000 \mu\text{m}^3$) which primarily appeared as cracks along the edges of
 152 the crystal. Uric acid had 1262 pores with a median volume of $3.78 \times 10^{-9} \mu\text{m}^3$ (IQR = 4.34×10^{-8}
 153 μm^3). The median pore size in cholesterol was significantly larger than in calcium phosphate
 154 ($p=0.002$) which was significantly larger than in uric acid ($p<0.001$) (Fig. 4d).

155



156 Fig. 4. (color online) Representative slices from micro-computed tomography images of (A)
 157 cholesterol, (B) calcium phosphate, and (C) uric acid. Internal pore volumes were calculated
 158 from full three-dimensional rendering of the crystal. (D) A box-plot of pore volumes for each
 159 crystal composition.

160 **B. Evaluating the effect of gases on twinkling**

161 Imaging crystals in elevated O₂ significantly increased twinkling on cholesterol crystals
 162 (p<0.001) when the dissolved O₂ concentration exceeded 9 mg/L; twinkling remained
 163 unchanged on calcium phosphate (p=0.92) and uric acid (p=0.41) crystals (Fig. 3a). Imaging
 164 crystals in elevated CO₂ significantly increased twinkling on cholesterol (p<0.001) and uric acid
 165 (p=0.009) crystals when the dissolved CO₂ concentration exceeded 55 mg/L; the increase in
 166 Doppler power on uric acid crystals was not significantly different from 79 – 103 mg/L (p=0.88

167 and $p=0.28$, respectively), but was again significant at 125 mg/L ($p=0.01$). Twinkling remained
168 unchanged on calcium phosphate crystals ($p=0.82$) (Fig. 3b). Imaging crystals in elevated N₂
169 caused no changes in twinkling for cholesterol ($p=0.23$), calcium phosphate ($p=0.44$), or uric
170 acid ($p=0.81$) crystals (Fig. 3c).

171
172 Fig. 5. (color online) Plots of dissolved gas concentration versus mean Doppler power
173 normalized to control for (A) oxygen, (B) carbon dioxide, and (C) nitrate. Representative
174 twinkling images are given for the control (left) and at the third data point (right) for each
175 crystal type and gas. The color around the twinkling image indicates which crystal is shown with
176 cholesterol, calcium phosphate, and uric acid presented left to right. Statistical significance
177 (ANOVA, $p<0.05$) compared to control is indicated by an asterisk related to the respective shape
178 and color.

179 **IV. DISCUSSION**

180 These results provide evidence supporting the crevice microbubble theory of twinkling
181 as ambient gases affect twinkling on crystals. Elevated O₂ increased twinkling for cholesterol
182 crystals with no change for calcium phosphate or uric acid crystals. Increasing CO₂ increased
183 twinkling for cholesterol and calcium phosphate crystals with no change in twinkling for uric
184 acid crystals. Increasing N₂ did not change twinkling for any of the tested crystal types. SEM

185 images show each crystal has unique surface characteristics that can harbor microbubbles. μ CT
186 images show cracks and pores throughout the crystals that could contain gas. Cholesterol
187 crystals had the most and deepest surface crevices and the largest internal pore volumes
188 compared to calcium phosphate and uric acid crystals. Although changing the concentration of
189 the gas in the surrounding water most likely affected the presence of bubbles on the surface of
190 the crystals, it is possible that internal bubbles may have also been affected through internal
191 pores connected to the surface or by diffusing through the solid.

192 From the SEM and μ CT scans, cholesterol crystals were found to have the most features
193 suitable for bubbles to form. This observation agrees with our previous work that shows
194 twinkling is strongest on cholesterol crystals, followed by calcium phosphate and uric acid
195 crystals.⁷ Additionally, all crystal types had the most crevices with areas ranging from 0-5 μm^2
196 which generally aligned with crevice sizes noted on kidney stones.¹⁸ For the SEM scans, only a
197 small portion of the crystal surface was imaged due to limits in the technology so variations in
198 the surface could be present that are not accounted for in these analyses. Moreover, while SEM
199 methods exist to measure crevice depth by imaging at two different angles, due to time and
200 equipment restraints these additional measurements were not performed. Crevice volumes
201 could be substantially different than the reported surface areas. For μ CT, only a single crystal of
202 each composition due to cost and machine scheduling; it is likely that some variations in the
203 internal structure will exist across crystals of the same composition, although this variation is
204 expected to be small as growing conditions were similar for all tested crystals of the same
205 composition. While no obvious gas pockets were visible in crystals scanned underwater with
206 μ CT, it is possible any bubbles present were smaller than the minimum resolvable features.

207 Future µCT scans while pulling vacuum on the crystals could allow for visualization of internal
208 microbubbles. It is important to note that there are differences in the size and growing
209 conditions of these crystals compared to pathological mineralizations that could differentiate
210 these results from what would happen *in vivo*.

211 Increasing the gas concentration around crystals caused the biggest increase in twinkling
212 for cholesterol crystals in O₂ and CO₂. This result is supported by the SEM and µCT images which
213 showed that cholesterol had more external and internal features that could harbor
214 microbubbles compared to calcium phosphate and uric acid crystals. In addition, it is well
215 known that hydrophobic impurities can act to stabilize bubbles.²⁰ As cholesterol is the most
216 hydrophobic of the tested crystals, it is possible more bubbles are present on cholesterol
217 crystals than calcium phosphate or uric acid, resulting in more twinkling.^{2,21} These results differ
218 from previous studies with natural and implanted *in vivo* kidney stones which found that
219 twinkling increased when patients breathed O₂ and decreased when patients breathed CO₂.^{12,13}
220 Biological adaptations to the changing gases are likely to affect bubble formation *in vivo* and
221 could explain the differences between studies.²² For example, the kidney compensates for
222 increases in CO₂ by scavenging O₂ from the urine, whereas other organs may remain acidotic
223 when exposed to high levels of CO₂.²³⁻²⁵ Finally, there was no effect of N₂ on any of the stones.
224 N₂ is nearly inert and difficult to dissolve into solution so it was expected that elevated levels of
225 N₂ would have little effect on twinkling. The higher variation noted with N₂ gas is likely a
226 consequence of using the pressure chamber to increase the N₂ making it difficult to produce
227 consistent changes in twinkling.

228 As N₂ could not be measured directly, it is likely that measuring nitrate underestimates
229 the total dissolved N₂ as nitrite or ammonia could also be present in the solution, which would
230 overemphasize the already small effect that N₂ had on twinkling. Although the system was
231 allowed to reach equilibrium before scanning, it is possible that the gases did not diffuse
232 completely into the crevices. The ultrasound transducer and frequency were held constant to
233 allow for direct comparison. However, as twinkling is affected by frequency¹⁸ and the size of the
234 wavelength in relation to the crevice bubbles, further studies are necessary to investigate
235 whether changing the frequency would affect these results. Finally, normal oxygen levels range
236 from ~4-6 mg/L while breathing in pure oxygen can increase the concentration to ~20 mg/L in
237 pigs.¹² Normal carbon dioxide levels range from ~60-90 mg/L while elevated carbon dioxide
238 levels, which can be found in space, can increase the concentration to ~190 mg/L.¹² Normal
239 serum nitrate levels range from 0.6 to 4.6 mg/L.²⁶ However, treatments with nitrates are
240 common for cardiac disease, can cause serum levels to reach 18 mg/L or higher.²⁷ Therefore,
241 the tested ranges are physiologically possible and could be leveraged to enhance twinkling.

242 **V. CONCLUSION**

243 These results continue to support the theory that microbubbles are present on crystals
244 and cause twinkling. Imaging crystals with SEM and μ CT provided visual evidence of features
245 that could harbor stable microbubbles and supported our previous result that cholesterol
246 crystals twinkle more than calcium phosphate and uric acid crystals. Elevated O₂ caused
247 twinkling to increase on cholesterol crystals, elevated CO₂ increased twinkling on cholesterol
248 and calcium phosphate crystals, and elevated N₂ caused no change in twinkling. These results

249 suggest varying ambient gases could be used to enhance twinkling and improve detection of
250 some pathological mineralization compositions.

251 **ACKNOWLEDGMENTS**

252 The authors would like to acknowledge Andrew Ross, Kenneth Meinert Jr., and America
253 Campillo from the Energy and Environmental Sustainability Laboratories at Penn State, Center
254 for Quantitative Imaging for performing the μ CT scans and assisting with data interpretation.
255 The authors would also like to acknowledge Julie Anderson of The Penn State Materials
256 Characterization Lab for assistance performing and interpreting the SEM scans. This work was
257 supported by the National Science Foundation CAREER Grant No. 1943937 and the NSF
258 Graduate Research Fellowship Program DGE1255832.

259 **AUTHOR DECLARATIONS**

260 **Conflict of Interest**

261 The authors have no conflicts to disclose.

262 **DATA AVAILABILITY**

263 The data that support the findings of this study are available from the corresponding
264 author upon reasonable request.

265 **REFERENCES**

266 ¹E. Pascual and F. Sivera, "Crystal analysis in synovial fluid," *Curr Opin Rheumatol*, **23**(2), 161-
267 169 (2011).

268 ²A. Grebe and E. Latz, "Cholesterol crystals and inflammation," *Curr Rheumatol Rep* **15**, 313
269 (2013).

270 ³B. Mujtaba, A. Taher, M. J. Fiala, S. Nassar, J. E. Madewell, A. K. Hanafy, and R. Aslam,
271 "Heterotopic ossification: radiological and pathological review," Radiol Oncol **53**(3), 275-284
272 (2019).

273 ⁴E. Tsolaki and S. Bertazzo, "Pathological mineralizations: the potential of mineralomics,"
274 Materials **12**, 3126 (2019).

275 ⁵W. Lu, O. A. Sapozhnikov, M. R. Bailey, P. J. Kaczkowski, and L. A. Crum, "Evidence for Trapped
276 Surface Bubbles as the cause for the twinkling artifact in ultrasound imaging," Ultrasound Med
277 Biol **39**(6), 1026-1038 (2013).

278 ⁶J. C. Simon, O. A. Sapozhnikov, W. Kreider, M. Breshock, J. C. Williams, and M. R. Bailey, "The
279 role of trapped bubbles in kidney stone detection with the color Doppler ultrasound twinkling
280 artifact," Phys Med Biol **63**(2), 025011 (2018).

281 ⁷E. Rokni and J. C. Simon, "The effect of crystal composition and environment on the color
282 Doppler ultrasound twinkling artifact," Phys. Med. Biol. **68**, 035021 (2023).

283 ⁸A. Rahmouni, R. Bargoin, A. Herment, N. Bargoin, and N. Vasile, "Color Doppler twinkling
284 artifact in hyperechoic regions," Radiology **199**(1), 269-271 (1996).

285 ⁹D. V. Leonov, N. S. Kulberg, A. I. Gromov, and S. P. Morozov, "Detection of microcalcifications
286 using the ultrasound Doppler twinkling artifact," Biomedical Engineering **54**(3), 174-178 (2020).

287 Translated from Meditsinskaya Tekhnika **54**(3), 14-17 (2020).

288 ¹⁰H. C. Kim, D. M. Yang, W. Jin, J. K. Ryu, H. C. Shin, "Color Doppler twinkling artifacts in various
289 conditions during abdominal and pelvic sonography," J Ultrasound Med **29**(4), 621-632 (2010).

290 ¹¹S. J. Park, B. H. Yi, H. K. Lee, Y. H. Kim, G. J. Kim, and H. C. Kim, "Evaluation of patients with
291 suspected ureteral calculi using sonography as an initial diagnostic tool: how can we improve
292 diagnostic accuracy?" *J Ultrasound Med* **7**, 1441-1450 (2008).

293 ¹²J. C. Simon, Y. Wang, B. W. Cunitz, J. Thiel, F. Starr, Z. Liu, and M. R. Bailey, "The effect of
294 carbon dioxide on the twinkling artifact in ultrasound imaging of kidney stones: A pilot study,"
295 *Ultrasound Med Biol* **43**(5), 877-883 (2017).

296 ¹³J. C. Simon, J. R. Holm, J. Thiel, B. Dunmire, B. W. Cunitz, M. R. Bailey, "Evidence of
297 microbubbles on kidney stones in humans," *Ultrasound Med Biol* **46**(7), 1802-1807 (2020).

298 ¹⁴L. Crum, "Tensile strength of water," *Nature* **278**, 148-149 (1979).

299 ¹⁵R. E. Apfel, "The role of impurities in cavitation-threshold determination," *J Acoust Soc Am*
300 **48**(5), 1179-1186 (1970).

301 ¹⁶A. A. Atchley and A. Prosperetti, "The crevice model of bubble nucleation," *J Acoust Soc Am*
302 **86**(3), 1065-1084 (1989).

303 ¹⁷A. Ziljstra, D. F. Rivas, H. J. G. E. Versluis, D. Lohse, "Enhancing acoustic cavitation using
304 artificial crevice bubbles," *Ultrasonics* **56**, 512-523 (2015).

305 ¹⁸E. Rokni, S. Zinck, and J. C. Simon, "Evaluation of stone features that cause the color Doppler
306 ultrasound twinkling artifact," *Ultrasound Med Biol* **47**(5), 1310-1318 (2021).

307 ¹⁹N. Hojat, P. Gentile, A. M. Ferreira, L. Šiller, "Automatic pore size measurements from
308 scanning electron microscopy images of porous scaffolds," *J Porous Mater* **30**, 92-101 (2023).

309 ²⁰F. S. Rawnaque and J. C. Simon, "The effect of elastic modulus and impurities on bubble
310 nuclei available for acoustics cavitation in polyacrylamide hydrogels," *J Acoust Soc Am* **152**,
311 3502-3509 (2022).

312 ²¹J. T. Carstensen, C. Ertell, "Physical and chemical properties of calcium phosphates for solid
313 state pharmaceutical formulations," *Drug Dev Ind Technol* **94**, 96-104 (1983).

314 ²²J. E. Blatteau, J. B. Souraud, E. Gempp, and A. Boussuges, "Gas nuclei, their origin, and their
315 role in bubble formation," *Aviation Space Environ Med* **77**, 1068-1076 (2006).

316 ²³P. Hansell, W. J. Welch, R. C. Blantz, and F. Palm, "Determinants of kidney oxygen
317 consumption and their relationship to tissue oxygen tension in diabetes and hypertension,"
318 *Clin Exp Pharmacol Physiol* **40**(2), 123-137 (2013).

319 ²⁴J. Collins, A. Rudenski, J. Gibson, L. Howard, and R. O'Driscoll, "Relating oxygen partial
320 pressure, saturation and content: the haemoglobin-oxygen dissociation curve," *Breathe* **11**(3),
321 194-201 (2015).

322 ²⁵D. A. Kregenow and E. R. Swenson, "The lung and carbon dioxide: implications for permissive
323 and therapeutic hypercapnia," *Eur Resp J* **20**, 6-11 (2002).

324 ²⁶A. Ghasemi, S. Zahediasl, and F. Azizi, "Reference values for serum nitric oxide metabolites in
325 an adult population," *Clin Biochem* **43**, 89-94 (2010).

326 ²⁷Y. Ersoy, E. Özerol, Ö. Baysal, I. Temel, R. S. MacWalter, Ü. Meral, and Z. E. Altay, "Serum
327 nitrate and nitrite levels in patients with rheumatoid arthritis, ankylosing spondylitis, and
328 osteoarthritis," *Ann Rheum Dis* **61**, 76-78 (2002).

329