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Generalized Necessary and Sufficient Robust
Boundedness Results for Feedback Systems
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Abstract— Classical sufficient conditions for ensuring
the robust stability of a dynamical system in feedback
with a nonlinearity include passivity, small gain, circle,
and conicity theorems. We present a generalized version
of these results for arbitrary semi-inner product spaces.
Our result is purely algebraic, and holds even when the
conventional discrete or continuous-time causal dynamical
systems are replaced by general nonlinear relations, where
there need not exist a notion of time. Our result clarifies
when the sufficient conditions for robust stability are also
necessary, and explains why stronger assumptions such as
linearity and time-invariance are typically needed to prove
necessity in the conventional dynamical systems setting.

Index Terms— Conic sectors, Input-output stability, Nec-
essary and sufficient conditions, Nonlinear systems, Ro-
bust control, Stability analysis.

[. INTRODUCTION

OBUST stability of interconnected systems has been

a topic of interest for over 75 years, dating back to
the seminal works of Lur’e [14], Zames [30], [31], and
Willems [28]. The standard input-output setup is illustrated in
Fig. 1, where systems G and ® are connected in feedback, and
we seek conditions under which we can ensure the stability
of the closed-loop map (u1,us) — (y1,y2).

Robust stability results typically assume a known G is
interconnected with some unknown, uncertain, or otherwise
troublesome ® € Cg, where Ce is known. Then, if certain
conditions on G and Cg are met, we can ensure that the
interconnection of Fig. 1 is stable.

There are many robust stability results in the literature:
passivity theory, the small-gain theorem, the circle criterion,
graph separation, conic sector theorems, multiplier theory,
dissipativity theory, and integral quadratic constraints.'

The reason for the wide variety of robust stability results
is that different assumptions can be made about G and Cg.
For example, G and ® are typically causal operators on an
extended space of time-domain signals such as Lo, or fo.
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Fig. 1. Feedback interconnection of systems G and ®.

Additionally, G or ® may be restricted to be linear, time-
invariant, or static. Finally, some results are stated as sufficient
conditions while others are both necessary and sufficient.

In spite of their diversity, robust stability results are typically
proven using the same elementary properties of inner product
spaces. A natural question to ask, which forms the basis of
our present work, is whether the multitude of existing results
can be viewed as consequences of a purely algebraic result.
We answer in the affirmative.

Main contribution: In Section II, we present Theorem 1, a
robust boundedness result involving interconnected relations
over a general semi-inner product space. Theorem 1 distills
the vast literature on robust stability into a simple and purely
algebraic result.

In Section III, we specialize Theorem 1 to Ly, and #o¢
spaces, which reveals the connections between the algebraic
version of the result and notions of well-posedness, causality,
and stability. We also explain why stronger assumptions, such
as linearity and time-invariance of G, are often required in
order to achieve both sufficiency and necessity.

A. Related work

In Table I, we provide a summary of existing robust stability
results. In the “Direction” column, we distinguish between
sufficient-only results ( = ) and necessary-and-sufficient
results ( < ).

a) Sufficient results: Classical sufficient results include the
passivity, small-gain, and circle theorems. These results are
mutually related via a loop-shifting transformation [1], and
were generalized to conic sectors [2], [30], [31].

Beyond conic sector constraints, graph separation [20],
[24] allows for nonlinear constraints, while multiplier the-
ory [9], dissipativity [28], and integral quadratic constraints
(IQCs) [17], [19], [26] allow for dynamic or time-varying
constraints. There have also been several works discussing
how these various frameworks are related [5], [10], [21]. In
Table I, we distinguish between static constraints (the focus
of the present work), and more general dynamic constraints,
which include multipliers, dissipativity theory, and IQCs.
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TABLE |
LITERATURE REVIEW OF ROBUST STABILITY RESULTS INVOLVING TWO INTERCONNECTED SYSTEMS (SEE FIG. 1). THE FIRST

GROUP OF ROWS ARE SUFFICIENT-ONLY RESULTS ( == ). THE SECOND GROUP ARE NECESSARY-AND-SUFFICIENT ( <= ). FOR

CONSTRAINTS ON G AND @ € C4 WE DENOTE LINEAR (L), NONLINEAR (N), TIME-VARYING (TV), TIME-INVARIANT (TI), STATIC

(S), AND FADING-MEMORY (F). FOR EXAMPLE, “LTI” INDICATES LINEAR AND TIME-INVARIANT. SYMBOLS Lg¢ AND £2¢ DENOTE
EXTENDED SPACES (L2¢ FOR BOTH) AND S.1.P.S. DENOTES A SEMI-INNER PRODUCT SPACE. IN EXTENDED SPACES, G AND ¥ ARE
CONSTRAINED TO BE CAUSAL. THERE IS NO SUCH REQUIREMENT FOR S.I.P.S., SINCE THERE NEED NOT EXIST A NOTION OF TIME.
THE FINAL COLUMN INDICATES WHETHER THE CONVERSE PROOF DIRECTION ( <— ), IF APPLICABLE, EXPLICITLY CONSTRUCTS A

WORST-CASE & WHEN THE CONDITIONS ON G ARE VIOLATED. THE PRESENT WORK IS RESTRICTED TO STATIC CONSTRAINTS.

Reference Constraint  Result Type Space G Co Direction  Constructive
Vidyasagar [27, §6.6.(1,58)] static passivity & small gain Lo N N e

Zames [30, Thm. 1-3] static conic Loe N N B

Bridgeman & Forbes [3] static conic Loe N N —

Zames [31, §3-4] static circle & multipliers Loe LTI NS —

Desoer & Vidyasagar [9] dynamic multipliers Lo N N -

Teel et al. [24] static graph separation Lo N N =

Willems [28] dynamic dissipativity Loe N N —

Pfifer & Seiler [19] dynamic dissipativity Loe LTI N E

Megretski & Rantzer [17] dynamic 1QC Lse LTI NS =1

Vidyasagar [27, §6.6.(112,126)] static small gain & circle Loe LTI N = Yes
Khong & van der Schaft [13, Thm. 3]  static passivity & small gain Loe LTI LTV <— No
Zhou et al. [32, Thm. 9.1] static small gain Loe LTI LTI <= Yes
Khong & Kao [12, Thm. 1] dynamic 1QC Loe LTI LTI <= Yes
Shamma [22, Thm. 3.2] static small gain l2e NF NF <= Yes
Cyrus & Lessard [8] static conic s.i.p.s. L N = No
Present work static conic s.i.p.s. N N = Yes

T The authors in [17] mention that their sufficient condition for robust stability is also necessary in the sense that a result in the spirit of

Lemma 1 holds via a suitable application of the S-lemma [18].

b) Necessary and sufficient results: When ® is assumed to
be memoryless (but still possibly time-varying), the classical
passivity, small-gain, and circle theorems are only sufficient
for robust stability [4], [16].

Finding a robust stability condition that is both sufficient
and necessary requires stronger assumptions. The set Cg
must be broadened to allow dynamic nonlinearities, and we
must typically assume that G is linear and time-invariant
(LTID). For example, the passivity and small gain results of
Vidyasagar [27, §6.6(112,126)] and Khong et al. [13, Thm. 3]
assume G is LTI. The small-gain result of Zhou et al. [32,
Thm. 9.1] and the converse IQC result of Khong et al. [12]
make the stronger assumption that both G and @ are LTI.
Finally, Shamma’s small-gain result [22, Thm. 3.2] holds when
both G and @ are nonlinear and time-varying, but requires a
fading memoryassumption, which allows the system response
to be approximated by that of a linear system.

B. Notation

a) Preliminaries: The set IF refers to the field of real or
complex numbers. The complex conjugate of x € F is  and
the conjugate transpose of X € F™*" is X*. We use =, <,
>, > to denote the (semi)definite partial ordering in F™*".

b) Semi-inner products: A semi-inner product space is a
vector space V over a field F equipped with a semi-inner
product? (-, -), which is an inner product whose associated

2We use the convention that a semi-inner product is linear in its second
argument, so (z, ay + bz) = a(z, y) + b(x, z) for all z,y,z € V and
a,b e F. Also, (z, y) = (y, ).

norm is a seminorm. In other words, ||z| := \/{(z, ) > 0 for
all z €V, but ||z|| = 0 does not imply that z = 0.
¢) Relations: A relation R on ) is a subset of the product

space R C V x V. We write Z(V) to denote the set of all
relations on V. The domain of R is defined as dom(R) :=
{z €V | (z,y) € R for some y € V}. For any = € dom(R),
we write Rz to denote any y € V such that (z,y) € R.

We define V? as augmented vectors (%) where uy, ugs € V.
We overload matrix multiplication in V?; for any &,¢ € V?
and any matrix N € F2x2

_ |Niw Nig| [&] _ [Ni&+ Ni2be 2
Ne = [Nm N22] [52} o |:N21§1 +N22§2} eV

Likewise, inner products in V2 have the interpretation

co=(|g] &) =@ area

We omit subscripts when referring to many of the u;, y;, e;
from Fig. 1 at once. For example, (u,y,¢e) is shorthand for
(u1,u2,y1,Yy2,e1,e2). We also define the following relations,
which characterize pairs of consistent signals.

Ry = {(u,y) e V?xV? | (1) holds for some e € VQ},
Ry = {(u,e) eV? xV? ’ (1) holds for some y € Vz}.

[I. RESULTS FOR SEMI-INNER PRODUCT SPACES

Our main result is a robust boundedness theorem defined
over a general semi-inner product space. We consider the setup
of Fig. 1, where G € Z(V) and ® € Co C Z(V) are (possibly
nonlinear) relations.
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Theorem 1. Let V be a semi-inner product space and let
M = M* € F?*2, Suppose G € Z(V) and Co C Z(V).
Consider the three following statements.
(i) There exists N = N* € F2%2 satisfying M + N < 0
such that the following property of G holds.

(5]:2[5]) 20 srceamor o

(ii) There exists v > 0 such that for all (u,y,e), if

(b vl =0

and (1a), (1c), (1d) are satisfied, then ||y| < | ul.

“

(iii) There exists v > 0 such that for all ® € Cy, if

<[<§§} , M [££}> >0 forall £ € dom(P), (5)
then for all (u,y) € Ry, the following bound holds

[yl < llull. (6)

The following equivalences hold:
o Graph separation: (i) <= (ii).
o Interpolation: (ii) = (iii).

A pedagogical benefit of Theorem 1 is that it splits the ro-
bustness result into a graph separation statement that concerns
G and an interpolation statement that concerns Cg.

The result (i) <= (ii) relates boundedness G in (3) to
boundedness of the closed-loop map when @ is replaced by the
inequality (4). This graph separation result holds for arbitrary
G (any nonlinear relation), and does not depend on @ or Cg.

The result (i) = (iii) relates the inequality (5) satisfied
by @ to the inequality (4) satisfied by the inputs and outputs
of ®. Whether or not the converse holds depends on whether
the set Ce is rich enough to allow interpolation. In other
words, given the signals ey and y. satisfying (4), does there
necessarily exist a & € Cg such that yo = Pes?

Theorem 1 is sufficient for robust boundedness because it
proves (i) = (iii). In Section II-C, we show that with suitable
assumptions about G and Cg, we can satisfy the interpolation
requirement and therefore make the result necessary as well.

Since Theorem 1 is expressed using a general semi-inner
product space, it holds even when G is not a dynamical system
but rather a general nonlinear relation. So there need not exist
a notion of time. We make a few additional remarks.

Remark 1. Equation (6) can be stated in terms of (u,e)
instead of (u,y). Specifically, (6) holds for all (u,y) € Ry,
if and only if there exists some 7 > 0 such that ||e|| < 7||ull
holds for all (u,e) € Rye.

Remark 2. In Item (i), we can equivalently replace N by
—M — eI and modify the statement preceding (3) to: “There
exists some € > 0 such that G satisfies (3)”. We chose the
form with M and N for aesthetic reasons.

Remark 3. Theorem 1 can be generalized to G € R(V"™, V™)
(the set of relations on V" x V™) and ® € Co C R(V™, V™).
Here, M, N € F(mtn)x(m+n) ywould be block 2 x 2 matrices.

A. Proof of sufficiency for Theorem 1

We begin by showing that (i) = (ii) = (iii). This
proof is similar to [15, Thm. 1]. Pick any (u,y,e) such that
(1a), (Ic), (1d), and (4) are satisfied. Let & = e; in (3).
Using (1) to eliminate e;, ez, Equations (3) and (4) become:
<[ulgﬁy2]7 N [u12y2]> >0 and <[u2;gy1]’ M [uZyJ;yl]> > 0.
Summing these two inequalities and collecting terms, we
obtain ([y], (M +N)[3]) + 2([3], [N 3] [a]) +
(1, %8 a2, ] [E]) > 0. Since M + N < 0 by assump-
tion, There exists > 0 such that M + N < —nl. Apply-
ing this inequality together with Cauchy—Schwarz®, we get

=nllyll* + 2r[lyllllull + gllul® > 0, where r == [[[§22 372 ]|
and q := H [NOT" 1\/?11 ] || are standard spectral norms. Dividing

by n and completing the square, we can rewrite the last
inequality as (|jy|| — %HUH) < T?—;’qﬂuw, which can be
rearranged to establish (ii) with v = %(r + /12 + nq).

To prove (iii), consider some ® € Cg for which (5) holds.
Next, pick (u,y) € R,y so that there exists (u,y, e) satisfying
(1). In particular, (1b) holds, so setting £ = es in (5), we
obtain (4) and the rest of the proof is the same as above. m

B. Necessity of graph separation in Theorem 1

A popular approach for proving (i) <= (ii) is to use a
lossless S-lemma as in [13, Thm. 3] and [17]. However, the
S-lemma [18], [29] comes with a drawback: the set of signals
(u,y,e) that satisfy the loop equations (la), (1c), (1d) must
be a subspace, which requires for example that G be linear. If
we assume G is linear, we can prove (i) <= (ii) by adapting
the S-lemma for inner product spaces due to Hestenes [11,
Thm. 7.1, p. 354] and using a technique similar to that used
in [13]. Details of this approach may be found in [7], [8].

The linearity assumption on G can be dropped entirely if
we adopt a different proof approach. To this effect, we will
prove the contrapositive —(i) = —(ii) by directly constructing
signals (y,u,e) that violate the boundedness condition when
(1) fails to hold. Unlike the S-lemma, this approach does not
require linearity of GG and has the benefit of being constructive,
so it produces worst-case signals (u, y, ).

Lemma 1 (worst-case signals). Consider the setting of Theo-
rem 1. Suppose that for any N satisfying M + N < 0, there
exists & € dom(G) such that <[CZE , N [Cf}> < 0. Then,

for all v > 0, there exists (u,y,e) such that:
1) Equations (la), (1c), and (1d) hold.

(] ]) =

3) Myl > Allull
Proof. See Appendix I-A for a detailed proof. ]

The implication (i) <= (ii) of Theorem 1 now directly
follows from Lemma 1.

3 A proof of the Cauchy—-Schwarz inequality for general semi-inner product
spaces may be found in [6, §1.4].
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C. Necessity of interpolation in Theorem 1

The implications (i) <= (ii) = (iii) of Theorem 1
hold with great generality. However, the missing implication
(i) <= (iii) does not hold in general, because it depends
on the choice of G and Cg. If Cg is insufficiently expressive,
there may not exist a & € Cs that interpolates the closed-
loop signals found in (ii). We now explore some special cases
for which the missing implication holds; in other words, there
exists a ® that interpolates the closed-loop signals.

Definition 1. We say that a pair (G, Cs) is interpolable if such
a choice implies that (ii) <= (iii) in Theorem 1.

We now describe simple scenarios in which interpolability
is guaranteed for the general semi-inner product setting. First,
we make the trivial observation that if ® is unconstrained,
interpolation is always possible.

Proposition 1 (unconstrained case). If Co = Z(V), then the
pair (G,Cqy) is interpolable for any G € Z(V).

Proof. If Co = Z(V), then (4) and (5) are equivalent, as we
can choose the singleton relation ® = {(ea,y2)} |

Proposition 1 is not particularly satisfying because it re-
quires the use of a singleton relation ®. A more interesting
case is when we require that dom(®) = V.* Our second result
states that interpolability holds for the set of linear relations.

Definition 2 (linear relation). Let V be a semi-inner product
space over a field F. Let x1,T2,y1,y2 € V and a1, a9 € .
A relation R € Z(V) is linear if for all (x1,y1) € R and
(z2,y2) € R, we have (a1x1 + aga, a1y1 + agys) € R. We
let L (V) C Z(V) denote the set of all linear relations.

Theorem 2 (linear case). If Co = £ (V), then the pair (G,Cs)
is interpolable for any G € Z(V).

Proof. We explicitly construct a worst-case ® € Z(V). See
Appendix I-B for a detailed proof. ]

Proposition 1 and Theorem 2 both provide conditions that
ensure necessity of Theorem 1. In both cases, there are no
constraints on G it could be nonlinear, for example.

[1l. SPECIALIZATION TO EXTENDED SPACES

The most common application of robust stability is when
(y,u,e) are time-domain signals belonging to an extended
space such as Lo, or /5 [32]. This forces us to deal with
well-posedness, causality, and stability.

a) Well-posedness: Assuming G and & are relations, as we
do in Theorem 1, is not unprecedented in the literature [13],
[20], [25], [27], [30]. This ensures the closed-loop relations
R,y and R,. are always well-defined, but they may be
empty. When G and ® are assumed to be operators instead
of relations, then well-posedness must either be assumed or
proved. Specifically, we need an assurance of the existence
and uniqueness of solutions e and y for all choices of w.

“Relations ® € Z(V) that satisfy dom(®) = V are known as serial or
left-total. They are also called multi-valued functions.

b) Causality: 'When working in extended spaces such
as L9, a common assumption is that G and ® are causal
operators [9], [17], [23], [27], [31], [32]. Then, a useful fact is
that a well-posed interconnection of causal maps is causal [25,
Prop. 1.2.14], so the closed-loop map will be causal.

c) Stability: The goal when working with time-domain
signals is typically to prove stability. With Theorem 1, we
prove boundedness of the closed-loop map, i.e., ||y|| < v|u|,
and therefore input-output stability.

To specialize Theorem 1 to extended spaces, set V = Lo
and use the semi-inner product (-, ), defined by projecting
both signals onto [0,7] and applying the L. inner product.
Then, use the fact that if H is a causal map, |Hz| < 7|z||
for all x € Lo if and only if ||Hz||r < 7||z||r for all  and
T (see, for example, [27, Lem. 6.2.11]).

Different choices of the matrices M and N allow the
representation of different cones. For example, we can rep-
resent different flavors of passivity (input-strict, output-strict,
extended), small-gain results, the circle criterion, and other
conic sectors that allow G or ® to be unbounded/unstable.

To illustrate these various transformations, consider for
example the classical passivity result by Vidyasagar, which is
a sufficient-only result, and may be found in [27, Thm. 6.7.43].

Theorem 3 (Vidyasagar). Consider the system
€1 = U1 — Y2,
ez = U2 + Y1,

Suppose there exist constants €1, €2, 61, 02 such that for all

&€ lye and for all T >0

(& G& = erlElF + 01l GElF,
(&, ®E)p > ea|€]1F + 62| PE||7-
Then the system is {s-stable if 61 + €2 > 0 and 05 + 1 > 0.

y1 = Gey
y2 = Pey

(Ta)
(7b)

Theorem 3 uses a negative sign convention and is expressed
in discrete time. To match 1, let ® — —® in Theorem 3 and
compare (3) and (5) to (7), which yields

1 1
N = {_151 2 } and M = {_812 _2} .
3 —€1 -3 —02
In Theorem 1, we require M + N < 0; thus é; + 2 > 0 and
d2 + €1 > 0, which recovers Theorem 3. A similar approach
can be used to recover all the results from Table I involving
static constraints. For a detailed proof, see [7].

Unlike Theorem 1, Theorem 2 does not specialize as nicely
to extended spaces. In particular, the construction of a worst-
case ¢ from Lemma 2 will not, in general, be causal. In order
to achieve interpolability, one must typically make additional
assumptions, such as G and ® being linear and time-invariant
(see Table I). In such cases, a worst-case ® can be chosen as
a static gain cascaded with a time delay [27, §6.6.(112,126)].

V. CONCLUSION

We studied robust stability results involving a plant G
connected with a nonlinearity ® belonging to a conic sector,
e.g. passivity, small-gain, circle criterion, conicity, or extended
conicity. Our goal was to distill the vast literature on this topic
and state the most general and unified results possible.
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Looking beyond the scope of this paper, it would be interest-
ing to see if our semi-inner product framework could be used
to recover results involving dynamic constraints (dissipativity,
multiplier theory, integral quadratic constraints).
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APPENDIX |
PROOFS FOR SEMI-INNER PRODUCT SPACES

A. Proof of Lemma 1

Proof. The result is trivial or vacuous if M is semidefinite, so
we will assume M is indefinite, writing

M = P*JP, ®)

where J := diag(1, —1) and P € F?*? is invertible. Pick any
0 <e<1andlet N=—M—eP*P. By assumption, we can
choose some ¢ € dom(G) such that

(o

Now pick e; =&, y1 = G&, and

ol = ][] e 2] =ermo 1]
Y2 €1 —Uu —u1 €1

By construction, this choice satisfies Item 1 of Lemma 1.
Substituting our choice of N into (9), we obtain

e a]) > =le e

Substituting the definitions of ui, us, €2, y2, M in terms of
Y1, €1, €, P, J, and using the inequality (10), we have

(- ])

=((I+eP'JP) Ej , M(I4+eP71JP) ED

2
(10)

(I+e)P [iﬂ ,P*MP (I +2J)P [Zj >

(I+eJ)P [zl} ,J(I+eJ)P v ] >

1 €1 |

—(P {91] (L% T +2eD)P [glb

€1 1

(:)(1+52)<{y1] , M [y1]> + 2¢||P yl]
€1 €1
2
P |:y1:| > 0’
€1
which verifies Item 2 of Lemma 1. Finally, we have:

Ll =)= H

)

ePljp {yl]
€1

‘gsn

where  := ||P~'JP|| > 0. Applying the triangle inequality,

_ || |U Y| Y1
== (] =l 2 )|

<o (1 D <ot

Rearranging, we obtain ||y > 1==%|ju||. Since ¢ can be
chosen arbitrarily small, we can make the bound ~ arbitrarily
large in Item 3 of Lemma 1, thus completing the proof. m

‘<£/{

B. Proof of Theorem 2

We begin by proving that a pair of points satisfying a
quadratic constraint can be extended to a linear relation that
satisfies the quadratic constraint everywhere.

Lemma 2 (extension lemma). Let V be a semi-inner product
space and let M = M* € F?*2, Suppose e,y € V satisfy

([ oo
ly y
There exists & € £ (V) such that:
1) (e,y) € @.
x x
2) <[(I>x} , M {@x_ > > 0 for all x € dom(®).

Moreover, if |le|| > 0, we can construct ® that is a linear
function, with dom(®) = V.

(1)

Using Lemma 2, we can prove Theorem 2 by contradiction.
Indeed, if Item (ii) of Theorem 1 fails, then for any v > 0,
there exist es, yo € V such that (4) and (1a), (1c), (1d) hold,
with |ly|| > v|lu||. Applying Lemma 2 to the pair (ez, y2), we
can produce ® € Z(V) C Cq such that (5) holds, and thus
(1b) holds, (u, y) € R,,, and therefore Item (iii) of Theorem 1
fails, as required. All that remains is to prove Lemma 2.

Proof. We begin by considering some special cases.

a) Special case with |le|| = 0: Here, (e, y) = 0 by Cauchy—
Schwarz. If ||y|| = 0, define ® := {(z,z) | ||z|| = ||z|| = 0}.
This is a degenerate case. If |ly|| > O instead, we have by

assumption that Mas||y||2 = ( ||, M L; > 0. Therefore,

Y
Mss > 0. Define @ = {(z,z) | ||2]| = 0}. Roughly, ® is the

linear relation whose graph is a vertical line.

b) Special case with |le|| > 0 and ||y|| = 0: As in the
previous case, we must have (e, y) = 0. By assumption,
Mai|le||? = <LZ , M [; > > 0. So, M1 > 0. Let &z := 0,

x x
s0 <[<I>x} . M @x}> = My|z|*> > 0 forallz € V.
Henceforth, we will assume that ||e|| > 0 and ||y|| > 0. Define
the normalized vectors é := ﬁ and § = ﬁ Also define
p := (&, 7). Note that by Cauchy—Schwarz, we have |p| < 1.5

¢) Special case: |p| = 1: Define &z = p%x and obtain:

(] el ]) = e G B =

SRecall that in general, inner products are elements of F, so p may be a
complex number.
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d) General case: |p| < 1: Due to (11), we have M £ 0.

So there must exist some 7 € F such that [1}* M [1] > 0.

For
xr =
and

Tey

n n
any x € V, apply the projection theorem to decompose

ZTey + 1, where ., is a linear combination of € and §
x is orthogonal to both € and y. This yields

() e (M)

T :

Note that if z = e, we have e,y = e and e; = 0. We also

have ||z||? = ||zey||? + ||z L ||*>. Define the unit vectors
; y—pe X pij — é
€] = —— and @ = —.
V1=l V1=lp?
The vectors € and ¢, are orthogonal to € and ¢, respectively.

Write My = |Mja|e’® (polar decomposition). Since My, =
M5, we have: e~ 2" M5 = My;. Finally, define ® as

Pz = HZHI (<é7xey>z) + 6_2i¢<é¢,$ey>?h) +nwL.
The function @ is linear and using the fact that e., = ¢
and e; = 0, it follows that ®e = y. Moreover, one can
check that || Pz, || = %eryﬂ and Re(Mw(:cey, Qzey) ) =

x Te Ty

EWW%Wmemﬂ%yﬂmﬁ+bM%m

T x
(o] lac])

o Tey Ley x| T

= , M + , M .

o] 2elaiz]) + ] el ])

The

ey Tey

. . xr
first term simplifies to: < LI)%J M |:q)xey:| >

Mnllxesz + 2Re<M12<$eya (I)xey>> + M22||¢’xey||2

2 llyll lyl?
[Zeyll” | M11 + 2Re(Mi2p) lel + Maa el
eryHQ M. 2 M M. 2
||6||2 ( 11”6” +2Re( 12<€7y>) + 22||y|| )
el /] 4[] o
lel® \lvl ™ Wi/~

The

Therefore, we have < [ * } , M [
dx

[1]
[2]
[3]
[4]

second term simplifies to

(] ]y o [ e ] 2o

X

N .
@z]> >0, as required. =
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