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Generalized Necessary and Sufficient Robust
Boundedness Results for Feedback Systems

Saman Cyrus, Member, IEEE , Laurent Lessard, Senior Member, IEEE

Abstract— Classical sufficient conditions for ensuring
the robust stability of a dynamical system in feedback
with a nonlinearity include passivity, small gain, circle,
and conicity theorems. We present a generalized version
of these results for arbitrary semi-inner product spaces.
Our result is purely algebraic, and holds even when the
conventional discrete or continuous-time causal dynamical
systems are replaced by general nonlinear relations, where
there need not exist a notion of time. Our result clarifies
when the sufficient conditions for robust stability are also
necessary, and explains why stronger assumptions such as
linearity and time-invariance are typically needed to prove
necessity in the conventional dynamical systems setting.

Index Terms— Conic sectors, Input-output stability, Nec-
essary and sufficient conditions, Nonlinear systems, Ro-
bust control, Stability analysis.

I. INTRODUCTION

ROBUST stability of interconnected systems has been
a topic of interest for over 75 years, dating back to

the seminal works of Lur’e [14], Zames [30], [31], and
Willems [28]. The standard input-output setup is illustrated in
Fig. 1, where systems G and Φ are connected in feedback, and
we seek conditions under which we can ensure the stability
of the closed-loop map (u1, u2) → (y1, y2).

Robust stability results typically assume a known G is
interconnected with some unknown, uncertain, or otherwise
troublesome Φ ∈ CΦ, where CΦ is known. Then, if certain
conditions on G and CΦ are met, we can ensure that the
interconnection of Fig. 1 is stable.

There are many robust stability results in the literature:
passivity theory, the small-gain theorem, the circle criterion,
graph separation, conic sector theorems, multiplier theory,
dissipativity theory, and integral quadratic constraints.1

The reason for the wide variety of robust stability results
is that different assumptions can be made about G and CΦ.
For example, G and Φ are typically causal operators on an
extended space of time-domain signals such as L2e or ℓ2e.
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Fig. 1. Feedback interconnection of systems G and Φ.

Additionally, G or Φ may be restricted to be linear, time-
invariant, or static. Finally, some results are stated as sufficient
conditions while others are both necessary and sufficient.

In spite of their diversity, robust stability results are typically
proven using the same elementary properties of inner product
spaces. A natural question to ask, which forms the basis of
our present work, is whether the multitude of existing results
can be viewed as consequences of a purely algebraic result.
We answer in the affirmative.

Main contribution: In Section II, we present Theorem 1, a
robust boundedness result involving interconnected relations
over a general semi-inner product space. Theorem 1 distills
the vast literature on robust stability into a simple and purely
algebraic result.

In Section III, we specialize Theorem 1 to L2e and ℓ2e
spaces, which reveals the connections between the algebraic
version of the result and notions of well-posedness, causality,
and stability. We also explain why stronger assumptions, such
as linearity and time-invariance of G, are often required in
order to achieve both sufficiency and necessity.

A. Related work
In Table I, we provide a summary of existing robust stability

results. In the “Direction” column, we distinguish between
sufficient-only results ( =⇒ ) and necessary-and-sufficient
results ( ⇐⇒ ).

a) Sufficient results: Classical sufficient results include the
passivity, small-gain, and circle theorems. These results are
mutually related via a loop-shifting transformation [1], and
were generalized to conic sectors [2], [30], [31].

Beyond conic sector constraints, graph separation [20],
[24] allows for nonlinear constraints, while multiplier the-
ory [9], dissipativity [28], and integral quadratic constraints
(IQCs) [17], [19], [26] allow for dynamic or time-varying
constraints. There have also been several works discussing
how these various frameworks are related [5], [10], [21]. In
Table I, we distinguish between static constraints (the focus
of the present work), and more general dynamic constraints,
which include multipliers, dissipativity theory, and IQCs.
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TABLE I
LITERATURE REVIEW OF ROBUST STABILITY RESULTS INVOLVING TWO INTERCONNECTED SYSTEMS (SEE FIG. 1). THE FIRST

GROUP OF ROWS ARE SUFFICIENT-ONLY RESULTS ( =⇒ ). THE SECOND GROUP ARE NECESSARY-AND-SUFFICIENT ( ⇐⇒ ). FOR

CONSTRAINTS ON G AND Φ ∈ CΦ WE DENOTE LINEAR (L), NONLINEAR (N), TIME-VARYING (TV), TIME-INVARIANT (TI), STATIC

(S), AND FADING-MEMORY (F). FOR EXAMPLE, “LTI” INDICATES LINEAR AND TIME-INVARIANT. SYMBOLS L2e AND ℓ2e DENOTE

EXTENDED SPACES (L2e FOR BOTH) AND S.I.P.S. DENOTES A SEMI-INNER PRODUCT SPACE. IN EXTENDED SPACES, G AND Φ ARE

CONSTRAINED TO BE CAUSAL. THERE IS NO SUCH REQUIREMENT FOR S.I.P.S., SINCE THERE NEED NOT EXIST A NOTION OF TIME.
THE FINAL COLUMN INDICATES WHETHER THE CONVERSE PROOF DIRECTION ( ⇐= ), IF APPLICABLE, EXPLICITLY CONSTRUCTS A

WORST-CASE Φ WHEN THE CONDITIONS ON G ARE VIOLATED. THE PRESENT WORK IS RESTRICTED TO STATIC CONSTRAINTS.

Reference Constraint Result Type Space G CΦ Direction Constructive

Vidyasagar [27, §6.6.(1,58)] static passivity & small gain L2e N N =⇒
Zames [30, Thm. 1–3] static conic L2e N N =⇒
Bridgeman & Forbes [3] static conic L2e N N =⇒
Zames [31, §3–4] static circle & multipliers L2e LTI NS =⇒
Desoer & Vidyasagar [9] dynamic multipliers L2e N N =⇒
Teel et al. [24] static graph separation L2e N N =⇒
Willems [28] dynamic dissipativity L2e N N =⇒
Pfifer & Seiler [19] dynamic dissipativity L2e LTI N =⇒
Megretski & Rantzer [17] dynamic IQC L2e LTI NS =⇒ †

Vidyasagar [27, §6.6.(112,126)] static small gain & circle L2e LTI N ⇐⇒ Yes
Khong & van der Schaft [13, Thm. 3] static passivity & small gain L2e LTI LTV ⇐⇒ No
Zhou et al. [32, Thm. 9.1] static small gain L2e LTI LTI ⇐⇒ Yes
Khong & Kao [12, Thm. 1] dynamic IQC L2e LTI LTI ⇐⇒ Yes
Shamma [22, Thm. 3.2] static small gain ℓ2e NF NF ⇐⇒ Yes
Cyrus & Lessard [8] static conic s.i.p.s. L N ⇐⇒ No
Present work static conic s.i.p.s. N N ⇐⇒ Yes
† The authors in [17] mention that their sufficient condition for robust stability is also necessary in the sense that a result in the spirit of

Lemma 1 holds via a suitable application of the S-lemma [18].

b) Necessary and sufficient results: When Φ is assumed to
be memoryless (but still possibly time-varying), the classical
passivity, small-gain, and circle theorems are only sufficient
for robust stability [4], [16].

Finding a robust stability condition that is both sufficient
and necessary requires stronger assumptions. The set CΦ
must be broadened to allow dynamic nonlinearities, and we
must typically assume that G is linear and time-invariant
(LTI). For example, the passivity and small gain results of
Vidyasagar [27, §6.6(112,126)] and Khong et al. [13, Thm. 3]
assume G is LTI. The small-gain result of Zhou et al. [32,
Thm. 9.1] and the converse IQC result of Khong et al. [12]
make the stronger assumption that both G and Φ are LTI.
Finally, Shamma’s small-gain result [22, Thm. 3.2] holds when
both G and Φ are nonlinear and time-varying, but requires a
fading memoryassumption, which allows the system response
to be approximated by that of a linear system.

B. Notation
a) Preliminaries: The set F refers to the field of real or

complex numbers. The complex conjugate of x ∈ F is x̄ and
the conjugate transpose of X ∈ Fm×n is X∗. We use ⪯, ≺,
≻, ⪰ to denote the (semi)definite partial ordering in Fn×n.

b) Semi-inner products: A semi-inner product space is a
vector space V over a field F equipped with a semi-inner
product2 ⟨·, ·⟩, which is an inner product whose associated

2We use the convention that a semi-inner product is linear in its second
argument, so ⟨x, ay + bz⟩ = a ⟨x, y⟩ + b ⟨x, z⟩ for all x, y, z ∈ V and
a, b ∈ F. Also, ⟨x, y⟩ = ⟨y, x⟩.

norm is a seminorm. In other words, ∥x∥ :=
√
⟨x, x⟩ ≥ 0 for

all x ∈ V , but ∥x∥ = 0 does not imply that x = 0.
c) Relations: A relation R on V is a subset of the product

space R ⊆ V × V . We write R(V) to denote the set of all
relations on V . The domain of R is defined as dom(R) :=
{x ∈ V | (x, y) ∈ R for some y ∈ V}. For any x ∈ dom(R),
we write Rx to denote any y ∈ V such that (x, y) ∈ R.

We define V2 as augmented vectors ( u1
u2

) where u1, u2 ∈ V .
We overload matrix multiplication in V2; for any ξ, ζ ∈ V2

and any matrix N ∈ F2×2,

Nξ =

[
N11 N12

N21 N22

] [
ξ1
ξ2

]
:=

[
N11ξ1 +N12ξ2
N21ξ1 +N22ξ2

]
∈ V2.

Likewise, inner products in V2 have the interpretation

⟨ξ, ζ⟩ =
〈[

ξ1
ξ2

]
,

[
ζ1
ζ2

]〉
:= ⟨ξ1, ζ1⟩+ ⟨ξ2, ζ2⟩ .

We omit subscripts when referring to many of the ui, yi, ei
from Fig. 1 at once. For example, (u, y, e) is shorthand for
(u1, u2, y1, y2, e1, e2). We also define the following relations,
which characterize pairs of consistent signals.

Ruy :=
{
(u, y) ∈ V2 × V2

∣∣ (1) holds for some e ∈ V2
}
,

Rue :=
{
(u, e) ∈ V2 × V2

∣∣ (1) holds for some y ∈ V2
}
.

II. RESULTS FOR SEMI-INNER PRODUCT SPACES

Our main result is a robust boundedness theorem defined
over a general semi-inner product space. We consider the setup
of Fig. 1, where G ∈ R(V) and Φ ∈ CΦ ⊆ R(V) are (possibly
nonlinear) relations.
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Theorem 1. Let V be a semi-inner product space and let
M = M∗ ∈ F2×2. Suppose G ∈ R(V) and CΦ ⊆ R(V).
Consider the three following statements.

(i) There exists N = N∗ ∈ F2×2 satisfying M +N ≺ 0
such that the following property of G holds.〈[

Gξ
ξ

]
, N

[
Gξ
ξ

]〉
≥ 0 for all ξ ∈ dom(G). (3)

(ii) There exists γ > 0 such that for all (u, y, e), if〈[
e2
y2

]
, M

[
e2
y2

]〉
≥ 0 (4)

and (1a), (1c), (1d) are satisfied, then ∥y∥ ≤ γ∥u∥.

(iii) There exists γ > 0 such that for all Φ ∈ CΦ, if〈[
ξ
Φξ

]
, M

[
ξ
Φξ

]〉
≥ 0 for all ξ ∈ dom(Φ), (5)

then for all (u, y) ∈ Ruy , the following bound holds

∥y∥ ≤ γ∥u∥. (6)

The following equivalences hold:
• Graph separation: (i) ⇐⇒ (ii).
• Interpolation: (ii) =⇒ (iii).

A pedagogical benefit of Theorem 1 is that it splits the ro-
bustness result into a graph separation statement that concerns
G and an interpolation statement that concerns CΦ.

The result (i) ⇐⇒ (ii) relates boundedness G in (3) to
boundedness of the closed-loop map when Φ is replaced by the
inequality (4). This graph separation result holds for arbitrary
G (any nonlinear relation), and does not depend on Φ or CΦ.

The result (ii) =⇒ (iii) relates the inequality (5) satisfied
by Φ to the inequality (4) satisfied by the inputs and outputs
of Φ. Whether or not the converse holds depends on whether
the set CΦ is rich enough to allow interpolation. In other
words, given the signals e2 and y2 satisfying (4), does there
necessarily exist a Φ ∈ CΦ such that y2 = Φe2?

Theorem 1 is sufficient for robust boundedness because it
proves (i) =⇒ (iii). In Section II-C, we show that with suitable
assumptions about G and CΦ, we can satisfy the interpolation
requirement and therefore make the result necessary as well.

Since Theorem 1 is expressed using a general semi-inner
product space, it holds even when G is not a dynamical system
but rather a general nonlinear relation. So there need not exist
a notion of time. We make a few additional remarks.

Remark 1. Equation (6) can be stated in terms of (u, e)
instead of (u, y). Specifically, (6) holds for all (u, y) ∈ Ruy

if and only if there exists some γ̄ > 0 such that ∥e∥ ≤ γ̄∥u∥
holds for all (u, e) ∈ Rue.

Remark 2. In Item (i), we can equivalently replace N by
−M − εI and modify the statement preceding (3) to: “There
exists some ε > 0 such that G satisfies (3)”. We chose the
form with M and N for aesthetic reasons.

Remark 3. Theorem 1 can be generalized to G ∈ R(Vn,Vm)
(the set of relations on Vn×Vm) and Φ ∈ CΦ ⊆ R(Vm,Vn).
Here, M,N ∈ F(m+n)×(m+n) would be block 2× 2 matrices.

A. Proof of sufficiency for Theorem 1

We begin by showing that (i) =⇒ (ii) =⇒ (iii). This
proof is similar to [15, Thm. 1]. Pick any (u, y, e) such that
(1a), (1c), (1d), and (4) are satisfied. Let ξ = e1 in (3).
Using (1) to eliminate e1, e2, Equations (3) and (4) become:〈[ y1

u1+y2

]
, N

[ y1
u1+y2

]〉
≥ 0 and

〈[
u2+y1

y2

]
, M

[
u2+y1

y2

]〉
≥ 0.

Summing these two inequalities and collecting terms, we
obtain ⟨[ y1

y2 ] , (M +N) [ y1
y2 ]⟩ + 2

〈
[ y1
y2 ] ,

[
N12 M11

N22 M21

]
[ u1
u2

]
〉
+〈

[ u1
u2

] ,
[
N22 0
0 M11

]
[ u1
u2

]
〉
≥ 0. Since M + N ≺ 0 by assump-

tion, There exists η > 0 such that M + N ⪯ −ηI . Apply-
ing this inequality together with Cauchy–Schwarz3, we get
−η∥y∥2 + 2r∥y∥∥u∥+ q∥u∥2 ≥ 0, where r :=

∥∥[N12 M11

N22 M21

]∥∥
and q :=

∥∥[N22 0
0 M11

]∥∥ are standard spectral norms. Dividing
by η and completing the square, we can rewrite the last
inequality as

(
∥y∥ − r

η∥u∥
)2 ≤ r2+ηq

η2 ∥u∥2, which can be
rearranged to establish (ii) with γ = 1

η

(
r +

√
r2 + ηq

)
.

To prove (iii), consider some Φ ∈ CΦ for which (5) holds.
Next, pick (u, y) ∈ Ruy so that there exists (u, y, e) satisfying
(1). In particular, (1b) holds, so setting ξ = e2 in (5), we
obtain (4) and the rest of the proof is the same as above.

B. Necessity of graph separation in Theorem 1

A popular approach for proving (i) ⇐= (ii) is to use a
lossless S-lemma as in [13, Thm. 3] and [17]. However, the
S-lemma [18], [29] comes with a drawback: the set of signals
(u, y, e) that satisfy the loop equations (1a), (1c), (1d) must
be a subspace, which requires for example that G be linear. If
we assume G is linear, we can prove (i) ⇐= (ii) by adapting
the S-lemma for inner product spaces due to Hestenes [11,
Thm. 7.1, p. 354] and using a technique similar to that used
in [13]. Details of this approach may be found in [7], [8].

The linearity assumption on G can be dropped entirely if
we adopt a different proof approach. To this effect, we will
prove the contrapositive ¬(i) =⇒ ¬(ii) by directly constructing
signals (y, u, e) that violate the boundedness condition when
(i) fails to hold. Unlike the S-lemma, this approach does not
require linearity of G and has the benefit of being constructive,
so it produces worst-case signals (u, y, e).

Lemma 1 (worst-case signals). Consider the setting of Theo-
rem 1. Suppose that for any N satisfying M +N ≺ 0, there
exists ξ ∈ dom(G) such that

〈[
Gξ
ξ

]
, N

[
Gξ
ξ

]〉
< 0. Then,

for all γ > 0, there exists (u, y, e) such that:

1) Equations (1a), (1c), and (1d) hold.

2)
〈[

e2
y2

]
, M

[
e2
y2

]〉
≥ 0.

3) ∥y∥ > γ∥u∥.

Proof. See Appendix I-A for a detailed proof.

The implication (i) ⇐= (ii) of Theorem 1 now directly
follows from Lemma 1.

3A proof of the Cauchy–Schwarz inequality for general semi-inner product
spaces may be found in [6, §1.4].
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C. Necessity of interpolation in Theorem 1

The implications (i) ⇐⇒ (ii) =⇒ (iii) of Theorem 1
hold with great generality. However, the missing implication
(ii) ⇐= (iii) does not hold in general, because it depends
on the choice of G and CΦ. If CΦ is insufficiently expressive,
there may not exist a Φ ∈ CΦ that interpolates the closed-
loop signals found in (ii). We now explore some special cases
for which the missing implication holds; in other words, there
exists a Φ that interpolates the closed-loop signals.

Definition 1. We say that a pair (G, CΦ) is interpolable if such
a choice implies that (ii) ⇐= (iii) in Theorem 1.

We now describe simple scenarios in which interpolability
is guaranteed for the general semi-inner product setting. First,
we make the trivial observation that if Φ is unconstrained,
interpolation is always possible.

Proposition 1 (unconstrained case). If CΦ = R(V), then the
pair (G, CΦ) is interpolable for any G ∈ R(V).

Proof. If CΦ = R(V), then (4) and (5) are equivalent, as we
can choose the singleton relation Φ = {(e2, y2)}.

Proposition 1 is not particularly satisfying because it re-
quires the use of a singleton relation Φ. A more interesting
case is when we require that dom(Φ) = V .4 Our second result
states that interpolability holds for the set of linear relations.

Definition 2 (linear relation). Let V be a semi-inner product
space over a field F. Let x1, x2, y1, y2 ∈ V and α1, α2 ∈ F.
A relation R ∈ R(V) is linear if for all (x1, y1) ∈ R and
(x2, y2) ∈ R, we have (α1x1 + α2x2, α1y1 + α2y2) ∈ R. We
let L (V) ⊆ R(V) denote the set of all linear relations.

Theorem 2 (linear case). If CΦ = L (V), then the pair (G, CΦ)
is interpolable for any G ∈ R(V).

Proof. We explicitly construct a worst-case Φ ∈ L (V). See
Appendix I-B for a detailed proof.

Proposition 1 and Theorem 2 both provide conditions that
ensure necessity of Theorem 1. In both cases, there are no
constraints on G; it could be nonlinear, for example.

III. SPECIALIZATION TO EXTENDED SPACES

The most common application of robust stability is when
(y, u, e) are time-domain signals belonging to an extended
space such as L2e or ℓ2e [32]. This forces us to deal with
well-posedness, causality, and stability.

a) Well-posedness: Assuming G and Φ are relations, as we
do in Theorem 1, is not unprecedented in the literature [13],
[20], [25], [27], [30]. This ensures the closed-loop relations
Ruy and Rue are always well-defined, but they may be
empty. When G and Φ are assumed to be operators instead
of relations, then well-posedness must either be assumed or
proved. Specifically, we need an assurance of the existence
and uniqueness of solutions e and y for all choices of u.

4Relations Φ ∈ R(V) that satisfy dom(Φ) = V are known as serial or
left-total. They are also called multi-valued functions.

b) Causality: When working in extended spaces such
as L2e, a common assumption is that G and Φ are causal
operators [9], [17], [23], [27], [31], [32]. Then, a useful fact is
that a well-posed interconnection of causal maps is causal [25,
Prop. 1.2.14], so the closed-loop map will be causal.

c) Stability: The goal when working with time-domain
signals is typically to prove stability. With Theorem 1, we
prove boundedness of the closed-loop map, i.e., ∥y∥ ≤ γ∥u∥,
and therefore input-output stability.

To specialize Theorem 1 to extended spaces, set V = L2e
and use the semi-inner product ⟨·, ·⟩T defined by projecting
both signals onto [0, T ] and applying the L2e inner product.
Then, use the fact that if H is a causal map, ∥Hx∥ ≤ γ∥x∥
for all x ∈ L2 if and only if ∥Hx∥T ≤ γ∥x∥T for all x and
T (see, for example, [27, Lem. 6.2.11]).

Different choices of the matrices M and N allow the
representation of different cones. For example, we can rep-
resent different flavors of passivity (input-strict, output-strict,
extended), small-gain results, the circle criterion, and other
conic sectors that allow G or Φ to be unbounded/unstable.

To illustrate these various transformations, consider for
example the classical passivity result by Vidyasagar, which is
a sufficient-only result, and may be found in [27, Thm. 6.7.43].

Theorem 3 (Vidyasagar). Consider the system{
e1 = u1 − y2, y1 = Ge1
e2 = u2 + y1, y2 = Φe2

Suppose there exist constants ε1, ε2, δ1, δ2 such that for all
ξ ∈ ℓ2e and for all T ≥ 0

⟨ξ, Gξ⟩T ≥ ε1∥ξ∥2T + δ1∥Gξ∥2T , (7a)

⟨ξ, Φξ⟩T ≥ ε2∥ξ∥2T + δ2∥Φξ∥2T . (7b)

Then the system is ℓ2-stable if δ1 + ε2 > 0 and δ2 + ε1 > 0.

Theorem 3 uses a negative sign convention and is expressed
in discrete time. To match 1, let Φ 7→ −Φ in Theorem 3 and
compare (3) and (5) to (7), which yields

N =

[
−δ1

1
2

1
2 −ε1

]
and M =

[
−ε2 − 1

2
− 1

2 −δ2

]
.

In Theorem 1, we require M +N ≺ 0; thus δ1 + ε2 > 0 and
δ2 + ε1 > 0, which recovers Theorem 3. A similar approach
can be used to recover all the results from Table I involving
static constraints. For a detailed proof, see [7].

Unlike Theorem 1, Theorem 2 does not specialize as nicely
to extended spaces. In particular, the construction of a worst-
case Φ from Lemma 2 will not, in general, be causal. In order
to achieve interpolability, one must typically make additional
assumptions, such as G and Φ being linear and time-invariant
(see Table I). In such cases, a worst-case Φ can be chosen as
a static gain cascaded with a time delay [27, §6.6.(112,126)].

IV. CONCLUSION

We studied robust stability results involving a plant G
connected with a nonlinearity Φ belonging to a conic sector,
e.g. passivity, small-gain, circle criterion, conicity, or extended
conicity. Our goal was to distill the vast literature on this topic
and state the most general and unified results possible.
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Looking beyond the scope of this paper, it would be interest-
ing to see if our semi-inner product framework could be used
to recover results involving dynamic constraints (dissipativity,
multiplier theory, integral quadratic constraints).
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APPENDIX I
PROOFS FOR SEMI-INNER PRODUCT SPACES

A. Proof of Lemma 1

Proof. The result is trivial or vacuous if M is semidefinite, so
we will assume M is indefinite, writing

M = P ∗JP, (8)

where J := diag(1,−1) and P ∈ F2×2 is invertible. Pick any
0 < ε < 1 and let N = −M − εP ∗P . By assumption, we can
choose some ξ ∈ dom(G) such that〈[

Gξ
ξ

]
, N

[
Gξ
ξ

]〉
< 0. (9)

Now pick e1 = ξ, y1 = Gξ, and[
e2
y2

]
=

[
y1
e1

]
+

[
u2

−u1

]
, with

[
u2

−u1

]
= ε P−1JP

[
y1
e1

]
.

By construction, this choice satisfies Item 1 of Lemma 1.
Substituting our choice of N into (9), we obtain〈[

y1
e1

]
, M

[
y1
e1

]〉
> −ε

∥∥∥∥P [
y1
e1

]∥∥∥∥2. (10)

Substituting the definitions of u1, u2, e2, y2, M in terms of
y1, e1, ε, P , J , and using the inequality (10), we have〈[

e2
y2

]
, M

[
e2
y2

]〉
=

〈
(I + εP−1JP )

[
y1
e1

]
, M(I + εP−1JP )

[
y1
e1

]〉
=

〈
(I + εJ)P

[
y1
e1

]
, P−∗MP−1(I + εJ)P

[
y1
e1

]〉
(8)
=

〈
(I + εJ)P

[
y1
e1

]
, J(I + εJ)P

[
y1
e1

]〉
=

〈
P

[
y1
e1

]
,
(
(1 + ε2)J + 2εI

)
P

[
y1
e1

]〉
(8)
= (1 + ε2)

〈[
y1
e1

]
, M

[
y1
e1

]〉
+ 2ε

∥∥∥∥P [
y1
e1

]∥∥∥∥2
(10)
> ε

(
1− ε2

)∥∥∥∥P [
y1
e1

]∥∥∥∥2 ≥ 0,

which verifies Item 2 of Lemma 1. Finally, we have:∥∥∥∥[u1

u2

]∥∥∥∥ =

∥∥∥∥[ u2

−u1

]∥∥∥∥ =

∥∥∥∥εP−1JP

[
y1
e1

]∥∥∥∥ ≤ εκ

∥∥∥∥[y1e1
]∥∥∥∥,

where κ :=
∥∥P−1JP

∥∥ > 0. Applying the triangle inequality,

∥u∥ =

∥∥∥∥[u1

u2

]∥∥∥∥ ≤ εκ

∥∥∥∥[y1e1
]∥∥∥∥ = εκ

∥∥∥∥[ y1
y2 + u1

]∥∥∥∥
≤ εκ

(∥∥∥∥[y1y2
]∥∥∥∥+

∥∥∥∥[ 0
u1

]∥∥∥∥) ≤ εκ
(
∥y∥+ ∥u∥

)
.

Rearranging, we obtain ∥y∥ ≥ 1−εκ
εκ ∥u∥. Since ε can be

chosen arbitrarily small, we can make the bound γ arbitrarily
large in Item 3 of Lemma 1, thus completing the proof.

B. Proof of Theorem 2
We begin by proving that a pair of points satisfying a

quadratic constraint can be extended to a linear relation that
satisfies the quadratic constraint everywhere.

Lemma 2 (extension lemma). Let V be a semi-inner product
space and let M = M∗ ∈ F2×2. Suppose e, y ∈ V satisfy〈[

e
y

]
, M

[
e
y

]〉
≥ 0. (11)

There exists Φ ∈ L (V) such that:
1) (e, y) ∈ Φ.

2)
〈[

x
Φx

]
, M

[
x
Φx

]〉
≥ 0 for all x ∈ dom(Φ).

Moreover, if ∥e∥ > 0, we can construct Φ that is a linear
function, with dom(Φ) = V .

Using Lemma 2, we can prove Theorem 2 by contradiction.
Indeed, if Item (ii) of Theorem 1 fails, then for any γ > 0,
there exist e2, y2 ∈ V such that (4) and (1a), (1c), (1d) hold,
with ∥y∥ > γ∥u∥. Applying Lemma 2 to the pair (e2, y2), we
can produce Φ ∈ L (V) ⊆ CΦ such that (5) holds, and thus
(1b) holds, (u, y) ∈ Ruy , and therefore Item (iii) of Theorem 1
fails, as required. All that remains is to prove Lemma 2.

Proof. We begin by considering some special cases.
a) Special case with ∥e∥ = 0: Here, ⟨e, y⟩ = 0 by Cauchy–

Schwarz. If ∥y∥ = 0, define Φ := {(z, x) | ∥z∥ = ∥x∥ = 0}.
This is a degenerate case. If ∥y∥ > 0 instead, we have by

assumption that M22∥y∥2 =

〈[
e
y

]
, M

[
e
y

]〉
≥ 0. Therefore,

M22 ≥ 0. Define Φ = {(z, x) | ∥z∥ = 0}. Roughly, Φ is the
linear relation whose graph is a vertical line.

b) Special case with ∥e∥ > 0 and ∥y∥ = 0: As in the
previous case, we must have ⟨e, y⟩ = 0. By assumption,

M11∥e∥2 =

〈[
e
y

]
, M

[
e
y

]〉
≥ 0. So, M11 ≥ 0. Let Φx := 0,

so
〈[

x
Φx

]
, M

[
x
Φx

]〉
= M11∥x∥2 ≥ 0 for all x ∈ V .

Henceforth, we will assume that ∥e∥ > 0 and ∥y∥ > 0. Define
the normalized vectors ê := e

∥e∥ and ŷ := y
∥y∥ . Also define

ρ := ⟨ê, ŷ⟩. Note that by Cauchy–Schwarz, we have |ρ| ≤ 1.5

c) Special case: |ρ| = 1: Define Φx = ρ∥y∥
∥e∥x and obtain:〈[

x
Φx

]
, M

[
x
Φx

]〉
=

∥x∥2

∥e∥2

〈[
e
y

]
, M

[
e
y

]〉
≥ 0.

5Recall that in general, inner products are elements of F, so ρ may be a
complex number.
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d) General case: |ρ| < 1: Due to (11), we have M ⊀ 0.
So there must exist some η ∈ F such that

[
1
η

]∗
M

[
1
η

]
≥ 0.

For any x ∈ V , apply the projection theorem to decompose
x = xey + x⊥, where xey is a linear combination of ê and ŷ
and x⊥ is orthogonal to both ê and ŷ. This yields

xey :=

(
⟨ê, x⟩ − ρ⟨ŷ, x⟩

1− |ρ|2

)
ê+

(
⟨ŷ, x⟩ − ρ̄⟨ê, x⟩

1− |ρ|2

)
ŷ,

x⊥ := x− xey.

Note that if x = e, we have eey = e and e⊥ = 0. We also
have ∥x∥2 = ∥xey∥2 + ∥x⊥∥2. Define the unit vectors

ê⊥ :=
ŷ − ρê√
1− |ρ|2

and ŷ⊥ :=
ρ̄ŷ − ê√
1− |ρ|2

.

The vectors ê⊥ and ŷ⊥ are orthogonal to ê and ŷ, respectively.
Write M12 = |M12|eiφ (polar decomposition). Since M21 =
M12, we have: e−2iφM12 = M21. Finally, define Φ as

Φx :=
∥y∥
∥e∥

(
⟨ê, xey⟩ŷ + e−2iφ⟨ê⊥, xey⟩ŷ⊥

)
+ η x⊥.

The function Φ is linear and using the fact that eey = e
and e⊥ = 0, it follows that Φe = y. Moreover, one can
check that ∥Φxey∥ = ∥y∥

∥e∥∥xey∥ and Re
(
M12⟨xey,Φxey⟩

)
=

∥y∥
∥e∥∥xey∥2 Re(M12ρ). Thus,

[
x
Φx

]
=

[
xey

Φxey

]
+

[
x⊥
ηx⊥

]
and〈[

x
Φx

]
,M

[
x
Φx

]〉
=

〈[
xey

Φxey

]
,M

[
xey

Φxey

]〉
+

〈[
x⊥
ηx⊥

]
,M

[
x⊥
ηx⊥

]〉
.

The first term simplifies to:
〈[

xey

Φxey

]
,M

[
xey

Φxey

]〉
= M11∥xey∥2 + 2Re

(
M12⟨xey,Φxey⟩

)
+M22∥Φxey∥2

= ∥xey∥2
(
M11 + 2Re(M12ρ)

∥y∥
∥e∥

+M22
∥y∥2

∥e∥2

)
=

∥xey∥2

∥e∥2
(
M11∥e∥2 + 2Re (M12⟨e, y⟩) +M22∥y∥2

)
=

∥xey∥2

∥e∥2

〈[
e
y

]
,M

[
e
y

]〉
≥ 0.

The second term simplifies to〈[
x⊥
ηx⊥

]
,M

[
x⊥
ηx⊥

]〉
= ∥x⊥∥2

[
1
η

]∗
M

[
1
η

]
≥ 0.

Therefore, we have
〈[

x
Φx

]
,M

[
x
Φx

]〉
≥ 0, as required.

REFERENCES

[1] B. D. O. Anderson. The small-gain theorem, the passivity theorem and
their equivalence. Journal of the Franklin Inst., 293(2):105–115, 1972.

[2] L. J. Bridgeman and J. R. Forbes. The extended conic sector theorem.
IEEE Trans. Autom. Control, 61(7):1931–1937, 2016.

[3] L. J. Bridgeman and J. R. Forbes. A comparative study of input-output
stability results. IEEE Trans. Autom. Control, 63(2):463–476, 2018.

[4] R. Brockett. The status of stability theory for deterministic systems.
IEEE Trans. Autom. Control, 11(3):596–606, 1966.

[5] J. Carrasco and P. Seiler. Conditions for the equivalence between IQC
and graph separation stability results. Int. J. Control, 92(12):2899–2906,
2019.

[6] J. B. Conway. A course in functional analysis. Springer-Verlag, New
York, 1990.

[7] S. Cyrus. Stability of Interconnected Sector-bounded Systems, with Ap-
plication to Designing Optimization Algorithms. PhD thesis, University
of Wisconsin–Madison, 2021.

[8] S. Cyrus and L. Lessard. Unified necessary and sufficient conditions for
the robust stability of interconnected sector-bounded systems. In IEEE
Conf. Decision Contr., pages 7690–7695, 2019.

[9] C. A. Desoer and M. Vidyasagar. Feedback systems: input-output
properties, volume 55. SIAM, 1975.

[10] M. Fu, S. Dasgupta, and Y. C. Soh. Integral quadratic constraint
approach vs. multiplier approach. Automatica, 41(2):281–287, 2005.

[11] M. R. Hestenes. Optimization theory: The finite dimensional case. Wiley,
1975.

[12] S. Z. Khong and C.-Y. Kao. Converse theorems for integral quadratic
constraints. IEEE Trans. Autom. Control, 66(8):3695–3701, 2020.

[13] S. Z. Khong and A. J. van der Schaft. On the converse of the passivity
and small-gain theorems for input-output maps. Automatica, 97:58–63,
2018.

[14] A. Lur’e and V. Postnikov. On the theory of stability of control systems.
Applied mathematics and mechanics, 8(3):246–248, 1944.

[15] M. J. McCourt and P. J. Antsaklis. Control design for switched systems
using passivity indices. In Amer. Control Conf., pages 2499–2504, 2010.

[16] A. Megretski. Necessary and sufficient conditions of stability: A
multiloop generalization of the circle criterion. IEEE Trans. Autom.
Control, 38(5):753–756, 1993.

[17] A. Megretski and A. Rantzer. System analysis via integral quadratic
constraints. IEEE Trans. Autom. Control, 42(6):819–830, 1997.

[18] A. Megretski and S. Treil. Power distribution inequalities in optimization
and robustness of uncertain systems. J. Math. Syst., Estimation Contr.,
3(3):301–319, 1993.

[19] H. Pfifer and P. Seiler. Integral quadratic constraints for delayed
nonlinear and parameter-varying systems. Automatica, 56:36–43, 2015.

[20] M. G. Safonov. Stability and robustness of multivariable feedback
systems. MIT press, 1980.

[21] P. Seiler. Stability analysis with dissipation inequalities and integral
quadratic constraints. IEEE Trans. Autom. Control, 60(6):1704–1709,
2014.

[22] J. S. Shamma. The necessity of the small-gain theorem for time-varying
and nonlinear systems. IEEE Trans. Autom. Control, 36(10):1138–1147,
1991.

[23] A. R. Teel. On graphs, conic relations, and input-output stability of
nonlinear feedback systems. IEEE Trans. Autom. Control, 41(5):702–
709, 1996.

[24] A. R. Teel, T. T. Georgiou, L. Praly, and E. D. Sontag. Input-output
stability. In The control handbook, second edition: Control system
advanced methods, chapter 44. CRC Press, 2011.

[25] A. J. van der Schaft. L2-Gain and passivity techniques in nonlinear
control, Third edition. Springer, 2017.

[26] J. Veenman, C. W. Scherer, and H. Köroğlu. Robust stability and
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