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95302 Cergy-Pontoise Cedex, France

(Received 10 March 2023; revised 28 June 2023; accepted 31 October 2023; published 22 November 2023)

We investigate the full counting statistics of charge transport in U(1)-symmetric random unitary circuits.
We consider an initial mixed state prepared with a chemical potential imbalance between the left and right
halves of the system and study the fluctuations of the charge transferred across the central bond in typical
circuits. Using an effective replica statistical mechanics model and a mapping onto an emergent classical
stochastic process valid at large on-site Hilbert space dimension, we show that charge transfer fluctuations
approach those of the symmetric exclusion process at long times, with subleading t−1=2 quantum
corrections. We discuss our results in the context of fluctuating hydrodynamics and macroscopic
fluctuation theory of classical nonequilibrium systems and check our predictions against direct matrix-
product state calculations.

DOI: 10.1103/PhysRevLett.131.210402

Introduction.—The longtime dynamics of generic many-
body quantum systems is expected to be effectively
classical. Starting from a pure initial state, the local
properties of chaotic systems quickly thermalize: the
expectation value of local operators can be described by
an effective Gibbs ensemble with spatially varying
Lagrange multipliers such as temperature. The resulting
evolution from local to global equilibrium is then described
by the classical equations of hydrodynamics. However,
the advent of quantum simulator platforms such as cold
atoms [1–14], trapped ions [15–17], or superconducting
arrays [18–21] has made it possible to measure not only
local expectation values but also their full quantum sta-
tistics. Whether there exists an emergent classical descrip-
tion of such fluctuations in generic, chaotic many-body
quantum systems is an open question.
Consider a one-dimensional quantum system with a

conserved charge that is prepared with a domain-wall
chemical potential imbalance across the central bond
μL ¼ −μR ¼ μ. By measuring the charge in the right half
of the system at times 0 and t, experiments reveal “quantum
snapshots” of the charge transfer Q across the central bond
(from the left to the right). By repeating the experiment, one
has access to the full distribution of measurement outcomes
PtðQÞ. While the average of that distribution is described
by hydrodynamics—which in the case of a single con-
served charge simply reduces to a diffusion equation—
higher cumulants describe current fluctuations and the full
counting statistics (FCS) of charge transport [22–29].
Computing the FCS in many-body quantum systems is a

formidable task, and exact or mean field results have only
been achieved in a few cases, notably in noninteracting

fermion models [30–37], integrable systems [38–49], and
in quantum dots or few qubit models [50–57]. While there
is currently no exact result pertaining to chaotic many-body
quantum systems, charge current fluctuations are expected
to be subject to the large deviation principle [58–60]: all
cumulants of charge transfer should scale in the same way
with time, as

ffiffi
t

p
for a diffusive system in one dimension. In

the context of classical stochastic models with a conserved
charge, the emergence of the large deviation principle is
understood within a general formalism known as macro-
scopic fluctuation theory (MFT) [61]. MFT is a toolbox for
solving the noisy diffusion equation obtained from pro-
moting the hydrodynamic equation to a nonlinear fluctuat-
ing hydrodynamic theory by adding a noise term to
the current, with strength determined by a fluctuation-
dissipation theorem. MFT has been very successful in
describing stochastic classical systems, and has recently
been used to compute the FCS of a paradigmatic integrable
Markov chain, the (simple) symmetric exclusion process
(SEP) [62,63].

Quantum systems have intrinsic quantum fluctuations,
and it is natural to wonder whether they can be captured by
an emergent classical description such asMFT. In this Letter,
we investigate the FCS in an ensemble of diffusive chaotic
models—random unitary circuits with a conserved U(1)
charge [64,65]. Quantum systems with a conserved charge
are endowed with current fluctuations and counting statis-
tics. While the quantum many-body dynamics of individual
circuit realizations is generally inaccessible, by ensemble
averaging, we will study the dynamics of typical circuit
realizations. At the level of mean transport, this is known to
yield a classical stochastic description [64–67]. In this work
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we show that a classical stochastic process in fact describes
the entire (late time) FCS and quantify the subleading
corrections.
In order to capture typical current fluctuations within a

single circuit realization, circuit averaging must be per-
formed at the level of cumulants, which are polynomial in
the system’s density matrix. By doing so, we map the
problem of computing cumulants onto that of expectation
values in replica statistical mechanics (SM) models. By
simulating the SM time evolution using matrix-product
states, and separately, by introducing an effective stochastic
model of coupled SEP chains, we show that the quantum
corrections to the higher order cumulants are subleading.
This leads to a latetime FCS consistent with a simple
fluctuating hydrodynamics for the coarse-grained charge
density ρðx; τÞ [62] with rescaled space-time coordinates
x ¼ j=l and τ ¼ t=l2,

∂τρ ¼ −∂xj; j ¼ −DðρÞ∂xρþ
ffiffiffiffiffiffiffiffiffiffiffiffi
2σðρÞ
l

r
ξ; ð1Þ

where ξðx; τÞ is a Gaussian white noise with zero mean and
unit variance, and l is the size of the hydrodynamic cells
over which ρ is coarse grained. The only microscopic input
in this equation are the diffusion constantDðρÞ ¼ 1 and the
conductivity σðρÞ ¼ DðρÞχsðρÞ, with χsðρÞ ¼ ρð1 − ρÞ,
which characterize both random quantum circuits and
SEP. The noise term in Eq. (1) is set by the fluctuation-
dissipation theorem to preserve equilibrium charge fluctu-
ations, making this equation a natural candidate for a
fluctuating hydrodynamic theory of random quantum
circuits. We confirm this result by computing the FCS in
individual quantum circuits using matrix-product state
techniques [68] (Fig. 1) as an independent check to our
effective stochastic theory. Our results establish the emer-
gence of “classicality” at long times in quantum systems,
even at the level of fluctuations.
Model and measurement scheme.—We work with a one-

dimensional chain, in which each site is composed of a
charged qubit with basis states jq ¼ 0; 1i, and a neutral qudit
of dimension d, yielding a single-site Hilbert space Hloc≡
C2 ⊗ Cd. The system evolves via the application of layers of
random nearest-neighbor unitary gates in a brick-wall pattern
(see Fig. 1). The unitary gates conserve the total charge
on the twosites, but areotherwiseHaar random[64,65].This is
a generic model of hard-core bosons, or equivalently spinless
fermions (via a Jordan-Wigner transformation); since hard-
core and non-hard-core bosons have the same coarse-grained
dynamics at high temperatures [70,71], we expect our results
to also apply to generic bosons.
Unitary evolution and projective measurement ensures

that the system’s charge dynamics is endowed with current
fluctuations.Wewill investigate the charge transferQ across
the central bond in a time window ½0; t� by following the
two-time projectivemeasurement protocol [72–77] in Fig. 1,

i.e.,measuring the operator Q̂R for the charge in the right half
of the system at times 0 and t. The FCS for this measurement
setup is characterized by the cumulant generating function
(CGF) χðλÞ≡ logheiλQit, where the average hfðQÞit ¼P

Q PtðQÞfðQÞ is over repetitions of the measurement
protocol and PtðQÞ is the probability to measure a charge
transferQ. As shown in [50], writingPtðQÞ in terms of Born
probabilities enables us to write the average over measure-
ments as a quantum expectation value [68],

heiλQit ¼ hT eiλΔQ̂Ri0 ≡ Tr
h
T eiλΔQ̂R ρ̂0

i
; ð2Þ

where ΔQ̂R ≡ Q̂RðtÞ − Q̂Rð0Þ and Q̂RðtÞ≡UðtÞQ̂RUðtÞ†
is the Heisenberg evolved charge operator. The noncom-
mutativity of quantumdynamics requires the use of the time-
ordering T [24,78,79]. The density matrix ρ̂0 is related to
the initial state ρ̂ by the quantum channel ρ̂0 ¼ P

q Pqρ̂Pq,
where Pq are projectors onto the charge sector QR ¼ q.
For initial states with a chemical potential imbalance,
ρ̂ ∝ exp½μQ̂L − μQ̂R�, we simply have ρ̂0 ¼ ρ̂.
The circuit averaged charge dynamics is known to map

onto that of a discrete-time symmetric simple exclusion
process [64,65,80] with a brick-wall geometry, i.e.,
PtðQÞ ¼ Pt;SEPðQÞ, where O refers to the averaging O
over circuits—all of the quantum fluctuations are lost in the
circuit averaged moments of charge transfer. To capture
the FCS in typical quantum circuits, we focus on self-
averaging quantities, in particular, the cumulants of charge
transfer. The cumulants are related to the generating
function by CmðtÞ≡ ð−i∂λÞmχðλÞjλ¼0. To compute the
nth cumulant, we introduce an often-used n-replica

FIG. 1. (a) A two-time measurement protocol for charge
transfer across the central bond in a random unitary circuit with
a U(1) conserved charge. The charge in the right half of the
system is measured at times 0 and t. (b) The cumulant generating
function χðλ; tÞ with a step initial state (μ ¼ ∞) at times t ¼ 10
and t ¼ 25 for different circuit realizations (multicolored) from
TEBD simulations, the circuit averaged CGF with 35 samples
(red dashed line), and the latetime analytical prediction for the
SEP CGF [69] (black solid line). The two FCS snapshots show
self-averaging of the FCS; circuit-to-circuit fluctuations in the
rescaled CGF χ=

ffiffi
t

p
decay as Oð1=tÞ [68].
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statistical mechanics model [64,81–86], expressing each
cumulant as a statistical expectation value.
Mapping to a statistical mechanics model.—By circuit

averaging, we reduce the size of the state space needed to
describe the replicated model. The Haar average of a
replicated gate, Ū ≡U⊗n ⊗ U�⊗n, projects onto a smaller
space of states characterized by only the local charge
degrees of freedom and a permutation degree of freedom
σ ∈ Sn that defines a pairing between the n replicas at each
site (specifically, between the n conjugated and uncon-
jugated replicas).
The circuit average of the replicated circuit is equivalent

to a statistical mechanics model [64,66,81–85,87–91] with
the permutation degrees of freedom living on the vertices
and the charge configurations on the edges. The partition
function for this statistical mechanics model is given by a
sum over the charge configurations and permutations
(compatible with the charges) with statistical weights
associated with each edge [64,66,67].
In the SM model, d → ∞ locks together neighboring

permutations, and together with the initial and final boun-
dary conditions σ0 ¼ σt ¼ 1, the n-replica model decouples
into n independent discrete-time SEP chains. Letting d be
large but finite allows different permutations to appear
during the dynamics; domain walls between domains of
different permutations σ and τ have an energy cost of
O½jστ−1j logðdÞ� per unit length of domain wall [82] (jσj
is the transposition distance of σ from 1). This is the basis of
a large-d expansion that is the focus of the next section.
We use the time-evolving block decimation (TEBD)

algorithm [92–94] to apply the n ¼ 2 SM transfer matrix,
and compute exactly the charge transfer variance C̄2, which
is given as an SM expectation value. Denoting the n-replica
expectation value by h·in-rep, and using superscripts to
indicate in which replica an observable acts, the variance
is given by

C2ðtÞ ¼ hT ΔQ̂ð1Þ2
R − ΔQ̂ð1Þ

R ΔQ̂ð2Þ
R i2-rep: ð3Þ

Usingmaximumbond dimension χ ¼ 1500, we compute C̄2

for different initial chemical potential imbalances μ and
for local Hilbert space dimensions q≡ 2d ¼ 3, 4, 6, 8 [95].
The results for μ ¼ 0.1 are shown in Fig. 2(a) and
results for μ ¼ 2 and ∞ can be found in the Supplemental
Material [68]. By subtracting the variance for q ¼ ∞ (i.e.,
the SEP variance), we isolate the quantum contributions to
C̄2, which we callΔC2, and find that these decay as t−1=2 for
all q [inset of Fig. 2(a)]. The n-replica SM model requires a
local state space of dimension 2nn!, putting higher cumu-
lants beyond reach with TEBD. In order to access the
higher cumulants, and to find a theoretical explanation for
the approach to SEP at n ¼ 2, we develop an effective
stochastic model for the charge dynamics in the replicated
SM models.
Effective stochastic model.—At large d, the lowest

energy contributions to the SM free energy come from
dilute configurations of small domains of single trans-
positions in an “all-identity” background. The smallest of
these domains—or bubbles—have the lowest possible
energy cost of 4 logðdÞ. All configurations of these bubbles
can be counted in the brick-wall circuit picture by inserting
a projector P1 onto the identity permutation subspace in
between every replicated gate Ū.
Upon doing this, we can replace Ū with a gate GðnÞ that

explores only the σ ¼ 1 subspace but has a modified charge
dynamics [68]:

ð4Þ

FIG. 2. Circuit averaged charge transfer cumulants C̄n for U(1) charge-conserving random unitary circuits at different local Hilbert
space dimension q ¼ 3, 4, 6, 8 and in a discrete-time symmetric simple exclusion process, computed using TEBD applied to the SM
transfer matrix: (a) the variance at chemical potential imbalance μ ¼ 0.1 (main) and the difference from SEP ΔC2 (inset) with data from
a replica statistical mechanics model and an effective stochastic process; (b) the third cumulant (rescaled by the interchain coupling
aðdÞ) for a softened stochastic model with Hamiltonian H3 [see Eq. (7)] (main) and the approach to SEP of the circuit averaged third
cumulant (inset); (c) a proxy for the excess kurtosis showing a t−1=2 approach to a Gaussian κ ¼ 3 (main) and the approach to SEP of the
circuit averaged fourth cumulant at equilibrium (inset).
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The result is an effective Markov process described by an
n-chain ladder with hard-core random walkers on each
chain and a hopping rate that is conditional on the local
occupancy of the other chains. More concretely, the model
is that of n discrete-time SEP chains with pairwise local
interactions between chains—when two chains have the
same (different) charge configuration at a pair of neighbor-
ing sites, the interaction biases transitions in favor of states
in which both chains have the same (different) configura-
tions. The transfer matrix is given by a product of even
and odd layers of two-site operators, T ¼ TETO with
TE=O ¼ Q

j∈ even=odd Tj;jþ1. Representing a charge with a
red dot and focusing on n ¼ 2 replicas (labeled 1,2), the
modified transitions on a pair of sites ði; jÞ are given by

ð5Þ

where the transition probabilities are p ¼ ½ð1þ aÞ=4� and
r ¼ ½ð1 − aÞ=4� with aðdÞ ¼ ½4d4 − 1�−1. All other tran-
sitions are as given for decoupled SEP chains (charges
hopping with probability 1=2). The derivation of the
Markov process is described in detail in the Supplemental
Material [68].
This effective model inherits an n-fold SU(2) invariance

(one for each chain) from the SM model, allowing for
arbitrary rotations of the charge basis jQ ¼ 0; 1Þ in each
chain (see SupplementalMaterial for details [68]). Choosing
a rotated basis [fj↑Þ ∝ j0Þ þ j1Þ; j↓Þ ∝ j0Þ − j1Þg], the nth
cumulant can be written in terms of matrix elements of the
n-chain transfer matrix Tn, with the initial and final states
having at most n magnons (overturned spins). This reduces
the problem of calculating Cn to the diagonalization of an
Ln × Ln matrix.
Results.—By applying the Markov process transfer

matrix exactly, we calculate the second and third cumulants
at different biases and the fourth cumulant in equilibirum.
We find that in all cases, the effective evolution approaches
SEP as ΔCn ≡ C̄n − CSEP

n ∼ aðdÞt−1=2 (see the insets in
Fig. 2 and also Ref. [68]). The variance data show excellent
agreement between the SM model and the effective model.
In chaotic models at equilibrium (no bias, μ ¼ 0), we

expect that the distribution PtðQÞ will approach a Gaussian
at late times. However, even longtime deviations from
Gaussianity are universal and are captured by an effective
classical stochastic model—SEP in the case of random
circuits. For example, using standard SEP results [69], we
find that at half filling, the average equilibrium excess
kurtosis decays in a universal way as

κ − 3 ¼ ð4 − 3
ffiffiffi
2

p Þ ffiffiffi
π

p
2

ffiffi
t

p þ � � � ; ð6Þ

independently of the value of q. Circuit averaging quan-
tities with the evolution unitary in the denominator, such as
kurtosis, requires a replica trick. To avoid this, we calculate

the proxy κ̃ ≡ ðμ4=σ4Þ that averages the numerator and
denominator separately (μ4 is the fourth central moment
and σ is the standard deviation) and find the same universal
approach to a Gaussian, κ ¼ 3, for different q [Fig. 2(c)].
We have accentuated the variations between models by
using unphysical local Hilbert space dimensions q.
Effective Hamiltonian.—To understand the approach to

SEP at long times, we canmap the effective n-chainMarkov
processes to an effective ferromagnetic Hamiltonian.
We do this by softening the transfer matrix, Tn → e−Hn .
The effective Hamiltonian is given by

Hn ≡
X
j

Xn
α¼1

PðαÞ
j;jþ1 − aðdÞ

X
j

X
α<β

PðαÞ
j;jþ1P

ðβÞ
j;jþ1; ð7Þ

where the superscripts indicate in which chain an operator
acts and where the second term contains a sum over distinct
pairs of chains.Wehavedropped subleadingOð1=d8Þ terms.
In terms of Heisenberg spin interactions, the projector P is
given byPj;jþ1 ¼ 1

4
− Sj · Sjþ1. The imaginary time dynam-

ics is then dominated at late times by the low energy physics
of (7). We study the low energy spectrum for n ¼ 2
using standard spin-wave methods [68] and find that, at
late times, the quantum contribution to the charge transfer
variance is

ΔCH
2 ≈

a tanhðμ=2Þ2
16

ffiffiffiffiffi
πt

p ; ð8Þ

where the superscript H indicates that this prediction is for
the continuous time stochastic model with imaginary time
Hamiltonian dynamics [68]. We also consider the third
cumulant in the softened stochastic model, finding the
familiar t−1=2 decay of quantum fluctuations [Fig. 2(b)]
from numerics and theoretical predictions in the linear
response regime (μ ≪ 1 [68]). This general scaling can
be generalized to higher cumulants using a simple renorm-
alization group (RG) argument based on power counting:
because of the imaginary time evolution, the longtime
dynamics is controlled by the low energy properties of
Eq. (7). Using standard spin-coherent state path integral
techniques, it is straightforward to show that the perturbation
coupling the replicas with strength aðdÞ has scaling
dimension Δ ¼ 4, and is thus irrelevant in the RG sense.
At long times, we thus expect the different replicas (SEP
chains) to be effectively decoupled so that hOin-chain ¼
hOiSEPð1þOðt−1ÞÞ.
The asymptotic decoupling between replicas also estab-

lishes that circuit-to-circuit fluctuations are suppressed at
long times. To see this, consider an n-copy quantity A (this
could be mean charge transfer for n ¼ 1 or charge transfer
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variance for n ¼ 2), the circuit average of A is given
by Ā ¼ hXin-chain for some operator X on n replicas,
whereas the circuit-to-circuit fluctuations are controlled

by ðA − ĀÞ2 ¼ hX ⊗ Xi2n-chain − hXi2n-chain. Using the
asymptotic decoupling of the SEP chains, we have the
aforementioned suppression of circuit-to-circuit fluctua-
tions, VarðAÞ=Ā2 ∼ t−1. Therefore, the FCS of individual
quantum circuits approaches the SEP predictions as

χðλÞ= ffiffi
t

p ¼ χðλÞ= ffiffi
t

p þOð1=tÞ; ð9Þ

with χ̄=
ffiffi
t

p
→ χSEP=

ffiffi
t

p
as t → ∞. To verify this prediction,

we have computed the FCS of individual random quantum
circuits for a domain-wall initial state (μ ¼ ∞) using
standard counting field techniques [68] (Fig. 1). We find
that the rescaled CGF χðλÞ= ffiffi

t
p

is indeed self-averaging
with Oð1=tÞ fluctuations, and does approach the SEP
predictions at long times [68].
Discussion.—Our main result is that charge transfer

fluctuations in random charge-conserving quantum circuits
is controlled by an effective SEP stochastic model at long
times: Cn ¼ CSEP

n þOðt−1=2Þ. The full cumulant generat-
ing function of individual random circuits χðλÞ ≈ χðλÞmust
then take the same form as that of SEP at late times,

χðλÞ≡ logheiλQi ≈ χSEPðλÞ. The symmetric exclusion proc-
ess generating function is known analytically [69] from
integrability, and is given by

χðλÞ ≈ ffiffi
t

p
FðωÞ; FðωÞ ¼ 1ffiffiffi

π
p

X∞
n¼1

ð−1Þnþ1

n3=2
ωn; ð10Þ

where ω ¼ ρLðeiλ − 1Þ þ ρRðe−iλ − 1Þ þ ρLρRðeiλ − 1Þ
ðe−iλ − 1Þ and ρL=R ¼ ½eμL=R=ð1þ eμL=RÞ� is the initially
local charge density in the left (L) and right (R) halves of
the system [96]. The same FCS was recently shown to
emerge from MFT [62] from solving Eq. (1) directly. Our
results thus establish that the current fluctuations of
individual realizations of random quantum circuits are
described by the simple fluctuating hydrodynamic equa-
tion (1). To fully establish the validity of MFT to many-
body quantum systems, it would be interesting to consider
ensembles of circuits with more general diffusion constants
DðρÞ: there as well we expect a similar mapping onto
effective classical stochastic models to the one we have
found here, with irrelevant interreplica couplings as in (7).
We leave the study of such generalizations to future work.
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