
A Tutorial on a Lyapunov-Based Approach to the

Analysis of Iterative Optimization Algorithms

Bryan Van Scoy1 Laurent Lessard2

Abstract

Iterative gradient-based optimization algorithms are
widely used to solve difficult or large-scale optimization
problems. There are many algorithms to choose from,
such as gradient descent and its accelerated variants such
as Polyak’s Heavy Ball method or Nesterov’s Fast Gradi-
ent method. It has long been observed that iterative al-
gorithms can be viewed as dynamical systems, and more
recently, as robust controllers. Here, the “uncertainty”
in the dynamics is the gradient of the function being op-
timized. Therefore, worst-case or average-case perfor-
mance can be analyzed using tools from robust control
theory, such as integral quadratic constraints (IQCs). In
this tutorial paper, we show how such an analysis can
be carried out using an alternative Lyapunov-based ap-
proach. This approach recovers the same performance
bounds as with IQCs, but with the added benefit of con-
structing a Lyapunov function.

1 Introduction

In this paper, we consider unconstrained optimization
problems of the form minx∈Rd f(x), where f : Rd → R is
a continuously differentiable function.

Iterative gradient-based optimization algorithms at-
tempt to solve such problems by starting from some ini-
tial guess x0 ∈ Rd and iteratively updating xk in an effort
to converge to a local minimizer x⋆ ∈ argminx f(x). The
simplest such algorithm is gradient descent (GD), which
uses the update rule

xk+1 = xk − α∇f(xk). (GD)

Intuitively, each step moves in the direction of the neg-
ative gradient (steepest descent direction). Here, α is
the stepsize, which is a tunable parameter. Generally, a
larger stepsize can result in faster convergence, but if the
stepsize is too large, the algorithm may fail to converge.

1B. Van Scoy is with the Department of Electrical and Com-
puter Engineering at Miami University, Oxford, OH 45056, USA
bvanscoy@miamioh.edu

2L. Lessard is with the Department of Mechanical and Indus-
trial Engineering at Northeastern University, Boston, MA 02115,
USA l.lessard@northeastern.edu

This material is based upon work supported by the National
Science Foundation under Grants No. 2136945, 2139482.

Gradient descent may converge slowly when the func-
tion is poorly conditioned (when the condition number
of the Hessian ∇2f is large). This is due to the fact that
the contours of f are elongated so the iterates tend to
oscillate in a non-productive manner. One way to allevi-
ate this problem is by using accelerated algorithms. For
example, Polyak’s Heavy Ball (HB) [1, §3.2.1] uses an
additional momentum term compared to (GD):

xk+1 = xk − α∇f(xk) + β(xk − xk−1). (HB)

Alternatively, Nesterov’s Fast Gradient (FG) [2, §2.2.1]
evaluates the gradient at an interpolated point yk:

xk+1 = yk − α∇f(yk),

yk+1 = xk+1 + β(xk+1 − xk).
(FG)

In Fig. 1, we compare the convergence of (GD), (HB),
and (FG) on a simple quadratic function.

-5 -4 -3 -2 -1 0 1 2 3 4 5

-2

-1

0

1

2
GD (79 steps)

HB (31 steps)

FG (43 steps)

Fig. 1: Comparison of different iterative algorithms applied
to f(u, v) = u2+10v2 (contour lines shown) with initial point
(−5, 1.5). Each algorithm is tuned to have the fastest possible
convergence rate. Steps (in brackets) indicate the number of
iterations needed to achieve ∥xk − x⋆∥ < 10−6. Gradient
descent (GD) is less efficient than the Heavy Ball (HB) or
Fast Gradient (FG) accelerated methods.

The tuning of an algorithm (the choice of α and β
in the examples above) can have a dramatic effect on
the convergence behavior. However, it is typically not
feasible to find the optimal tuning, as this would depend
on f , which presumably is a function complicated enough
to warrant being minimized numerically. Instead, we seek
performance guarantees over a class of functions. For
example, we may know a priori that f is convex, or that
it possesses a certain structural property, such as being
quadratic. In the optimization literature, this sort of
worst-case analysis is known as algorithm analysis.



1.1 The quadratic case

When f is a quadratic function as in least squares prob-
lems and as illustrated in Fig. 1, we can explicitly param-
eterize f , which makes the algorithm analysis straightfor-
ward. Specifically, ∇f(x) = Qx for some matrix Q. The
dynamical systems for GD, HB, FG are therefore linear
and convergence rate can be established via eigenvalue
analysis. This leads to the following result.

Proposition 1 ([3, Prop. 1]). Suppose f : Rd → R is
quadratic and satisfies 0 ≺ mId ⪯ ∇2f(x) ⪯ LId. The
smallest ρ such that the iterates of the algorithms GD,
HB, FG applied to f satisfy

∥xk − x⋆∥ ≤ Cρk∥x0 − x⋆∥ for some C > 0

is given by the following tunings (where κ := L/m)

Optimal tuning Rate bound

(GD) α = 2
L+m ρ = κ−1

κ+1

(HB) α = 4
(
√
L+

√
m)2

, β =
(√

κ−1√
κ+1

)2
ρ =

√
κ−1√
κ+1

(FG) α = 4
3L+m , β =

√
3κ+1−2√
3κ+1+2

ρ =
√
3κ+1−2√
3κ+1

The tunings from Proposition 1 are the same as those
used to generate the iterates shown in Fig. 1.

1.2 The smooth and strongly convex case

Another popular function class is the set of smooth and
strongly convex functions, which we denote Fm,L. These
are continuously differentiable functions f that satisfy:

(i) L-Lipschitz gradients: ∥∇f(x)−∇f(y)∥ ≤ L∥x−y∥
for all x, y ∈ Rd.

(ii) m-strong convexity: f(x)− m
2 ∥x∥

2 is convex.

Here, we assume m and L can be estimated or are other-
wise known a priori. This class of functions includes the
quadratic functions from Proposition 1, but also includes
non-quadratic functions. Functions of this type occur for
example in regularized logistic regression or support vec-
tor machines with a smoothed hinge loss [4].

The class of smooth strongly convex functions cannot
easily be parameterized, and the closed-loop dynamics
of algorithms such as GD, HB, FG are generally nonlin-
ear. Therefore, performing algorithm analysis requires a
different approach from the quadratic case. Classical ap-
proaches typically involve clever manipulation of the in-
equalities that characterize Lipschitz gradients or strong
convexity. One such approach is Nesterov’s estimating
sequences [2, §2.2.1], which yield the following result.

Proposition 2. Suppose f : Rd → R is smooth and
strongly convex with parameters 0 < m ≤ L. The

method (FG) with parameters α = 1
L and β =

√
L−

√
m√

L+
√
m

achieves ∥xk − x⋆∥ ≤ Cρk∥x0 − x⋆∥ for some C > 0,

with ρ =
√

1−
√

m
L .

1.3 Automated algorithm analysis

In recent years, there has been an effort to systematize,
unify, and automate the process of algorithm analysis.

Drori and Teboulle [5] pioneered the idea that the
worst-case performance of an algorithm (after a fixed
number of iterations) could be characterized by a
semidefinite program (SDP) whose size scaled with the
number of iterations. It was later shown that this SDP
could be convexified, leading to the so-called Perfor-
mance Estimation Problem formulation [6].

Another popular approach is to express iterative meth-
ods as discretizations of gradient flows [7]. This view
led to the unification of various accelerated algorithms,
including (FG), and the derivation of an associated
Lyapunov-based proof of convergence [8].

Yet another approach is to look for an asymptotic per-
formance guarantee by leveraging tools from robust con-
trol [3]. Here, the idea is to view the algorithm as a
Lur’e problem [9] (a linear time-invariant system in feed-
back with a static nonlinearity) and to adapt the integral
quadratic constraint (IQCs) approach [10] to derive per-
formance bounds. This approach also requires solving a
convex SDP, but unlike PEP, its size is small and fixed
(does not depend on the number of iterations).

1.4 Tutorial overview

In this tutorial, we will present an alternative Lyapunov-
based approach to algorithm analysis, described in more
detail in [11–13], that shares features in common with
each of the aforementioned works. In the sections that
follow, we will: 1) frame algorithm analysis as a Lur’e
problem (as in the IQC approach); 2) use interpolation
conditions to describe the set of smooth strongly convex
functions (as in the PEP approach); 3) describe the lift-
ing procedure we will use; 4) show how Lyapunov func-
tions can be used to certify performance via solving con-
vex SDPs; and 5) present numerical examples that illus-
trate the effectiveness of this approach for certifying both
convergence rate and robustness to gradient noise.

2 Iterative algorithms as Lur’e problems

To express the iterative algorithm as a Lur’e problem, we
begin by defining signals corresponding to the input yk
and output uk of the gradient ∇f . For example, (FG)
can be rewritten as

xk+1 = yk − αuk,

yk+1 = xk+1 + β(xk+1 − xk),

uk = ∇f(yk).

Now define the augmented state ξk := (xk, xk−1) and put
into standard state-space form to obtain

ξk+1 =

[
(1 + β)Id −βId

Id 0d

]
ξk +

[
−αId
0d

]
uk, (1a)

yk =
[
(1 + β)Id −βId

]
ξk, (1b)

uk = ∇f(yk). (1c)



To avoid the use of Kronecker products, it is convenient
to express states, inputs, and outputs as row vectors,
where there are d columns corresponding to the d dimen-
sions of the original system. This transforms (1) into

ξk+1 =

[
1 + β −β
1 0

]
ξk +

[
−α
0

]
uk, (2a)

yk =
[
1 + β −β

]
ξk, (2b)

uk = ∇f(yk), (2c)

where ξk ∈ R2×d, uk ∈ R1×d, yk ∈ R1×d, and the gradi-
ent maps row vectors to row vectors: ∇f : R1×d → R1×d.
Because of this convention, ∥·∥ denotes the Frobenius

norm, for example, ∥ξk∥2 :=
∑2

i=1

∑d
j=1(ξk)

2
ij .

We will use this convention from now on. Viewed as a
block diagram, Eq. (2) has the following representation.

G

∇f

yu

Here, G is a single-input single-output (SISO) system
that depends on the algorithm, and it is understood that
G acts separately on each of the d dimensions of the
input. The system G has different realizations depending
on the algorithm:

GD HB FG[
1 −α
1 0

]  1 + β −β −α
1 0 0
1 0 0

  1 + β −β −α
1 0 0

1 + β −β 0


The idea of representing iterative algorithms as dy-

namical systems is not new; see for example [1]. It is
not restricted to the three algorithms above either; it
can be used to represent distributed optimization algo-
rithms [14], operator-splitting methods [12,15], and a va-
riety of other numerical algorithms [16].

3 Lifted algorithm dynamics

Suppose the algorithm dynamics satisfy the state space
equations (again using the row vector convention)

ξk+1 = Aξk +B (uk + wk) , (3a)

yk = Cξk, (3b)

uk = ∇f(yk). (3c)

In contrast with (2), we have included gradient noise wk,
which will allow us to analyze algorithm sensitivity in the
sequel. In order to find the tightest possible performance
bounds, we will search for a Lyapunov function that de-
pends on a finite history of past algorithm iterates and

function values. To this end, define the lifted iterates

yk :=


yk

yk−1

...
yk−ℓ

, uk :=


uk

uk−1

...
uk−ℓ

, fk :=


fk

fk−1

...
fk−ℓ

. (4)

Also, define the truncation matrices Z+, Z as follows.

Z+ :=
[
Iℓ 0ℓ×1

]
and Z :=

[
0ℓ×1 Iℓ

]
. (5)

Multiplying a lifted iterate by Z on the left removes the
most recent iterate (time k), while using Z+ removes the
oldest iterate (time k − ℓ). Now define the lifted state

xk :=

ξk − ξ⋆
Zyk

Zuk

 ∈ R(n+2ℓ)×d, (6)

which is the current state ξk and the ℓ previous inputs
uk−1, . . . , uk−ℓ and outputs yk−1, . . . , yk−ℓ of the original
system. The lifted system is a system with state xk, input
(uk, wk), and output (yk,uk) that is consistent with the
original dynamics (3). These turn out to be

xk+1=

 A 0 0
Z+e1C Z+Z

T 0
0 0 Z+Z

T


︸ ︷︷ ︸

A

xk +

 B
0

Z+e1


︸ ︷︷ ︸

B

uk +

B0
0


︸ ︷︷ ︸
H

wk

[
yk

uk

]
=

[
e1C ZT 0
0 0 ZT

]
︸ ︷︷ ︸

C

xk +

[
0
e1

]
︸︷︷︸
D

uk, (7)

where e1 =
[
1 0 · · · 0

]T ∈ Rℓ+1. We can recover the
iterates of the original system (shifted to the fixed point)
by projecting the augmented state and the input as

ξ̃k =
[
In 0n×(2ℓ+1)

]︸ ︷︷ ︸
X

[
xk

uk

]
, ỹk =

[
C 01×(2ℓ+1)

]︸ ︷︷ ︸
Y

[
xk

uk

]
,

and ũk =
[
01×(n+2ℓ) 1

]︸ ︷︷ ︸
U

[
xk

uk

]
. (8)

Note that when ℓ = 0, the lifted system reduces to the
original system. That is, (7) becomes (3).

4 Interpolation Conditions

For the remainder of this paper, we will restrict our at-
tention to smooth strongly convex functions, f ∈ Fm,L.

The characterization of Fm,L from Section 1.2 depends
on a continuum of points x, y ∈ Rd. However, we will
be analyzing the algorithm at a discrete set of iterates,
so we will instead characterize Fm,L using interpolation
conditions. These conditions were developed in [6] and
provide necessary and sufficient conditions under which a
given finite set of input-output data can be interpolated
by a function in f ∈ Fm,L.



Theorem 3 ([6, Thm. 4]). Consider the set {(yk, uk, fk)}
for k = 1, . . . ,m. The following are equivalent.

(i) There exists a function f ∈ Fm,L satisfying

f(yk) = fk and ∇f(yk) = uk for k = 1, . . . ,m.

(ii) The following inequality holds for i, j ∈ {1, . . . ,m}.

2(L−m)(fi − fj)−mL∥yi − yj∥2

+ 2(yi − yj)
T(mui − Luj)− ∥ui − uj∥2 ≥ 0.

Although we restrict our attention to smooth strongly
convex functions, interpolation conditions can be derived
for other function classes as well. See for example [6,17].

Using our row vector convention, if we suppose that
yk, uk ∈ R1×d, Item (ii) in Theorem 3 can be written as

qij := tr


yi
yj
ui

uj


T

H


yi
yj
ui

uj

+ hT

[
fi
fj

]
≥ 0, where (9)

H :=


−mL mL m −L
mL −mL −m L
m −m −1 1
−L L 1 −1

 and h := 2(L−m)

[
1
−1

]
.

Consider an algorithm in lifted form (7). We are inter-
ested in writing down as many valid inequalities as we
can that relate its iterates. To this end, we will consider
nonnegative linear combinations of the inequalities (9).
The computation is presented in the following corollary.

Corollary 4. Consider a function f ∈ Fm,L, and let
y⋆ ∈ R1×d denote its optimizer, u⋆ = 0 ∈ R1×d the
optimal gradient, and f⋆ ∈ R the optimal function value.
Let yk, . . . , yk−ℓ ∈ R1×d be a sequence of iterates, and
define uk−i := ∇f(yk−i) and fk−i := f(yk−i) for i =
0, . . . , ℓ. Using these values, define the augmented vectors
yk, uk, fk as in (4). Finally, define the index set I :=
{1, 2, . . . , ℓ+1, ⋆} and let ei denote the i

th unit vector in
Rℓ+1 with e⋆ := 0 ∈ Rℓ+1. Then the inequality

tr

[
yt

ut

]T
Π(Λ)

[
yt

ut

]
+ π(Λ)Tf t ≥ 0 (10)

holds for all Λ ∈ R(ℓ+2)×(ℓ+2) such that Λij ≥ 0, where
Π(Λ) and π(Λ) are defined in Eq. (11).

5 Lyapunov performance certification

In Propositions 1 and 2, we used convergence rate as a
proxy for algorithm performance. For an algorithm G of
the form (3) with fixed point ξ⋆, we define convergence
rate formally as follows. Assume wk = 0 for all k and let

rate(G) :=

inf

{
r > 0

∣∣∣∣∣ sup
f∈Fm,L

sup
ξ0∈Rn×d

sup
k≥0

∥ξk − ξ⋆∥
rk∥ξ0 − ξ⋆∥

< ∞

}
.

A smaller ρG is desirable because it means that the algo-
rithm is guaranteed to converge faster to its fixed point.

Another performance metric of interest is sensitiv-
ity to additive gradient noise. Suppose the noise in-
puts w = (w0, w1, . . . ) are random, zero-mean, bounded
variance, and independent across timesteps (not neces-
sarily identically distributed). Specifically, Ewk = 0,
EwT

kwk ⪯ σ2Id, and EwT
i wj = 0 for all i ̸= j. We de-

note the set of all such joint distributions over w as Pσ.

For any fixed algorithm G, function f ∈ Fm,L, initial
point ξ0, and noise distribution w ∼ P ∈ Pσ, consider
the stochastic iterate sequence y0, y1, . . . produced by G
and let y⋆ := argminy∈Rd f(y) be the unique minimizer
of f . We define the noise sensitivity to be:

sens(G, σ2) := sup
f∈Fm,L

sup
ξ0∈Rn×d

sup
P∈Pσ

lim sup
T→∞

√√√√Ew∼P
1

T

T−1∑
k=0

∥∥yk − y⋆
∥∥2.

A smaller sensitivity is desirable because it means that
the algorithm is more robust to gradient noise.

Both convergence rate and noise sensitivity can be
computed exactly using eigenvalue analysis for the case
of quadratic functions [11,18]. For smooth strongly con-
vex functions, IQC theory can instead be used to bound
the rate and sensitivity [19].

We will now show an alternative Lyapunov approach,
originally proposed in [11–13]. Specifically, we will
use a Lyapunov function of the Lur’e–Postnikov form
(quadratic in the state plus integral of the nonlinearity).
For our lifted system representation, this takes the form

V (x,f) := tr
(
xTPx

)
+ pTZf , (12)

where P and p are parameters that must be optimized (P
need not be positive definite), and the matrix Z is defined
in (5). Both convergence rate and noise sensitivity can
be verified by finding P and p such that the Lyapunov
function (12) satisfies some algebraic conditions.

Π(Λ) :=
∑
i,j∈I

Λij

[
−mL (ei − ej)(ei − ej)

T (ei − ej)(mei − Lej)
T

(mei − Lej)(ei − ej)
T −(ei − ej)(ei − ej)

T

]
, π(Λ) := 2 (L−m)

∑
i,j∈I

Λij (ei − ej) (11)



Lemma 5. Consider the algorithm dynamics (3) and let
V be of the form (12). If the iterates of the lifted system
(7) with wk = 0 satisfy the conditions

(i) V (xk,fk) ≥ ∥ξk − ξ⋆∥2 and

(ii) V (xk+1,fk+1) ≤ r2 V (xk,fk) for some r > 0,

then rate(G) ≤ r.

Proof. Applying Items (i) and (ii) for k ≥ ℓ, we obtain

∥ξk − ξ⋆∥2 ≤ V (xk,fk) ≤ · · · ≤ r2kV (x0,f0)

≤ r2k
(
C0∥ξ0 − ξ⋆∥2 + C1

)
,

where C0 and C1 are constants that depend on the ini-
tialization of the algorithm and the parameters P, p. The
result follows from applying the definition of rate(G).

Lemma 6. Consider the algorithm dynamics (3) and let
V be of the form (12). If the iterates of the lifted system
(7) satisfy the conditions

(i) EV (xk,fk) ≥ 0

(ii) EV (xk+1,fk+1) − EV (xk,fk) + E ∥yk − y⋆∥2 ≤ γ2

for some γ > 0,

then sens(G, σ2) ≤ γ.

Proof. applying Item (i) and averaging Item (ii) over
k = 0, . . . , T − 1, we obtain

1

T
E

T−1∑
t=0

∥yk − y⋆∥2 ≤ 1

T
EV (x0,f0) + γ2.

Taking the limit superior as T → ∞ implies that γ is an
upper bound on the senstivity to gradient noise.

We will now show how Lemmas 5 and 6, together with
the interpolation conditions of Section 4, can be used to
efficiently certify convergence rate and noise sensitivity
for iterative algorithm.

Theorem 7. Consider an algorithm G of the form (3)
with with fixed point (ξ⋆, y⋆, u⋆) applied to a function
f ∈ Fm,L. Suppose there is additive gradient noise with
distribution in Pσ. Define the truncation matrices in
(5), the augmented state space and projection matrices
in (7)–(8), and the valid inequality matrices in (11).

a) If there exist P = PT ∈ R(n+2ℓ)×(n+2ℓ) and p ∈ Rℓ

and Λ1,Λ2 ≥ 0 (elementwise) and r > 0 such thatA B
I 0
C D

TP 0 0
0 −r2P 0
0 0 Π(Λ1)

A B
I 0
C D

 ⪯ 0 (13a)

(Z+ − r2Z)Tp+ π(Λ1) ≤ 0 (13b)

XTX +

[
I 0
C D

]T[−P 0
0 Π(Λ2)

][
I 0
C D

]
⪯ 0 (13c)

−ZTp+ π(Λ2) ≤ 0 (13d)

then rate(G) ≤ r.

b) If there exist P = PT ∈ R(n+2ℓ)×(n+2ℓ) and p ∈ Rℓ

and Λ1,Λ2 ≥ 0 (elementwise) such thatA B
I 0
C D

TP 0 0
0 −P 0
0 0 Π(Λ1)

A B
I 0
C D

+ Y TY ⪯ 0 (14a)

(Z+ − Z)Tp+ π(Λ1) ≤ 0 (14b)[
I 0
C D

]T[−P 0
0 Π(Λ2)

][
I 0
C D

]
⪯ 0 (14c)

−ZTp+ π(Λ2) ≤ 0 (14d)

then sens(G, σ2) ≤
√

σ2d · (HTPH).

Proof. Consider a trajectory (ξk, uk, yk, wk) of the dy-
namics (3) with wk = 0. Multiply (13a) and (13c) on
the right and left by (xk, uk) ∈ Rn+ℓ+1 and its trans-
pose, respectively, and take the trace. Also, take the
inner product of (13b) and (13d) with fk, which is valid
because fk is elementwise nonnegative. Next, sum the
resulting (13a)+(13b) and (13c)+(13d), and the result
immediately follows from Lemma 5 and Eq. (10).

For the second part of the proof, we do not restrict
wk = 0, and perform similar operations to the inequal-
ities (14) as in the first part, this time taking expected
values, and applying Lemma 6 and Eq. (10).

5.1 Efficient numerical solutions

For fixed r > 0, the conditions (13) and (14) are linear
matrix inequalities (LMIs) in the variables P, p,Λ1,Λ2.
Each LMI has a size that depends on the number of algo-
rithm states n and the lifting dimension ℓ, both of which
are typically small. Critically, the size of the LMIs does
not depend on d (the domain dimension of f), which can
be very large in practice.

To find the best bound on rate(G), one can perform
a bisection search on r, at each step checking feasibility
of Eq. (13). To find the best bound on sens(G, σ2), we
can directly minimize HTPH subject to Eq. (14).

6 Numerical examples

In Fig. 2, we plot bounds on rate(G) for smooth strongly
convex functions for different algorithms and choices of
L/m, computed using Theorem 7. For all curves, a lifting
dimension ℓ = 1 was enough to get the best results. We
tuned (GD) and (HB) as in Proposition 1, which recovers
the result of [3, §4.6] whereby HB tuned in this manner
may not be globally convergent in Fm,L. We tuned (FG)
as in Proposition 1, which yields a tighter rate bound
that that of Proposition 2 (shown as FG*). Finally, we
show the Triple Momentum Method [20], which has the
fastest known convergence rate for this function class.

In Fig. 3, we plot sensitivity to gradient noise ver-
sus convergence rate for various algorithms applied to
smooth strongly convex functions with m = 1 and L = 8,



100 101 102

Condition number L=m

0

0.2

0.4

0.6

0.8

1
co

n
v
er

g
en

ce
ra

te

HB

GD

FG*

FG

TM

Fig. 2: Application of Theorem 7 to find bounds on rate(G)
for different algorithms applied to smooth strongly convex
functions. See the text of Section 6 for details.

computed using Theorem 7. We used ℓ = 1 for conver-
gence rate and ℓ = 6 for noise sensitivity. Also shown is
GD*, which explores other tunings of GD with 0 ≤ α ≤ 2

L
and shows that the regime α > 2

L+m is always Pareto-
suboptimal. Finally, we show RAM, which is the Robust
Accelerated Method of [11] and achieves the best known
trade-off between convergence rate and noise robustness.

0.4 0.5 0.6 0.7 0.8 0.9 1

RATE(G)2

0

0.1

0.2

0.3

0.4

1
<
p

d
S
E
N

S
(G

;<
2
)2

HB
GD
FG
TM
RAM
GD*

Fig. 3: Application of Theorem 7 to plot the trade-off be-
tween sensitivity to additive gradient noise and convergence
rate in F1,8. See the text of Section 6 for details.

7 Concluding remarks

In this tutorial, we presented a Lyapunov-based approach
for algorithm analysis, which is covered in more technical
detail in [11–13].

Showcased in Figs. 2 and 3, this approach attains nu-
merical results that empirically match those obtained
using IQCs [3, 19], but does so using a familiar Lur’e–
Postnikov Lyapunov function (12), and with results such
as Theorem 7 that have straightforward proofs.

References
[1] B. T. Polyak, Introduction to optimization, ser. Translations

series in mathematics and engineering. Optimization Soft-
ware, Inc., 1987.

[2] Y. Nesterov, Lectures on convex optimization, second edition.
Springer, 2018, vol. 137.

[3] L. Lessard, B. Recht, and A. Packard, “Analysis and design of
optimization algorithms via integral quadratic constraints,”
SIAM Journal on Optimization, vol. 26, no. 1, pp. 57–95,
2016.

[4] G. James, D. Witten, T. Hastie, and R. Tibshirani, An In-
troduction to Statistical Learning with Applications in R.
Springer, 2017.

[5] Y. Drori and M. Teboulle, “Performance of first-order methods
for smooth convex minimization: a novel approach,” Mathe-
matical Programming, vol. 145, no. 1, pp. 451–482, 2014.

[6] A. B. Taylor, J. M. Hendrickx, and F. Glineur, “Smooth
strongly convex interpolation and exact worst-case perfor-
mance of first-order methods,” Mathematical Programming,
vol. 161, no. 1-2, pp. 307–345, 2017.

[7] W. Su, S. Boyd, and E. Candes, “A differential equation for
modeling nesterov’s accelerated gradient method: theory and
insights,” Advances in neural information processing systems,
vol. 27, 2014.

[8] A. C. Wilson, B. Recht, and M. I. Jordan, “A lyapunov anal-
ysis of accelerated methods in optimization,” The Journal of
Machine Learning Research, vol. 22, no. 1, pp. 5040–5073,
2021.

[9] A. I. Lur’e and V. N. Postnikov, “On the theory of stability of
control systems,” Applied mathematics and mechanics, vol. 8,
no. 3, pp. 246–248, 1944, in Russian.

[10] A. Megretski and A. Rantzer, “System analysis via inte-
gral quadratic constraints,” IEEE Transactions on Automatic
Control, vol. 42, no. 6, pp. 819–830, 1997.

[11] B. Van Scoy and L. Lessard, “The speed-robustness trade-off
for first-order methods with additive gradient noise,” arXiv
e-print, 2021, http://arxiv.org/abs/2109.05059.

[12] L. Lessard, “The analysis of optimization algorithms: A dissi-
pativity approach,” IEEE Control Systems Magazine, vol. 42,
no. 3, pp. 58–72, Jun. 2022.

[13] B. Van Scoy and L. Lessard, “Absolute stability via lifting and
interpolation,” in IEEE Conference on Decision and Control,
2022, pp. 6217–6223.

[14] A. Sundararajan, B. Van Scoy, and L. Lessard, “Analysis and
design of first-order distributed optimization algorithms over
time-varying graphs,” IEEE Transactions on Control of Net-
work Systems, vol. 7, no. 4, pp. 1597–1608, Dec. 2020.

[15] R. Nishihara, L. Lessard, B. Recht, A. Packard, and M. I.
Jordan, “A general analysis of the convergence of ADMM,”
in International Conference on Machine Learning, Jul. 2015,
pp. 343–352.

[16] A. Bhaya and E. Kaszkurewicz, Control perspectives on nu-
merical algorithms and matrix problems. SIAM, 2006.

[17] N. Bousselmi, J. M. Hendrickx, and F. Glineur, “Interpola-
tion conditions for linear operators and applications to per-
formance estimation problems,” arXiv e-print, 2023, http:
//arxiv.org/abs/2302.08781.

[18] H. Mohammadi, M. Razaviyayn, and M. R. Jovanović, “Ro-
bustness of accelerated first-order algorithms for strongly con-
vex optimization problems,” IEEE Transactions on Auto-
matic Control, vol. 66, no. 6, pp. 2480–2495, 2021.

[19] S. Michalowsky, C. Scherer, and C. Ebenbauer, “Robust
and structure exploiting optimisation algorithms: an inte-
gral quadratic constraint approach,” International Journal of
Control, vol. 94, no. 11, pp. 2956–2979, 2021.

[20] B. Van Scoy, R. A. Freeman, and K. M. Lynch, “The fastest
known globally convergent first-order method for minimizing
strongly convex functions,” IEEE Control Systems Letters,
vol. 2, no. 1, pp. 49–54, 2017.

http://arxiv.org/abs/2109.05059
http://arxiv.org/abs/2302.08781
http://arxiv.org/abs/2302.08781

	Introduction
	The quadratic case
	The smooth and strongly convex case
	Automated algorithm analysis
	Tutorial overview

	Iterative algorithms as Lur'e problems
	Lifted algorithm dynamics
	Interpolation Conditions
	Lyapunov performance certification
	Efficient numerical solutions

	Numerical examples
	Concluding remarks

