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Finite temperature spin transport in integrable isotropic spin chains is known to be superdiffusive, with
dynamical spin correlations that are conjectured to fall into the Kardar-Parisi-Zhang (KPZ) universality
class. However, integrable spin chains have time-reversal and parity symmetries that are absent from the
KPZ (Kardar-Parisi-Zhang) or stochastic Burgers equation, which force higher-order spin fluctuations to
deviate from standard KPZ predictions. We put forward a nonlinear fluctuating hydrodynamic theory
consisting of two coupled stochastic modes: the local spin magnetization and its effective velocity. Our
theory fully explains the emergence of anomalous spin dynamics in isotropic chains: it predicts KPZ
scaling for the spin structure factor but with a symmetric, quasi-Gaussian, distribution of spin fluctuations.
We substantiate our results using matrix-product states calculations.
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Introduction.—The Kardar-Parisi-Zhang (KPZ) equation
arises as a coarse-grained description of many superficially
disparate systems [1-3]. Systems governed by the KPZ
equation exhibit universal scale-invariant behavior, char-
acterized by nontrivial critical exponents and exactly
known scaling functions [4]. Typically, the KPZ equation
occurs in nonequilibrium dynamics subject to noise, also in
quantum systems, see for example [5—11]. The departure
from equilibrium gives rise to an “arrow of time”: indeed,
in surface-growth problems governed by KPZ, growing and
shrinking are inequivalent processes. Recently, a peculiar
instance of KPZ scaling was discovered in the finite-
temperature spin dynamics of the quantum Heisenberg
spin chain [12-20]. This system is neither subject to noise
nor out of equilibrium, so at first sight it is an unnatural
candidate for KPZ scaling. Nevertheless, both the scaling
exponents and the precise scaling function match KPZ
expectations. The anomalous nature of spin transport at the
Heisenberg point has been seen in experimental studies of
solid-state magnets [21] and ultracold gases [22]. At
present, there is only a quantitative theory of the exponent
[15,16,23-25] (which is argued to be universal for all
integrable systems with SU(N) or any other continuous
non-Abelian symmetries [19,26-28]), as well as a proposed
mechanism for the scaling function [17]. However, we lack
a derivation and an understanding of the KPZ emergence
from microscopic or hydrodynamic considerations. In
addition, as we will discuss next, symmetry arguments
preclude higher-order dynamical spin fluctuations in the
Heisenberg spin chain from matching KPZ expectations
[29]. In this work, we argue for a modified version of the
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KPZ scenario that does respect the symmetries and can be
derived from the underlying hydrodynamics of the model.
We present numerical evidence that our scenario correctly
captures dynamical spin fluctuations at finite temperatures.

Context.—It is helpful at this point to introduce the
quantum spin-1/2 Heisenberg spin chain and describe its
observed connections with KPZ. This model has the
Hamiltonian

1

H:ng- x+1 (1)

x=1

where § = 6/2 are spin-1/2 operators. We are interested in
the transport of spin fluctuations; for specificity we choose
our quantization axis along z. Thus, > S% is conserved.
We will typically work around the fully symmetric high-
temperature state with > S% = 0.

The key numerical observation [12] is that the finite-
temperature dynamical spin structure factor C%(x,t)=
(S5(1)85(0)) = 2171 fipz (Axpzx/1*?), at large times 1,
where y is the spin susceptibility, Agpz iS a nonuniversal
constant, and fyp(u) is the universal scaling function of
the KPZ class [4,30]. Since this behavior is expected at any
nonzero temperature, it is convenient to study it at infinite
temperature, and we will specialize to that case in what
follows. Canonically, the scaling function fxpy arises in the
study of the stochastic Burgers equation

2
0ip + 0, <§ﬂ2 —Do,p — 5) =0, (2)
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where p(x,7) is a conserved density, A represents the
strength of the nonlinearity, D is a diffusion constant,
and £ is white noise with a strength related to D by the
fluctuation-dissipation theorem. It is a standard result that
for a field % that obeys the KPZ equation, the field d,.h
obeys the stochastic Burgers equation. In equilibrium, the
Burgers-field correlation function {(p(x,7)p(0,0)) (aver-
aged over noise) is known to have the same form as the
numerically observed C%(x, t) for the spin chain.

This numerical observation might suggest a correspon-
dence between the conserved densities S%(¢) [or its coarse-
grained version m(x, 7)] in the spin chain and p(x, ¢) in the
Burgers equation, as m(x,t) ~ p(x, t). However, this cor-
respondence cannot be correct, because p is inherently
chiral, namely, excess (deficit) density unbalances move
always to the right. This is also manifest from the
distribution of fluctuations of A. Starting from an equilib-
rium initial condition, the probability distribution of
h(x,1) = [* p(x', 1)dx" has the universal Baik-Rains form
[31], with a large finite skewness at all times. However, in
the Heisenberg spin chain, this quantity is evidently
symmetric between positive and negative current fluctua-
tions, so its equilibrium distribution cannot be skewed:
P(J,,) = P(—J,,). In this Letter we show how using more
than one coupled Burgers mode solves such issues. Our
results can be extended to any other integrable model with
non-Abelian symmetry, displaying superdiffusive charge
transport.

Hydrodynamics of giant quasiparticles.—We now intro-
duce some key properties of the Heisenberg model that will
feature in our logic. The model (1) is integrable and its
hydrodynamics is given by the so-called generalized
hydrodynamics (GHD) [32-34]. This is a hydrodynamic
theory for the evolution of the filling functions
ng(0) /\/m (which represent the normal modes of the
hydrodynamic theory and where y, are their susceptibil-
ities) of the quasiparticles of the model. In general, s and 8
are some set of (respectively) discrete and continuous labels
that denote each quasiparticle type; in an integrable system,
the number of quasiparticles of each type is separately
conserved. Physically, quasiparticles with s > 1 are bound
states of elementary magnons [35,36]: s denotes the spatial
extent and bare magnetization of the bound state, while the
“rapidity” 6 parametrizes momentum (energy) k,(0)
(¢,(0)), group velocity 1¢(8) = de,(0)/0k,(0), and bare
spin m; = 5. The hydrodynamic normal modes move with
velocity, ¢ () (which is an odd function of € as expected)
and therefore their occupation functions evolve with con-
vective flow 0,n,(0) = —1v(0)0,n,(0). All quasiparticles
are ballistic, however, the velocities %" in a typical finite
temperature state become tiny as their spin s becomes large.
Indeed, quasiparticles with large spin correspond to large
bound states, so-called “giant” quasiparticles, and can
alternatively be seen as quasiclassical wave packets made
up of Goldstone modes [23]. Since the Bethe vacuum is
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FIG. 1. Integrated current cumulants of the two-mode NLFH.

Log-log plot of the cumulants of the integrated currents J =
J&j(x = 0,1)dt for magnetization m and for the chiral mode ¢
with 4, = 0, 4,, = 1. The dashed lines are guides for the eyes
indicating the different power laws. The odd cumulants of
magnetization current are all 0 by symmetry. Bottom: kurtosis
Ku, = (x*)/(x*)? — 3 for the magnetization currents for different
values of 4, in Eq. (8) and 4,, = 1. The dashed line indicates half
of Baik-Rains kurtosis ~0.14.

always ferromagnetic, the Goldstone mode dispersion is
quadratic € ~ k%, so bound states of size s have a character-
istic velocity v ~k; ~s~!. When quasiparticles are
present at finite density, the magnetization of the lower-s
quasiparticles is screened by the higher-s ones, so spin
transport is determined by giant quasiparticles with s — oo.
Therefore, above a state with net magnetization density
m < 1, fluctuations of the magnetization are primarily due
to quasiparticles of size s ~ 1/m. It is useful to introduce an
external field & = |m|/y, with y the spin susceptibility:
giant quasiparticles are the ones with spin s = £/h and
rapidity @ = u/h with h < 1 and ¢ and u real variables
(such a semiclassical limit of quasiparticles was also
employed recently in [23,37]). In this limit, the sum
over all the quasiparticle types becomes > [ dfg(6) —
h=2 [ d& [23 du gy (u/h).

Considering from now on small fluctuations én on top of
a reference equilibrium state (i.e., a finite-temperature state
with zero net magnetization), and promoting magnetization
to be a space and time-dependent function & — |m(x, 1)|/x,
it is simple to check that, see Ref. [38], that fluctuations of
magnetization are given only in terms of fluctuations of the
giant quasiparticles on; , = lim,_o6n,_z/,(6 = u/h), as

)
om=_" / dEduf:,one,,. (3)
P

where f:, ais also a function of the equilibrium temper-
ature (even in #) whose precise definition is irrelevant to us.
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Therefore, we can simply restrict to the dynamics of their
hydrodynamic occupations, reading as

9,6ng, + ] g0 ong, =0, (4)
7

where we have used that the effective velocity in a thermal
state for giant quasiparticles is given by v ¢ y(u/h) —
hv$" with v} a function (odd in u) of the two real variables
&, u as well as a functional of the reference state. Notice the
need for the absolute value in the relation between & and m,
as quasiparticles (i.e., all the conserved quantities of the
model except for magnetization) are known to be spin-flip
symmetric [41], as indeed is the case in Eq. (4).

In order to derive the equation for magnetization we start
with the expression of the magnetic current in terms of the
velocity of the largest quasiparticle v, as [42,43]

om(x, 1) + oy (v&'m) = 0, (5)

where v& = 0 on any equilibrium state, but it can be finite
due to a small fluctuation on;,; indeed, we have
veff = —(2|m|/;(2)fd‘fdu(fg’uvg‘fi)én&u, see Ref. [38],

which gives

-2
9,6m + 9, <m / dédu(f e, vi) |2m |
' X

5%) =0, (6)

closing this way the set of hydrodynamic equations
necessary to describe magnetic fluctuations. In order to
obtain predictions on the magnetic structure factor C%(x, 1)
and the distribution of magnetic fluctuations P(J,,), the
hydrodynamics must be lifted to fluctuating hydrodynam-
ics. Following the main idea behind nonlinear fluctuating
hydrodynamics (NLFH) [44-52], this is achieved by add-
ing noise and dissipation to the currents in (4) and (6), by
respecting fluctuation dissipation, i.e., stationarity of any
Gaussian thermal state of ém and all the én;,. Clearly
solving an infinite set of coupled nonlinear stochastic
equations poses an immense challenge. In the coming
section, we shall reduce the problem to only two modes, an
approximation which well captures the emergent KPZ-like
physics.

Two-mode NLFH.—The coupled Eqgs. (4) and (6) can be
efficiently closed under the approximation

/ dedulf s, (05T ]on,,, / dedu fronz,.  (7)

where the right-hand side is proportional to the magnetic
fluctuations (3). Then we can introduce a second field
5p = (—2|m|/)(2)fdfdu(fg,uvgfi)éng.u, and using (4),
we obtain two coupled equations for magnetization and
field ¢, playing the role of the effective fluid velocity,
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FIG. 2. KPZ scaling of dynamical correlators of the two-model
NLFH. Top: dynamical correlation functions of magnetization
m plotted as a function of the rescaled space x/¢*> and rescaled
by 2/3, for different times from 10 to 400 with df = 20 (from
blue to purple). Bottom: ratio of spatial moments of the
correlation functions C" (f) = [ dxC(x,t)|x|" as a function of
time. The solid (resp. dashed) lines indicate the universal
predictions from fypz(u) (resp. from the Gaussian distribution

.fGauss(u) = e_u2/252/\/2—ﬂ_g2‘).

i.e., 0,6m = 0,(6mé¢) and the evolution of é¢ given by
0,6¢ & 5|m|0,(8|m|) e d,(6m?). The approximation of
Eq. (7) can be justified by noticing that the square of
the velocity (v§7)* is even under u — —u, therefore the
left-hand side of Eq. (7) defines a parity invariant mode, as
indeed is the magnetization. The latter is clearly not the
only parity invariant mode in general, but the identification
is the key to reduce the infinite set of coupled equations,
Egs. (4), (6), to only a two-mode fluctuating hydrody-
namics. After the inclusion of noise and dissipation, the
two-mode NLFH reads

a,m + 0, <m¢ —D,,0.m—+/ 2Dm;(§m) =0,

m2 ¢2

6,¢+6x </1m7+/1¢7—D{/)ax¢— \/ZD{/,)(&/)) =0. (8)

The two noise terms in (8) are taken to be uncorrelated white
noises, and for simplicity, we may choose all diffusion
constants and all noise strengths to unity, as well as (m?) =
(¢*) = y (by appropriate rescaling of the two fields). First,
we notice that we can set 4,, = 1 as at this point the Gaussian
distribution Z=' exp{—(1/2y) [ dx[m(x,1)* + ¢(x,1)?]} is
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stationary [38], and as it represents the fixed point of
renormalization group (RG) scaling at large x and ¢
[53,54]. As perturbative RG scaling does not seem to be
able to fix the coupling 44, we will show numerically in the
following section, see Fig. 1, that at large times the two
Egs. (8) converge to two independent Burgers equations with
zero velocity and opposite chirality,

2

011, + 0, <0% _ Dou, — z;,) —0, o=+ (9

with u,; o m + o¢, which we denote as two-Burgers decou-
pling and which corresponds to the Galileian invariant sub-
space [53], i.e., the case 4, = 1 in the two coupled Egs. (8).

We emphasize that, while we have derived this equation
directly from GHD, Eqgs. (8) can be entirely fixed by
symmetry: thus this is the only possible NLFH theory
describing spin transport in Heisenberg quantum magnets
involving two modes. The argument is as follows: first, one
identifies ¢ as magnetization velocity. Then the current of ¢
is fixed by disregarding linear terms [which are zero in
Egs. (4) and (6)] and mixed terms ~m¢ which are spin-flip
odd, while ¢p must be spin-flip even.

Numerical analysis and two-Burgers decoupling.—We
solved numerically the two equations (8) starting from
the stationary Gaussian state. We discretize space x with
Ax =1 on a system of size L = 1000, implementing a
discrete derivative that leaves the Gaussian measure invari-
ant, as explained in [56], and averaging over ~10°
realizations, as well as over space (given the translational
invariance of the problem). We fix D,, =Dy =1 and
¥ =1/2. We find that irrespective of the value of
Ag» dynamical correlations follow a KPZ form, i.e., at
large times

Coum(x, 1) = (m(x,1)m(0,0)) =;§—//13f1m(M/12/3), (10)

and the same for the field ¢ (with a different nonuniversal
constant 1), while (m(x,7)¢(0,0)) =0 by symmetry.
Scaling collapses showing this KPZ behavior are shown
in Fig. 2. We also computed ratios of spatial moments of
those correlators, and confirmed that they approach the
universal prediction from fypz(u) at long times (Fig. 2).

We then compute the statistics of the integrated currents
J = J§j(x =0,1)dr for magnetization and for the chiral
mode ¢ across the origin x = 0. Inequilibrium, we have no net
spin current (J,,) = 0 (and more generally, all odd cumulants
vanish). However, there is a net mean current for the chiral
mode ¢, (J4) ~ t: this ballistic contribution follows from the
nonzero average current (j,) = (m?)/2 = y/2. Higher even
cumulants scale with the dynamical exponent z = 3/2
as expected: ((J,)%)¢ ~ ((J4)*)¢ ~ 3, and ((J,,)*)° ~
((Jp)h)ye ~1*3 (Fig. 1), where (0")¢ denotes the nth

(/3

~

FIG. 3. Moment generating function of the integrated spin
current. Plot of Z,(y), Eq. (12), using MPSs (colored lines)
evaluated at different times + = 0-20 (from light blue to purple)
plotted as a function of y¢'/3, compared with the prediction of
Egs. (8) (black thick line) at late times. The scale of the x axis is
set by fixing the same second derivative at y = 0 for MPS and
theory. Inset: plot of the cumulant (J2))/{|J,,|)* (where |---|
denotes absolute value) obtained from MPSs versus the predic-
tion of two-mode NLFH and the prediction of Gaussian dis-
tribution (r/2) (dashed black line). Inset of Inset: log-log plot of
the difference as function of time versus the line .

cumulant of O. Again, this behavior is independent of the
value of 4.

We then look at the distribution P,(/,,) of the integrated
spin current at time . Introducing the rescaled integrated
spin current 7,, = J,,/t'/3, we find the universal scaling
form

1
PiTn) 2 s P(Tm = T/ 117, (1)

where the equilibrium probability distribution P(7,,) of
the rescaled spin current fluctuations is an even function (as
it should). Our theory thus reconciles KPZ scaling of the
spin dynamical correlation function (10) with a symmetric
distribution of spin fluctuations (11). Moreover, we find
that also the latter is independent of the value of 1, see
Fig. 1, as shown by its kurtosis that for different values of
Ay converges to the one given by the sum of two
independent Burgers equations with opposite chirality
(corresponding to the case 4, = 1). In this case, the
distribution of the sum of the two modes is the convolution
of two Baik-Rains, and therefore with kurtosis Ku =
Kupr/2 with Kugg ~ 0.28. Therefore we conclude that
the two-mode theory of Eq. (8) is equivalent to two Burgers
fields with opposite chirality, characterized by KPZ two-
point functions and Baik-Rains fluctuations with opposite
skewness.

Matrix-product states computation.—In order to sub-
stantiate our predictions, we compute numerically the
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statistics of spin current fluctuations using matrix-product
states (MPSs) techniques [57-59], see Ref. [60] for a
similar calculation in the context of interacting quantum
dots. To keep track of spin transport, we rewrite the
Hamiltonian ~ density as 3 (£,,S7 87, +5,5757,,) +
8585y with £, = 1, and introduce a counting field y via
the substitution #,, — e”/> on the central bond of the
system. Denoting the resulting modified Hamiltonian H,,
the following overlap is precisely the generating function
Z,(y) of the integrated spin current J,, = [{ dtj,(x = 0,1)
(using standard prescriptions of time-ordering of the
measurements [61]):

Z,(7) = 5 Tr{e-temitht) = (o) (12)
Computing the generating function Z,(y) up to time ¢ = 20
with maximal bond dimension 800 on a chain of size
L = 100, we find a universal collapse versus the rescaled
variable y'/3, in agreement with Eq. (11) (Fig. 3). The
MPS results are compatible with a distribution very close to
a Gaussian, in agreement with our predictions, with a slow
t~! approach to the nonlinear fluctuating hydrodynamic
behavior.

Discussion.—In this Letter, we have developed a sce-
nario for superdiffusion in the Heisenberg spin chain that
reconciles the observed KPZ scaling functions with the
presence of inversion symmetry. Our central equations (8)
are derived from generalized hydrodynamics, but they are
also strongly constrained by symmetry: in fact, Egs. (8) are
the most general two-mode hydrodynamic equations con-
sistent with the symmetries of the Heisenberg model. We
have shown that these two equations decouple at larger
times to two Burgers equations with opposite chirality, with
magnetization given by the sum of the two fields. While the
two-mode theory is an approximation, it remains to under-
stand how much it captures of the full system of infinite
coupled equations Eqgs. (4) and (6). One possible scenario is
that the two-Burgers decoupling we find in the two-mode
theory also exists for a much larger number of coupled
equations, leading then to magnetization fluctuations
resulting from the sum of an infinite set of Burgers fields,
giving therefore Gaussian statistics at late times (which
would be more compatible with finite-time data from
numerical simulations [29,62,63]). As the analytical and
numerical solution of such an infinite set of stochastic
equations is very challenging, we hope to come back to this
question in the future.

Nevertheless, we emphasize that based on existing
numerical results, our two-mode hydrodynamics captures
all the numerically observed features. In particular, our
equations reproduce KPZ scaling for the dynamical spin
structure factor, while predicting a universal symmetric
distribution for current fluctuations that is consistent with
direct numerical studies. The distribution we predict is

close to a Gaussian one with a small Kkurtosis, as
Refs. [29,62,63] also found, and our result of Fig. 1
moreover shows that the crossover to two independent
Burgers can take a very long time, approaching from
Gaussian fluctuations. Another important application of
our hydrodynamics would be to study the effects of
integrability breaking perturbations that preserve the
SU(2) symmetry: numerical evidence and perturbative
calculations suggest that superdiffusion is more stable than
dimensional analysis would predict [64—69], and the
rigidity of our hydrodynamic framework might provide
some insight into this stability. Finally, the counting field
expression (12) might be a useful starting point for analytic
techniques using integrability.
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