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Abstract

Primal-dual algorithms are frequently used for iteratively
solving large-scale convex optimization problems. The
analysis of such algorithms is usually done on a case-
by-case basis, and the resulting guaranteed rates of con-
vergence can be conservative. Here we consider a class
of first-order algorithms for linearly constrained convex
optimization problems, and provide a linear matrix in-
equality (LMI) analysis framework for certifying worst-
case exponential convergence rates. Our approach builds
on recent results for interpolation of convex functions
and linear operators, and our LMI directly constructs a
Lyapunov function certifying the guaranteed convergence
rate. By comparing to rates established in the literature,
we show that our approach can certify significantly faster
convergence for this family of algorithms.

1 Introduction

Primal-dual (or saddle-point) optimization methods have
a rich history, dating back to the earliest days of math-
ematical programming [1,2]. The core idea — that of
sequentially or simultaneously updating both primal and
dual variables — is now widely used in algorithms for
solving constrained optimization problems, including in
interior-point methods [3], the method of multipliers, and
in distributed optimization methods such as ADMM [4].

There is significant overlap with the literature on oper-
ator splitting, as finding a point satisfying the KKT con-
ditions of a constrained optimization problem can be cast
as the problem of finding a zero of a sum of monotone op-
erators; see [5—7] for extensive overviews of this perspec-
tive. Convergence proofs in this literature generally rely
on the construction of bespoke pre-conditioners, followed
by applications of convergence results for known fixed-
point algorithms (e.g., Krasnoselskii-Mann iterations), or
by clever direct construction of Lyapunov-like functions.
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While we do not herein study operator splitting methods
in generality, part of our goal is to establish some pre-
liminary foundations for more systematic and automated
analyses of such algorithms.

Primal-dual methods have attracted attention from
controls researchers, particularly in the continuous-time
setting where Lyapunov analysis techniques can be ap-
plied with relative ease; see [8-16]. This has led to var-
ious control applications of the algorithms, such as in
energy systems [17-21]. However, only [15] directly ad-
dresses the issue of the rate of exponential convergence
in discrete time, and the analysis presented is focused on
a particular algorithm obtained via Euler discretization
from the continuous-time version.

By interpreting optimization algorithms as dynami-
cal systems, specifically as robust controllers, integral
quadratic constraints (IQCs) have been used to find tight
bounds on convergence rates [22,23]. Alternatively, one
can directly generate a set of valid inequalities relating
inputs and outputs of the objective function, and solve a
meta-optimization problem that searches for tight worst-
case guarantees. This was applied in a finite-horizon set-
ting in the so-called PEP formulation [24], and also in
an asymptotic setting [25-27] to directly search for Lya-
punov functions that certify a given convergence rate.

To the best of our knowledge, the aforementioned ap-
proaches have not previously been applied to analyze
primal-dual algorithms for linearly constrained convex
optimization. The closest works we found examined over-
relaxed ADMM [28], or alternating gradient methods for
bilinear games [29] or smooth monotone games [30].

Contributions: We consider a family of first-order
primal-dual algorithms for solving linearly constrained
convex optimization problems of the form

mini%lize f(x) subject to Ax =0b. (1)
TER™

Our main contribution is an automated framework for
computing worst-case convergence rates of the algorithm
over a class of problem data. We consider smooth and
strongly convex f and matrices A with known bounds on
the singular values. We show numerically that our analy-
sis improves on known results. We also develop the set of
multipliers for the class of smooth strongly convex func-
tions and the class of linear functions with eigenvalues in
a closed interval which may be of independent interest.



2 Primal-dual iterations for linearly con-
strained convex optimization

Consider the optimization problem (1), where the goal
is to minimize the objective function f : R — R over
the affine constraint set C := {z € R" | Az = b} with
A € R™" and b € R". Throughout this work, we make
the following assumptions, which (among other things)
ensure that the problem is feasible for any b € R” and
possess a unique optimal solution x, € R™.

(1) For known constants 0 < m < L < oo, the objective
function f is m-strongly convex, continuously differ-
entiable, and its gradient Vf : R™ — R"™ is globally
Lipschitz continuous with Lipschitz constant L; we
denote the set of all such functions by F(m, L), and
we denote the condition number as x(f) = L/m.

(ii) For known constants 0 < ¢ < 7 < oo, the singu-
lar values o;(A) of the constraint matrix A € R™*"
satisfy ¢ < 0,(A) <7 forall ¢ € {1,...,r}; we de-
note the set of all such matrices by A(c,7), and we
denote the condition number as k(A) =7 /0.

Note that (ii) implies that A has full row rank, and
thus the constraints Az = b are linearly independent.

Perhaps the most immediate iterative approach for
computing the optimal solution of (1) would be projected
gradient descent

i1 = Projc(zr — aV f(zr)), k=0,1,...

with step size a > 0. In many large-scale applications
however, computing this projection is too computation-
ally expensive, and one encounters similar computational
bottlenecks if gradient ascent is applied to the dual prob-
lem of (1). Instead, iterative methods are sought which
rely only on (a small number of) evaluations of Vf, A,
and AT at each iteration [5,6].

Such methods can be developed through Lagrange re-
laxation of the equality constraint in (1). For g > 0
define the augmented Lagrangian

Ly(z,) = f(x) + AT(Az = b) + § [ Az - b]}3,

with A € R" the dual variable and p the augmentation
parameter. Under the present assumptions, strong du-
ality holds, and (x4, \y) is primal-dual optimal for (1)
if and only if it is a saddle point of L,. As an itera-
tive method to determine a saddle point, one begins with
any initial condition (zg, Ao) and performs the gradient
decent-ascent iterations

Thy1 = Tp — Ve Ly (T, M)
= — au[Vf(ax) + ATk + pAT (Azy, — )] (2a)
Aet1 = A+ aaVaLy(zr, Ax)
= M\, + ax(Azy — b) (2b)

where a,,a) > 0 are step sizes. For obvious reasons,
such algorithms are termed primal-dual algorithms. In

this work, we consider a slightly more general variation
on (2a), given by

Tpp1 = T — @[V (k) + AT Ay + pAT (Azy — )] (3a)

T = xp +Y(Thg1 — T8) (3b)
Akt1 = A +ax (AT — b)), (3¢)
where v € [0,2] is an extrapolation parameter. Vari-

ous algorithms are contained as special cases of (3a) and
will serve as points of comparison. Our broad goal is
to quantify the worst-case asymptotic geometric conver-
gence rates achieved by some selected iterative primal-
dual algorithms over all possible instances of problem
data f € F(m,L) and A € A(g,7).

2.1 Literature on known rates

For sufficiently small step sizes, (3a) converges exponen-
tially to the unique saddle point (x., ) of L,. A sig-
nificantly more challenging question is to provide non-
conservative estimates of the worst-case asymptotic geo-
metric convergence rate for the method over the class of
problem data defined by (F,.A).

We have found two relatively clear comparison points.
First, [31] considers (3a) with u = v = 0. Translating
the notation!, they use a Lyapunov function of the form

V(@r, M) = low = V(AT |2 + ¢ A = Adll2,
where f*(z) = sup,cpn @'z — f(z) is the convex conju-

gate of f [32] and ¢ := 2L z,

—= 7z. Using stepsizes

m
(m+L)(Z +co)’
the decrease condition Vi41 < p Vi holds with
1
=1 — 5
P 12 6(f)? k(A) (5)

Second, the authors of [33] consider (3a) with v = 1, and
for notational simplicity we consider here p = 0. Using
the quadratic Lyapunov function

V(e Ae) = (1= apand®) o — 23 + 12k = A3

and ) =

az:m+L

and the step size conditions o, < 1/L and ay < m/5?,
they establish the decrease condition Vi < p2 V). with

p* =max{l —a,m (1 — a,L), 1 — asara?}.

The bound on the convergence rate is optimized by the
step sizes

oL if K(4) < V2
Ay = 1—r(A)~2 . (6&)
—~— otherwise
m(Z 4+ L) ifk(A) < V2
ar={ Al a) TSV,
= otherwise,
and the convergence factor using these step sizes is
1 .
P’ = {1 Tr(f) if K(A) <2 -
1 1 1 .
1- ff)(m - W) otherwise.

'In the notation of [31], our set-up corresponds to the case where
f =0; our “A” is their “AT” and our “f” is their “—g”.



3 Automated convergence analysis

We now return to the primal-dual algorithm (3a) and
rewrite it in the form of a linear fractional representa-
tion, as traditionally used in robust control [34]. Let
A = UXV]" be a compact SVD of A, where U €
R"™7" is orthogonal and V4 € R™*" has orthonormal
columns. Let V5 € R™(™=") be the orthogonal com-
pletion, so that V = [Vl Vg] € R™ " is orthogonal.
Here, ¥ = diag(o1,...,0,) and we have the inequality
g >0y > > o0, > o. Consider now the invertible
change of state

pr = V| 2k, ar = Vo v = —XU M.

Routine computations quickly show that

DPe+1| _ |Pk T Ph Ve — pX%py

= —a,V'V(V z

) < [P - e |
Pk = Pk + Y (Pry1 — k)

V41 = Vi — O[)\E2]5k.

Eliminating p, and defining the concatenated state & =
(pk, qx, Vi), the dynamics can be expressed as

€1 = A&+ By [ "] + By [ 1]

[y’i} =C1&p + D1y {Z%} + D12 {uﬂ

yi Uy
(3] = ot Do [ 1]+ D [ ]
yﬁ 2Ck 21 “i 22 “i
where the matrices are defined by the blocks
(10 apl | -l 0 | —a@pul 0 ]
07l O 0 —a ] 0 0
A By B 00 I 0 0 0 —axl
Ci Dii1 Dia|=|10 0 0 0 0 0
C2 D21 Daa 0I 0 0 0 0 0
10 0 0 0 0 0
_I 0 yazl|—yazl 0 |—vyoagul O ]

and with inputs (u},u?) and (uj,u}) defined by

=y E]) Lal=8 el 0E] @

and outputs (yg, ¥z, Y3, i) = (Dk, Gk, Pk, i) To simplify
notation in the sequel, we assume without loss of gener-
ality that each input and output is one-dimensional; see
the lossless dimensionality reduction in [22].

3.1 Lifted dynamics

Let G(z) denote the transfer function corresponding to
the state-space matrices above, which maps the set of in-
puts (up,u?, u3,up) to the set of outputs (v}, v2, y3, yi).
This system is connected with the feedback in (8) through
the gradient of the objective function and the squared
matrix of singular values.

To analyze the system, we will replace the feedback
in (8) with constraints on the inputs and outputs of V f
and ¥2. The more constraints that we use, the tighter

the analysis will be. To obtain more constraints, we will
lift the system so that the inputs and outputs are in a
higher-dimensional space, and then apply the constraints
between all iterates in this lifted space [25].

Given a lifting dimension ¢ € {1,2,...}, let

P(z) =11 ®

where ® denotes the Kronecker product. The system G,
called the lifted system, is the map

(up, ui, up,up) = (Y3, ..., YL UL . U (10a)
where the lifted iterates are
Yy = W Vkots - > Yhes1)s 1 €{1,2,3,4}  (10b)

and similarly for U}. Each lifted iterate Y} and U} is
an /-dimensional vector that consists of ¢ lagged iterates,
where the lifting dimension is how many past iterates are
used. When ¢ = 1, the lifted system is simply G = [§].

3.2 Multipliers

To analyze the system, we will replace the feedback (8)
with inequalities on the inputs and outputs of the system
in the lifted space. We parameterize the set of inequali-
ties using a symmetric block matrix, called a multiplier,

of the form
My Mo
. 11
M1 Moo (11)
We now describe the constraints for both the objective
function and constraint matrix.

|

Objective function. We consider inequalities on the
objective function gradient of the form

4 4 1 T yl 4
0= ZZ((Mn)ij {y’é”l} { ’5‘”1}
i=1 j=1

Ye—i+1 Yk—j+1

1 Tro1
) Ui
2 (Mio) [ylzc—z—i-l] [ 12€ J+1:|
Yk—it1 Uk—j+1

ul 17 el
wnay o] [ ]) )

Uk —it1 Uk—j+1
The multiplier M has dimensions 2¢ x 2¢ and parameter-
izes all inequalities that are linear in the inner products
between inputs and outputs of the gradient. The fol-
lowing result characterizes all multipliers such that this
inequality holds for all iterates of the system. We provide
the proof in the appendix.

Proposition 1 (Objective multipliers). The quadratic
inequality (12) holds for all iterates that satisfy the feed-
back (8) for some function f € F(m, L) if and only if the
multiplier has the form

—o2mL L+m} o R4 [0 S

M[L+m Oy gT 0] (13)



for some ¢ x ¢ symmetric matrix R such that R1 = 0,
R;; > 0 for all 4, and R;; < 0 for all ¢ # 4,2 and some
¢ x ¢ skew-symmetric matrix S satisfying S1 = 0. We
denote the set of all such matrices as Mz(m, L).

Constraint matrix. We consider inequalities on the
constraint matrix of the form

kj ki '
Y, Y,
< k k
Ugl |Us

The multiplier M has dimensions 4¢ x 4¢ and parameter-
izes all inequalities that are linear in the inner products
between inputs and outputs of the matrix 3?2 of squared
singular values of A. The following result characterizes
the set of multipliers, which we prove in the appendix.

Proposition 2 (Constraint multipliers). The quadratic
inequality (12) holds for all iterates that satisfy the feed-
back (8) for some matrix A € A(g,7) if the multiplier
has the form

—20232R

o= Aol (02+02)R] {0 S

—2R ST 0} (15)

for some 2¢ x 2¢ symmetric positive semidefinite matrix
R, and some 2¢ x 2¢ skew-symmetric matrix S. We denote
the set of all such matrices as M _4(o,7).

3.3 Linear matrix inequality

We now use the lifted system (9) and the multipli-
ers (13) and (15) that characterize the objective func-
tion and constraint matrix to construct a linear matrix
inequality (LMI) whose feasibility certifies convergence
of the primal-dual algorithm (3a) with a specified rate
p € (0,1).

Denote a minimal realization of the lifted system as
G ~ (A,B,C,D) and let n denote the dimension of
the realization. Recall that the lifted system maps the
iterates as in (10). Let Y¢ and Uy denote the rows of C
and D corresponding to pairs of inputs and outputs of the
gradient, and let YA and Up denote rows corresponding
to inputs and outputs of 2. We can now state our main
result.

Theorem 1 (Analysis). Given p € (0,1), if there exists
an n X n symmetric matrix P and multipliers My, My €
Mxz(m, L) and M3, My € M 4(o,7) such that

0s [ATPA—p*P ATPB] Y TM Y
BTPA BTPB Ue| U
T
Ya Ya
n [UA} M, {UA} (16a)

2Matrices R satisfying these conditions are also called diagonally
hyperdominant with zero excess.

and
P—1 0] [Ye'. [Y
- f f
o751 o)+ [o] e [
.
YA YA
+[UA] M, [UA}’ (16b)

then the primal-dual iterations from (3a) converge lin-
early with rate O(p*) for all objective functions f €
F(m, L) and all constraint matrices A € A(o,7).

Proof. Suppose the LMI (16) is feasible, and consider
a trajectory of the primal-dual algorithm (3a). Let &
denote the state of the lifted system G. For each iterate,
let a tilde denote the iterate shifted by the fixed point of
the system. Now multiply the LMI in (16a) on the right
and left by the lifted state and inputs (&, ft,lﬁ, ﬁ%, 71%, ﬂi)
and its transpose and use the fact that the inequalities
(12) and (14) are nonnegative when My, My € Mx(m, L)
and M3, My, € M 4(c,7). This produces the inequality
V(€k+1) < p? V(€r). Likewise, from the LMI (16b), we
obtain the inequality V(€x) > ||€x]|*. Since the state &
of the original system G is contained in the lifted sys-
tem, we have that [|€x]|?> > ||€x]|?>. Chaining all of these
inequalities together gives

€I < 1€k]1* < V(&r) < ... < 9™ V(o)

Taking the square root gives ||&;| < ¢ p* for some ¢ > 0,
so the iterates converge to the optimizer linearly with
rate O(p*). ]

4 Results

We now compare our analysis with the results from the
literature described in Section 2.1. In each case, we
choose the objective function condition number x(f) = 2
and the Lagrangian augmentation parameter p = 0. We
emphasize that our analysis applies to any values of these
parameters, but we choose these values to be able to com-
pare with known bounds.

1.00 ~
Q
f—
£ 0.99
5 i
g
g
%0 0.98 1 5
g
3 primal-dual analysis
0.97 bound in [31]
1 2 3 4 5 6 7 8

matrix condition ratio x(A)

Fig. 1: Comparison with [31]. The algorithm parame-
ters are those in (4) with extrapolation parameter v = 0.



We use the step size selections from (4) and (6); Fig-
ures 1 and 2 plot the convergence factor p obtained® from
our analysis in Theorem 1 along with the corresponding
bound from the literature as a function of the matrix con-
dition number x(A). In all cases, our approach certifies
a faster rate of convergence. Note that the algorithm in
Figure 1 does not use extrapolation, while the algorithm
in Figure 2 does use extrapolation, and achieves a much
faster convergence rate as a result.

1.00 - ]

Q

5

+ 0.95

&

8

=

& 0.90 7

o)

g

S 0.85 - primal-dual analysis

. bound in [33]
10° 10"

matrix condition ratio k(A)

Fig. 2: Comparison with [33]. The algorithm parame-
ters are those in (6) with extrapolation parameter v = 1.

The guaranteed convergence factor produced by our
approach with step size selection (6) is a non-monotonic
function of x(A) in Figure 2. For any fized algorithm,
the convergence rate must increase monotonically with
the condition numbers k(f) and x(A). However, the step
size selection (6) is a function of x(A), and thus the al-
gorithm used is varying at each point on this curve. This
highlights that the bounds from the literature are con-
servative, and suggests that further improvements in the
worst-case convergence rate could be obtained by opti-
mizing the step-sizes subject to feasibility of our LMI.

5 Conclusion

Focusing on first-order primal-dual methods for linearly
constrained convex optimization, we proposed a system-
atic method to search for a Lyapunov function that certi-
fies a worst-case convergence rate of the algorithm across
all smooth strongly convex functions and all constraint
matrices with bounded singular values. Our analysis ap-
plies to a range of primal-dual algorithms, including those
with extrapolation and Lagrangian augmentation. We
compared our numerical results with two bounds from
the literature, and our analysis yields better bounds in
each case. Future work includes finding algorithm param-
eters that optimize the rates obtained from our analysis,
improving the analysis by leveraging recent interpolation
conditions for linear operators [35], and extending the
approach to more general operator splitting methods [7].

3A bisection search was applied to determine the smallest p for
which the LMIs were feasible.
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A Proof of Proposition 1

Let y;,u;, f; for i € [f] = {1,...,£} denote a sequence of
¢ iterates. From [24], these points are interpolable by an
L-smooth and m-strongly convex function if and only if

yi 1T [ —mL mL m —L Yi f
e | Y mL —mL —m L Yj T i
qij = |:’U«L:| m -m -1 1 |:UL:| +h |:f7:| 20
i —-L L 1 -1 i ’

H

for all 4,5 € [¢] where h = 2(L —m) [ ]. In terms of
the stacked vectors u,y, f,

T
u
ol

where h;; = [¢i ei|h = 2(L —m)(e; — e;) and H;; is the

matrix
T
e; 0 e 0f
T AT T AT
ej 0y gl 0, | _ —mL(e;—e;)(ei—e;)" (ei—e;)(me;—Lej;)T
0] ] 0y €] (me;—Lej)(ei—e;)T  —(ei—ej)(ei—e;)T
T T T T
0, €; 0, €;

where e; is the " unit vector in R?. Taking a nonnegative
linear combination of the inequalities ¢;; > 0, we obtain
Q = Z#]‘ Aij gij > 0 for all coefficients A;; > 0 with
Ai; = O for alli. With A € R[;Oé the matrix with elements
Aij, straightforward but tedious algebra establishes that

T m m—
o= V] [(-mDR =R+ =3tT) [y
U * -R U
+(L—m)1(T-T")f,
where the * block can be inferred from symmetry and
R:=diag((A+AT)1) — (A + AT),
T := diag((A — AT)1) + (A — AT).
Note that R is symmetric doubly hyperdominant with
zero row sums, and R and T are independent, as they
depend on the symmetric and skew-symmetric parts of
A, respectively. Now define the skew symmetric matrix
S :=m=L(A—AT) and note that LT = diag(51) + S
and 27LTT = diag(S1) — S = diag(S1) +ST. Then the
nonnegative quantity @ is

)T (2 5 @ R [Q s @QUEST) [1] - a(s1)TS
which is of the form (12) if and only if S1 = 0. ]

B Proof of Proposition 2

Consider a matrix M of this form, and define the matrices
—2023% 24 g2 0 1

P?1g2 -2 | md M=,

so that the multiplier is M = My® R+ M, ® S. We first

write the inequality (14) as

viT v _ [y _ U3}
0<[f] M[]] where Y = [YE}, U= {U% .
From the feedback (8), we have that U = (I, ® ¥2)Y,
so the matrix YUT = UY" is symmetric. For the term

M; ® S of the multiplier, the quadratic form is
(V1T (My @ 8)[5]=YTSU —~UTSY
=tr(SUYT -YU")) =0.
Therefore, this term does not affect the inequality. With-
out loss of generality, we can take M; ® S to be symmet-

ric, in which case S is skew-symmetric. For the term
My ® R of the multiplier, the quadratic form is

(51T (M@ R)[[] = (U ~o*Y) R @Y - U)
=((I®%2?) -’ )YTRY (7 — (I ® 2?)).
This quantity is nonnegative since ¥ is a diagonal matrix
of singular values in the interval [g, 7] and YTRY is posi-

tive semidefinite. Therefore, the inequality (14) holds for
iterates that satisfy (8) for all M € M 4(cg,7). [

My =


https://www.imng.uni-stuttgart.de/mst/files/LectureNotes.pdf
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