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Abstract— In this article, we consider a cooperative con-
trol problem involving a heterogeneous network of dynami-
cally decoupled continuous-time linear plants. The (output-
feedback) controllers for each plant may communicate with
each other according to a fixed and known transitively
closed directed graph. Each transmission incurs a fixed
and known time delay. We provide an explicit closed-form
expression for the optimal decentralized controller and its
associated cost under these communication constraints
and standard linear quadratic Gaussian (LQG) assumptions
for the plants and cost function. We find the exact solution
without discretizing or otherwise approximating the delays.
We also present an implementation of each sub-controller
that is efficiently computable, and is composed of stan-
dard finite-dimensional linear time-invariant (LTI) and finite
impulse response (FIR) components, and has an intuitive
observer-regulator architecture reminiscent of the classical
separation principle.

Index Terms— Decentralized Control, Delay Systems, Co-
operative Control, Optimal Control.

I. INTRODUCTION

In multi-agent systems such as swarms of unmanned aerial
vehicles, it may be desirable for agents to cooperate in a decen-
tralized fashion without receiving instructions from a central
coordinating entity. Each agent takes local measurements, per-
forms computations, and may communicate its measurements
with a given subset of the other agents, with a time delay.
In this article, we investigate the problem of optimal control
under the aforementioned communication constraints.

We model each agent as a continuous-time linear time-
invariant (LTI) system. We make no assumption of homogene-
ity across agents; each agent may have different dynamics. We
assume the aggregate dynamics of all agents are described by
the state-space equations
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where x is the global state, z is the regulated output, y is the
measured output, w is the exogenous disturbance, and u is the
controlled input. The decoupled nature of the agents imposes
a sparsity structure on the plant. Namely, if we partition x,
y, w, u each into N pieces corresponding to the N agents,
the conformally partitioned state space matrices A, B1, B2,
C2, D21 are block-diagonal. The regulated output z, however,
couples all agents’ states and inputs, so in general C1 and D12

will be dense. The matrix transfer function (w, u) → (z, y) is
a standard four-block plant that takes the form1

[
z
y

]
=

[
P11(s) P12(s)
P21(s) P22(s)

] [
w
u

]
, (2)

where P21 and P22 are block-diagonal.
We assume information sharing is mediated by a fixed and

known directed graph. Specifically, if there is a (possibly
multi-hop) directed path from Agent i to Agent j, then Agent
j can observe the local measurements of Agent i with a delay
τ . We further assume there are no self-delays, so agents can
observe their local measurements instantaneously.

In practice, our setting corresponds to a network where the
chief source of latency is due to processing and transmission
delays [1, §1.4] (the encoding, decoding, and transmission
of information). Therefore, we neglect propagation delays
(proportional to distance traveled) and queuing delays (related
to network traffic and hops required to reach the destination).

We assume τ is fixed and known and homogeneous across
all communication paths, as it is determined by the physical
capabilities (e.g., underlying hardware and software) of the
individual agents rather than external factors. Thus, Agent i’s
feedback policy (in the Laplace domain) is of the form2

ui = Kii(s)yi +
∑

j→i

e−sτKij(s)yj , (3)

where the sum is over all agents j for which there is a directed
path from j to i in the underlying communication graph.

Given the four-block plant (2), the directed communication
graph, and the processing delay τ , we study the problem of
finding a structured controller that is internally stabilizing and
minimizes the H2 norm of the closed-loop map w → z.

In spite of the non-classical information structure present
in this problem, it is known that there is a convex Youla-like

1In a slight abuse of notation, the vectors z, y, w, and u now refer to the
Laplace transforms of the corresponding time-domain signals in (1).

2There is no loss of generality in assuming a linear control policy; see
Section I-A for details.
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parameterization of the set of stabilizing structured controllers,
and the associated H2 synthesis problem is a convex, albeit
infinite-dimensional, optimization problem.

Main contribution. We provide a complete solution to this
structured cooperative control problem that is computationally
tractable and intuitively understandable. Specifically, the opti-
mal controller can be implemented with a finite memory and
transmission bandwidth that does not grow over time. More-
over, the controller implementations at the level of individual
agents have separation structures between the observer and
regulator reminiscent of classical H2 synthesis theory.

In the remainder of the introduction, we give context to
this problem and relate it to works in optimal control, delayed
control, and decentralized control. Then, we cover some
mathematical preliminaries and give a formal statement of the
problem. In Section III, we give a convex parameterization
of all structured suboptimal controllers, and present the H2-
optimal controller for the non-delayed (τ = 0) and delayed
(τ > 0) cases. In Section IV, we describe the optimal
controller architecture at the level of the individual agents,
and give intuitive interpretations of the controller architecture.
In Section V, we present case studies that highlight the trade-
offs between processing delay, connectivity of the agents, and
optimal control cost. Finally, we conclude in Section VI and
discuss future directions.

A. Literature review
If we remove the structural constraint (3) and allow each

ui to have an arbitrary causal dependence on all yj with no
delays, the optimal controller is linear and admits an observer–
regulator separation structure [2]. This is the classical H2

(LQG) synthesis problem, solved for example in [3].
The presence of structural constraints generally leads to

an intractable problem [4]. For example, linear compensators
can be strictly suboptimal, even under LQG assumptions [5].
Moreover, finding the best linear compensator also leads to a
non-convex infinite-dimensional optimization problem.

However, not all structural constraints lead to intractable
synthesis problems. For LQG problems with partially nested
information, there is a linear optimal controller [6]. If the
information constraint is quadratically invariant with respect
to the plant, the problem of finding the optimal LTI controller
can be convexified [7], [8]. The problem considered in this
article is both partially nested and quadratically invariant, so
there is no loss in assuming a linear policy as we do in (3).

Once the problem is convexified, the optimal controller
can be computed exactly using approaches like vectoriza-
tion [9], [10], or approximated to arbitrary accuracy using
Galerkin-style numerical approaches [11], [12]. However,
these approaches lead to realizations of the solution that
are neither minimal nor easily interpreted. For example, a
numerical solution will not reveal a separation structure in
the optimal controller, nor will it provide an interpretation of
controller states or the signals communicated between agents’
controllers. Indeed, the optimal controller may have a rich
structure, reminiscent of the centralized separation principle.
Such explicit solutions were found for broadcast [13], trian-
gular [14], [15], and dynamically decoupled [16]–[18] cases.

The previously mentioned works do not consider time
delays. In the presence of delays, we distinguish between
discrete and continuous time. In discrete time, the delay
transfer function z−1 is rational. Therefore, the problem may
be reduced to the non-delayed case by absorbing each delay
into the plant [19]. However, this reduction is not possible
in continuous time because the continuous-time delay transfer
function e−sτ is irrational. A Padé approximation may be used
for the delays [20], but this leads to approximation error and
a larger state dimension.

Although the inclusion of continuous-time delays renders
the state space representation infinite-dimensional, the optimal
controller may still have a rich structure. For systems with
a dead-time delay (the entire control loop is subject to the
same delay), a loop-shifting approach using finite impulse
response (FIR) blocks can transform the problem into an
equivalent delay-free LQG problem with a finite-dimensional
LTI plant [21], [22]. A similar idea was used in the discrete-
time case to decompose the structure into dead-time and FIR
components, which can be optimized separately [23].

The loop-shifting technique can be extended to the adobe
delay case, where the feedback path contains both a delayed
and a non-delayed path [24]–[26]. The loop-shifting technique
was also extended to specific cases like bilateral teleoperation
problems that involve two stable plants whose controllers
communicate across a delayed channel [27], [28], and haptic
interfaces that have two-way communication with a shared
virtual environment [29]. Another example is the case of
homogeneous agents coupled via a diagonal-plus-low-rank
cost [30]. All three of these examples are special cases of
the information structure (3).

In the present work, we solve a general structured H2

synthesis problem with N agents that communicate using a
structure of the form (3). We present explicit solutions that
show an intuitive observer-regulator structure at the level of
each individual sub-controller. Preliminary versions of these
results that only considered stable or non-delayed plants were
reported in [18], [31]. In this article, we consider the general
case of an unstable plant, we find an agent-level parameter-
ization of all stabilizing controllers, and we obtain explicit
closed-form expressions for the optimal cost.

II. PRELIMINARIES

1) Transfer matrices: Let Cα := {s ∈ C | Re(s) > α} and
C̄α := {s ∈ C | Re(s) ≥ α}. A transfer matrix G(s) is said to
be proper if there exists an α > 0 such that supα∈Cα

∥G(s)∥ <
∞. We call this set Lprop. Similarly, a transfer matrix G(s)
is said to be strictly proper if this supremum vanishes as
α → ∞. The Hilbert space L2 consists of analytic func-
tions F : iR → Cm×n equipped with the inner product
⟨F ,G⟩ := 1

2π

∫
R tr

(
F(iω)∗G(iω)

)
dω, where the inner prod-

uct induced norm ∥F∥2 := ⟨F ,F⟩1/2 is bounded. A function
F : C̄0 → Cm×n is in H2 if F(s) is analytic in C0,
limσ→0+F (σ + iω) = F (iω) for almost every ω ∈ R, and
supσ≥0

1
2π

∫∞
−∞ tr

(
F(σ + iω)∗F(σ + iω)

)
dω < ∞. This

supremum is always achieved at σ = 0 when F ∈ H2. The
set H⊥

2 is the orthogonal component of H2 in L2. The set
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RH2 refers to the subspace of strictly proper rational transfer
functions with no poles in C̄0. Similarly, the set RH⊥

2 refers
to the subspace of strictly proper rational transfer functions
with no poles in C̄0. The set L∞ consists of matrix-valued
functions F : iR → Cm×n for which supω∈R∥F(iω)∥ < ∞.
H∞ and RH∞ are defined analogously to H2 and RH2.

The state-space notation for transfer functions is

G(s) =
[

A B

C D

]
:= D + C(sI −A)−1B. (4)

A square matrix A is Hurwitz if none of its eigenvalues belong
to C̄0. If A is Hurwitz in (4), then G ∈ RH∞. If A is Hurwitz
and D = 0, then G ∈ RH2. The conjugate of G is

G∼(s) = GT(−s) =

[ −AT CT

−BT DT

]
.

The dynamics (1) and four-block plant P from (2) satisfy

P(s) :=

[
P11(s) P12(s)
P21(s) P22(s)

]
=




A B1 B2

C1 0 D12

C2 D21 0


 . (5)

If we use the feedback policy u = Ky, then we can eliminate u
and y from (2) to obtain the closed-loop map w → z, which
is given by the lower linear fractional transformation (LFT)
defined as Fl(P,K) := P11 + P12K(I − P22K)−1P21. LFTs
can be inverted: if K = Fl(J ,Q) and J has a proper inverse,
then Q = Fu(J−1,K), where Fu is the upper linear fractional
transformation: Fu(P,K) := P22 + P21K(I − P11K)−1P12.

2) Block indexing: Ordered lists of indices are denoted
using {. . .}. The total number of agents is N and [N ] :=
{1, . . . , N}. The ith subsystem has state dimension ni, input
dimension mi, and measurement dimension pi. The global
state dimension is n := n1+ · · ·+nN and similarly for m and
p. The matrix Ik is the identity of size k and blkd({Xi}) is the
block-diagonal matrix formed by the blocks {X1, . . . , Xn}.
The zeros used throughout are matrix or vector zeros and their
sizes are dependent on the context.

We write i to denote the descendants of node i, i.e., the set
of nodes j such that there is a directed path from i to j for all
i ∈ [N ]. By convention, we list i first, and then the remaining
indices in increasing order. The directed path represents the
direction of information transfer between the agents. Similarly,
ī denotes the ancestors of node i (again listing i first). We
also use ¯̄i and i to denote the strict ancestors and descendants,
respectively, which excludes i. For example, in Fig. 1, we have
2 = {2, 5} and ¯̄3 = {1, 4}.

1

2

3 4

5

Fig. 1. Directed graph representing five interconnected systems.

We also use this notation to index matrices. For example,
if X is a 5 × 5 block matrix, then X12 =

[
X12 X15

]
. We

will use specific partitions of the identity matrix throughout:
In := blkd({Ini

}), and for each agent i ∈ [N ], we define

Eni
:= (In):i (the ith block column of In). We have ni =∑

k∈i nk and nī =
∑

k∈ī nk, akin to the descendant and
ancestor definitions above. The dimensions of Enī

and Eni

are determined by the context of use. We also use the notations
X:i and Xī: to indicate the ith block column and īth block rows
respectively for a matrix X . Similar notations 1n is the n× 1
matrix of 1’s. Further notations are defined at their points of
first use.

A. Delay

We follow the notation conventions set in [26]. The adobe
delay matrix defined as Λi

m := blkd(Imi
, e−sτImi

) leaves
block i unchanged and imposes a delay of τ on all strict
descendants of i. We define Γ : (P,Λi

m) 7→ (P̃,Πu,Πb) that
maps the plant P in (5) and adobe delay matrix Λi

m to a
modified plant P̃ and FIR systems Πu and Πb. This loop-
shifting transformation reported in [24]–[26] shown in Fig. 2
transforms a loop with adobe input delay into a modified
system involving a rational plant P̃ . See Appendix A for
details on the definition of Γ.

In this decomposition, ⟨∆,Ψ⟩ = 0 and Ψ is inner (if
Ψ ∈ RH∞ and Ψ∼Ψ = I), so the closed-loop map
satisfies ∥Fl(P,Λi

mK)∥2 = ∥∆∥2 + ∥Fl(P̃, K̃)∥2. Thus, we
can find the H2-optimal K by first solving a standard H2

problem with P̃ to obtain K̃, and then transforming back using
K = ΠuK̃(I−ΠbK̃)−1. This transformation, illustrated in the
bottom left panel of Fig. 2, has the form of a modified Smith
predictor, where the FIR blocks Πu and Πb compensate for
the effect of the adobe delay in the original loop. See [25,
§III.C] for further detail.

K̃

K

K

Pz w

Λi
m

u
y

∆

P̃
w

K Π−1
u

−Πb

Ψ+z

+

ũỹ

z̃

y uΓ

+ K̃ Πu

Πb

y u
ỹ ũ

Fig. 2. The loop-shifting approach [24]–[26] transforms a loop with
adobe input delay (top left) into a modified system involving a rational
plant P̃ and FIR blocks Πu and Πb (right). This transformation Γ
is defined in Appendix A. We can recover K from K̃ via the inverse
transformation (bottom left).

B. Problem statement

Consider a four-block plant (5) representing the aggregated
dynamics of N agents as described in Section I, which we
label using indices i ∈ [N ]. Suppose x ∈ Rn, u ∈ Rm, and
y ∈ Rp, partitioned conformally with the N subsystems as
n = n1 + · · ·+ nN and similarly for m and p.

Consider a directed graph on the nodes [N ], and let Sτ be
the set of compensators of the form (3). For example, for the
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directed graph of Fig. 1, every controller takes the form



K11 0 0 0 0
e−sτK21 K22 0 0 0
e−sτK31 0 K33 e−sτK34 0
e−sτK41 0 e−sτK43 K44 0
e−sτK51 e−sτK52 e−sτK53 e−sτK54 K55




where Kij ∈ Lprop. So each agent may use its local measure-
ments with no delay, and measurements from its ancestors with
a delay of τ . An output-feedback policy u = Ky (internally)
stabilizes P if

[
I −P22

−K I

]−1

∈ H∞.

For further background on stabilization, we refer the reader
to [3], [32]. We consider the problem of finding a structured
controller that is stabilizing and minimizes the H2 norm of
the closed-loop map. Specifically, we seek to

minimize
K

∥∥Fl(P,K)
∥∥2
2

subject to K ∈ Sτ and K stabilizes P .
(6)

In the remainder of this section, we list our technical
assumptions and define control and estimation gains that will
appear in our solution. The assumptions we make ensure
that relevant estimation and control subproblems are non-
degenerate. We make no assumptions regarding the open-loop
stability of P .

Assumption 1 (System assumptions) For the N interacting
agents, the Riccati assumptions defined in Definition 2 hold
for (A,B2, C1, D12) and for (AT

ii, C
T
2ii , B

T
1ii , D

T
21ii) for all

i ∈ [N ].

Definition 2 (Riccati assumptions) Matrices (A,B,C,D)
satisfy the Riccati assumptions [17], [26] if:

R1. DTD ≻ 0.
R2. (A,B) is stabilizable.

R3.
[
A− jωI B

C D

]
has full column rank for all ω ∈ R.

If the Riccati assumptions hold, there is a unique stabilizing
solution for the corresponding algebraic Riccati equation.
We write this as (X,F ) = Ric(A,B,C,D). Thus, X ≻ 0
satisfies

ATX +XA+ CTC

− (XB + CTD)(DTD)−1(BTX +DTC) = 0,

with A+BF Hurwitz and F := −(DTD)−1(BTX +DTC).

1) Riccati equations: The algebraic Riccati equations
(AREs) corresponding to the centralized LQR and Kalman
filtering problem are given by

(Xcen, Fcen) := Ric(A,B2, C1, D12), (7a)

(Ycen, L
T
cen) := Ric(AT, CT

2 , B
T
1 , D

T
21). (7b)

Consider controlling the descendants of Agent i using only
measurements yi. The associated four-block plant is

Pi :=

[
P11:i P12:i

P21ii P22ii

]
:=




Aii B1ii B2ii

C1:i 0 D12:i

C2ii D21ii 0


 , (8)

and we define the corresponding ARE solutions as

(Xi, F i) := Ric(Aii, B2ii , C1:i , D12:i), (9a)

(Y i, LiT) := Ric(AT
ii, C

T
2ii , B

T
1ii , D

T
21ii). (9b)

Note that the block-diagonal structure of the estimation sub-
problems implies Ycen = blkd({Y i}) and Lcen = blkd({Li}).
Existence of the matrices defined in (7) and (9) follows from
Assumption 1 and the fact that A, B1, B2, C2, and D21 are
block-diagonal. If we apply the loop-shifting transformation Γ
described in Section II-A and Fig. 2, we obtain the modified
plant

P̃i :=

[
P̃11:i P̃12:i

P21ii P̃22ii

]
:=




Aii B1ii B̃2ii

C̃1:i 0 D12:i

C2ii D21ii 0


 .

This modified plant has the same estimation ARE as in (9b),
but a new control ARE, which we denote

(X̃i, F̃ i) := Ric(Aii, B̃2ii , C̃1:i , D12:i), (10)

Existence of the matrices defined in (10) also follows from
Assumption 1 [26, Lem. 4 and Rem. 1].

III. OPTIMAL CONTROLLER

We now present our solution to the structured optimal con-
trol problem described in Section II-B. We begin with a convex
parameterization of all structured stabilizing controllers.

A. Parameterization of stabilizing controllers

This parameterization is similar to the familiar state-space
parameterization of all stabilizing controllers [3], [32], but
with an additional constraint on the parameter Q to enforce
the required controller structure.

Lemma 3 Consider the structured optimal control problem
described in Section II-B with P given by (5) and suppose
Assumption 1 holds. Pick Fd and Ld block-diagonal such that
A + B2Fd and A + LdC2 are Hurwitz. The following are
equivalent:

(i) K ∈ Sτ and K stabilizes P .
(ii) K = Fl(J ,Q) for some Q ∈ H∞ ∩ Sτ , where

J :=




A+B2Fd + LdC2 −Ld B2

Fd 0 I
−C2 I 0


 . (11)

Proof: A similar approach was used in [33, Thm. 11] to
parameterize the set of stabilizing controllers when K ∈ S0

(no delays). In the absence of the constraint K ∈ Sτ , the set
of stabilizing controllers is given by {Fl(J ,Q) | Q ∈ H∞}
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[3, Thm. 12.8]. It remains to show that K ∈ Sτ if and only if
Q ∈ Sτ . Expanding the definition of the lower LFT, we have

K = J11 + J12Q (I − J22Q)
−1 J21. (12)

The matrices A, B2, C2, Fd, Ld are block-diagonal, so Jij

is block-diagonal and therefore Jij ∈ Sτ . The delays in our
graph satisfy the triangle inequality, so Sτ is closed under
multiplication (whenever the matrix partitions are compatible).
Moreover, Sτ is quadratically invariant with respect to J22

[8]. Therefore, if Q ∈ Sτ , then Q (I − J22Q)
−1 ∈ Sτ [8],

[34], and we conclude from (12) that K ∈ Sτ . Applying the
inversion property of LFTs, we have Q = Fu(J−1,K). Now

J−1 =




A B2 −Ld

C2 0 I
−Fd I 0


 ,

so we can apply a similar argument to the above to conclude
that (J−1)ij ∈ Sτ and K ∈ Sτ =⇒ Q ∈ Sτ .

We refer to Q in Lemma 3 as the Youla parameter, due to
its similar role as in the classical Youla parameterization [35].

Remark 4 Although the problem we consider is quadratically
invariant (QI), the existing approaches for convexifying a
general QI problem [7] or even a QI problem involving
sparsity and delays [8] require strong assumptions, such as
P22 being stable or strongly stabilizable. Due to the particular
delay structure of our problem, the parameterization presented
in Lemma 3 does not require any special assumptions and
holds for arbitrary (possibly unstable) P .

Remark 5 In the special case where A is Hurwitz (so P is
stable), we can substitute Fd = 0 and Ld = 0 in (11) to obtain
a simpler parameterization of stabilizing controllers.

Using the parameterization of Lemma 3, we can rewrite the
synthesis problem (6) in terms of the Youla parameter Q. After
simplification, we obtain the convex optimization problem

minimize
Q

∥∥T11 + T12QT21
∥∥2
2

subject to Q ∈ H∞ ∩ Sτ .
(13)

where T =

[
T11 T12
T21 0

]

=




A+B2Fd −B2Fd B1 B2

0 A+ LdC2 B1 + LdD21 0

C1 +D12Fd −D12Fd 0 D12

0 C2 D21 0


. (14)

Remark 6 The convex problem (13)–(14) is similar to its
unstructured counterpart [3, Thm. 12.16], except we have the
additional constraint Q ∈ Sτ on the Youla parameter.

Remark 7 We use L := Lcen = Ld = blkd({Li}) throughout
the rest of the article. This choice of L yields a Qopt with
reduced state dimension and simplifies our exposition.

B. Optimal controller without delays

When there are no processing delays (τ = 0), the optimal
structured controller is rational. We now provide an explicit
state-space formula for this optimal K.

Theorem 8 Consider the structured optimal control problem
described in Section II-B and suppose Assumption 1 holds.
Choose a block-diagonal Fd such that A+B2Fd is Hurwitz.
A realization of the Qopt that solves (13) in the case τ = 0 is

Qopt =

[
Ā+ B̄F̄ −L̄1̄p

1̄T
m(F̄ − F̄d) 0

]
(15)

and a corresponding Kopt that solves (6) is

Kopt =

[
Ā+ B̄F̄ + L̄C̄1̄n1̄

T
n −L̄1̄p

1̄T
mF̄ 0

]
. (16)

In (15)–(16), we defined the new symbols

Ā :=IN⊗A, B̄ :=IN⊗B2, C̄ :=IN⊗C2, F̄d :=IN⊗Fd,

1̄n := 1N ⊗ In, 1̄m := 1N ⊗ Im, 1̄p := 1N ⊗ Ip.

Matrices L̄ and F̄ are block-diagonal concatenations of zero-
padded LQR and Kalman gains for each agent. Specifically,
F̄ := blkd({Emi

F iET
ni
}) and L̄ := blkd({Eni

LiET
pi
}) for

all i ∈ [N ], where F i and Li are defined in (9).

Proof: See Appendix C.

Remark 9 The optimal controller (16) can also be expressed
explicitly in terms of the adjacency matrix; see for example
[18], [36]. We opt for the realization (16) as this expression
generalizes more readily to the case with delays.

Remark 10 Since agents can act as relays, any cycles in the
communication graph can be collapsed and the associated
nodes can be aggregated when there are no delays. For
example, the graph of Fig. 1 would become the four-node
diamond graph {1} → {3, 4} → {5}, and {1} → {2} → {5}.
So in the delay-free setting, there is no loss of generality in
assuming the communication graph is acyclic.

Remark 11 Although the optimal Qopt (15) and associated J
(11) depend explicitly on Fd, the optimal Kopt (16) does not.

C. Optimal controller with delays

In this section, we generalize Theorem 8 to include an
arbitrary but fixed processing delay τ > 0. To this end, we
introduce a slight abuse of notation to aid in representing non-
rational transfer functions. We generalize the notation of (4)
to allow for A,B,C,D that depend on s. So we write:

[
A(s) B(s)

C(s) D(s)

]
:= D(s) + C(s) (sI −A(s))

−1
B(s).

Theorem 12 Consider the setting of Theorem 8. The transfer
function of Qopt ∈ H∞ ∩Sτ that solves (13) for any τ ≥ 0 is

Qopt =




Ā+L̄C̄ B̃F̃−L̄Π̄bF̃−B̄Π̄uF̃ 0

L̄C̄ Ā+B̃F̃−L̄Π̄bF̃ −L̄1̄p

1̄T
mΛ̄mF̄d 1̄T

mΛ̄m(Π̄uF̃−F̄d) 0


 (17)
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and a corresponding Kopt that solves (6) is

Kopt =

[
Ā+B̃F̃+L̄C̄1̄n1̄

T
nΛ̄n−L̄Π̄bF̃ −L̄1̄p

1̄T
mΛ̄mΠ̄uF̃ 0

]
, (18)

where Ā, L̄, F̄d, 1̄n, 1̄m, 1̄p, are defined in Theorem 8. The
remainder of the symbols are defined as follows. We apply
the loop-shifting transformation (P̃i,Πui

,Πbi) = Γ(Pi,Λ
i
m),

where Pi, P̃i, F̃ i are defined in Section II-B.1, and

F̃ := blkd({Emi
F̃ iET

ni
}), Π̄b := blkd({Epi

ΠbiE
T
mi

}),
B̃ := blkd({Eni

B̃2iiE
T
mi

}), Π̄u := blkd({Emi
Πui

ET
mi

}),
Λ̄k := blkd({Eki

Λi
kE

T
ki
}), for k ∈ {m,n}.

Proof: See Appendix D.
The transfer matrices Qopt in (17) and Kopt in (18) are

not rational, due to the presence of the FIR blocks Π̄u,
Π̄b, and delay blocks Λ̄m and Λ̄n. Consequently, we cannot
write standard state-space realizations as in Theorem 8. When
τ = 0, we have Π̄u = I , Π̄b = 0, Λ̄m = I , F̃ = F̄ , and
B̃ = B̄, and we recover the results of Theorem 8.

IV. AGENT-LEVEL CONTROLLERS

The optimal controller presented in Theorem 8 is generally
not minimal. For example, Kopt in (16) has a state dimension
of Nn, which means a copy of the global plant state for each
agent. However, if we extract the part of Kopt associated with
a particular agent, there is a dramatic reduction in state di-
mension. So in a distributed implementation of this controller,
each agent would only need to store a small subset of the
controller’s state. A similar reduction exists for the optimal
controller for the delayed problem presented in Theorem 12.

Our next result presents reduced implementations for these
agent-level controllers and characterizes the information each
agent should store and communicate with their neighbors. We
find that Agent i simulates its descendants’ dynamics, and
so has dimension ni, which is at least N times smaller than
the dimension Nn of the aggregate optimal controller from
Theorem 8.

Theorem 13 Consider the setting of Theorem 8 with τ ≥ 0.
The agent-level implementation of all structured stabilizing
controllers, parameterized by Q̂ ∈ H∞ ∩ S0, is shown in
Fig. 3. Here, the optimal controller is achieved when Q̂ = 0.
In this case, we obtain the simpler structure of Fig. 4. All
symbols used are defined in Theorems 8 and 12.

Proof: See Appendix E.

A. Interpretation of optimal controller

Fig. 3 shows that Agent i transmits the same signal vi to
each of its strict descendants. When an agent receives the
signals v¯̄i from its strict ancestors ¯̄i, it selectively extracts and
sums together certain components of the signals. To implement
the optimal controller, each agent only needs to know the
dynamics and topology of its descendants.

If the network has the additional property that there is
at most one directed path connecting any two nodes3, then
the communication scheme can be further simplified. Since
Agent i’s decision ui is a sum of terms from all ancestors,
but each ancestor has exactly one path that leads to i, the
optimal controller can be implemented by transmitting all
information to immediate descendants only and performing
recursive summations. This scheme is illustrated for a four-
node chain graph in Fig. 5.

Remark 14 The agent-level controller from Fig. 4 can be
represented as the combination of an observer with transfer
matrix Tii := (sI −Aii −ET

ni
Eni

LiC2ii)
−1, and a regulator

with an LQR gain F̃ i in Fig. 6. This yields a separation
structure reminiscent of standard LQG theory [3].

Remark 15 Compared to the architecture proposed in [31,
Fig. 4], the agent-level optimal controller in Fig. 4 is more
efficient because each agent transmits a single vector vi to its
descendants, instead of two.

Remark 16 The controller in Fig. 4 has the form of a feed-
forward Smith predictor, similar to Fig. 2 (bottom left). The
FIR block Πui compensates for the effect of adobe delay.
Similarly, the FIR block Πbi resembles the internal feedback
in traditional dead-time controllers.

V. CHARACTERIZING THE COST

In this section, we characterize the cost of any structured sta-
bilizing controller. The cost is defined as J :=

∥∥Fl(P,K)
∥∥2
2
=∥∥T11 + T12QT21

∥∥2
2
, where K is feasible for (6) or equivalently,

Q = Fu(J−1,K) is feasible for (13) (see Lemma 3). We show
how to interpret the cost in different ways, and how to compute
it efficiently. We illustrate our result using an example with
N = 4 agents.

Theorem 17 Consider the setting of Theorem 8. The optimal
(minimal) costs for the cases: a fully connected graph with no
delays, a decentralized graph with no delays, a fully connected
graph with delays, and a decentralized graph with delays are:

Jcen = tr(YcenC
T
1 C1) + tr(XcenLD21D

T
21L

T), (19a)

Jdec = tr(YcenC
T
1 C1) + tr(XdecLD21D

T
21L

T), (19b)

Jdel = tr(YcenC
T
1 C1) + tr(XdelLD21D

T
21L

T), (19c)

Jdec,del = tr(YcenC
T
1 C1) + tr(Xdec,delLD21D

T
21L

T), (19d)

respectively. If a feasible but sub-optimal Q is used in any
of the above cases, write Q∆ := Q − Qopt. The cost of this
sub-optimal Q is found by adding JQ :=

∥∥T12Q∆D21

∥∥2
2

to
(19a)–(19d). The various symbols are defined as

Xdec := blkd({Xi(1, 1)}), Xdel := blkd({Ξi
cτ (1, 1)}),

Xdec,del := blkd({Ξi
τ (1, 1)}), and satisfy

blkd({Xcen(i, i)}) ⪯ Xdec ⪯ Xdec,del, (20a)
blkd({Xcen(i, i)}) ⪯ Xdel ⪯ Xdec,del. (20b)

3Also known as a multitree or a diamond-free poset.
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


Aii B1ii B2ii

C1:i 0 D12:i

C2ii D21ii 0




wizi




Aii +B2iiFdii
+ LiC2ii −Li B2ii

Fdii 0 I
−C2ii I 0




uiyi




Aii + ET
ni
Eni

LiC2ii B̃2ii F̃
i 0

[−B2ii −ET
ni
Eni

Li
]

ET
ni
Eni

LiC2ii Aii + B̃2ii F̃
i −ET

ni
Eni

Li
[

0 −ET
ni
Eni

Li
]

Fdii
−Fdii

0 0

0 F̃ i 0 0




Πui

+ ET
mi

∑
k∈¯̄i ṽke−sτ

processing delay

v¯̄i
(from ancestors)

ṽ¯̄i

Q̂ii+

Emi
vi

(to descendants)

+

[
I ΠT

bi

]T

Fig. 3. Agent-level implementation of all structured stabilizing controllers, parameterized by Q̂ ∈ H∞∩S0. Here, Fd is any block-diagonal matrix
such that Aii + B2iiFdii

is Hurwitz. The H2-optimal controller is achieved when Q̂ = 0, and results in the simplified diagram of Fig. 4. The
blocks that depend on the processing delay τ are colored in green. All symbols are defined in Theorem 13.




Aii B1ii B2ii

C1:i 0 D12:i

C2ii D21ii 0




wizi

[
Aii+B̃2ii F̃

i+ET
ni
Eni

LiC2ii ET
ni
Eni

Li

− F̃ i 0

]
+

yi

Πui
+

Πbi

vi

v¯̄i e−sτ

ET
mi

Emi

ET
mi

∑
k∈¯̄i ṽk

ṽ¯̄i

ui

Emi

processing delay
(from ancestors)

(to descendants)

Fig. 4. Agent-level implementation of the H2-optimal controller with
processing delays. This is the result of setting Q̂ = 0 in Fig. 3. The
blocks that depend on the processing delay τ are colored in green. All
symbols are defined in Theorem 13.

Xcen, Ycen, Fcen, and L are defined in Section II-B.1. Ξi
τ and

Ξi
cτ are defined in Appendices F.6 and F.7, respectively.

Proof: See Appendix F.
In (19a) we recognize Jcen as the standard LQG cost (fully
connected graph with no delays). Further, there are two
intuitive interpretations for Theorem 17 that are represented in
Fig. 7 for a 3-agents system. The intermediate graph topologies
are different, but the starting and ending topologies are equal
for both. Along the upper path, Jdec − Jcen is the additional
cost incurred due to decentralization alone, and Jdec,del − Jdec
is the further additional cost due to delays. Likewise, along
the lower path, Jdel − Jcen is the additional cost due to delays
alone and Jdec,del − Jdel is the further additional cost due to

1 2 3 4
v1

v1

v1

v2

v2

v3

1 2 3 4
v1 v1 + v2 v1 + v2 + v3

Fig. 5. Four-agent chain graph with standard broadcast (top) and
efficient immediate-neighbor implementation (bottom), which is possible
because this graph is a multitree.

decentralization. Finally, JQ is the additional cost incurred due
to suboptimality. Theorem 17 unifies existing cost decompo-
sition results for the centralized [3, §14.6], decentralized [15,
Thm. 16], and delayed [26, Prop. 6] cases.

Remark 18 Delay and decentralization do not contribute
independently to the cost. Specifically, the marginal increase
in cost due to adding processing delays depends on the
graph topology. Likewise, the marginal increase in cost due
to removing communication links depends on the processing
delay. In other words, Jcen + Jdec,del ̸= Jdec + Jdel.

Remark 19 There is a dual expression for the cost Jcen
in (19a): Jcen = tr(XcenB1B

T
1 ) + tr(YcenF

T
cenD

T
12D12Fcen).

The corresponding dual expressions for (19b)–(19d) are un-
fortunately more complicated. See Appendix F.3 for details.

A. Synchronization example
We demonstrate Theorem 8 via a simple structured LQG

example. We consider N = 4 identical lightly damped oscil-
lators. The oscillators begin with different initial conditions
and the goal is to achieve synchronization. The oscillators
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


Aii B1ii B2ii

C1:i 0 D12:i

C2ii D21ii 0




wizi

−ET
ni
EniL

i
+ Tii F̃ i

B̃2ii

+

yi

Πui
+

Πbi

vi

v¯̄i e−sτ

ET
mi

Emi

ET
mi

∑
k∈¯̄i ṽk

ṽ¯̄i

ui

Emi

processing delay
(from ancestors)

(to descendants)

Fig. 6. Agent-level implementation of the H2-optimal controller with
processing delays, featuring an observer (red) and regulator (blue)
separation structure. Here Tii := (sI − Aii − ET

ni
EniL

iC2ii)
−1

is the transfer matrix of the observer dynamics.

1

32

Jcen

1

32 Jdec

1

32

Jdel

1

32
Jdec,del

remove links add delays

add delays remove links

Fig. 7. Hierarchy of optimal costs for different communication patterns
in a three-agent example. Additional cost is incurred if links are removed
(blue dotted arrows), or if processing delay is added (green dottted ar-
rows). Delayed edges are red. In this example, Jcen ≤ Jdec ≤ Jdec,del
and Jcen ≤ Jdel ≤ Jdec,del but Jdec and Jdel are not comparable.

have identical dynamics defined by the differential equations in
Figs. 8 and 9. Fig. 8 shows the open-loop zero-input response
for the four oscillators with given initial conditions. Due to the
light damping, the states slowly converge to zero as t → ∞.

Fig. 9 shows the closed-loop response using the optimal
controller from Theorem 8 for a diamond-shaped communi-
cation network with no processing delay. The controller states
are initialized to match the initial state of the plant. Since
the observer is an unbiased estimator, the LQG controller
replicates the behavior of full-state feedback LQR. Fig. 9
shows the four oscillators leveraging their shared information
to achieve synchronization to a common oscillation pattern.

In Fig. 10, we use the same system as in Fig. 9, but we
plot the total average cost as a function of time delay for
various network topologies. The highest cost corresponds to a
fully disconnected network, while the lowest cost corresponds
to a fully connected network. In the limit as τ → ∞
(infinite processing delay), the cost tends to that of the fully
disconnected case.

VI. CONCLUSION

We studied a structured optimal control problem where
multiple dynamically decoupled agents communicate over a
delay network. Specifically, we characterized the structure

1

32

4

ẍi + 0.01ẋi + xi = 0, for i = 1, . . . , 4

x(0) =
[
1.8, 0.5,−1.2,−0.5

]T
, ẋ(0) = 0.
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−1.5
−1

−0.5
0

0.5

1

1.5
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P
o
si
ti
o
n

x1 x2 x3 x4

Fig. 8. Open-loop zero-input response of a network of four lightly
damped oscillators.

1

32

4

ẍi + 0.01ẋi + xi = ui, for i = 1, . . . , 4

J =

∫ ∞

0

(
0.02

∑

i< 

∥xi − x ∥2 +
∑

i

∥ui∥2
)
dt,

x(0) =
[
1.8, 0.5,−1.2,−0.5

]T
, ẋ(0) = 0.

0 5 10 15 20 25 30 35

−1.5
−1

−0.5
0

0.5

1

1.5

Time (seconds)

P
o
si
ti
o
n

x1 x2 x3 x4

Fig. 9. Closed-loop response of the four-oscillator system from Fig. 8
using the optimal controller from Theorem 8 for a diamond-shaped
communication graph with no processing delay. The oscillators leverage
the communication network to achieve synchronization.

and efficient implementation of optimal controllers at the
individual agent level. We now propose some possible future
applications for our work.

First, our approach can be readily generalized to treat cases
with a combination of processing delays and network latency,
where the various delays are heterogeneous but known [37].
Next, the observer-regulator architecture elucidated in Fig. 6
could also be used to develop heuristics for solving cooperative
control problems where the agents’ dynamics are nonlinear or
the noise distributions are non-Gaussian. Examples could in-
clude decentralized versions of the Extended Kalman Filter or
Unscented Kalman Filter. Finally, our closed-form expressions
for the optimal cost can serve as lower bounds to the cost of
practical implementation that have additional memory, power,
or bandwidth limitations.
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Fig. 10. The average optimal cost, as a function of processing delay, for
the 4-agent system of Fig. 9 with different network topologies. For each
topology, the cost is an increasing function of the processing delay.

APPENDIX

A. Definition of the Γ function
The Γ function takes in a four-block plant P and adobe

delay matrix Λi
m and returns a transformed plant P̃ and FIR

systems Πu, Πb. As in [26], we first consider the special case
where DT

12D12 = I . The completion operator πτ{·} acts on a
rational LTI system delayed by τ and returns the unique FIR
system supported on [0, τ ] that provides a rational completion:

πτ

{[
A B

C 0

]
e−sτ

}
:=

[
A e−AτB

C 0

]
−
[
A B

C 0

]
e−sτ.

The input matrices B2 and D12 of P are partitioned ac-
cording to the blocks of adobe delay matrix Λi

m. So, B2 =[
B20 B2τ

]
, where the two blocks correspond to inputs with

delay 0 and τ , respectively. D12 is partitioned in a similar
manner. Define the Hamiltonian matrix

H =

[
H11 H12

H21 H22

]
:=

[
A−B20D

T
120C1 −B20B

T
20

−CT
1 PτC1 −AT+CT

1 D120B
T
20

]
,

where P0 := D120D
T
120 and Pτ := I−P0, and define its matrix

exponential as Σ := eHτ . Define the modified matrices

B̃2 :=
[
B20 ΣT

12C
T
1 D12τ +ΣT

22B2τ

]

C̃1 :=
(
PτC1 + P0C1Σ

T
22 −D120B

T
20Σ

T
21

)
Σ−T

22 ,

where the Σij are partitioned the same way as the Hij . The
modified four-block plant output by Γ is then

P̃ :=

[
P̃11 P̃12

P21 P̃22

]
:=




A B1 B̃2

C̃1 0 D12

C2 D21 0


 ,

Finally, define the FIR systems

[
Π̃u

Π̃b

]
:= πτ








H11 H12 B2τ

H21 H22 −CT
1 D12τ

DT
120C1 B20 0
C2 0 0


 e−sτ





.

FIR outputs of Γ are Πu :=

[
I Π̃u

0 I

]
and Πb :=

[
0 Π̃b

]
.

In the general case DT
12D12 ̸= I , we can use a standard

change of variables to transform back to the case DT
12D12 = I .

See [24, Rem. 2] for details.

B. Gramian equations
Here we provide the set of Lyapunov equations that are

uniquely associated with the multi-agent problem.

Lemma 20 Suppose (Xcen, Fcen) and (Xi, F i) are defined in
(7a) and (9a) respectively. Then W i

X := Xi − Xcenii ⪰ 0 is
the unique solution to the Lyapunov equation

(Aii +B2iiF
i)TW i

X +W i
X(Aii +B2iiF

i)

+ (Emi
F i − FcenEni

)TDT
12D12(Emi

F i − FcenEni
) = 0.

(21)

Proof: Left and right multiply the ARE for (7a) by
ET

ni
and Eni

respectively, and subtract it from (9a). The
result follows from algebraic manipulation and applying the
definitions of F i and Fcen. Since the final term in (21) is
positive semidefinite and Aii + B2iiF

i is Hurwitz, it follows
that W i

X := Xi −Xcenii ⪰ 0 and is unique.
We also have a dual analog to Lemma 20, provided below.

Lemma 21 Consider the setting of Lemma 20. There exists a
unique W i

Y ⪰ 0 that satisfies the Lyapunov equation

(Aii +B2iiF
i)W i

Y +W i
Y (Aii +B2iiF

i)T

+ ET
ni
L̄1̄pD21D

T
211̄

T
p L̄

TEni
= 0. (22)

Proof: Since ET
ni
L̄1̄pD21D

T
211̄

T
p L̄

TEni
⪰ 0 and the

matrix Aii +B2iiF
i is Hurwitz, W i

Y ⪰ 0 and is unique.

C. Proof of Theorem 8
For the case τ = 0, we can replace Q ∈ H∞ ∩ Sτ by

Q ∈ H2∩H∞∩S0 in (13) because the closed-loop map must
be strictly proper in order to have a finite H2 norm. Since
T11 is strictly proper, this forces Q to be strictly proper as
well, and hence Q ∈ H2 ∩ H∞. Further, if Q is rational,
we have Q ∈ RH2. The optimization problem (13) is a least
squares problem with a subspace constraint, so the necessary
and sufficient conditions for optimality are given by the normal
equations T ∼

12 (T11 + T12QT21)T ∼
21 ∈ (RH2 ∩ S0)

⊥ with the
constraint that Q ∈ RH2 ∩ S0.

We can check membership F ∈ (RH2 ∩S0)
⊥ by checking

if Fij ∈ RH⊥
2 whenever there is a path j → i. For example,

consider the two-node graph 1 → 2. Then we have

RH2 ∩ S0 =

[
RH2 0
RH2 RH2

]
and

(RH2 ∩ S0)
⊥ =

[
RH⊥

2 L2

RH⊥
2 RH⊥

2

]
.

So here, F ∈ (RH2 ∩ S0)
⊥ if and only if F11,F21,F22 ∈

RH⊥
2 . We will show that the proposed Qopt in (15) is optimal

by directly verifying the normal equations.
Substituting Qopt from (15) into T11 + T12QoptT21 with Tij

defined in (14), we obtain the closed-loop map

T11 + T12QoptT21 =

[
Acl Bcl

Ccl 0

]

:=




Ā+ B̄F̄ −L̄C̄1̄n −L̄1̄pD21

0 AL BL

C11̄
T
n +D121̄

T
mF̄ C1 0


 , (23)
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where AL := A + LC2 and BL := B1 + LD21. Next, we
show that the controllability Gramian for the closed loop map
is block-diagonal.

Lemma 22 The controllability Gramian for the closed-loop
map (23) is given by Θ := blkd({EniW

i
Y E

T
ni
}i∈[N ], Ycen),

where Ycen and W i
Y are defined in Eq. (7b) and Lemma 21,

respectively. In other words, Θ ⪰ 0 is the unique solution to
AclΘ+ΘAT

cl +BclB
T
cl = 0.

Proof: Acl is Hurwitz and BclB
T
cl ⪰ 0 so the Lyapunov

equation has a unique solution and Θ ⪰ 0. We can verify the
solution by direct substitution using Lemma 21 and the ARE
associated with (7b).

Lemma 22 has the following statistical interpretation. If the
controlled system (23) is driven by standard Gaussian noise, its
state in these coordinates will have a steady-state covariance
Θ, so each block component will be mutually independent.

1) Proof of optimality: Let Ω := T ∼
12 (T11 + T12QoptT21)T ∼

21 .
Substituting Qopt from (15) and using (23), we obtain

Ω =




−AT
K −CT

KCcl 0 0
0 Acl BclB

T
L BclD

T
21

0 0 −AT
L −CT

2

BT
2 DT

12Ccl 0 0


, (24)

where AK := A + B2Fd, CK := C1 +D12Fd, and Acl, Bcl,
Ccl, are defined in (23). Apply the state transformation

T =



I

[
1̄T
nX̄ 0

]
1̄T
nX̄W̄ 1̄p

0 I Θ1̄p

0 0 I




to (24), where we defined W̄ := blkd({Eni
W i

Y E
T
ni
}i∈[N ])

and X̄ := blkd({Eni
W i

XET
ni

+Xcen}i∈[N ]), and Θ is defined
in Lemma 22. The transformed Ω is

Ω =




−AT
K ⋆1 ⋆ ⋆ ⋆

0 Ā+ B̄F̄ −L̄C̄1̄n ⋆2 ⋆3
0 0 AL ⋆5 ⋆6
0 0 0 −AT

L −CT
2

BT
2 ⋆4 DT

12C1 ⋆ 0



,

where we have defined the symbols

⋆1 := −AT
K 1̄T

nX̄−CT
K(C11̄

T
n+D121̄

T
mF̄ )−1̄T

nX̄(Ā+B̄F̄ )

⋆2 := −L̄1̄pD21B
T
L−L̄C̄1̄nYcen+(Ā+B̄F̄ )W̄ 1̄p+W̄ 1̄pA

T
L

⋆3 := −L̄1̄pD
T
21 + W̄ 1̄pC

T
2

⋆4 := DT
12(C11̄

T
n +D121̄

T
mF̄ ) +BT

2 1̄
T
nX̄

⋆5 := ALYcen +BLB
T
L + YcenA

T
L

⋆6 := BLD
T
21 + YcenC

T
2 .

A ⋆ without subscript denotes an unimportant block. Simplify-
ing using Riccati and Lyapunov equations from Section II-B.1
and Appendix B respectively, we get ⋆5 = ⋆6 = 0; the mode
AL is uncontrollable. Removing it, we obtain

Ω =




−AT
K ⋆1 ⋆ ⋆

0 Ā+ B̄F̄ ⋆2 ⋆3
0 0 −AT

L −CT
2

BT
2 ⋆4 ⋆ 0


. (25)

Now consider a block Ωij for which there is a path j → i.

Ωij =




−AT
Kii

⋆1i: ⋆ ⋆

0 Ā+ B̄F̄ ⋆2:j ⋆3:j
0 0 −AT

Ljj
−CT

2jj

BT
2ii ⋆4i: ⋆ 0



. (26)

Let ⋆k1 and ⋆k4 denote the kth block column and let ⋆k2 and ⋆k3
denote the kth block row. Algebraic manipulation reveals that

(i) If i ∈ k and ℓ ∈ k, then ⋆k1iℓ = ⋆k4iℓ = 0.
(ii) If ℓ /∈ k or j /∈ k, then ⋆k2ℓj = ⋆k3ℓj = 0.

Consider the kth diagonal block of Ā+ B̄F̄ in (26), which is
A + Enk

B2kk
F kET

nk
. This block is itself block-diagonal; it

contains the block Akk +B2kk
F k and smaller blocks Aℓℓ for

all ℓ /∈ k. We have three cases.
1. If k ∈ ī, then for all ℓ ∈ k, we have ⋆k1iℓ = ⋆k4iℓ = 0 from

Item (i) above, so the mode Akk+B2kk
F k is unobservable.

2. If k ∈ ī, but instead ℓ /∈ k, we have ⋆k2ℓj = ⋆k3ℓj = 0 from
Item (ii) above, so the modes Aℓℓ are uncontrollable.

3. If k /∈ ī, then k /∈ j̄ because j → i by assumption. Then
from Item (ii) above, all such modes are uncontrollable.

Consequently every block of Ā+ B̄F̄ is either uncontrollable
or unobservable, leading us to the reduced realization

Ωij =




−AT
Kii

⋆ ⋆
0 −AT

Ljj
−CT

2jj

BT
2ii ⋆ 0


. (27)

Therefore, Ωij ∈ RH⊥
2 whenever j → i, as required.

D. Proof of Theorem 12
Start with the convexified optimization problem (13). Based

on the structured realization (14), we see that T21 is block-
diagonal. Therefore, the optimal cost can be split by columns:

∥∥T11 + T12QT21
∥∥2
2
=

N∑

i=1

∥∥T11:i + T12:iQiiT21ii
∥∥2
2
.

Since Q ∈ H∞∩Sτ , we can factor each block column of Q as
Qii = Λi

mQ̃ii, where Q̃ii ∈ H∞ has no structure or delay, and
Λi
m is the adobe delay matrix (defined in Section II-A). We

can therefore optimize for each block column Q̃ii separately.
Thus, each subproblem is to

minimize
Q̃ii∈H∞

∥∥T11:i + T12:iΛi
mQ̃iiT21ii

∥∥2
2
, (28)

Define Ti :=

[
T11:i T12:i
T21ii 0

]
. Comparing to (13)–(14), we

observe that (28) is a special case of the problem (13), subject
to the transformations P 7→ Pi (defined in (8)) and Fd 7→
Fdii , Ld 7→ ET

ni
EniL

i, and Q 7→ Λi
mQ̃ii. If we define the

associated Ji for this subproblem (according to (11)), we view
the subproblem as that of finding the H2-optimal controller
for the plant Pi subject to an adobe input delay, as illustrated
in the left panel of Fig. 11. The key difference between this
problem and (6) is that we no longer have a sparsity constraint.

The adobe delay Λi
m can be shifted to the input channel,

shown in the right panel of Fig. 11. This follows from
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Pi

Ji

Q̃iiΛi
m

(pi) (mi)

(mi) (pi)

z wi

Ki

Pi

Ji

Q̃ii

Λi
m

z wi

Fig. 11. Equivalent subproblems via commuting Λi
m and Ji. Dimen-

sions of signals are indicated along the arrows.

leveraging state-space properties and the block structure of
certain blocks of Ji. Examples include B2iiΛ

i
m = Λi

nB2ii

and Λi
nE

T
ni
Eni

Li = ET
ni
Eni

Li.
The remainder of the proof proceeds as follows: we define

Ki to be the shaded system in Fig. 11 (right panel). This
is a standard adobe delayed problem, so we can apply the
Γ transformation illustrated in Fig. 2. Specifically, we define
(P̃i,Πui ,Πbi) = Γ(Pi,Λ

i
m), and obtain Fig. 12.

K̃i
Ki

Q̃ii

P̃i

Ji

z wi

Π−1
ui

−Πbi

+

+ Ψi

∆i

Fig. 12. Transformation of the right panel of Fig. 11 using the loop-
shifting transformation illustrated in Fig. 2.

By the properties of the loop-shifting transformation dis-
cussed in Section II-A, the optimal K̃i is found by solving a
standard non-delayed LQG problem in the (rational) plant P̃i,
whose solution is

K̃i =

[
Aii + B̃2ii F̃

i + ET
ni
Eni

LiC2ii −ET
ni
Eni

Li

F̃ i 0

]
.

Inverting each transformation, Ki = Πui
K̃i(I−ΠbiK̃i)

−1, and
we can recover the Youla parameter via Q̃ii = Fu(J−1

i ,Ki),
which leads to (29). Now zero-pad, reintroduce delays, and
concatenate, to obtain the global Youla parameter (17) via
Qopt =

∑N
i=1 Emi

Λi
mQ̃iiE

T
pi

and recover the optimal con-
troller (18) via Kopt = Fl(J ,Qopt).

E. Proof of Theorem 13

From Lemma 3, the set of sub-optimal controllers is pa-
rameterized as K = Fl(J ,Q), where Q ∈ Sτ . Equivalently,
write K = Fl(J ,Qopt + Q∆), where Q∆ ∈ Sτ and Qopt is
given in Theorem 12. The controller equation u = Ky can be
expanded using the LFT as ( uη ) = J ( yv ) with v = Qη. If J

has state ξ, the state-space equation for J decouples as

ξ̇i = (Aii +B2iiFdii
+ LiC2ii)ξi − Liyi +B2iivi,

ui = Fdii
ξi + vi,

ηi = −C2iiξi + yi, for i = 1, . . . , N.

Note that we replaced Ldii by Li from (9b). This leads to
simpler algebra, but is in principle not required. Meanwhile,
the Q equation is coupled: v = (Qopt +Q∆)η. Now consider
Agent i. Since we are interested in the agent-level implemen-
tation, we begin by extracting ui, which requires finding vi.
Separate Q by columns as in Appendix D to obtain

vi = ET
mi

(Qopt +Q∆) η

=
∑

k∈[N ]

ET
mi

Emk
Λk
m

(
Q̃kk + Q̂kk

)
ηk

=
(
Q̃ii + Q̂ii

)
ηi + e−sτ

∑

k∈¯̄i

(
Q̃ik + Q̂ik

)
ηk, (30)

where Q̃ii is given in (29), and Q̂ ∈ S0 is the delay-free
component of Q∆. A possible distributed implementation is to
have Agent i simulate ξi locally. Since yi is available locally,
then so is ηi. We further suppose Agent i computes vi,i :=

(Q̃ii + Q̂ii)ηi locally. Component vi,i is used locally, while
component vi,j for j ∈ i is transmitted to descendant j. Each
agent then computes vi by summing its local vi,i with the
delayed e−sτvi,k received from strict ancestors k ∈ ¯̄i. The
complete agent-level implementation is shown in Fig. 3.

When Q̂ = 0, we recover the optimal controller. In this
case, the equations simplify considerably; standard state-space
manipulations reduce Fig. 3 to the simpler Fig. 4. It is worth
noting that the optimal controller does not depend on the
choice of nominal gain Fd.

F. Proof of Theorem 17
All the estimation, control gains and Riccati solutions used

here are defined in Section II-B.1. The additional cost incurred
due to suboptimality is JQ :=

∥∥T12Q∆T21
∥∥2
2

[3, §14.6]. Using
[3, Lem. 14.3], we have JQ :=

∥∥T12Q∆D21

∥∥2
2
.

1) Jcen (19a): The optimal cost for a fully connected graph
[3, Thm. 14.7] is

Jcen :=

∥∥∥∥∥

[
A+B2Fcen B1

C1 +D12Fcen 0

]∥∥∥∥∥

2

2

+

∥∥∥∥∥

[
AL BL

D12Fcen 0

]∥∥∥∥∥

2

2

,

= tr(YcenC
T
1 C1) + tr(XcenLD21D

T
21L

T),

= tr(XcenB1B
T
1 ) + tr(YcenF

T
cenD

T
12D12Fcen),

where AL, BL are defined in Appendix C for (24).
2) Jdec (19b): Consider that Kopt in (16) is a sub-optimal

centralized controller for
∥∥T11 + T12QT21

∥∥2
2
, subject to Q ∈

RH2. Centralized H2 theory [3] implies that Jdec = Jcen +

∆, where ∆ :=
∥∥D12QyouD21

∥∥2
2

and Qyou is the centralized
Youla parameter. Here, Qyou = Fu(J−1,Kopt), where

J−1 =




A B2 −L

C2 0 I
−Fcen I 0


 .
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Q̃ii =




Aii B2iiΠui
F̃ i −ET

ni
Eni

Li

−ET
ni
Eni

LiC2ii Aii + B̃2ii F̃
i − ET

ni
Eni

LiΠbi F̃
i + ET

ni
Eni

LiC2ii −ET
ni
Eni

Li

− Fdii Πui F̃
i 0


 . (29)

After simplifications, we obtain

Qyou =

[
Ā+ B̄F̄ −L̄1̄p

1̄T
m(F̄ − F̄cen) 0

]
.

We substitute Qyou into the expression for ∆, using∥∥Ds + Cs(sI −As)
−1Bs

∥∥2
2
= tr(CsWcC

T
s ), where Wc is the

controllability Gramian given by Lyapunov equation AsWc +
WcA

T
s + BsB

T
s = 0. Based on the Lemma 20 and using the

identity Li = Eni
LiET

pi
, we evaluate

∆ =
N∑

i=1

tr(DT
21L

T
i Eni

{Xi −Xcenii}ET
ni
LiD21)

= tr((blkd({Xi(1, 1)})−Xcen)LD21D
T
21L

T).

We obtain (19b) by substituting ∆ into Jdec = Jcen +∆.
3) Alternative formulas for the cost: We obtained an al-

ternative formula for Jcen in Appendix F.1. Similarly, in
Appendix F.2 for Jdec,

∥∥Ds + Cs(sI −As)
−1Bs

∥∥2
2

is also
equal to tr(BsB

T
s Wo), where Wo is the observability Gramian

given by the dual Lyapunov equation AT
sWo + WoAs +

CT
s Cs = 0. Based on Lemma 21, we can evaluate ∆ =∑N
i=1 tr(D12(EmiFi−FcenEni

)W i
Y (Emi

Fi−FcenEni
)TDT

12).
Similar alternative formulas exist for (19c), and (19d) as well.

4) Jdec,del (19c): We can split the cost in (13) into a sum of
N separate terms because T21 is block-diagonal. Using [26,
Prop. 6] on each of these N problems, we write Jdec,del as
a combination of a non-delayed cost Jdec and a ∆ incurred
by adding delays to that system: Jdec,del = Jdec + ∆, where
∆ :=

∑N
i=1 tr(D

T
21iiL

T
i E

T
ni
(Ξi

τ − Xi)EniLiD21ii). Also,
∆ = tr(blkd({Ξi

τ (1, 1)−Xi(1, 1)})LD21D
T
21L

T) since Li =
Eni

LiET
pi

. We obtain (19c) by substituting ∆ into Jdec,del =
Jdec +∆. See Appendix F.6 below for explanation on Ξi

τ .
5) Jdel (19d): Derivation is analogous to that of Jdec,del. See

Appendix F.7 below for explanation on Ξi
cτ .

6) Proofs for (20a): We have Xi −Xcenii ⪰ 0 in Lemma 20
for all i ∈ [N ]. The properties of a positive semi-definite
matrix give us Xi(1, 1) − Xcenii(1, 1) ⪰ 0, and hence
blkd({Xcen(i, i)}) ⪯ Xdec.

Now we define Ξi
τ and establish that Ξi

τ − Xi ⪰ 0. The
Hamiltonian for the control Riccati equation (10) is

Hi :=

[
Aii − B̃2iiM

−1DT
12:iC̃1:i −B̃2iiM

−1B̃T
2ii

−C̃T
1:iPτ C̃1:i −AT

ii + C̃T
1:iD12:iM

−1TB̃T
2ii

]
,

where M := DT
12:iD12:i , P0 := D12:iM

−1DT
12:i and Pτ :=

I −P0, and define the corresponding symplectic matrix expo-
nential as Σi := eH

iτ . The elements Σi
22, Σi

21 of this modified
Σi are used to define the Ξi

τ . For all i ∈ [N ], we define
Ξi
τ := X̃i−(Σi−1

22 Σi
21)

T. By solving the associated Differential
Riccati Equation (DRE) [26, Eq. 16], we show Ξi

τ −Xi ⪰ 0
[26, §4.3]. This gives us Xdec ⪯ Xdec,del.

7) Proofs for (20b): Next we consider the case of a fully
connected graph with delays. So Agent i’s feedback policy
looks like ui = Kii(s)yi +

∑
j∈[N ]\i e

−sτKij(s)yj . Since
we solve for Q by solving for individual columns Qii, we
define the associated state transition matrix for each column
as Ac

ii := blkd({Aii, Aii}), where i = [N ] \ i. We define
the corresponding Bc

1ii , Bc
2ii Cc

1:i , Dc
12:i , Cc

2ii , and Dc
21ii

in a similar manner. We also define a centralized Ξi
cτ

:=

X̃i
c − (Σi−1

22cΣ
i
21c)

T for each Γ-modified plant

P̃c
i :=




Ac
ii Bc

1ii B̃c
2ii

C̃c
1:i 0 Dc

12:i

Cc
2ii Dc

21ii 0


 .

Each individual column Qii has its own P̃c
i as the associated

adobe delay matrix is different. We have a corresponding con-
trol ARE (X̃i

c, F̃
i
c) := Ric(Ac

ii, B̃
c
2ii , C̃

c
1:i , D

c
12:i). We solve

DREs for each Ξi
cτ as in [26, §V.C] to obtain Ξi

cτ −Xc
cenii ⪰ 0

for all i ∈ [N ], where Xc
cenii is a reshuffling of Xcen to

mirror the ordering of i = {i, [N ] \ i}. This proves that
blkd({Xcen(i, i)}) ⪯ Xcen,del for all i ∈ [N ].

Lemma 23 proves that Xcen,del ⪯ Xdec,del for all i ∈ [N ].

Lemma 23 Ξi
cτ and Ξi

τ are the solutions of the DREs for
delayed fully connected and decentralized graphs respectively.
Then, W i

Ξ := Ξi
τ − Ξi

cii ⪰ 0, where Ξi
cii

:= ET
ni
Ξi
cτEni

, and
i corresponds to Ξi

τ .

Proof: The DREs for Ξi
τ , and Ξi

cτ are subtracted to obtain
the differential Lyapunov equation

Ξ̇i
cii − Ξ̇i

τ = (Aii +B2iiF
i
Ξ)

TW i
Ξ +W i

Ξ(Aii +B2iiF
i
Ξ)

+ (Emi
F i
Ξ − F i

Ξc
Eni

)TDT
12D12(Emi

F i
Ξ − F i

Ξc
Eni

),

where F i
Ξ := −(DT

12:iD12:i)
−1(Ξi

τB2ii + CT
1:iD12:i)

T, and
F i
Ξc

:= −(DcT

12:iD
c
12:i)

−1(Ξi
cτB

c
2ii + CcT

1:iD
c
12:i)

T. The rest
is analogous to the proof of Lemma 20. Finally, we obtain
Ξi
τ − Ξi

cii − Xi + Xcenii ⪰ 0. Using Xi − Xcenii ⪰ 0 from
Lemma 20, we obtain Ξi

τ − Ξi
cii ⪰ 0.
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