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Abstract—In this article, we consider a cooperative con-
trol problem involving a heterogeneous network of dynami-
cally decoupled continuous-time linear plants. The (output-
feedback) controllers for each plant may communicate with
each other according to a fixed and known transitively
closed directed graph. Each transmission incurs a fixed
and known time delay. We provide an explicit closed-form
expression for the optimal decentralized controller and its
associated cost under these communication constraints
and standard linear quadratic Gaussian (LQG) assumptions
for the plants and cost function. We find the exact solution
without discretizing or otherwise approximating the delays.
We also present an implementation of each sub-controller
that is efficiently computable, and is composed of stan-
dard finite-dimensional linear time-invariant (LTI) and finite
impulse response (FIR) components, and has an intuitive
observer-regulator architecture reminiscent of the classical
separation principle.

Index Terms— Decentralized Control, Delay Systems, Co-
operative Control, Optimal Control.

[. INTRODUCTION

In multi-agent systems such as swarms of unmanned aerial
vehicles, it may be desirable for agents to cooperate in a decen-
tralized fashion without receiving instructions from a central
coordinating entity. Each agent takes local measurements, per-
forms computations, and may communicate its measurements
with a given subset of the other agents, with a time delay.
In this article, we investigate the problem of optimal control
under the aforementioned communication constraints.

We model each agent as a continuous-time linear time-
invariant (LTI) system. We make no assumption of homogene-
ity across agents; each agent may have different dynamics. We
assume the aggregate dynamics of all agents are described by
the state-space equations
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where z is the global state, z is the regulated output, y is the
measured output, w is the exogenous disturbance, and u is the
controlled input. The decoupled nature of the agents imposes
a sparsity structure on the plant. Namely, if we partition x,
Yy, w, u each into N pieces corresponding to the N agents,
the conformally partitioned state space matrices A, By, B,
Cs, Do are block-diagonal. The regulated output z, however,
couples all agents’ states and inputs, so in general C; and D15
will be dense. The matrix transfer function (w,u) — (z,y) is
a standard four-block plant that takes the form!

[z} - [’Pu(s) 7712(3)] {w} @)
yl  [Pals) Paa(s)] [u]’

where P31 and Psyo are block-diagonal.

We assume information sharing is mediated by a fixed and
known directed graph. Specifically, if there is a (possibly
multi-hop) directed path from Agent 7 to Agent j, then Agent
7 can observe the local measurements of Agent ¢ with a delay
7. We further assume there are no self-delays, so agents can
observe their local measurements instantaneously.

In practice, our setting corresponds to a network where the
chief source of latency is due to processing and transmission
delays [1, §1.4] (the encoding, decoding, and transmission
of information). Therefore, we neglect propagation delays
(proportional to distance traveled) and queuing delays (related
to network traffic and hops required to reach the destination).

We assume 7 is fixed and known and homogeneous across
all communication paths, as it is determined by the physical
capabilities (e.g., underlying hardware and software) of the
individual agents rather than external factors. Thus, Agent ¢’s
feedback policy (in the Laplace domain) is of the form?

w; = Kii(s)yi + Z e T (8)y;, 3)
J—1
where the sum is over all agents j for which there is a directed
path from 5 to ¢ in the underlying communication graph.
Given the four-block plant (2), the directed communication
graph, and the processing delay 7, we study the problem of
finding a structured controller that is internally stabilizing and
minimizes the o norm of the closed-loop map w — z.
In spite of the non-classical information structure present
in this problem, it is known that there is a convex Youla-like

M a slight abuse of notation, the vectors z, y, w, and u now refer to the
Laplace transforms of the corresponding time-domain signals in (1).

2There is no loss of generality in assuming a linear control policy; see
Section I-A for details.
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parameterization of the set of stabilizing structured controllers,
and the associated Hy synthesis problem is a convex, albeit
infinite-dimensional, optimization problem.

Main contribution. We provide a complete solution to this
structured cooperative control problem that is computationally
tractable and intuitively understandable. Specifically, the opti-
mal controller can be implemented with a finite memory and
transmission bandwidth that does not grow over time. More-
over, the controller implementations at the level of individual
agents have separation structures between the observer and
regulator reminiscent of classical Ho synthesis theory.

In the remainder of the introduction, we give context to
this problem and relate it to works in optimal control, delayed
control, and decentralized control. Then, we cover some
mathematical preliminaries and give a formal statement of the
problem. In Section III, we give a convex parameterization
of all structured suboptimal controllers, and present the Hs-
optimal controller for the non-delayed (7 = 0) and delayed
(tr > 0) cases. In Section IV, we describe the optimal
controller architecture at the level of the individual agents,
and give intuitive interpretations of the controller architecture.
In Section V, we present case studies that highlight the trade-
offs between processing delay, connectivity of the agents, and
optimal control cost. Finally, we conclude in Section VI and
discuss future directions.

A. Literature review

If we remove the structural constraint (3) and allow each
u; to have an arbitrary causal dependence on all y; with no
delays, the optimal controller is linear and admits an observer—
regulator separation structure [2]. This is the classical Ho
(LQG) synthesis problem, solved for example in [3].

The presence of structural constraints generally leads to
an intractable problem [4]. For example, linear compensators
can be strictly suboptimal, even under LQG assumptions [5].
Moreover, finding the best linear compensator also leads to a
non-convex infinite-dimensional optimization problem.

However, not all structural constraints lead to intractable
synthesis problems. For LQG problems with partially nested
information, there is a linear optimal controller [6]. If the
information constraint is quadratically invariant with respect
to the plant, the problem of finding the optimal LTI controller
can be convexified [7], [8]. The problem considered in this
article is both partially nested and quadratically invariant, so
there is no loss in assuming a linear policy as we do in (3).

Once the problem is convexified, the optimal controller
can be computed exactly using approaches like vectoriza-
tion [9], [10], or approximated to arbitrary accuracy using
Galerkin-style numerical approaches [11], [12]. However,
these approaches lead to realizations of the solution that
are neither minimal nor easily interpreted. For example, a
numerical solution will not reveal a separation structure in
the optimal controller, nor will it provide an interpretation of
controller states or the signals communicated between agents’
controllers. Indeed, the optimal controller may have a rich
structure, reminiscent of the centralized separation principle.
Such explicit solutions were found for broadcast [13], trian-
gular [14], [15], and dynamically decoupled [16]-[18] cases.

The previously mentioned works do not consider time
delays. In the presence of delays, we distinguish between
discrete and continuous time. In discrete time, the delay
transfer function z~! is rational. Therefore, the problem may
be reduced to the non-delayed case by absorbing each delay
into the plant [19]. However, this reduction is not possible
in continuous time because the continuous-time delay transfer
function e~°7 is irrational. A Padé approximation may be used
for the delays [20], but this leads to approximation error and
a larger state dimension.

Although the inclusion of continuous-time delays renders
the state space representation infinite-dimensional, the optimal
controller may still have a rich structure. For systems with
a dead-time delay (the entire control loop is subject to the
same delay), a loop-shifting approach using finite impulse
response (FIR) blocks can transform the problem into an
equivalent delay-free LQG problem with a finite-dimensional
LTI plant [21], [22]. A similar idea was used in the discrete-
time case to decompose the structure into dead-time and FIR
components, which can be optimized separately [23].

The loop-shifting technique can be extended to the adobe
delay case, where the feedback path contains both a delayed
and a non-delayed path [24]-[26]. The loop-shifting technique
was also extended to specific cases like bilateral teleoperation
problems that involve two stable plants whose controllers
communicate across a delayed channel [27], [28], and haptic
interfaces that have two-way communication with a shared
virtual environment [29]. Another example is the case of
homogeneous agents coupled via a diagonal-plus-low-rank
cost [30]. All three of these examples are special cases of
the information structure (3).

In the present work, we solve a general structured Ho
synthesis problem with N agents that communicate using a
structure of the form (3). We present explicit solutions that
show an intuitive observer-regulator structure at the level of
each individual sub-controller. Preliminary versions of these
results that only considered stable or non-delayed plants were
reported in [18], [31]. In this article, we consider the general
case of an unstable plant, we find an agent-level parameter-
ization of all stabilizing controllers, and we obtain explicit
closed-form expressions for the optimal cost.

[I. PRELIMINARIES

1) Transfer matrices: Let C, := {s € C | Re(s) > a} and
Cq := {5 € C | Re(s) > a}. A transfer matrix G(s) is said to
be proper if there exists an « > 0 such that sup,cc_[|G(s)]| <
co. We call this set Lyop. Similarly, a transfer matrix G(s)
is said to be strictly proper if this supremum vanishes as
a — oo. The Hilbert space L, consists of analytic func-
tions F : iR — C™*" equipped with the inner product
(F,G) == 5= [ tr(F(iw)*G(iw)) dw, where the inner prod-
uct induced norm || F || := (F, F)*/? is bounded. A function
F : Co — C™" is in Hy if F(s) is analytic in Co,
lim, _o+F (0 + iw) = F (iw) for almost every w € R, and
SUP, 50 5= [ oo tr(F(o + iw)* F(o + iw)) dw < oo. This
supremum is always achieved at 0 = 0 when F € Hy. The
set My is the orthogonal component of Hs in L. The set
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RH- refers to the subspace of strictly proper rational transfer

functions with no poles in C. Similarly, the set R’H2 refers

to the subspace of strictly proper rational transfer functions

with no poles in Cy. The set L, consists of matrix-valued

functions F : iR — C™*™ for which sup,,cp||F(iw)|| < oo.

Hoo and RH o, are defined analogously to Ho and RHs.
The state-space notation for transfer functions is

G(s) = {%’%} =D+C(sI —A)'B. 4)

A square matrix A is Hurwitz if none of its eigenvalues belong
to Cy. If A is Hurwitz in (4), then G € RH .. If A is Hurwitz

and D = 0, then G € RH5. The conjugate of G is
N —AT | CT
G~ = ") = [ e 57

The dynamics (1) and four-block plant P from (2) satisfy

A| B B
— |Puls) Puals)| _
PO)= [l P el IRl R

If we use the feedback policy u = Ky, then we can eliminate u
and y from (2) to obtain the closed-loop map w — 2, which
is given by the lower linear fractional transformation (LFT)
defined as ]:1(7), IC) = P11+ P12K(I — 7322’(:)_17321. LFTs
can be inverted: if £ = F;(J, Q) and J has a proper inverse,
then @ = F,(J 1, K), where F, is the upper linear fractional
transformation: F, (P, K) := Pag + Po1 K(I — P11K) 1 Pya.

2) Block indexing: Ordered lists of indices are denoted
using {...}. The total number of agents is N and [N] :=
{1,...,N}. The i subsystem has state dimension n;, input
dimension m;, and measurement dimension p;. The global
state dimension is n := nj1 +---+ny and similarly for m and
p. The matrix I, is the identity of size k and blkd({X;}) is the
block-diagonal matrix formed by the blocks {X7,..., X, }.
The zeros used throughout are matrix or vector zeros and their
sizes are dependent on the context.

We write ¢ to denote the descendants of node 4, i.e., the set
of nodes j such that there is a directed path from ¢ to j for all
i € [N]. By convention, we list ¢ first, and then the remaining
indices in increasing order. The directed path represents the
direction of information transfer between the agents. Similarly,
i denotes the ancestors of node i (again listing i first). We
also use 7 and 3 to denote the strict ancestors and descendants,
respectively, WTliCh excludes ¢. For example, in Fig. 1, we have
2={2,5} and 3 = {1,4}.

Fig. 1. Directed graph representing five interconnected systems.

We also use this notation to index matrices. For example,
if X is a 5 x 5 block matrix, then X3 = [Xlg Xls]. We
will use specific partitions of the identity matrix throughout:
I, := blkd({I,,}), and for each agent i € [N], we define

E,, = (In). (the i™ block column of I,)). We have n; =
Y keiMk and n; = >, -ny, akin to the descendant and
ancestor definitions above. The dimensions of E,. and K,
are determined by the context of use. We also use the notations
X.; and X;, to indicate the i block column and i block rows
respectively for a matrix X. Similar notations 1,, is the n x 1
matrix of 1’s. Further notations are defined at their points of
first use.

A. Delay

We follow the notation conventions set in [26]. The adobe
delay matrix defined as Al := blkd(l,,,,e *"1I,,,) leaves
block i unchanged and imposes a delay of 7 on all strict
descendants of 7. We define T': (P, A%)) — (P,11,,1I;) that
maps the plant P in (5) and adobe delay matrix Af to a
modified plant P and FIR systems II,, and II;. This loop-
shifting transformation reported in [24]-[26] shown in Fig. 2
transforms a loop with adobe input delay into a modified
system involving a rational plant P. See Appendix A for
details on the definition of I'.

In this decomposition, (A, ¥) = 0 and ¥ is inner (if
U € RHo and ¥~V = J), so the closed-loop map
satisfies || F1(P, AL K[> = |A|? + || F(P,K)||. Thus, we
can find the H-optimal K by first solving a standard H»
problem with P to obtain K, and then transforming back using
K = 11,K(I —1I,K)~". This transformation, illustrated in the
bottom left panel of Fig. 2, has the form of a modified Smith
predictor, where the FIR blocks II,, and II, compensate for
the effect of the adobe delay in the original loop. See [25,
$1II.C] for further detail.

< w
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Fig. 2. The loop-shifting approach [24]-[26] transforms a loop with

adobe input delay (top left) into a modified system involving a rational
plant P and FIR blocks I, and II (right). This transformation T'
is defined in Appendix A. We can recover K from IC via the inverse
transformation (bottom left).

B. Problem statement

Consider a four-block plant (5) representing the aggregated
dynamics of N agents as described in Section I, which we
label using indices ¢ € [N]. Suppose € R, u € R™, and
y € RP, partitioned conformally with the /N subsystems as
n =mn1 + ---+ ny and similarly for m and p.

Consider a directed graph on the nodes [IV], and let S; be
the set of compensators of the form (3). For example, for the
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directed graph of Fig. 1, every controller takes the form

K11 0 0 0 0
e Ko Koo 0 0 0
e K31 0 K33 e K3y 0
e 5" K41 0 e T K43 Kya 0
e K51 e K52 €7 53 e ss Kss

where KC;; € Lpop. So each agent may use its local measure-
ments with no delay, and measurements from its ancestors with
a delay of 7. An output-feedback policy u = Ky (internally)
stabilizes P if

-1
I 77322
1P e,

For further background on stabilization, we refer the reader
to [3], [32]. We consider the problem of finding a structured
controller that is stabilizing and minimizes the Hs norm of
the closed-loop map. Specifically, we seek to

17:(P. 1)
K € S, and K stabilizes P.

minimize
K (6)

subject to

In the remainder of this section, we list our technical
assumptions and define control and estimation gains that will
appear in our solution. The assumptions we make ensure
that relevant estimation and control subproblems are non-
degenerate. We make no assumptions regarding the open-loop
stability of P.

Assumption 1 (System assumptions) For the N interacting
agents, the Riccati assumptions defined in Definition 2 hold
for (A,Bs,Cy,D12) and for (AE;,C;”,BL,D;”) for all
i€ [N].

Definition 2 (Riccati assumptions) Matrices
satisfy the Riccati assumptions [17], [26] if:

(A,B,C,D)

RI. D'D = 0.
R2. (A, B) is stabilizable.
A—jwl B
R3. c D has full column rank for all w € R.

If the Riccati assumptions hold, there is a unique stabilizing
solution for the corresponding algebraic Riccati equation.
We write this as (X, F) = Ric(4, B,C, D). Thus, X > 0
satisfies

ATX +XA+CTC
—(XB+C™D)D"™D)"YBTX +D'C) =0,
with A+ BF Hurwitz and F := —(D"D)"Y(BTX + DTC).

1) Riccati equations: The algebraic Riccati equations
(AREs) corresponding to the centralized LQR and Kalman
filtering problem are given by

(Xcena Fcen) = RIC(Av BQ» Cla Dl?)a
(YCCIM L;ren) = RiC(AT7 C;—, BI? D-2rl)

(7a)
(7b)

Consider controlling the descendants of Agent ¢ using only
measurements ;. The associated four-block plant is

Pii=| ot p2 =10, | 0 D, | ®
P2lii P2211 L L
B 021’3' D21ii 0
and we define the corresponding ARE solutions as
(X', F") := Ric(Ay, Ba,,, C1,,, D12,), (9a)
(Y, L") := Ric(AL,CT BT DI, ). (9b)

Note that the block-diagonal structure of the estimation sub-
problems implies Yeen = blkd({Y?}) and Lee, = blkd({L}).
Existence of the matrices defined in (7) and (9) follows from
Assumption 1 and the fact that A, By, By, C5, and Do are
block-diagonal. If we apply the loop-shifting transformation I"
described in Section II-A and Fig. 2, we obtain the modified
plant

N . Ay | By, B,
P { P, Prz, ] — éﬂ 0 D
i ~ =
Pyt Pos. L 12,
e 722 Coy | Dor,y 0

This modified plant has the same estimation ARE as in (9b),
but a new control ARE, which we denote

(X', F") := Ric(Ay, Bs,,, C1,,, D12,,), (10)

Existence of the matrices defined in (10) also follows from
Assumption 1 [26, Lem. 4 and Rem. 1].

I11. OPTIMAL CONTROLLER

We now present our solution to the structured optimal con-
trol problem described in Section II-B. We begin with a convex
parameterization of all structured stabilizing controllers.

A. Parameterization of stabilizing controllers

This parameterization is similar to the familiar state-space
parameterization of all stabilizing controllers [3], [32], but
with an additional constraint on the parameter Q to enforce
the required controller structure.

Lemma 3 Consider the structured optimal control problem
described in Section II-B with P given by (5) and suppose
Assumption 1 holds. Pick F; and L, block-diagonal such that
A+ ByFy and A + LyCs are Hurwitz. The following are
equivalent:

(i) K € S and K stabilizes P.

(ii) K = F (T, Q) for some Q € Hoo NSy, where

A+ BoFy+LyCy | —La B
J = Fy 0 I
—Cy I 0

Y

Proof: A similar approach was used in [33, Thm. 11] to
parameterize the set of stabilizing controllers when K € Sy
(no delays). In the absence of the constraint I € S, the set
of stabilizing controllers is given by {F;(J,Q) | Q € Hoo}
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[3, Thm. 12.8]. It remains to show that K € &; if and only if
Q € S;. Expanding the definition of the lower LFT, we have

K=+ T12Q(I = J0Q) " Tor. (12)
The matrices A, Ba, Cs, Fy, Ly are block-diagonal, so J;;
is block-diagonal and therefore J;; € S;. The delays in our
graph satisfy the triangle inequality, so S, is closed under
multiplication (whenever the matrix partitions are compatible).
Moreover, S; is quadratically invariant with respect to Jao
[8]. Therefore, if Q € S;, then Q(I — J22,Q) " € S, [8],
[34], and we conclude from (12) that K € S,. Applying the
inversion property of LFTs, we have Q = F,(J 1, K). Now

A ‘ By —Lg4
j_l = Cy 0 1 )
—Fy | 1 0

so we can apply a similar argument to the above to conclude
that (77');; €S, and K € S, = Q€ S, ]

We refer to Q in Lemma 3 as the Youla parameter, due to
its similar role as in the classical Youla parameterization [35].

Remark 4 Although the problem we consider is quadratically
invariant (QI), the existing approaches for convexifying a
general QI problem [7] or even a QI problem involving
sparsity and delays [8] require strong assumptions, such as
Pao being stable or strongly stabilizable. Due to the particular
delay structure of our problem, the parameterization presented
in Lemma 3 does not require any special assumptions and
holds for arbitrary (possibly unstable) P.

Remark 5 In the special case where A is Hurwitz (so P is
stable), we can substitute Fg = 0 and Ly = 0 in (11) to obtain
a simpler parameterization of stabilizing controllers.

Using the parameterization of Lemma 3, we can rewrite the
synthesis problem (6) in terms of the Youla parameter Q. After
simplification, we obtain the convex optimization problem

T30+ Ti2QTa ||

minimize
Q

(13)
subject to QeHLNS,.
T T2
where 7 = {7.21 0
A+ ByF; —ByF, B, B,
_ 0 A+ LyCo | By + LgDoy 0 (14)
Ci+ Di2Fy  —DiaFy 0 Dyo |
0 Cy Dy, 0

Remark 6 The convex problem (13)—(14) is similar to its
unstructured counterpart [3, Thm. 12.16], except we have the
additional constraint @ € S, on the Youla parameter.

Remark 7 We use L := Leey = Lg = blkd({L}) throughout
the rest of the article. This choice of L yields a Qo with
reduced state dimension and simplifies our exposition.

B. Optimal controller without delays

When there are no processing delays (7 = 0), the optimal
structured controller is rational. We now provide an explicit
state-space formula for this optimal K.

Theorem 8 Consider the structured optimal control problem
described in Section II-B and suppose Assumption 1 holds.
Choose a block-diagonal Fy such that A + BoF, is Hurwitz.
A realization of the Qqp that solves (13) in the case T =0 is

o [ A+BF |-II, )
P IN(F-Fy) | 0
and a corresponding Koy that solves (6) is
A+ BF + LC1,T | ~I1
ICopt = |: i;rnF ‘ 0 L :| . (16)
In (15)—(16), we defined the new symbols
AIZIN®A, B::IN®BQ7 C::IN®CQ, FdSZIN(X)Fd,
in =1y ® I, im =1y ® Iy, ip I:1N®Ip.

Matrices L and F' are block-diagonal concatenations of zero-
padded LOR and Kalman gains for each agent. Specifically,
F = blkd({EmLFlEgl}) aﬂd L := blkd({EmLiE;}) for
all i € [N], where F" and L" are defined in (9).

Proof: See Appendix C. [ ]

Remark 9 The optimal controller (16) can also be expressed
explicitly in terms of the adjacency matrix; see for example
[18], [36]. We opt for the realization (16) as this expression
generalizes more readily to the case with delays.

Remark 10 Since agents can act as relays, any cycles in the
communication graph can be collapsed and the associated
nodes can be aggregated when there are no delays. For
example, the graph of Fig. 1 would become the four-node
diamond graph {1} — {3,4} — {5}, and {1} — {2} — {5}.
So in the delay-free setting, there is no loss of generality in
assuming the communication graph is acyclic.

Remark 11 Although the optimal Qoy (15) and associated J
(11) depend explicitly on Fy, the optimal Koy (16) does not.

C. Optimal controller with delays

In this section, we generalize Theorem 8 to include an
arbitrary but fixed processing delay 7 > 0. To this end, we
introduce a slight abuse of notation to aid in representing non-
rational transfer functions. We generalize the notation of (4)
to allow for A, B, C, D that depend on s. So we write:

[ A(s) | B(s)

o) | D(s) } = D(s) 4+ C(s) (sI — A(s)) " B(s).

Theorem 12 Consider the setting of Theorem 8. The transfer
Sfunction of Qop € Hoo NSy that solves (13) for any T > 0 is

A+IC BF—LM,F—BOF| 0
ic A+BF-LM,F | -Ii,
T Ay 1AM E—Fy) | 0

m

Qopt = (17
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and a corresponding Koy that solves (6) is

Kopt = 5 (18)

where A, L, Fy, 1,, 1, ip, are defined in Theorem 8. The
remainder of the symbols are defined as follows. We apply
the loop-shifting transformation (P;, 1L, ILy,) = T'(P;, AL),
where P;, P;, F* are defined in Section II-B.1, and
F:=blkd({Em, F'E} }), T :=blkd({E,, I, E}, }),

My
B :=blkd({E,, B>, E}, }), I, :=bkd({E, I, E} }),
Ay = bIkd({ B, ALEL}), fork € {m,n}.

Proof: See Appendix D. ]

The transfer matrices Qg in (17) and Koy in (18) are
not rational, due to the presence of the FIR blocks II,,
Iy, and delay blocks A,, and A,. Consequently, we cannot
write standard state-space realizations as in Theorem 8. When

7::()_,wehave1:[u:I,f[b:O,/_Xm:I,F:F,and
B = B, and we recover the results of Theorem 8.

IV. AGENT-LEVEL CONTROLLERS

The optimal controller presented in Theorem 8 is generally
not minimal. For example, Kop in (16) has a state dimension
of Nn, which means a copy of the global plant state for each
agent. However, if we extract the part of ICop associated with
a particular agent, there is a dramatic reduction in state di-
mension. So in a distributed implementation of this controller,
each agent would only need to store a small subset of the
controller’s state. A similar reduction exists for the optimal
controller for the delayed problem presented in Theorem 12.

Our next result presents reduced implementations for these
agent-level controllers and characterizes the information each
agent should store and communicate with their neighbors. We
find that Agent ¢ simulates its descendants’ dynamics, and
so has dimension n;, which is at least N times smaller than
the dimension Nn of the aggregate optimal controller from
Theorem 8.

Theorem 13 Consider the setting of Theorem 8 with T > 0.
The agent-level implementation of all structured stabilizing
controllers, parameterized by Q € Hoo N Sy, is shown in
Fig. 3. Here, the optimal controller is achieved when Q=0.
In this case, we obtain the simpler structure of Fig. 4. All
symbols used are defined in Theorems 8 and 12.

Proof: See Appendix E. ]

A. Interpretation of optimal controller

Fig. 3 shows that Agent ¢ transmits the same signal v; to
each of its strict descendants. When an agent receives the
signals v; from its strict ancestors 1, it selectively extracts and
sums together certain components of the signals. To implement
the optimal controller, each agent only needs to know the
dynamics and topology of its descendants.

If the network has the additional property that there is
at most one directed path connecting any two nodes®, then
the communication scheme can be further simplified. Since
Agent i’s decision w; is a sum of terms from all ancestors,
but each ancestor has exactly one path that leads to ¢, the
optimal controller can be implemented by transmitting all
information to immediate descendants only and performing
recursive summations. This scheme is illustrated for a four-
node chain graph in Fig. 5.

Remark 14 The agent-level controller from Fig. 4 can be
represented as the combination of an observer with transfer
matrix Ty := (sI — Ay — E}} Ey,,L'Cs,,)”", and a regulator
with an LOR gain Fi in Fig. 6. This yields a separation
structure reminiscent of standard LQG theory [3].

Remark 15 Compared to the architecture proposed in [31,
Fig. 4], the agent-level optimal controller in Fig. 4 is more
efficient because each agent transmits a single vector v; to its
descendants, instead of two.

Remark 16 The controller in Fig. 4 has the form of a feed-
forward Smith predictor, similar to Fig. 2 (bottom left). The
FIR block 11,,, compensates for the effect of adobe delay.
Similarly, the FIR block 11y, resembles the internal feedback
in traditional dead-time controllers.

V. CHARACTERIZING THE COST

In this section, we characterize the cost of any structured sta-
. . 2
bilizing controller. The cost is defined as J := || F;(P,K)||; =

||’7'11 + T12Q721 | z where K is feasible for (6) or equivalently,
Q = F.(J 1, K) is feasible for (13) (see Lemma 3). We show
how to interpret the cost in different ways, and how to compute
it efficiently. We illustrate our result using an example with
N = 4 agents.

Theorem 17 Consider the setting of Theorem 8. The optimal
(minimal) costs for the cases: a fully connected graph with no
delays, a decentralized graph with no delays, a fully connected
graph with delays, and a decentralized graph with delays are:

Jeen = tr(YeenCT C1) + tr(XeenLD21 D, L), (192)
Jaee = t1(YeenCT C1) + tr(Xgee LD2y D3, L), (19b)
Jger = t1(YeenCT C1) + tr( Xy LDy D3, LT), (19¢)
Jaee.del = tT(YeenCT O1) + t1(Xecqer LD21 Dgy LT, (19d)

respectively. If a feasible but sub-optimal Q is used in any
of the above cases, write Qa = Q — Q. The cost of this
sub-optimal Q is found by adding Jg = ||7’12QAD21H§ to
(192)—(19d). The various symbols are defined as

Kiee = blkd({XZ(L 1)})’ Kiel = blkd({EZT(L 1)})7

Xdec,del = blkd({Ez—(la 1)})5 and satisfy
blkd({Xcen(i7 7/)}) j Xdec j Xdec,delv (20&)
blkd({Xcen(ia Z)}) j Xdel j Xdec,del~ (2Ob)

3 Also known as a multitree or a diamond-free poset.
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Zi ————— Aii Blu B2m‘ < w;
Cr, 0 Dia,
- Uz ~ Yi 0211 D21“~ 0 wi
i - > e 5T Zke; Vk
(from ancestors) processing delay Aji + B, Fy, + L'Cy. | =L' By, 11|
E T Fdii 0 I
Vi dmmmmmmmmmmmmme e mi o m; _02’_’_ I 0 I
(to descendants) ,L—l—r ii
> Qii <
@ Aii + E;IL-LE"z chzm 32"}«:‘1 0 [_BQ i _E’I—IL—»LEnlLZ:I
a 3 3 - B T T = . | «—
t E;IL—ZEM LZOE@' A + B2@Fl _E;Lr'EmLZ [ 0 _ELEniLZ]
I, [+ Fay —Fa,, 0 0 N
0 F7’ 0 0
1 m]’

Fig. 3. Agent-level implementation of all structured stabilizing controllers, parameterized by © € Hoo NSo. Here, Fy is any block-diagonal matrix
such that A;; + Ba,, Fg,, is Hurwitz. The H2-optimal controller is achieved when @ = 0, and results in the simplified diagram of Fig. 4. The
blocks that depend on the processing delay = are colored in green. All symbols are defined in Theorem 13.

2 < _ | Au ‘ Blz‘i Bzii * Wi
Cy, 0 Dy, T
Yi 02“ D21n 0 U; Eml Eml
D _ Fi ‘ 0
1I
bi v |
Vi mmmmmm e e ] Emi 1L, ®
(to descendants) : I
U
T —————— | 6_57' E’r-lr—h ZkG; ﬁk

fi -
(from ancestors) processing delay

Fig. 4. Agent-level implementation of the #2-optimal controller with
processing delays. This is the result of setting @ = 0 in Fig. 3. The
blocks that depend on the processing delay + are colored in green. All
symbols are defined in Theorem 13.

=i
=T

are defined in Appendices F.6 and F.7, respectively.

X_cen, Yeen, Feen, and L are defined in Section II-B.1. and

=i
S

Proof: See Appendix F. [ |
In (192) we recognize J.., as the standard LQG cost (fully
connected graph with no delays). Further, there are two
intuitive interpretations for Theorem 17 that are represented in
Fig. 7 for a 3-agents system. The intermediate graph topologies
are different, but the starting and ending topologies are equal
for both. Along the upper path, Jgec — Jeen 1S the additional
cost incurred due to decentralization alone, and Jgec del — Jdec
is the further additional cost due to delays. Likewise, along
the lower path, Jge — Jeen 1S the additional cost due to delays
alone and Jyec del — Jaer s the further additional cost due to

V1 + V2

U1

@ /2\ /3\ v1 +v2 + U3 4
N N O
Fig. 5. Four-agent chain graph with standard broadcast (top) and

efficient immediate-neighbor implementation (bottom), which is possible
because this graph is a multitree.

decentralization. Finally, Jg is the additional cost incurred due
to suboptimality. Theorem 17 unifies existing cost decompo-
sition results for the centralized [3, §14.6], decentralized [15,
Thm. 16], and delayed [26, Prop. 6] cases.

Remark 18 Delay and decentralization do not contribute
independently to the cost. Specifically, the marginal increase
in cost due to adding processing delays depends on the
graph topology. Likewise, the marginal increase in cost due
to removing communication links depends on the processing
delay. In other words, Jeen + Jaec,del # Jaec + Jdel-

Remark 19 There is a dual expression for the cost Jeen
in (19a); Jeen = tr(XcenBlBlT) + tr(YcenF;nDlTQDchen).

The corresponding dual expressions for (19b)-(19d) are un-
Sfortunately more complicated. See Appendix F.3 for details.

A. Synchronization example

We demonstrate Theorem 8 via a simple structured LQG
example. We consider N = 4 identical lightly damped oscil-
lators. The oscillators begin with different initial conditions
and the goal is to achieve synchronization. The oscillators
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2 — [ Ai ‘ By, B, |le—— w;
Cr,| 0 Dia, -
Yi Cay; | Doy, 0 ?1: EmlEmi
B2M Nl
O—|—E] B, L (%I Tii |_> i |
11, |
Hbi < ¥ y
Vi === ==———————= E‘7ni Hul GD
(to descendants) ~ 1
i - >le 57T - E;f Zkef U,

fi .
(from anceswf)sl)ocessmg delay

Fig. 6. Agent-level implementation of the H2-optimal controller with
processing delays, featuring an observer (red) and regulator (blue)
separation structure. Here T;; := (sI — Ay, — ET E,“L’Czii)—1

is the transfer matrix of the observer dynamlcs
@ﬂ@

.
remove links

remove links

.
Lot

.

@ Jdec

A

Jdel

Fig. 7. Hierarchy of optimal costs for different communication patterns
in a three-agent example. Additional cost is incurred if links are removed
(blue dotted arrows), or if processing delay is added (green dottted ar-
rows). Delayed edges are red. In this example, Jeen < Jgec < Jdec,del
and Jeen < Jgel < Jyec,del but Jgec and Jye are not comparable.

.
o

Jcen e
add delays o

.

have identical dynamics defined by the differential equations in
Figs. 8 and 9. Fig. 8 shows the open-loop zero-input response
for the four oscillators with given initial conditions. Due to the
light damping, the states slowly converge to zero as t — oc.

Fig. 9 shows the closed-loop response using the optimal
controller from Theorem 8 for a diamond-shaped communi-
cation network with no processing delay. The controller states
are initialized to match the initial state of the plant. Since
the observer is an unbiased estimator, the LQG controller
replicates the behavior of full-state feedback LQR. Fig. 9
shows the four oscillators leveraging their shared information
to achieve synchronization to a common oscillation pattern.

In Fig. 10, we use the same system as in Fig. 9, but we
plot the total average cost as a function of time delay for
various network topologies. The highest cost corresponds to a
fully disconnected network, while the lowest cost corresponds
to a fully connected network. In the limit as 7 — oo
(infinite processing delay), the cost tends to that of the fully
disconnected case.

VI. CONCLUSION

We studied a structured optimal control problem where
multiple dynamically decoupled agents communicate over a
delay network. Specifically, we characterized the structure

. @ Z; +0.01z; +2;, =0, fori=1,...,4
2(0) = [1.8,0.5,-1.2,-0.5] T, &(0) = 0.
| T X2 —— I3 T4 |
1.5
1 |}
=2 0.5
.2
£ of
)
~—0.5
—1 +
715 ]
0 5 10 15 20 25 30 35
Time (seconds)
Fig. 8. Open-loop zero-input response of a network of four lightly

damped oscillators.

-\’b

Z; +0.01z; + x; =u;, fori=1,...,4

= (002Z|Iwz—w7||2+Z““2”2)

1<J
z(0) = [1.8,0.5,—1.2, —0.5] #(0) = 0.
| T xo T3 T4 |

l 4+

g 0.5
.8

Z of
Q

A —0.5 |

—1 }

—1.5 4

15 20 25 30

Time (seconds)

10 35

Fig. 9. Closed-loop response of the four-oscillator system from Fig. 8
using the optimal controller from Theorem 8 for a diamond-shaped
communication graph with no processing delay. The oscillators leverage
the communication network to achieve synchronization.

and efficient implementation of optimal controllers at the
individual agent level. We now propose some possible future
applications for our work.

First, our approach can be readily generalized to treat cases
with a combination of processing delays and network latency,
where the various delays are heterogeneous but known [37].
Next, the observer-regulator architecture elucidated in Fig. 6
could also be used to develop heuristics for solving cooperative
control problems where the agents’ dynamics are nonlinear or
the noise distributions are non-Gaussian. Examples could in-
clude decentralized versions of the Extended Kalman Filter or
Unscented Kalman Filter. Finally, our closed-form expressions
for the optimal cost can serve as lower bounds to the cost of
practical implementation that have additional memory, power,
or bandwidth limitations.
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Fig. 10. The average optimal cost, as a function of processing delay, for
the 4-agent system of Fig. 9 with different network topologies. For each
topology, the cost is an increasing function of the processing delay.

APPENDIX
A. Definition of the I function

The I' function takes in a four-block plant P and adobe
delay matrix A?, and returns a transformed plant P and FIR
systems 1L,,, IT,. As in [26], we first consider the special case
where D], D1, = I. The completion operator 7,{-} acts on a
rational LTI system delayed by 7 and returns the unique FIR
system supported on [0, 7] that provides a rational completion:

Aol () )

The input matrices Bo and Do of P are partitioned ac-
cording to the blocks of adobe delay matrix A’,. So, By =
[320 Bgf], where the two blocks correspond to inputs with
delay 0 and 7, respectively. D;o is partitioned in a similar
manner. Define the Hamiltonian matrix

— Hyy Hyg o A—By,D{, C —By, B,
Ho1 Hoo —CIPTCH —AT+CID12OB;—0 ’

where Py := D9, D], and P, := I— Py, and define its matrix
exponential as X := e 7. Define the modified matrices

By := By, 1,01 D1, +X],Bs |
Cy = (P:Cy + PyC1E3, — D13, B3, 53,) 55,

where the X;; are partitioned the same way as the H;;. The
modified four-block plant output by I is then

L Al B B
=~ AP Pi2| . |—= ‘ ! 2
P= Po Pao| T | O 0 P
Finally, define the FIR systems
) Hyy  Hyp By,
|:1:[u:| o Hy;  Hap | —C] Dia, .
] =~ ") | DL.Ci Ba 0
Csy 0 0
I 11, ~
FIR outputs of ' are II,, := 0 7 and IT, := [0 1II,].

In the general case DJ,D, # I, we can use a standard
change of variables to transform back to the case D{, D15 = I.
See [24, Rem. 2] for details.

B. Gramian equations

Here we provide the set of Lyapunov equations that are
uniquely associated with the multi-agent problem.

Lemma 20 Suppose (Xcen, Feen) and (X1, Fl) are defined in
(7a) and (9a) respectively. Then W5 = X' — Xcen,, = 0 is
the unique solution to the Lyapunov equation

(Aii + Ba, F*) "W + Wi (Aii + Ba,, F?)

+ (B, F* — FeenEp,) " D]y D12 (B, F' — FoenEy,) = 0.
: . : @D
Proof: Left and right multiply the ARE for (7a) by
E} and E,, respectively, and subtract it from (9a). The
result follows from algebraic manipulation and applying the
definitions of F* and Fi..,. Since the final term in (21) is
positive semidefinite and A;; + Ba,, F* is Hurwitz, it follows
that W} = X° — Xcen,, = 0 and is unique. ]
We also have a dual analog to Lemma 20, provided below.

Lemma 21 Consider the setting of Lemma 20. There exists a
unique Wy, = 0 that satisfies the Lyapunov equation

(Aji + Bo, FOYWs, + Wi (Aji + By, F')T
+ B} L1,D0 D1 LTE,, =0. (22)

Proof: Since E L1,D51DJ,1TLTE, = 0 and the
matrix Ay + By, F' is Hurwitz, Wy, = 0 and is unique. M

C. Proof of Theorem 8

For the case 7 = 0, we can replace Q € H,, NS, by
Q € HaNHoo NSy in (13) because the closed-loop map must
be strictly proper in order to have a finite Hs norm. Since
711 is strictly proper, this forces Q to be strictly proper as
well, and hence Q@ € Ho N Hoo. Further, if Q is rational,
we have Q € R7Hs. The optimization problem (13) is a least
squares problem with a subspace constraint, so the necessary
and sufficient conditions for optimality are given by the normal
equations 773 (Ti1 + T12QT21) Ty € (RH2 N Sy)™ with the
constraint that @ € RH, N Sp.

We can check membership F € (RH2NSy)* by checking
if 7, € R?—lé‘ whenever there is a path j — 4. For example,
consider the two-node graph 1 — 2. Then we have

| RH2 0
RHNSy = |:RH2 R’HJ and
L [RHy L

So here, F € (RH2 N Sy)* if and only if Fiy, For, Foo €
RH;5 . We will show that the proposed Qopt in (15) is optimal
by directly verifying the normal equations.

Substituting Qope from (15) into 71 + T12 Qopi T21 With Tj;
defined in (14), we obtain the closed-loop map

Acl Bcl
7—11 + 7—12Qopt7—21 = [ Cy 0 :|
A+BF  —-LCi,|-Li,Dn
= 0 Ar By, , (23)
Clil— + Dlgi;p & ‘ 0
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where A; := A+ LC5 and By := B; + LDy;. Next, we
show that the controllability Gramian for the closed loop map
is block-diagonal.

Lemma 22 The controllability Gramian for the closed-loop
map (23) is given by © := blkd({E,, Wi E] }ieni, Yeen),
where Yo, and W{, are defined in Eq. (7b) and Lemma 21,
respectively. In other words, © = 0 is the unique solution to

440 + ©AT + B4B] =0,

Proof: A, is Hurwitz and BclBCT1 > 0 so the Lyapunov
equation has a unique solution and © > 0. We can verify the
solution by direct substitution using Lemma 21 and the ARE
associated with (7b). [ |

Lemma 22 has the following statistical interpretation. If the
controlled system (23) is driven by standard Gaussian noise, its
state in these coordinates will have a steady-state covariance
O, so each block component will be mutually independent.

1) Proof of optimality: Let € := T35 (Ti1 + T12Qopt T21) To7 -
Substituting Qg from (15) and using (23), we obtain

—AL —CLCy 0 0
0 Ay BuBT | B4D],

2=1 0 Al | -l |- @
B DLCa 0 | 0

where Ay := A+ By Fy, Cg := Cy + D1oF,, and Ay, By,
Cq, are defined in (23). Apply the state transformation

[ [iTX o] iTXWi,
T=0 I o1,
0 0 1

to (24), where we defined W := blkd({E,, W5 E;} }ic(n)
and X := blkd({E,, Wk E} + Xcen}ic[n]), and © is defined
in Lemma 22. The transformed 2 is

—Al *1 * * *
0 A+ BF —LC1, *9 *3
0= 0 0 Ap *5 *6 ,
0 0 0 -Al | -CJ
BI ¥4 DLC: | 0

where we have defined the symbols

1= —AR L X —Cl(C11]+D1»1), F)-1] X (A+BF)
%3 i= —L1,Dgy Bl — LOT,Yeen +(A+ BE)W1, + W1,AL
x3 = —L1,D3; + W1,C5

x4 = D],(C11] + D1p1T F) + BJ1TX

x5 = ApYeen + BLB[ + YenA]

6 1= BrDJ; + YeenC3 -

A x without subscript denotes an unimportant block. Simplify-
ing using Riccati and Lyapunov equations from Section II-B.1

and Appendix B respectively, we get x5 = xg = 0; the mode
Ay, is uncontrollable. Removing it, we obtain

fA}—( *1 * *
0 A + BF *92 *3

Q=1 9 0 —AT|-cT (25)
B;r *4 * 0

Now consider a block 2;; for which there is a path j — 3.

*AI(M *1,, * *
0 0 A + BF *2:1' *3”. 2%
v 0 0 _ALJ‘ ;r“ 2o
;— *q,. * 0

Let ¥ and %% denote the k™ block column and let x5 and %%
denote the k™ block row. Algebraic manipulation reveals that
(i) If i € k and £ € k, then »f =% =0.
(i) If £ ¢ k or j ¢ k, then *’22], = *lgu = 0.
Consider the k™ diagonal block of A+ BF in (26), which is
A+ Ey, B, FFE] . This block is itself block-diagonal; it
contains the block A@ + Ba,, F'* and smaller blocks Ay for
all £ ¢ k. We have three cases.
1. If k € 4, then for all ¢ € k, wehave*1 —*M = 0 from
Item (1) above, so the mode Ay, +ngk F is unobservable
2. If k € i, but instead ¢ ¢ k, we have *22 = *3/ =0 from
Item (ii) above, so the modes Ay are uncontrollable.

3. If k ¢ i, then k ¢ j because j — i by assumption. Then
from Item (ii) above, all such modes are uncontrollable.
Consequently every block of A+ BF is either uncontrollable

or unobservable, leading us to the reduced realization

—AL . * *
Qi = 0 AL | =03 . (27)
BJ * ‘ 0

Therefore, Q;; € 7%’;'-[2l whenever j — 4, as required.

D. Proof of Theorem 12

Start with the convexified optimization problem (13). Based
on the structured realization (14), we see that 75, is block-
diagonal. Therefore, the optimal cost can be split by columns:

N
ZHTlLi + T2, Qii To1,, ;

=1

| Ti1 + Ti2QTan |2 =

Since Q € H.NS,, we can factor each block column of Q as
Qi = Al Qu, where Q“ € H oo has no structure or delay, and
Al is the adobe delay matrix (defined in Section II-A). We
can therefore optimize for each block column Qﬁ separately.
Thus, each subproblem is to

minimize || 731, + 712, AL, Qi (28)
Qii€Hoo
Define 7; = T T, . Comparing to (13)-(14), we
7511‘;‘ 0

observe that (28) is a special case of the problem (13), subject
to the transformations P +— P; (defined in (8)) and Fy +—
Lq v~ E} E, L', and Q — A%, Q,i. If we define the
assomated Ti for this subproblem (according to (11)), we view
the subproblem as that of finding the Hy-optimal controller
for the plant P; subject to an adobe input delay, as illustrated
in the left panel of Fig. 11. The key difference between this
problem and (6) is that we no longer have a sparsity constraint.

The adobe delay A?, can be shifted to the input channel,

shown in the right panel of Fig. 11. This follows from

u’
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2 - P, : W, 2 - P, < w;
(p:) (M) Ain
| R f
Ti
(mi) (pi)
LI AL | O, | D). |
m Qy K:z Qu

Fig. 11. Equivalent subproblems via commuting Ain and J;. Dimen-
sions of signals are indicated along the arrows.

leveraging state-space properties and the block structure of
certain blocks of ;. Examples include Bs, A% = A Bs..
and ALE) E,.L' = E} E, L. : a

The remainder of the proof proceeds as follows: we define
KC; to be the shaded system in Fig. 11 (right panel). This
is a standard adobe delayed problem, so we can apply the
I" transformation illustrated in Fig. 2. Specifically, we define
(Pi, I, ,,) = D(P;, Al), and obtain Fig. 12.

A, |«
2]

‘_ P,

?

- Wy

(D

7 1

: ;CE Qi ] ['j_nbi
g L™

Fig. 12.  Transformation of the right panel of Fig. 11 using the loop-
shifting transformation illustrated in Fig. 2.

N
L/

By the properties of the loop-shifting transformation dis-
cussed in Section II-A, the optimal K; is found by solving a
standard non-delayed LQG problem in the (rational) plant P,
whose solution is

—E] E, U
F 0

e Aii + Bo F' + E B, L'Cs,,

P =

Inverting each transformation, /C; = Huilﬁi(l —Hbilﬁi)_l, and
we can recover the Youla parameter via Qﬂ = fu(J[l, K:),
which leads to (29). Now zero-pad, reintroduce delays, and
concatenate, to obtain the global Youla parameter (17) via
Qopt = Zfil EmiAin QUE; and recover the optimal con-
troller (18) via Kopt = Fi (T, Qopt)-

E. Proof of Theorem 13

From Lemma 3, the set of sub-optimal controllers is pa-
rameterized as K = F;(J, Q), where Q € S,. Equivalently,
write £ = Fi(J, Qopt + Qa), where Qa € S; and Qg is
given in Theorem 12. The controller equation u = Ky can be
expanded using the LFT as () = 7 (¥) with v = Qn. If J

has state £, the state-space equation for 7 decouples as

éi = (AZZ + By, Fa,, + LlCQn)fl - Liyi + By, vi,

u; = Fg,, & + vi,

ni = —C2,.& + Yi,
Note that we replaced Lg,, by L' from (9b). This leads to
simpler algebra, but is in principle not required. Meanwhile,
the Q equation is coupled: v = (Qqp + Qa)7n. Now consider
Agent 7. Since we are interested in the agent-level implemen-
tation, we begin by extracting w;, which requires finding v;.
Separate Q by columns as in Appendix D to obtain

(T E;L (Qopl + QA) n
= Z E;iEmﬁAfn (ng + Q@k) Nk

kE[N]

- (Qii + sz) n; +e 5 Z (sz + sz) Mk,  (30)

fori=1,...,N.

kei

where Qﬂ is given in (29), and Q € Sy is the delay-free
component of Qa. A possible distributed implementation is to
have Agent ¢ simulate &; locally. Since y; is available locally,
then so is 7;. We further suppose Agent i computes v; ; =
(Qﬁ + Qﬁ)m locally. Component v; ; is used locally, while
component v; ; for j € 7 is transmitted to descendant j. Each
agent then computes v; by summing its local v;; with the
delayed e™*7v;; received from strict ancestors k € i. The
complete agent-level implementation is shown in Fig. 3.

When Q = 0, we recover the optimal controller. In this
case, the equations simplify considerably; standard state-space
manipulations reduce Fig. 3 to the simpler Fig. 4. It is worth
noting that the optimal controller does not depend on the
choice of nominal gain Fj.

F. Proof of Theorem 17

All the estimation, control gains and Riccati solutions used
here are defined in Section II-B.1. The addit%onal cost incurred
due to suboptimality is Jg := ||’T12 OATa1 H2 [3, §14.6]. Using

[3, Lem. 14.3], we have Jg := ||T12QAD21||§-
1) Jcen (19a): The optimal cost for a fully connected graph
[3, Thm. 14.7] is

2
|: A+BQFcen ‘ Bl :| + |: AL BL :|
Cl + D12Fcen 0 9 D12Fcen 0

= tr(YeenCT C1) + tr(Xeen LDoy DI, L),
= tr(XcenBlBir) + tr(}/cenl?—r D-lrQD12FCCn)7

cen

2

Jcen =

b

2

where Ay, By are defined in Appendix C for (24).

2) Jgec (19b): Consider that Kop in (16) is a sub-optimal
centralized controller for || 711 + T12Q7z1 | 3, subject to Q €
RHs. Centralized Ho theory [3] implies that Jgee = Jeen +
A, where A = ||D12 QyouDngg and Qyo, is the centralized

Youla parameter. Here, Qyou = Fu(J -1 Kopt), wWhere

A |B -L
J'=| ¢ |0 I
_Fcen I 0
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[ T
Ay By, 11, F" ~E} B, L
~ T . ~ ~ T ) ~ T ) T
Qs = | —E} EnL'Cy, Ay+ By, F'—E} E, L', F'+ E E, L'Cy, | ~E} Ey L (29)
[
o Fdﬁ HuiF ‘ 0

After simplifications, we obtain

A+BF |-L
1(F—Fen)| 0 ]

Qyou = |:

We substitute Qy,, into the expression for A, using
|Ds + Cs(sI — As) 7' B ||2 = tr(CsW,.C7T), where W.. is the
controllability Gramlan given by Lyapunov equation A, W, +
WAl + B;B] = 0. Based on the Lemma 20 and using the
identity L; = E,,, L'E] , we evaluate
N
A=) "te(D5, L] En {X'
i=1

= tr((blkd({X*(1,1)})

- Xcenﬂ}E;ll—iLiDQI)

- Xcen)LD21D;—1LT)'

We obtain (19b) by substituting A into Jgec = Jeen + A.

3) Alternative formulas for the cost: We obtained an al-
ternative formula for J, in Appendix F.I. Slmllarly, in
Appendix F2 for Juee, ||Ds+ Cs(sI — As)~' B, H2 is also
equal to tr(BsBIW,), where W, is the observability Gramian
given by the dual Lyapunov equation ATW, + W,A, +
CTC’S = 0. Based on Lemma 21, we can evaluate A =
Zl 1 tr(DIQ(E'rm Fz FcenE )WY (Emz Fz FcenEnl)TDirz)
Similar alternative formulas exist for (19¢), and (19d) as well.

4) Jdec,del (19¢): We can split the cost in (13) into a sum of
N separate terms because 7T3; is block-diagonal. Using [26,
Prop. 6] on each of these N problems, we write Jgec del S
a combination of a non-delayed cost Jg and a A incurred
by adding delays to that system: Jyec.det = Jaee + A, Where
A = 2N (DY, LTET (L — X*)E,,L;Day,). Also,
A = tr(blkd({Z%(1,1)— X*(1,1)})LD2, D3, LT) since L; =
E,,L'E] . We obtain (19¢) by substituting A into Jue gl =
Jaec + A. See Appendix F.6 below for explanation on =%

5) Jgel (19d): Derivation is analogous to that of Jyec ge1. See
Appendix F.7 below for explanation on Eér

6) Proofs for (20a): We have X — Xcep,, = 0 in Lemma 20
for all i € [N]. The properties of a positive semi-definite
matrix give us X%(1,1) — Xeen,,(1,1) = 0, and hence
blkd ({ Xcen(?,7)}) = Xgec- _

Now we define =% and establish that =2 — X* = 0. The
Hamiltonian for the control Riccati equatlon (10) is

Hi L Aﬁ — BgiiMilD‘lrzziél 732 Mﬁlé—r

o ~CT,P.Cy, —AL+CT Dy, M~V B]
where M := D{, Dy, Py := D1z, M~'D{, and P, :=
I — Py, and define the corresponding symplectic matrix expo-
nential as X := eI 7. The elements X5,, ¥%, of this modified
% are used to define the =i. For all i € [N], we define
=i := Xi— (¥, 2i,)T. By solving the associated Differential
Riccati Equation (DRE) [26, Eq. 16], we show Z¢ — X% > 0
[26, §4.3]. This gives us Xgec = Xdec del-

7) Proofs for (20b): Next we consider the case of a fully
connected graph with delays. So Agent ¢’s feedback policy
looks like u; = Kii(s)yi + 22 enpi€ " Kij(s)y;. Since
we solve for Q by solving for individual columns Q,;, we
define the associated state transition matrix for each column
as A§, := blkd({As, Asi}), where i = [N] \ i. We define
the corresponding Bf., Bs. Cf., ng , €5, and D21
in a S1m11ar manner. We also deﬁne a centrahzed ==

Xi— (2222 ¥4,.)T for each I'-modified plant

,ﬁ; = éfl 0 Dﬁ?:i

Each individual column Q;; has its own 75,? as the associated
adobe delay matrix is different. We have a corresponding con-
trol ARE (X!, F!) := Rlc(AfZ,Bgm,C’f:i,DfQ ). We solve
DREs for each Z¢_ as in [26, §V.C] to obtain ., — X, =0
for all ¢ € [N], where chen is a reshufﬂmg of Xcen to
mirror the ordering of i = {z [N] \ }. This proves that
blkd({Xcen(?,7)}) = Xcendel for all i € [N].

Lemma 23 proves that Xcen gel = Xdec.del for all i € [N].

Lemma 23 Ef:T and = are the solutions of the DREs for
delayed fully connected and decentralized graphs respectively.
Then, Wi :==! — EZC” = 0, where Eé” = E;EﬁTEnL, and

. ':"L
i corresponds to ZL.

Proof: The DREs for
the differential Lyapunov equation

i i
El,and &

.. are subtracted to obtain

EL . —EL = (Ay + B, FL)TWE + Wi(Ay + B, F2)

R (Eml’FE - FECEni)TD1T2D12(Em1FE - FECEni)a
where FL = —(Dl, Dia,) '(ZLBs, + C Dia,)T, and
Fi = —(Dfy D5y, ) "(EL BS, + Cf Df, )T. The rest

is analogous to the proof of Lemma 20. Finally, we obtain

= — = - X'+ XCen .. = 0. Using X" — Xeen,, = 0 from
Lemma 20, we obtain = — == 0. |

—cii —
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