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Abstract
Many experimentally relevant quantum spin chains are approximately integrable, and support
long-lived quasiparticle excitations. A canonical example of integrable model of quantum
magnetism is the XXZ spin chain, for which energy spreads ballistically, but, surprisingly, spin
transport can be diffusive or superdiffusive. We review the transport properties of this model
using an intuitive quasiparticle picture that relies on the recently introduced framework of
generalized hydrodynamics. We discuss how anomalous linear response properties emerge from
hierarchies of quasiparticles both in integrable and near-integrable limits, with an emphasis on
the role of hydrodynamic fluctuations. We also comment on recent developments including
non-linear response, full-counting statistics and far-from-equilibrium transport. We provide an
overview of recent numerical and experimental results on transport in XXZ spin chains.
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1. Introduction

A natural way to study a complex system, such as the fluid of
electrons in a metal, is to perturb it and see how it responds. Of
the tools an experimentalist has to perturb the electron fluid,
the simplest is to apply an electric field; the corresponding
response is the (electrical) conductivity. Since the conductivity
is so simple to measure, it is the most-studied dynamical sig-
nature of condensed-matter systems. Historically, these stud-
ies focused on the low-temperature regime, for at least three
reasons. First, the conductivity in this limit can be treated in
terms of a dilute gas of elementary excitations, allowing for
controlled theoretical calculations. Second, heating a metal to
its Fermi temperature causes it to interact strongly with lat-
tice vibrations and other extraneous degrees of freedom; at low
temperatures these freeze out, and we can probe the intrinsic
behavior of the electron liquid. Third, and most importantly,

low temperatures are where one sees qualitatively striking
dynamical phenomena like superconductivity—by contrast,
high-temperature states are expected to be normal metals with
short mean free paths. Equivalently (by the Einstein relation)
we expect high-temperature transport to be diffusive.

Hydrodynamics supports this empirical conclusion. Ima-
gine initializing a system in a non-equilibrium initial state. By
locality, at short times one can divide the system up into local
mesoscale ‘cells.’ Generic many-body dynamics is chaotic,
so after a short evolution time the local state in each cell
approaches a random state subject to the relevant conserva-
tion laws (which apply locally). Since all other information
about the initial state has been lost, the subsequent evolution
just involves the equilibration of these few remaining slow
variables across the system. In the limit of long-wavelength
fluctuations, one can write down the most general equations
for these relaxation processes within a gradient expansion.
Whether this remaining dynamics is rich or simple depends
on the nature of these residual conserved quantities. When
momentum is conserved, the resulting fluid dynamics is rich;
when it is not—as in electronic systems embedded in a crys-
tal lattice or an amorphous medium—hydrodynamics predicts
that all transport should be governed by the diffusion equation.
At low temperatures, in two or more dimensions, a system
might acquire additional slowmodes, such as long-wavelength
order-parameter fluctuations in a phase with spontaneous sym-
metry breaking [1]. But at high temperatures, diffusion is the
inevitable consequence of standard hydrodynamics, and in one
dimension all nonzero temperatures are high enough to pre-
vent ordering.

A series of experimental advances around the year 2000,
most notably in ultracold atomic gases, allowed one to exper-
imentally access the regime of hot but isolated quantum
matter [2]. These studies led to a realization that is obvious
in retrospect but has consequences that had not been fully
appreciated: the assumption of rapid chaotic local thermaliza-
tion is false in many one-dimensional systems, invalidating the
logic we sketched in the previous paragraph. Rather, on exper-
imentally relevant timescales, one-dimensional and quasi-
one-dimensional quantum gases are approximately integrable.
Integrable systems can be regarded as having extensively
many conserved charges, or equivalently as hosting stable, bal-
listically propagating quasiparticles. This structure suggests
that the appropriate framework for describing them is not
hydrodynamics but a collisionless Boltzmann equation. Such
a description was recently developed using the framework
of generalized hydrodynamics (GHD) [3, 4]. GHD offers a
quantitative description of transport from nonequilibrium ini-
tial states [3–33], entanglement dynamics [34–36] and cor-
relation spreading [37, 38], as well as analytical expressions
for linear response quantities such as Drude weights [11,
39–42] and diffusion constants [43–48]. As we will discuss
in detail in this review, the GHD framework also revealed
the existence of anomalous transport regimes in strongly
interacting spin chains [46, 49–61], which motivated recent
experiments [62–65].

Concurrently with these advances, it also became possible
to perform efficient numerical simulations of the dynamics of
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lattice models using matrix-product methods [66]. These sim-
ulations at first focused on the XXZ spin chain, governed by
the Hamiltonian

ĤXXZ = J
∑

i

(
Ŝxi Ŝ

x
i+1 + Ŝyi Ŝ

y
i+1 +∆Ŝzi Ŝ

z
i+1

)
, (1)

where Ŝα = σ̂α/2 are spin-1/2 operators, and we shall set
J= 1 in what follows. The total magnetization along the z
axis,

∑
i Ŝ
z
i , is conserved under ĤXXZ. We will be interested in

howmagnetization is transported. Note that ĤXXZ maps onto a
model of interacting fermions via a Jordan–Wigner transform-
ation [67]. In the fermion language, the total magnetization
maps onto the total particle number.

The XXZ model has a ground-state phase transition at
|∆|= 1. For |∆|< 1, spins in the ground state point along
the equator of the Bloch sphere, while for |∆|> 1 they point
toward the poles. The nature of the elementary excitations is
also distinct: in the former case they are long-wavelength, lin-
early dispersing spin waves and the spectrum is gapless, and
in the latter they are domain walls (DWs) and the spectrum
is gapped. One might expect these ground-state distinctions
to be irrelevant for high-temperature transport: regardless of
∆, the model is integrable and has ballistic quasiparticles.
Naively this suggests that transport should always be ballistic.
Well before the advent of GHD, however, it had been appre-
ciated that ballistic quasiparticles can give rise to diffusive
transport of some charges [68–70]. What numerics revealed is
that both forms of transport occur in the XXZ model, depend-
ing on the value of ∆: at |∆|= 1, transport undergoes an
infinite-temperature phase transition from ballistic to diffus-
ive (figure 1). The critical point ∆= 1 exhibits superdiffu-
sion [49, 50] with an anomalous transport exponent x∼ t2/3

(which is analytically understood); based on numerical evid-
ence from scaling functions [57], it is also believed that trans-
port is governed by the Kardar–Parisi–Zhang equation [71]
(though this has not yet been microscopically derived). The
recognition that such high-temperature dynamical phase trans-
itions can occur even in one dimension is one of the cent-
ral new discoveries in quantum dynamics. (A slightly earlier
instance is the many-body localization transition in disordered
spin chains [72], although its nature and even existence remain
under active debate.)

The aim of this review is to describe our current understand-
ing of why distinct dynamical phases can occur in integrable
spin chains. The explanation involves two crucial ingredients:
the existence of stable quasiparticles at high density. Because
the quasiparticles are stable at all temperatures, a change in
their character has consequences for dynamics at all temper-
atures. (A related manifestation of this fact is the existence of
‘strong zero modes’ [73].) At high densities, collisions among
quasiparticles renormalize the properties of each individual
quasiparticle; these renormalization effects are key to the pos-
sibility of non-ballistic transport in integrable systems. When
the nature of the quasiparticles changes, it is natural for these
renormalization effects also to change.

Figure 1. Summary phase diagram of spin transport in the XXZ
spin chain. In the integrable limit and at half-filling (zero net
magnetization, magnetic field h= 0), spin transport is ballistic in the
easy-plane (∆< 1) phase, diffusive in the easy-plane phase (∆> 1)
with anomalous full counting statistics, and superdiffusive with
z= 3/2 at the isotropic point ∆= 1. Away from half-filling h> 0,
spin transport is ballistic for all ∆ but the local relaxation of the
dynamical structure factor is anomalous with continuously varying
exponents. Away from integrability, for weak perturbations and at
half-filling, transport is likely diffusive everywhere at long times.
However, at large anistropy, spin transport is subdiffusive with z= 4
for a parametrically large regime. For ∆= 1, perturbations
preserving the SU(2) symmetry perturbatively lead to superdiffusive
transport due to long-lived quasiparticles.

1.1. Scope and organization of this review

This review aims to be a self-contained treatment of anomal-
ous dynamics in integrable and near-integrable systems. We
do not assume any knowledge of background topics such as
GHD or integrability-breaking; nor do we offer a compre-
hensive introduction to these topics. Instead, we introduce and
physically motivate key results from these areas when they
are relevant to our discussion. For recent pedagogical intro-
ductions to GHD see [74–76]; for diffusive corrections to
GHD, see [77]; for an introduction to integrability-breaking
perturbations within GHD see [78]. The review article [79]
has an extensive discussion of numerical and exact results on
transport.

Our work has some overlap with a recent review on super-
diffusion in integrable systems [80]. Our emphasis is differ-
ent, however: Bulchandani et al [80] focused on superdiffu-
sion at the Heisenberg point; our work focuses more generally
on the nontrivial consequences of long-lived quasiparticles for
transport and dynamics. This new emphasis is motivated by
recent developments (mostly since the publication of [80])
showing that superdiffusion is only one of a range of surpris-
ing transport phenomena that stem from the existence of long-
lived quasiparticles. In addition, transport in XXZ spin chains
has become a topic of great experimental relevance since the
publication of [79, 80]. Accordingly, this work offers a more
detailed survey of the current experimental status of the field.

The rest of this review is organized as follows. In section 2
we give a brief self-contained introduction to the concepts
that are needed to understand GHD and transport in integ-
rable (and nearly integrable) systems. In section 3 we provide
a detailed discussion—both in the linear-response regime and

3



Rep. Prog. Phys. 86 (2023) 036502 Review

away from it—of the dynamics of one of the simplest examples
with anomalous behavior, the ‘folded’ limit of the XXZ spin
chain. In section 4 we extend our results away from the fol-
ded limit to the easy-axis regime of the XXZ spin chain. In
section 5 we extend them further to the isotropic Heisenberg
point, at which we find very different results. In section 6 we
briefly review the easy-plane limit of the XXZ spin chain. In
section 7 we discuss numerical and experimental studies of
transport in spin chains. We conclude in section 8 with a dis-
cussion of open questions.

2. Background

2.1. Thermal states of integrable systems

The defining property of integrable systems is that they pos-
sess extensively many local conserved charges. A strictly
local conserved charge is an operator Q̂ that can be written
as a translation-invariant sum of local operators, Q̂=

∑
i q̂i

where the operator q̂i has support (i.e. act nontrivially) only
on finitely many sites in the thermodynamic limit. (One can
also define quasilocal charges [81] analogously, by allowing
q̂i to have exponential tails. For our purposes the distinction
between these two concepts will not be important.) The sta-
tionary states of an integrable system are generalized Gibbs
states, which are the highest-entropy states subject to a set of
conservation laws. If Q̂n are conserved charges that commute
with one another, one can represent a generalized Gibbs state

as the density matrix ρ̂∝ exp
(
−
∑

nβnQ̂n

)
.

An equivalent but more physically transparent way of char-
acterizing equilibrium states of integrable systems is in terms
of quasiparticles. One imagines (in the spirit of the coordin-
ate Bethe ansatz) constructing a general eigenstate on a ring
of size L as follows. Begin with a trivial vacuum state (e.g.
the | ↓↓ . . . ↓↓⟩ state in the case of the XXZ spin chain) and
start adding particles. In general, once many particles are
present, they can exchange energy and momentum through
collisions. However, in an integrable system the kinematics
of collisions are highly restricted, so that essentially all colli-
sions just involve forward scattering. Thus, each quasiparticle
moves ballistically, but in a medium with a refractive index
that is determined by the occupation pattern of the other quasi-
particles. The eigenstates on a ring are labeled by the quasimo-
menta (or ‘rapidities’) of each quasiparticle, {λi}Ni=1 for an N-
particle state. In the free-fermion limit these rapidities would
just be the occupation numbers of the single-particle eigen-
states. In an interacting integrable system, however, the quant-
ization condition for each quasiparticle depends on the state
of the rest of the system, so one computes the set of rapidities
{λi} in an eigenstate by solving the coupled Bethe equations.

Note that the integrable lattice models of interest here host
not only elementary quasiparticles, but also bound states of
quasiparticles; these bound states are referred to as Bethe
strings, and have been experimentally observed [82]. Because
of integrability, strings are strictly stable at arbitrary energy
density. Therefore, we can treat each string type as a separate
species of quasiparticle, indexed by the label s.

We will be interested in characterizing states in the thermo-
dynamic limit, where the allowed quasiparticle labels form a
continuum. To this end we define the density of quasiparticles
of species s in a narrow rapidity window around λ as ρs(λ).
One can analogously define a density of states ρtot

s (λ): as dis-
cussed above, each quasiparticle affects the quantization con-
dition for all the others, so the density of states must generally
be determined self-consistently. It is useful to define an ‘occu-
pation factor’ ns(λ)≡ ρs(λ)/ρ

tot
s (λ); again, in a free system in

equilibrium this reduces to the Fermi function, but in general it
has to be evaluated by solving a set of coupled equations. The
thermodynamic Bethe ansatz (TBA) formalism [83] provides
a straightforward procedure for computing these quantities.

Thus there are two ways of characterizing stationary states
of integrable systems: either in terms of conserved charges or
in terms of quasiparticle distribution functions. These descrip-
tions are related through a mapping called ‘string-charge dual-
ity’ [84]; for our purposes, the key point is that the two
descriptions contain the same information. In what follows we
will primarily characterize equilibrium states using the qua-
siparticle distribution function, as the GHD equations have a
more intuitive formulation in this picture.

2.2. Generalized hydrodynamics

2.2.1. Kubo formula. The simplest dynamical properties of
a many-body system to calculate are linear-response transport
coefficients like the optical conductivity σ(ω), i.e. the current
J generated in response to a sufficiently small external electric
field. For any charge Q̂, the current Ĵ=

∑
x ĵ(x) is defined by

the continuity equation ∂tq̂(x)+ ∂x ĵ(x) = 0. Here, the deriv-
ative is to be interpreted as a discrete derivative in the usual
sense. The linear-response conductivity about an equilibrium
state can be expressed in terms of a Kubo formula. Here we
will be concerned with the high-temperature limit (although
all of the results in this review carry over to any finite tem-
perature), where the Kubo formula takes the following simple
form (see e.g. [79] and references therein):

Tσ(ω) =
1
L

ˆ ∞

0
dt⟨Ĵ(t)Ĵ(0)⟩eiωt. (2)

Note that although σ(ω)→ 0 in the high-temperature limit (as
the system is already in the maximum entropy state and cannot
respond to any perturbations) the quantity Tσ(ω) has a finite
limit. The quantity Tσ(ω) is related to the density-density cor-
relator C(x, t) = ⟨q(x, t)q(0,0)⟩ via the continuity equation.
This leads to a generalized Einstein relation between the vari-
ance of the structure factor, and the Kubo current-current cor-
relator (see e.g. [45, 85]):

1
2
d2

dt2

ˆ
dxx2C(x, t) =

1
L
⟨Ĵ(t)Ĵ(0)⟩. (3)

For a diffusive system, the variance of the dynamical structure
factor goes as 2χDt with D the diffusion constant and χ=
T−1
´
dxC(x, t) the susceptibility, and we recover the usual

Einstein relation σd.c. = χD with the d.c. conductivity σd.c. =
1
L

´∞
0 dt⟨Ĵ(t)Ĵ(0)⟩.
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The dynamical scaling exponent z can be defined by the
relation

ˆ
dxx2C(x, t)∼ t2/z. (4)

Using this and the relationship between C(x, t) and σ(ω) we
see that σ(ω)∼ ω1−2/z. In the limit z→ 1+ the conductiv-
ity becomes increasingly peaked around ω= 0. When bal-
listic transport is present, σ(ω) = πDDrudeδ(ω)+ · · · , where
the coefficient of the δ-function is called the Drude weight.
This result is intuitive: ballistic transport means injected cur-
rents do not entirely decay, and the Drude weight is precisely
the non-decaying fraction.

Computing σ(ω) reduces to computing dynamical correla-
tion functions of the form ⟨J(t)J(0)⟩. Since the Bethe ansatz
gives us (in principle) access to all the eigenstates of the many-
body system, one might try to evaluate this expectation value
by writing it in the Lehmann form

ˆ ∞

−∞
dteiωt⟨Ĵ(t)Ĵ(0)⟩=

∑
mn

|⟨m|Ĵ|n⟩|2δ(ω− (Em−En)),

(5)

where |m⟩, |n⟩ are many-body eigenstates with energies
Em,En. Unfortunately, the task of writing down matrix ele-
ments of J (also known as ‘form factors’) between pairs of
highly excited many-body eigenstates in a way that allows
one to take the thermodynamic limit has proved extremely
challenging.

2.2.2. Mazur bounds. Although directly evaluating the
Kubo formula is challenging, we are most interested in its
t→∞ limit, as this is where the response is potentially singu-
lar. In this limit, one can use the following strategy to lower-
bound Tr(Ĵ(t)Ĵ(0)). We note that this quantity has the form
of an inner product in the operator Hilbert space. Suppose
we are able to construct some family {Q̂i}mi=1 of conserved
charges. Assume without loss of generality that the Q̂i are
orthonormal. Then we can expand Ĵ=

∑m
i=1Tr(ĴQ̂i)Q̂i+ Ĵ⊥,

where Ĵ⊥ consists of (potentially) non-conserved components
of the current. Now Ĵ(t) = Tr(ĴQ̂i)Q̂i+ Ĵ⊥(t). Without mak-
ing any assumptions about Ĵ⊥ this reasoning gives us the lower
bound [86]

lim
t→∞

{
Tr(Ĵ(t)Ĵ(0))

}
⩾

m∑
i=1

|Tr(ĴQ̂i)|2, (6)

sometimes called a Mazur bound. This lower bound is sat-
urated in cases where we have identified all the conserved
quantities, but it is a rigorous lower bound even for a par-
tial set of conserved quantities. Indeed, finding a single con-
served charge that has a nontrivial overlap with the current is
sufficient for establishing ballistic transport. Conversely, the
absence of ballistic transport means the current has no overlap
with any conserved charges—a feature that would be unnat-
ural unless there were a symmetry-based reason for it.

2.2.3. GHD and transport without form factors. We
remarked in section 2.1 that it is mathematically equivalent,
but often more fruitful, to think of the states of integrable sys-
tems in terms of the quasiparticle distribution functions rather
than conserved charges. As we now discuss, this perspective
allows us to formulate the question of transport in integrable
systems without directly tackling form factors.

As usual with hydrodynamics, the first step is to break the
system up into mesoscale cells. Each cell is assumed to be loc-
ally in a GGE, which can be specified either in terms of the
charges in that cell or its quasiparticle distribution function.
We have two tasks: (i) time-evolving a general quasiparticle
distribution, and (ii) relating the quasiparticle distribution to
charge transport. We discuss both of these at a skeletal level,
since the details are amply discussed elsewhere and are not
relevant to our main themes [74]. Conceptually, (i) is straight-
forward: each species of quasiparticle propagates ballistically
with an effective velocity set by its environment. This gives
rise to a collisionless but nonlinear Boltzmann equation of the
form

∂tρs(λ)(x, t)+ ∂x(v
eff
s (λ)[ρ⃗(x, t)]ρs(λ)(x, t)) = 0. (7)

The square brackets here indicate that the effective velocity is
a functional of the full distribution function in that cell. Thus,
in an inhomogeneous state, equation (7) is strongly nonlinear.
One might worry that a nonlinear equation of this type might
develop shocks, but it turns out that the particular structure of
this infinite set of equations prevents shocks from occurring
[8, 87]—note that in any case, shocks would be melted by dif-
fusive corrections to this Euler-scale equation [43–45].

This setup can directly be used to compute charge transport.
We start with all the cells in the same equilibrium state but dis-
connected from one another. Next, we create a slight excess
of charge in one cell (which changes its quasiparticle distribu-
tion), and connect the cells. We evolve the quasiparticle dis-
tribution as above, and then use the final quasiparticle dis-
tribution in each cell to read off the value of all conserved
charges in that cell. This procedure allows us to compute the
full dynamic structure factor without direct reference to any
matrix elements.

2.2.4. Dressed properties of quasiparticles. Implementing
the GHD prescription for the dynamical correlation functions
of the conserved charge densities,Cab(x, t) = ⟨qa(x, t)qb(0,0)⟩
above a spatially homogeneous reference state yields the intu-
itively appealing expression:

Cab(x, t) =
∑
s

ˆ
dλρs(λ)(1− ns(λ))(m

dr
a )(s,λ)(m

dr
b )(s,λ)

× δ(x− veffs (λ)t). (8)

Thus each quasiparticle carries some net charge ballistically
with its effective velocity. Computing the correlation function
thus reduces to computing the dressed properties of a single
quasiparticle above a nontrivial background state.

It remains to describe how the dressed quantities mdr,veff

are computed. We outline the basic logic here and refer to
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[74] for details—we will also compute these quantities in a
simple model in the next section. The dressed charge of a qua-
siparticle is computed as follows. Supposewewant to compute
mdr
a (s,λ), the dressed charge qa of the quasiparticle (s,λ). We

perturb the equilibrium state with a field ha that couples toQa.
This leads to a change in the occupation ns(λ). Since the qua-
siparticles are fermionic, one can write the occupation number
as ns(λ) = 1/(1+ eE0+hm

dr
), from which one can read off the

dressed charge. Intuitively the dressed charge is the extent to
which the quasiparticle occupation is susceptible to the corres-
ponding field.

The effective velocity is simplest to understand in the ‘flea-
gas’ picture of GHD [16]. The propagation of a quasiparticle
consists of two parts: free propagation between collisions,
and time delays (or jumps) during collisions. Each collision
between quasiparticles of type (sλ),(s ′λ ′) imparts a shift
d(s,λ;s ′,λ ′). To find veffs (λ) one adds up the shifts due to col-
lisions involving that quasiparticle in time t, due to other qua-
siparticles moving with effective velocities veffs ′ (λ

′). This gives
rise to an integral equation

veffs (λ) = v0s (λ)+
∑
s ′

ˆ
dλ ′ρs ′(λ

′)d(s,λ;s ′,λ ′)

× [veffs (λ)− veffs ′ (λ
′)], (9)

where v0s (λ) is the ‘bare’ velocity of the quasiparticle. In this
formula, ρs ′(λ ′)[veffs (λ)− veffs ′ (λ

′)] is the number of quasi-
particles (s ′,λ ′) colliding with the tagged quasiparticle (s,λ)
per unit time, thereby renormalizing its velocity. The scatter-
ing shifts are specific to the model and can be related to the
Bethe ansatz data as detailed in [16].

2.3. Orders of limits; the GHD regime in finite systems

We close this section with a brief discussion of the regime of
validity of GHD. This discussionwill be particularly important
when we turn to interpreting numerical results below. GHD is
strictly valid in the limit of late times and large systems; how-
ever, the thermodynamic limit is always assumed to be taken
before the late-time limit. Let us take the system size to be L,
the time to be t, and the Lieb–Robinson velocity [88] to be
vLR. Then GHD governs the behavior of correlation functions
in the limit

lim
t→∞

(
lim
L→∞

⟨Ô(x, t)Ô(0,0)⟩L
)
, x/(vLRt)→ 0. (10)

The thermodynamic limit and late-time limit do not gener-
ally commute. This can be seen in the quasiparticle picture: in
the GHD regime, a quasiparticle moves parametrically farther
than it spreads. This is not true at very late times in a finite
system, since it cannot move farther than L but can delocalize
over the entire system.

Numerical and experimental studies are, of course, limited
to finite times and system sizes. To remain in the regime where
GHD can reasonably be applied, we must work at times t⩽
L/vLR, i.e. times at which quasiparticles have not yet wrapped
around the system. This restriction must be kept in mind espe-
cially when interpreting finite-size numerics on observables

like the conductivity: GHDhas nothing to say about this quant-
ity at frequencies ω < vLR/L. There is numerical evidence for
transport anomalies in this regime [89, 90] (especially when
integrability is weakly broken in a finite system [91]); explain-
ing these observations remains an interesting open question.

2.4. The space of relevant models

Our discussion will focus on the spin-1/2 XXZ spin chain,
which is a canonical model of quantum magnetism. In con-
ventional (‘analog’) experiments this is the most natural model
to realize. However, in digital quantum simulators that imple-
ment quantum circuits, or in classical tensor-network simula-
tions, it is often helpful to consider ‘Trotterized’ models with
discrete time evolution. In addition, since much of the long-
wavelength physics we will discuss is common to quantum
and classical integrable systems, scalable numerical tests of
some of the phenomena we discuss are easiest to perform for
classical dynamics. The most obvious discrete-time or clas-
sical versions of the XXZ model are not integrable; however,
integrable Trotterizations and classical limits have been con-
structed, and we will briefly introduce them in the rest of this
section.

2.4.1. Integrable Trotterization. Many numerical approaches
(such as the time-evolving block decimation (TEBD)
algorithm [92, 93]) as well as experiments on noisy quantum
computers rely on discretizing quantum evolution. The
standard method for doing this is the Trotter decomposi-
tion [93], which consists of breaking up the time evolution
exp(−iĤt)≈ exp(−iĤevent)exp(−iĤoddt) where Ĥeven/odd

consist of terms on even (odd) bonds. Since Ĥeven is a sum
of mutually commuting terms, one can write exp(−iĤevent) as
a product of two-site unitary operations on even bonds, which
can be implemented simultaneously (and likewise with Ĥodd).
Thus the Trotter decomposition expresses Ĥ as a brickwork
unitary circuit. However, it introduces an error at O(t2), and
breaks integrability at the same scale. To preserve integrabil-
ity, one is forced to use a short timestep (and thus implement
many layers of gates, which is potentially demanding for
numerical algorithms and especially for small-scale quantum
computers).

Vanicat et al [94] provided an ingenious solution to this
issue by writing down a discrete-time family of brickwork
unitary circuits that are integrable for arbitrary time step and
that reduce to the XXZ spin chain in the limit of small time
step. Both numerical and analytical results suggest that the
Trotterized XXZ spin chain has qualitatively the same trans-
port properties as the Hamiltonian XXZ spin chain [95]. To
explore these shared transport properties, it therefore suffices
to simulate the integrable Trotterization of the XXZ spin chain
at finite time step. For a fixed number of gates, the Trotterized
evolution allows one to get to later times, relative to the sys-
tem’s dynamical timescales.

2.4.2. Classical integrable spin chains. The naive classical
limit of the XXZ spin chain consists of taking the spin s from
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1/2 to∞. The resulting model is not integrable. However, the
closely related Ishimori model

H=− ln
(
1+

∑
i
Si·Si+1

)
, (11)

is integrable [96]. As wewill see below, there is a precise sense
in which the long-wavelength dynamics of the quantum Heis-
enberg and classical Ishimori models coincide [61]. Therefore,
for extracting long-wavelength transport properties, classical
simulation of the Ishimori model has been a valuable guide,
going back to [97].

The standard way of implementing time-evolution under
classical Hamiltonians is to discretize them using a symplectic
scheme (which is guaranteed to conserve energy). Generic
symplectic integrators maintain integrability only up to an
error that scales polynomially in the integration time-step.
However, one can define an exact discrete-time integrable
classical dynamics, consisting of symplectic two-spin maps
arranged in a brickwork lattice [98]. Symplectic maps cor-
responding to both the isotropic Heisenberg spin chain and
its anisotropic deformations have been defined and studied
in [99, 100].

2.4.3. Folded XXZ automaton. In the large-∆ limit, the
quantum dynamics of the XXZmodel reduces to a constrained
hopping problem, in which up-spins can hop provided that the
hop does not change the number of DWs. This constrained
hopping problem can also be realized as a kinetically con-
strained classical cellular automaton, as detailed in [101, 102].
An appealing feature of cellular automata is that, unlike clas-
sical Hamiltonian systems, they act on the same Hilbert space
as the fully quantum problem: they can be regarded as a spe-
cial class of unitary transformations that map each product
state in the z basis to another product state in that basis. Thus,
for example, questions about eigenstate and operator entangle-
ment, or the dynamics of nontrivial initial quantum states, can
be posed in these models [44, 103–107].

3. A simple limit: the folded XXZ spin chain

3.1. Folded XXZ model

The usual nature of spin transport in the XXZ spin chain
is best understood in the limit of large anisotropy, as ∆→
∞, the dynamics become constrained to conserve

∑
i Ŝ
z
i Ŝ
z
i+1

which counts the number of DWs in the system. (Here, a DW
exists between the spins at sites j and j+ 1 if they are anti-
aligned.) Using standard strong coupling (Schrieffer–Wolff)
expansions, the leading effective Hamiltonian in the limit of
large anisotropy is simply an XX flip-flop interaction con-
strained to act on a subspace with fixed DW number:

Ĥfolded = J
∑
i

1+ 4Ŝzi−1Ŝ
z
i+2

2

(
Ŝxi Ŝ

x
i+1 + Ŝyi Ŝ

y
i+1

)
. (12)

This model is known as the ‘folded’ XXZ spin chain [108,

109], and the prefactor
1+Ŝzi−1Ŝ

z
i+2

2 is a projector that ensures that

a flip-flop exchange between sites i and i+ 1 can only occurs
the spins on sites i− 1 and i+ 1 are aligned. Without this con-
straint, this Hamiltonian would simply mapped to free fermi-
ons using a Jordan–Wigner transformation. However, we will
see that the constraint leads to very non-trivial transport prop-
erties that are generic to the XXZ spin chain in the easy-axis
∆> 1 regime, including diffusive spin transport co-existing
with ballistic energy transport.

3.2. Absence of ballistic spin transport

In addition to spin and DW number conservation, the allowed
moves constrain the motion of the DWs themselves, so that
isolated DWs are frozen, but adjacent pairs of DWs (corres-
ponding to isolated magnons in some background) can hop.
This means that there exist an exponential number of com-
pletely frozen states that have no adjacent DWs. Configura-
tions in which spins up or down always appear in strings of
length two or more are completely frozen, and thus these sec-
tors are dynamically trivial.

For example, the state

| ↓↓↓↓↓↓↑↑↑↑↑↓↓↓↑↑↑↑⟩,

is completely frozen, that it to say it is an exact eigenstate of
equation (12) with zero eigenvalue. On the other hand, the state

| ↓↓ ↑ ↓↓↓↑↑↑↑↑↓↓↓↑↑↑↑⟩

has a single spin flip (magnon) excitation highlighted in red
in the leftmost domain. Upon acting on this state with the
Hamiltonian, the magnon, initially a spin up in a majority of
spins down, can move around and become a spin down in a
majority of spins up. To see this, note that this magnon can
hop to the left or right until it collides with a frozen string of
up spins. For example, after two hops of the magnon to the
right, the resulting configuration is

| ↓↓↓↓ ↑ ↓↑↑↑↑↑↓↓↓↑↑↑↑⟩.

At this point, the up spin can no longer hop to the right, but
the down spin on the site immediately to its right can hop,
resulting in

| ↓↓↓↓↑↑ ↓ ↑↑↑↑↓↓↓↑↑↑↑⟩.

Now, this down spin is the only degree of freedom that can
move: the magnon (i.e. mobile excitation) has changed its
charge from+1 to−1. The magnon can still move to the right
until it hits the right boundary of the domain, at which point
the configuration again resembles a free particle-like spin up
to the right of a frozen up spins domain,

| ↓↓↓↓↑↑↑↑↑↓ ↑ ↓↓↓↑↑↑↑⟩ .

This entire sequence ofmoves can be viewed as a single, unim-
peded, magnon-like excitation travelling as a spin up through
strings of down spins, and as a spin down through strings
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Figure 2. Magnon propagation in the folded XXZ model. Example
of magnon propagation: initially a spin up in a majority of spins
down, can move around and become a spin down in a majority of
spins up. Note the displacement (or Wigner time delay) of the
quasiparticles after collision.

of up spins. Each configuration in such single-magnon sec-
tors is connected to exactly two other states by the Hamilto-
nian, in which the magnon has hopped to the left/right of its
current position. The magnon interacts with the otherwise-
frozen background domains: As the magnon first hops through
a domain from left to right, the position of the domain itself
shifts two sites to the left. As a result, the single magnon
sector contains ∼L2 states for a system of size L, since the
magnon has to go around the system ∼L/2 times to go back
to its original configuration. Despite this unusual feature, the
magnon moves like a free object with dispersion relation ϵ=
−cosk and velocity vk = ∂kϵk = sink, with the smallest non-
zero ‘momentum’ k∼ L−2 which corresponds to the transla-
tions of the magnon [110, 111].

Since the mobile magnons have a free dispersion, and move
ballistically, energy transport is ballistic. The corresponding
delta peak in the thermal conductivity is characterized by the
thermal Drude weight DE

Drude =
´

dk
2πnk(1− nk)v2kϵ

2
k , where nk

is the occupation number (Fermi factor) of the magnons. At
infinite temperature, we have nk = 1

4 since magnons corres-
pond to local configurations ↓↑↓ or ↑↓↑, so two out of eight
3-spin configurations. Correspondingly, the energy-energy
dynamical correlation function is given, at the Euler scale4

(that is, at the scale x∼ t and ignoring e.g. diffusive correc-
tions) by

⟨ϵ(x, t)ϵ(0,0)⟩=
ˆ

dk
2π

nk(1− nk)v
2
kϵ

2
kδ(x− vkt). (13)

Naively, as the magnons move ballistically and carry spin one,
one would similarly expect ballistic spin transport. However,
as we discussed above, as it moves through domains of up and
down spins, its magnetization oscillates between±1 (figure 2).
As a result, its magnetization is ‘dressed’ to be zero on average
mdr
k = 0. The spin Drude weight vanishes [39]

4 We will suppress ‘hats’ for operators that are coarse-grained over a hydro-
dynamic cell, as these are effectively fluctuating classical variables.

DDrude =

ˆ
dk
2π

nk(1− nk)v
2
k(m

dr
k )

2 = 0, (14)

indicating sub-ballistic spin transport.

3.3. Origin of diffusive spin transport

3.3.1. Depolarizing quasiparticle perspective. In order to
uncover the nature of spin transport in the folded XXZ model,
we need to reintroduce dynamics and time in the ‘depolar-
izing’ process of the magnon leading to mdr

k = 0, following
[46]. By central limiting arguments, the region through which
the magnon propagates ballistically on a timescale t has
O(

√
|vkt|) more ↑ domains than ↓ domains. As a result, we

expect that the ‘dynamical’ dressed magnetization to go as
mdr
k ∼ 1√

|vkt|
. Magnons thus move ballistically but with van-

ishing magnetization t−1/2, so that over a timescale t magnet-
ization spread over a distance

√
t [46], corresponding to dif-

fusing scaling. Note that the origin of diffusion here is very
different from that of the usual diffusive behavior expected in
chaotic system, which comes from integrating out fast degrees
of freedom. This will have important consequences for quant-
ities such as full counting statistics that we will explore below.

In order to make this argument for diffusion more precise,
we focus on the spin dynamical structure factor

C(x, t) = ⟨Ŝz(x, t)Ŝz(0,0)⟩, (15)

at infinite temperature. If transport were ballistic, the spatial
variance of the structure factor would scale as t2, with a weight
given by the spin Drude weight

ˆ
dxx2C(x, t) = DDrudet

2 + . . .

= t2n(1− n)
ˆ

dk
2π

v2k(m
dr
k )

2 + · · · (16)

Here we have used nk = n= 1
4 independent of momentum for

the magnon at infinite temperature. The dressed magnetiza-
tion is understood as a dynamical quantity, with mdr

k ∼ 1/
√
t

as explained above, so that the variance of the structure factor
scales linearly with time, corresponding to diffusion. The pre-
factors are harder to obtain purely intuitively, but using TBA
results, one finds that the variance of the dressed magnetiza-
tion over an interval of size ℓ= |vkt|〈(

mdr
k

)2〉
=

16
9

1
ℓ
. (17)

Using this formula with n= 1/4, we find
ˆ
dxx2C(x, t) =

t
3

ˆ π

−π

dk
2π

|vk|+ · · ·= 2t
3π

+ · · · (18)

This corresponds to a diffusive variance 2χDt of the structure
factor, with susceptibility

´
dxC(x, t) = 1/4 and diffusion con-

stant [45, 46, 111]

D=
4
3π

. (19)
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The idea behind this derivation, following [46]—that the dif-
fusion constant can be related to the curvature of the Drude
weight—was already hinted in the lower-bound for the diffu-
sion constant of [112]. The mechanism underlying diffusive
transport from ballistically spreading quasiparticle goes back
to the seminal works of Damle and Sachdev [68, 70].

Despite the unusual nature of this diffusion process, the
dynamical structure factor has a diffusive form

C(x, t) =
1

8
√
πDt

e−
x2

4Dt . (20)

3.3.2. Moving domain-wall perspective. There is a ‘dual’
way to understand diffusion, which focuses on the motion of
the frozen domains instead of the depolarizing magnons [43,
45, 46]. In the absence of magnons, the DWs are all frozen:
vDW = 0, and the background pattern remains immobile
xDW = vDWt= 0. However, the position and velocity of the
DWs fluctuate because of the magnons colliding with it. Using
the chain rule, the variance of the position of the background
can be expressed as [44]

δx2DW = t2
ˆ

dk
2π

ˆ
dq
2π

δvDW

δnk

δvDW

δnq
⟨δnkδnq⟩, (21)

where the equilibrium fluctuations of the Fermi factors of the
magnons over an interval of length ℓ are given by ⟨δnkδnq⟩=
2πδ(k− q) nk(1−nk)ℓ . Here we choose ℓ= |vk|t, which is the
distance over which magnons with pseudo-momentum k can
move over time t and collide the DW which on average has
zero velocity. The functional derivative of the velocity of the
DW (background) with respect to the Fermi factors of the
magnons is given by GHD [44]

δvDW

δnk
= |vk|∆xDW, (22)

where ∆xDW = 8
3 is the ‘dressed’ displacement of the back-

ground after a collisions with a magnon—which is different
from the bare displacement∆xDW = 2. The derivation of those
formulas is more technical and relies on TBA and GHD tech-
niques, and we refer the interested readers to [43–45] for tech-
nical details. Using those results, we find

DDW =
1
2
n(1− n)(∆xDW)2

ˆ
dk
2π

|vk|=
4
3π

, (23)

in agreement with equation (19). Therefore, the spin diffusion
constant can either be interpreted as ballisticmagnons that pro-
gressively get depolarized, or as the ‘jiggling’ motion of the
frozen background domains as magnons collide with DWs.
This dual interpretation implies a relation between the dressed
magnetization of the magnons and the dressed displacement
of the DWs:

1
2
(∆xDW)2 = lim

h→0
∂2
hm

2
k , (24)

which was dubbed ‘magic formula’ in [113].

Figure 3. Full counting statistics setup. Illustrative trajectories in
which a magnon goes through the DW starting either from the left or
the right. Here spins up are represented as full circles, while empty
circles correspond to down spins. The magnon trajectory is indicated
in red; the DW dividing the left and right half-chains is shown as a
gray dashed line. The passage of the magnon shifts the DW by two
steps. Whichever way the DW shifts, provided it moves away from
the cut, one unit of magnetization (i.e. one net black circle) moves
from the left half-chain to the right half-chain. If we run this process
in reverse, the DW moves toward the cut and magnetization is
transferred to the left. Reproduced with permission from [128].

3.4. A new class of diffusion: anomalous full counting
statistics

As discussed above, at the level of linear response, spin trans-
port in the folded XXZ model is diffusive. However, the
physical mechanism is highly unusual, with interesting con-
sequences going beyond hydrodynamic expectation values.
Experiments in platforms such as ultracold atoms or supercon-
ducting qubit arrays are not limited to measuring expectation
values: quantum measurements lead to simultaneous snap-
shots of all the particles in a system [114–116]. A quantity that
compactly encapsulates the statistics of snapshots is the ‘full
counting statistics’ (FCS) of conserved charges [117–125],
in our case, spins. We consider the following setup: initial-
ize the folded XXZ spin chain with both the left and right
half-systems in definite magnetization ⟨Ŝz⟩=±m/2. Then,
after evolving for a time t, measure the magnetization trans-
fer Q̂(t) to the left half-system. Repeating this experiment
many times yields a quantum distribution of measurement out-
comes. The first cumulant ⟨Q̂(t)⟩ ∼

√
t of the FCS is related

to hydrodynamic transport which in our case is diffusive,
while the higher cumulants go beyond it. For a typical many-
body diffusive system, classical or quantum, we expect the
fluctuations of Q̂(t) to be controlled by the variance scal-
ing as ⟨Q̂2(t)⟩ ∼

√
t, corresponding to a central limit beha-

vior
√
⟨Q̂2(t)⟩/⟨Q̂(t)⟩ ∼ 1√

t
. However, in the folded XXZ spin

chain, since diffusion is due to the motion of a single particle,
namely the DW at the origin, its FCS is anomalous. This was
first observed numerically in [126], and through an exact solu-
tion of a cellular automaton in [127]. Here we follow [128],
and use the physical picture outlined above.

As magnons collide with the DW, initially at the origin in
this setup, it undergoes diffusive motion as explained above.
In order to relate the motion of the DW to the magnetization
transfer Q̂(t), we make the following key observation in the
limit m→ 1 (fully polarized DW): whenever the DW moves
away from the origin, Q(t) goes up; whenever the DW moves
toward the origin, Q(t) goes down (figure 3). Thus the distri-
bution of Q̂(t) in this limit is simply the distribution of the
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distance of the DW from the origin, i.e. the absolute value
of a random walk. Away from this limit, by inspection one
finds that themagnetization transferQ(t) = |xDW(t)|m[0,xDW(t)],
where xDW is the position of the DW, and m[0,xDW(t)] is the
magnetization density in the interval [0,xDW(t)]. The position
of the DW is simply a Brownian motion normally distrib-
uted with variance 2Dt and zero mean (with D the diffusion
constant of the DW, which coincides with the spin diffusion
constant asm→ 0), while using standard statistical mechanics
results m[0,x] is a normally distributed variable with mean m
and variance (1−m2)/|x|. Note that even away from the limit
where m is close to 1, where there are many DWs in the sys-
tem, the initial setup still creates a unique DW in the middle of
the system, where both sides are related by spin flip symmetry.
Studying the motion of this DW is enough to fully characterize
spin transport, as explained above in section 3.3.2. Combin-
ing those results, we find the distribution of the magnetization
transfer [128]:

P(Q) =
ˆ ∞

0
dx

exp

(
− x2

4Dt −
x( Qx −m)

2

2(1−m2)

)
√

2π2(1−m2)
√
Dtx

. (25)

This distribution is non-Gaussian even in the equilibrium case
m= 0, where it characterizes magnetization transfer at the
scaleQ∼ t1/4. In the presence of a biasm> 0, at long times the
distribution approach a half-Gaussian for the rescaled variable
Q/

√
t. As a result, the standard deviation of charge transfer is

of the same order as themean, in sharp contrast with the central
limit theorem expectation. The breakdown of the central limit
theorem is physically very transparent: magnetization transfer
is due to the random walk of a single particle, namely the DW
(frozen background).

3.5. Away from integrability: XNOR model

The folded XXZ model is clearly integrable, as the number of
each quasiparticle species (frozen domains of different sizes)
is conserved by the time evolution. Since spin transport is
diffusive already in the integrable limit, one could naively
expect that it would remain diffusive upon breaking integrabil-
ity. However, because of emergent conservation of DW num-
ber from the limit ∆→∞, the dynamics remains constrained
even in the non-integrable regime. As a result of the constraint,
only single magnons are mobile even after breaking integ-
rability, while bigger domains remain immobile. Upon break-
ing integrability, the motion of the magnons is now diffusive:
over a timescale t, they move over a distance

√
t, their dressed

magnetization is ∼t−1/4, so the net magnetization transfer is
∼t1/4 [110, 129]. Accordingly, the frozen domain now jiggles
because it gets hit by diffusive magnons, so its motion is
also ∼t1/4.

This corresponds to subdiffusion, with dynamical expo-
nent z= 4. This is a first example of how proximity to integ-
rability can lead to unexpected anomalous transport proper-
ties, distinct from those of the integrable limit. In general,
chaotic dynamics with such an ‘XNOR’ constraint, namely
spin flips between sites i and i+ 1 allowed only if neighboring

spins on sites i− 1 and i+ 2 are aligned is indeed subdiffus-
ive with z= 4: this was shown analytically using constrained
quantum circuits with a U(1) charge [130, 131] in [110]. Note
that this universality class of subdiffusive transport with z= 4
is different from the z= 4 dynamics obtained from fracton-
like constraints [132–135]—in particular, scaling functions
are different.

4. Easy-axis XXZ model

We now turn to transport in the easy-axis regime∆> 1 of the
XXZ spin chain. Most of the physics is essentially identical
to that of the folded XXZ model detailed above. However,
generalizing explicit formulas away from the ∆→∞ limit
requires some nontrivial steps: the magnons are at high dens-
ity, and magnon strings of all lengths are mobile, and must be
accounted for. However, these issues can be addressed at the
level of GHD [3, 4]: we assume that quasiparticles are in local
equilibrium in an appropriate generalizedGibbs ensemble, and
evaluate the dressed quasiparticle dispersion as well as the
quasiparticle distribution function using data from the TBA
solution.

4.1. Quasiparticle content

To proceed, we will need the following standard TBA (TBA)
concepts, already summarized in section 2: an equilibrium
state is uniquely characterized by a density ρs(λ) of quasi-
particles with quantum numbers (s,λ). Here s= 1,2, . . . labels
‘strings’, where s= 1 corresponds to magnons, while s> 1 are
magnon bound states, corresponding to the frozen domains of
s-spins in the folded XXZ limit. The dispersion of those quasi-
particles is parameterized by the rapidity λ. We also introduce
the available density of states ρtot

s (λ) and the associated Fermi
filling fractions ns(λ)≡ ρs(λ)/ρ

tot
s (λ). Finally, like in the fol-

ded XXZ limit, interactions ‘dress’ the group velocity and
magnetization (along with other local charges) carried by qua-
siparticles; we denote these veffs (λ) and mdr

s (λ) respectively, as
in section 2.

4.2. Diffusion constant

We follow the approach of section 3 generalized to arbitrary∆
and finite temperature, see [46, 61] for the original references,
inspired by [68, 70, 112]. In the presence of a small magnetic
field h, the variance of the spin-structure factor is scaling bal-
listically with the Drude weight [41, 42]

σ2 ≡
ˆ
dx x2⟨Ŝz(x, t)Ŝz(0,0)⟩

= t2
∞∑
s=1

ˆ
dλρs(λ)(1− ns(λ))(v

eff
s (λ)mdr

s (λ))
2. (26)

As h→ 0 (or half-filling, in the equivalent fermionic lan-
guage), the dressed magnetization vanishes, giving rise to nor-
mal spin diffusion. To see this, we follow the logic of section 3
on the folded XXZ chain, and write down the effective dressed
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magnetization felt by a (s,λ)-quasiparticle propagating with
an effective velocity veffs (λ),

(mdr
s (λ))

2 =
1
2
∂2
h(m

dr
s )

2
∣∣
h=0

h2 + · · · , (27)

where h2 can be though of as the effective field originating
from thermal fluctuations:

h2 =
1

(4χ)2
m2 =

1
4χ|veffs (λ)t|

. (28)

Here we have taken the fluctuations of the magnetization

m2 =
4χ
ℓ
, (29)

over a distance ℓ= |veffs (λ)t|, and the factor of 4 in front of χ
is to match Bethe Ansatz conventions. This yields

σ2 = t
∞∑
s=1

ˆ
dλρs(λ)(1− ns(λ))

∣∣veffs (λ)
∣∣ 1
8χ

∂2
h(m

dr
s )

2
∣∣
h=0

.

(30)

To identity the diffusion constant, we note that the variance of
the spin structure factor should scale as σ2 = χ2Dt. We thus
get

D=
∞∑
s=1

ˆ
dλρs(λ)(1− ns(λ))

∣∣veffs (λ)
∣∣ 1
16χ2

∂2
h(m

dr
s )

2
∣∣
h=0

.

(31)

This simple argument predicts a diffusion constant in agree-
ment with other approaches [45, 52]. This expression for the
diffusion constant is valid for ∆⩾ 1, and diverges in the iso-
tropic limit ∆→ 1 (figure 4). Plugging in explicit TBA solu-
tions at infinite temperature, we find [46]

D=
2sinhη

9π

∞∑
s=1

(1+ s)

[
s+ 2
sinhηs

− s
sinhη(s+ 2)

]
, (32)

with the anisotropy ∆= coshη > 1.

4.3. Structure factor

The hydrodynamic expression for the dynamical structure
factor takes the form [41, 42]:

C(x, t) =
∞∑
s=1

ˆ
dλρtot

s (λ)ns(1− ns)(m
dr
s )

2φt[x− veffs (λ)t].

(33)

Here, the function φt(ζ) is the propagator of a string with
quantum numbers (s,λ) from (0,0) to (x, t). At the Euler level
this propagator would simply be a Dirac delta function, while
we take it to be a broadened Gaussian with variance 2Ds(η,λ)t
at the diffusive level. The diagonal quasiparticle diffusion con-
stant Ds(η,λ) was computed in [43, 44]. As discussed above,
exactly at half-filling h→ 0, all strings but the heaviest ones

Figure 4. Spin diffusion constant D in the easy-axis phase ∆> 1 as
a function of ∆. The diffusion constant diverges in the anisotropic
limit, leading to superdiffusion. Inset: propagation of a magnon in
the large |∆|, low temperature, ferromagnetic limit. Reprinted figure
with permission from [46], Copyright (2019) by the American
Physical Society.

s→∞ become effectively neutral as mdr
s goes to 0 for s≪

h−1, so the structure factor becomes diffusive

C(x, t) =
1

8
√
πD(η)t

e−
x2

4D(η)t , (34)

where the diffusion constant D(η) is given by equation (32).
Away from half-filling (corresponding to a finite field

h> 0), spin transport becomes ballistic as stringswith s≫ h−1

become magnetized. However, the structure factor still has
some interesting local relaxation structure [53]. This arises
because the velocity of ‘heavy’ (large s) strings is strongly sup-
pressed: this can be seen perturbatively at large ∆, as veffs ∼
∆1−s, since moving a domain of s-spins require going to sth
order in perturbation theory. In general, we have veffs ∼ e−ηs

with ∆= coshη. Therefore, from this ballistic motion strings
remain near the origin with amplitude ∼ 1

veffs t
∼ eηs/t. Mean-

while, the density of such heavy strings goes as e−sh, so there
are two cases for the structure factor depending on the sign
of η− h. If h> η, then the contribution from heavy strings
is exponentially suppressed in the structure factor, and near
the origin, we have C(x= 0, t)∼ t−1 from light strings, as
expected from ballistic scaling. However, if h< η, then heavy
strings dominate the local relaxation of the structure factor. For
s very large, the motion of the heavy strings is first diffusive
(since their velocity is very small), with a diffusion constant
D that is essentially independent of s and rapidity λ. How-
ever, after a time scale defined by

√
Dt∼ veffs t∼ e−ηst their

motion is ultimately ballistic. Alternatively this equation can
be used to define a crossover string index s∗(t)∼ 1

2η log t at a
given time t. The structure factor near the origin is dominated
by strings s< s∗(t) which move diffusively and contribute a
factor 1√

Dt
. In this regime h< η, we find [53]
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Figure 5. Anomalous low-frequency spin conductivity in the noisy
XXZ chain (in log-log scale). In the frequency regime
γ
∆2 ≪ ω ≪ γ, spin transport is subdiffusive with σ(ω)∼

√
ω/γ,

corresponding to dynamical exponent z= 4. At very low frequency,
the conductivity eventually saturates to a finite d.c. value
proportional to ∆−1. The cartoon on top illustrates the dominant
spin dynamical processes at different time-scales: single, mobile,
magnons are pictured in red and strings, frozen, in blue. Reproduced
with permission from [129]. © 2022 National Academy of Science.

C(x= 0, t)∼
∑

s>s∗(t)∼ 1
2η log t

e−hs√
t
∼ t−1/2− h

2η . (35)

This shows that even if spin transport is ballistic, the structure
factor can be highly anomalous, in this case exhibiting con-
tinuously varying exponents. A similar mechanism was found
in integrable random spin chains in [136].

4.4. Away from integrability: discontinuity of the diffusion
constant

As discussed in section 3.5, spin transport at large anisotropy
∆≫ 1 becomes subdiffusive with dynamical exponent z= 4
upon breaking integrability because of the emergent XNOR
constrained dynamics. At long times and finite ∆, we expect
to recover diffusion. For concreteness, we focus on uncor-
related noise, and take Ĥ= ĤXXZ +

√
γ
∑

i ηi(t)Ŝ
z
i , where the

noise η satisfies ⟨ηi⟩= 0 and ⟨ηi(t)ηj(0)⟩= δ(t)δij. The noise
backscatters magnons at a rate ∼γ: this sets the crossover
between the integrable diffusive behavior and z= 4 subdif-
fusion. This implies that the conductivity scales as σ(ω)∼√
ω/γ for ω ≪ γ.
Noise can also create magnons out of strings, by the follow-

ing process: one end of a larger string virtually hops away from
the rest of the string by one site, with amplitude 1/∆, and is put
on shell by the noise, giving a transition rate γ/∆2. This breaks
the constraint, and we expect this process to restore diffusion.
This means that subdiffusion σ(ω)∼

√
ω/γ occurs in the

broad frequency regime γ ≫ ω ≫ γ/∆2 (figure 5). Matching
up with the behavior at very low frequencies, we recover dif-
fusion with a conductivity σdc ∼ 1

∆ [129]. Remarkably, the

conductivity and the diffusion constant are independent from
the noise strength! Moreover, it also means that the diffusion
constant in near integrable systems is non-perturbative, and
a discontinuous function of the strength of the integrability-
breaking couplings.

5. Heisenberg model

5.1. Nature of single quasiparticles

From the point of view of the Bethe ansatz solution, the iso-
tropic point ∆= 1 is similar to the easy-axis phase ∆> 1
except for one crucial detail: the effective (as well as bare)
velocities of the strings. In the easy-axis phase, these velocit-
ies fall off exponentially with string size, while at the Heisen-
berg point they fall off algebraically. This change in the scaling
of velocities is linked to a qualitative change in the character
of elementary excitations about the symmetry-broken ground
state. In the easy-axis phase, these are domains, but at the
isotropic point they are Goldstone modes associated with the
broken SU(2) symmetry.

The distinctive transport signatures of the Heisenberg
model stem from the bare properties of its quasiparticles,
which are best understood as ‘Goldstone solitons,’ or wave-
packets of Goldstone modes that are stabilized by the
nonlinearity of the dynamics. Because the Bethe-ansatz solu-
tion begins with the ferromagnetic ground state and con-
structs a general state by piling on quasiparticles, the relevant
Goldstone modes are the quadratically dispersing excitations
above an SU(2) ferromagnet [67]. Consider a spatially gradual
(but large-amplitude) vacuum rotation above a ferromagnetic
ground state: suppose the orientation rotates from the refer-
ence ground state by some O(1) amount and then back over
a distance ℓ. The momentum uncertainty of this wavepacket
is at least 1/ℓ, so its characteristic group velocity (from the
quadratic dispersion) also scales as v(ℓ)∼ 1/ℓ. Again, from
the quadratic dispersion, the energy density scales as 1/ℓ2, and
the total energy of the wavepacket scales as 1/ℓ. Finally, since
the wavepacket is an O(1) rotation of the vacuum orientation
spread out over ℓ sites, it carries a total magnetization ∼ℓ rel-
ative to the ground state.

We briefly comment on the crossover between the easy-axis
and isotropic regimes as∆→ 1+. In the easy-axis regime, the
(bare) strings are domains of the minority species. The spins at
the edges of the domain are energetically confined to a region
of size η−1 = 1/(cosh−1(∆)) when the domain is of size ≫
η−1. Quasiparticles smaller than this size cannot resolve the
easy-axis anisotropy and behave as they would at the isotropic
point. At the isotropic point, the only length-scale associated
with a quasiparticle is its own size.

5.2. Elementary argument for superdiffusion

The dressing of the quasiparticle magnetization at the isotropic
point is identical to that in the easy-axis phase, for the same
physical reason: the smaller quasiparticle encounters the lar-
ger one as a local vacuum rotation, and to keep propagating
in the rotated vacuum it needs to reorient itself. Therefore,
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the dressed charge of an s-string is zero at half filling for any
finite s.

We now discuss how these observations immediately lead
to superdiffusive scaling, following [137]. The only ingredi-
ent we will need that was not already motivated in elementary
terms is the density of quasiparticles of size s in an infinite-
temperature state, ρs ∼ 1/s3. As we will see below, that scal-
ing can also be understood from an elementary consistency
argument; however, for the present let us assume this result.
Then one can write the Kubo formula as a sum over strings, of
the form

⟨Ĵ(t)Ĵ(0)⟩ ∝
∑

s
ρs|vsms|2 exp(−t/τs). (36)

In this expression, vs ∼ 1/s is the velocity of the s-string,ms ∼
s is its bare magnetization, and τ s is the time for which the
string retains its initial magnetization (i.e. how long it takes to
encounter a bigger string). Note that since the string is demag-
netized after some finite time, its time-averaged magnetiza-
tion is zero, consistent with our remark that mdr

s = 0 for any
finite s. It remains to estimate τ s. Strings of size s demagnetize
when they hit yet bigger strings; the spatial density of these is
1/s2. Since the s-string moves at velocity 1/s, the time it takes
to hit a larger string is therefore τs ∼ s3. Evaluating the Kubo
formula with this data, we see that ⟨Ĵ(t)Ĵ(0)⟩ ∼ t−2/3, giving
the conductivity scaling σ(ω)∼ ω−1/3 that corresponds to the
dynamical exponent z= 3/2.

5.2.1. Quasiparticle density at infinite temperature. The
argument above used ρs ∼ 1/s3 as an input. While this res-
ult can be directly computed from the TBA [113], its scaling
follows from elementary constraints on the high-temperature
static susceptibility at small finite magnetization h, namely
⟨Ŝzi Ŝzi ⟩= 1/4 [59]. If we try to compute this as a sum over
strings, it takes the form

∑
s ρs(m

dr
s )

2. In the presence of a
field h, the density of Goldstone modes of size s≫ 1/h is sup-
pressed as exp(−hs). Since these solitons are rare, processes
where they collide with even larger solitons are exponentially
suppressed and can be neglected. Therefore their dressed mag-
netization mdr

s = s. By contrast, the populations of Goldstone
modes of size s⩽ 1/h are not suppressed by the net magnet-
ization, and their dressed magnetization should vanish at half
filling. We have already seen that near half filling the dressed
magnetization scales as h. By continuity with the large-s limit,
the dressed magnetization for s≪ 1/h must scale as mdr

s ∼
hs2. Let us assume that ρs ∼ 1/sα for s≪ 1/h. Then the sus-
ceptibility scales as h2s5−α|s∼1/h. To make this approach a
constant, we require α= 3. This result is consistent with TBA
calculations.

Many calculations on the Heisenberg spin chain apply the
strategy used above, which is to calculate physical quantities
at very small nonzero h and take the h→ 0 limit at the end.
Sums over strings of size s⩽ 1/h are ubiquitous in these cal-
culations. In the limit h→ 0, we can define a rescaled variable
η ≡ sh in terms of which these sums become Riemann sums,
that can then be expressed as integrals over η [61]. In this scal-
ing limit, the TBA equations for the quantum spin chain and

the classical Ishimori spin chain [96] coincide. The main dif-
ference between the two sets of equations is that in the classical
problem s is not quantized: thus, the classical and quantum
models differ in their small quasiparticles but not in their large,
long-wavelength fluctuations (as one would expect on general
grounds).

5.3. Relation to KPZ scaling

We now present an alternative argument for z= 3/2 scaling,
which is slightly less direct but illuminates the relationship
between superdiffusion in the Heisenberg model and Kardar-
Parisi-Zhang (KPZ) scaling [53]. Even when the magnetiza-
tion is zero on average, its instantaneous local value fluctu-
ates with a variance given by the susceptibility, which is O(1).
Therefore we can think of the system, coarse-grained to any
scale, as a patchwork of locally slightly magnetized regions.
In each region, themagnetization is carried by the largest avail-
able string, which is of size s∼ 1/h and has characteristic
velocity vs ∼ h. If we are interested in magnetization transport
over a distance ℓ, then the characteristic value of h∼ 1/

√
ℓ, so

v(ℓ)∼ 1/
√
ℓ. Thus the timescale for spin transport over dis-

tance ℓ is t(ℓ)∼ ℓ/(1/
√
ℓ)∼ ℓ3/2.

The observation that the local velocity associated with spin
transport scales as h is highly suggestive of the noisy Burgers
equation, ∂tm+λ∂xm2 +D∂2

xm= ∂xξ, where ξ is white noise.
(In our case the white noise would come from local thermal
fluctuations of the smaller quasiparticles, which impart ran-
dom scattering shifts [44].) The noisy Burgers equation, in
turn, is equivalent to the KPZ equation under a change of vari-
ables [71]. Numerical studies of the dynamical spin structure
factor, in both quantum [57] and classical [98, 138] systems,
support the KPZ form C(x, t) = t−2/3fKPZ(x/t2/3), where fKPZ

is a universal scaling function computed in [139]. A detailed
analytic argument supporting this conclusion was put forward
in [55]. However, this argument relies on assumptions that are
not yet firmly established, and a complete analytic derivation
of KPZ scaling in this model, and in any integrable model with
non-Abelian symmetry [59, 99], remains an open question.
This correspondence between spin magnetization and Burgers
equation also cannot hold at the level of higher moments of
spin fluctuations, as pointed out in [126]. A solution to this
paradox was proposed in [147].

5.4. Away from integrability: Goldstone mode physics

The fact that the large solitons that dominate high-temperature
spin transport are Goldstone-mode wavepackets has important
consequences for dynamics slightly away from integrability.
Suppose one adds an integrability-breaking perturbation such
as weak spatio-temporal fluctuations in the Heisenberg coup-
ling. Since the noise acts locally, it couples weakly to very
large strings, since these locally look like vacuum rotations.
Since the energy of an s-string scales as 1/s, noise that couples
to the energy can have at best a matrix element ∼1/s, giv-
ing that string a decay rate ∼1/s2. (Another way to say this is
that noise couples to Goldstone modes with a gradient.) Plug-
ging in this decay rate τs ∼ s2 into the Kubo formula (36), we
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find that the a.c. conductivity diverges at low frequencies, as
σ(ω)∼ | logω|. This prediction—and more generally the idea
that there is a distinction between noise that preserves SU(2)
and noise that does not—are borne out by numerical stud-
ies [137, 140–142].

This observation about the robustness of Goldstone modes
against noise raises an intriguing question: while anomalous
transport persists at lowest order in perturbation theory, is it
present at arbitrary noise strength? The answer to this appears
to be negative: both perturbation theory in the strong-noise
limit [143] and general hydrodynamic arguments [144] sug-
gest that transport should be simply diffusive when the system
is noisy enough to be far from integrability. Since it seems
unlikely that there is a transition as a function of noise strength,
the most plausible way of reconciling the weak-noise and
strong-noise results is to posit higher-order or nonperturbat-
ive effects that restore diffusion. What these effects (and the
associated timescales) might be remains an open question.

While the case of time-independent, Hamiltonian
integrability-breaking perturbations (such as a next-nearest
neighbor coupling) is much harder to study numerically, there
has been interesting analytic progress on this problem [145].
The essential observation is that one can perform a unitary
rotationU onH to extract H̃U(λ)HU†(λ) such that, to leading
order in λ, H̃= H+λV where V is the integrability-breaking
perturbation. While such a U≡ eiλS can always be found, in
general S has an exponentially large norm and the expansion
is invalid. However, for few-body Hamiltonian perturbations
of the Heisenberg model, it turns out that many natural per-
turbations are generated by bounded, quasi-local operators S.
Whenever this is the case to linear order in λ, the decay rate of
conserved quantities is at best λ4 (which is well out of reach
of numerics). In any case, large-scale numerical studies on
classical models yield dynamics that is superdiffusive out to
the longest accessible timescales [141, 142].

5.5. Away from linear response

Although theory is simplest in the linear-response limit,
experiments involve finite-strength perturbations. Often, these
perturbations are relatively strong, in order to enhance the
signal-to-noise ratio. Since the Heisenberg model is a sort of
‘dynamical critical point’ between the ballistic and diffusive
phases, one would generically expect its nonlinear response to
be singular in the low-frequency limit. Since the dynamics has
no intrinsic scale, the conductivity must be cut off either by
ω or by the scale set by the perturbation strength, whichever
is larger. In the latter case, we expect that the response to a
perturbation is nonanalytic in the perturbation strength. There
are many different protocols for probing nonlinear response;
below, we review three specific settings that have been dis-
cussed in the literature. It will become apparent that even for
these settings there are many open questions.

5.5.1. Large DWs. The first instance of nonlinear transport
we consider involves initializing two separate semi-infinite
reservoirs at opposite chemical potentials ±µ at time t= 0.

In the previous section we discussed this setup for the easy-
axis XXZ model and presented a closed-form expression for
the full counting statistics of charge transport. At the Heisen-
berg point this approach breaks down, but one can nevertheless
draw some conclusions about the mean transport properties.

Let us sketch the analysis of this setup using GHD. One
can characterize each half-chain by its quasiparticle distribu-
tion. At finite µ, we have that ρs is exponentially suppressed
for s> 1/µ. Since the two half-chains have different quasi-
particle vacua, when we combine the two systems we must
also describe the spatial variation of the vacuum orientation—
either by positing some dynamics for the vacuum orienta-
tion [55] or by modeling the vacuum as a giant quasiparticle,
as we did while discussing full counting statistics in the easy-
axis phase. For now let us take the latter perspective. Then, as
in the easy-axis phase, we get a diffusive contribution to trans-
port whenever a quasiparticle is transmitted across the DW. A
straightforward calculation shows that this is

D(µ)∼
∑
s

ˆ
dλρs(λ)(m

dr
s )

2|vs(λ)| ∼ 1/µ. (37)

Thus, for any finite density step, superdiffusion eventually
gives way to diffusion, on a timescale that can be estimated
(by equating t2/3 and

√
t/µ) to be t∗ ∼ 1/µ3. Numerical stud-

ies of classical spin chains [126] support the scenario of an
eventual crossover to diffusion at finite µ, but the predicted
scaling with µ has not yet been established numerically.

Although the conclusion of the argument above (that super-
diffusion is cut off on a timescale set by µ) is plausible, the
analysis is incomplete. To see why, let us go to the limit of
a fully polarized DW, where the two half-chains are initially
in opposite-spin vacua. The logic above would imply that this
initial state remains frozen for all times.While this implication
holds in the easy-axis phase, it fails at the isotropic point. An
explicit solution [146] for this class of initial states is avail-
able using inverse-scattering methods, and shows that a DW
smears out over a distance x∼

√
t log t. In terms of the qua-

siparticle picture, this can be understood by noting that quasi-
particles in theHeisenbergmodel are smooth vacuum rotations
rather than sharp domains; thus, our description of the initial
condition (two identical quasiparticle distributions plus a giant
quasiparticle on the left) is missing some of the quasiparticle
content.

At present, it remains an open question how one would
incorporate these effects into GHD. A related open ques-
tion is how to compute the full counting statistics of trans-
ferred charge—see [147] for very recent progress in that dir-
ection. As discussed below, experiments [65] have measured
the first three moments of the magnetization-transfer distri-
bution for fairly large µ. The skewness of this distribution is
large and essentially nondecreasing with time; its numerical
value is close to the prediction for the KPZ universality class
(even though the experimental results are obtained far from the
regime where KPZ is predicted). In addition, both experiments
and numerical simulations show good agreement with super-
diffusive scaling out to moderately long times t≈ 50, even for
large µ where the GHD argument above would predict that

14



Rep. Prog. Phys. 86 (2023) 036502 Review

the system becomes diffusive at short times. At present these
experimental observations remain unexplained.

5.5.2. Response to a strong applied field. Instead of set-
ting up an initial condition with a finite bias, one could ima-
gine applying a strong field (i.e. a magnetic field gradient
H= E

∑
n nS

z
n) to the system for a finite time interval ∆t and

measuring the induced current. This calculation is straightfor-
ward to do away from half filling at field h (though the full
answer in the half filling limit is not known). We briefly sum-
marize the findings and refer to [148] for details. Each qua-
siparticle receives an impulse of size E∆tmdr

s ; this modifies
the quasiparticle distribution function by creating an imbal-
ance between left and right movers, leading to a net current.
The current can be written as a sum over strings s⩽ 1/h as
follows (we have defined φ≡ E∆t):

J(h,φ) = h
1/h∑
s=1

s−4f(hφs3). (38)

Here, f is a bounded periodic function, and for small argu-
ment f(x)≈ x. There are two regimes of response. First, when
φ→ 0 at finite h, the argument of f (x) remains small and
the function can be expanded in a Taylor series in φ, giving
a hierarchy of well-defined nonlinear response coefficients.
While the linear-response coefficient (i.e. the term linear in
φ) is regular as h→ 0, all higher-order coefficients are sin-
gular as h→ 0. To understand where these singularities come
from, it helps to consider the limit h→ 0 at small but finite
φ. Effectively, in this limit, the sum over strings is cut off
at hφs3 ≈ 1. As a consequence, J(h,φ)∼ h2φ| log(hφ)|—the
response becomes singular in the impulse in the superdiffus-
ive limit. Physically, the mechanism for this effect is that large
strings respond so strongly to the impulse that they effect-
ively undergo Bloch oscillations, and thus do not contribute
to response. The impulse φ sets the boundary between strings
that do and do not contribute to response.

At present, nonlinear response has only been calculated
using Euler-scale methods away from half filling. One expects
an even more strongly nonanalytic response precisely at half
filling, due to effects that are beyond the Euler-scale ana-
lysis. Performing this calculation would require a framework
for computing nonlinear response beyond Euler scale, which
remains an open problem.

5.5.3. Spin helices. In ultracold atomic gases, it is often
more convenient to prepare a pure state than a mixed one. Spin
helices [62, 63]—in which the spin orientation varies in a spa-
tially periodic manner, with wavelength 2π/k—form a par-
ticularly natural class of initial states (see section 7.2). Spin
helices are, in general, quite far from being locally thermal
states, so the applicability of GHD to them can be questioned.
However, one might expect that after some initial evolution,
dephasing leads to local reduced density matrices that are well
described by GGEs [149]. This intuition can be verified for
free fermions, and was recently generalized to interacting sys-
tems using GHD in [149].

One can define a length-time scaling form for the spiral
initial state by measuring the wavenumber-dependence of the
decay rate Γ(k): a uniform state does not decay, so we expect
Γ∼ kz. Since the spiral is very far from equilibrium, there is no
guarantee that this dynamical exponent will coincide with the
linear-response one. Evidence from experiments, short-time
numerical simulations, and the short-time expansion suggests
that in the easy-plane regime, helices relax ballistically (z= 1).
The situation in the easy-axis phase is much less clear, but in
the large-∆ limit the spiral rapidly dephases under the Ising
interaction, so on theoretical grounds we expect z= 2. Inter-
estingly, at the isotropic point helices seem to relax with a dif-
fusive dynamical exponent [63] (z= 2), not the KPZ exponent.
This case is delicate since (owing to the SU(2) symmetry) the
energy density of the initial state is itself proportional to k2;
thus, by changing k, one is tuning both the ‘temperature’ and
the length-scale. Another subtlety is that at long wavelengths
the Heisenberg model can be regarded as coarse-graining into
the Landau–Lifshitz model, for which the spiral is an exact
eigenstate. It remains to be seen whether these features can be
incorporated into GHD.

6. Easy-plane XXZ

Finally, we discuss the easy-plane regime ∆< 1, where the
XXZ spin chain is gapless at low energy, and is described by
a Luttinger liquid. We will argue that spin transport is ballistic
in this regime, albeit with a highly nontrivial ‘fractal’, dis-
continuous Drude weight as a function of the anisotropy. This
remarkable behavior of the Drude weight has interesting phys-
ical consequences for the low-frequency behavior of the con-
ductivity, as the spectral weight must somehow rearrange itself
as the anisotropy is changed. We also briefly discuss weak-
integrability breaking in that phase.

6.1. Quasiparticle content and fractal Drude weight

The quasiparticle spectrum in the regime ∆< 1 is much less
intuitive than the other cases discussed above. In particular,
the number of quasiparticle species depends on the value of
the anisotropy ∆ in a non-trivial, ‘fractal’ fashion. More pre-
cisely, we write the anisotropy as ∆≡ cosπλ. The quasi-
particle (Bethe ‘strings’) spectrum that follows from the Bethe
ansatz solution is determined by the continued fraction expan-
sion of 1/λ= ν1 +

1
ν2+

1
ν3+···

. The total number of strings is

given by n=
∑

νi. For an irrational value of 1/λ, the num-
ber of strings is infinite, while approximating it by a rational
number leads to a finite number of strings [83].

This peculiar dependence of the quasiparticle content on
the anisotropy has direct consequences on physical observ-
ables. Themost striking example is the spin Drudeweight. The
quasiparticles have linear dispersion (z= 1) and a velocity that
remains finite even for the largest ones, contrary to the ∆⩾ 1
case where infinitely large strings had vanishing velocity. As
those large quasiparticles carry some dressed magnetization,
spin transport is ballistic with a delta-function contribution in
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Figure 6. Fractal Drude weight. Lower-bound on the Drude weight
(red, from [86]), and optimized bound in black (from [150]),
coinciding with GHD predictions. Reprinted figure with permission
from [150], Copyright (2013) by the American Physical Society.

the conductivity characterized by aDrudeweightDλ. Remark-
ably, this Drude weight appears to be discontinuous and fractal
as a function of λ. We will focus on the infinite temperature
limit for concreteness. When λ= p/q is rational, several dis-
tinct methods [39, 42, 150–154] predict that

Dλ =
1
12

(1−∆2)f

(
π

q

)
, f(x) =

3
2

[
1− sin(2x)

2x

sin2 x

]
. (39)

Equation (39) is a rigorous lower bound on D, which
GHD [11, 39, 40, 42] predicts is saturated. Very surprisingly,
equation (39) implies that the Drude weight jumps byO(1) as
∆ changes infinitesimally (figure 6): limx→0 f(x) = 1 for any
irrational number λ, but is higher by an O(1) amount at an
arbitrarily close small-denominator rational. This is a direct
consequence of the fractal quasiparticle content as a function
of λ.

6.2. Corrections to ballistic transport

These discontinuous jumps in the zero-frequency spectral
weight suggest that the finite-frequency behavior must also be
nontrivial [56]. By locality, correlators at finite t must be con-
tinuous functions of the anisotropy ∆ (or λ), since they only
probe system sizes of order ∼t. This means that if we take
two anisotropies that differ by a small value ε, we must go
to long times or low frequencies < ϵ to distinguish them. This
simple observation strongly constraints the low-energy scaling
of the conductivity. Let us consider an irrational value λ∞,
that we approximate by a sequence of rationals {λq = p/q}
with increasing denominators q. Above a crossover frequency
scale ω⋆

q , the conductivity for the rational approximant and
the irrational value are identical. The rearrangement of the
spectral weight due to the change in the Drude weight (39)
δDq ≡ Dλq −Dλ∞ ∼ 1/q2 must occur at low frequencies ω <
ω⋆
q . GHD predicts that for rational λ (finite q), the regu-

lar part of the conductivity (excluding the Drude weight)
approaches a finite d.c. value at low energy: σd.c.

λq
∼ q2. This

Figure 7. Anomalous corrections to ballistic transport for ∆< 1.
Conservation of spectral weight in the low-energy conductivity: the
extra Drude weight at the rational point (purple) must precisely
match the missing part of the regular spectral weight [56]. As a
result, the conductivity diverges for irrational values of λ, see
equation (40). Reprinted figure with permission from [56],
Copyright (2020) by the American Physical Society.

blows up for irrational values of λ, and we assume an algeb-
raic divergence with frequency σλ∞(ω)∼ ω−α. Conservation

of spectral weight then implies that
´ ω⋆

q

0 dω[σλ∞(ω)−σd.c.
λq

]≃
δDq ∼ 1/q2: the extra Drude weight at the rational point
must precisely match the missing part of the regular spec-

tral weight [56] (figure 7). This means that
´ ω⋆

q

0 dωσλ∞(ω)∼
(ω⋆

q )
1−α and

´ ω⋆
q

0 dωσd.c.
λq

∼ ω⋆
qq

2 must both be of order q−2 to

compensate each other. This yields ω⋆
q ∼ q−4, and α= 1/2, so

that [56]

σλ∞(ω)∼ 1√
ω
. (40)

We see that conservation of spectral weight combined with the
fractal nature of the Drude weight implies that the corrections
to ballistic transport are superdiffusive, with dynamical expo-
nent z= 4/3—recall that in general, σ(ω)∼ ω1−2/z.

The crossover scale ω∗
q ∼ q−4 ∼ |λ∞ −λq|2 resembles a

Golden Rule rate, suggesting the following natural interpret-
ation: if one starts in an eigenstate of Ĥλ∞ and turns on
the perturbation δĤ≡ Ĥλq − Ĥλ∞ , the quasiparticle structure
changes considerably. The quasiparticles at Ĥλ∞ are no longer
stable, and it is natural to suppose that their decay rates scale
as |λq−λ∞|2, yielding ω∗

q ∼ q−4.

6.3. Away from integrability

Moving away from integrability is somewhat more conven-
tional in this phase. Quasiparticles acquire a mean-free path
and time, over which they decay and/or backscatter. TheDrude
weights is broadened into a generalized Lorentzian whose
width is given by the inverse mean free time [155, 156], as
in the familiar case of weakly interacting fermions. How-
ever, this can lead to non-analytic behavior of the resulting
diffusion constant as a function of the integrability breaking
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perturbation [155, 157]. Starting from σ(ω) = πDδ(ω)+
Cω−1/2 in the integrable case, we expect a finite d.c. conduct-
ivity σ = πDτ +Cτ 1/2 away from integrability.

7. Numerics and experiments

We now turn to numerical and experimental tests of the GHD-
based theory of anomalous transport outlined above. In prin-
ciple, GHD is a theory of late-time behavior in an infinite
system, while both numerics and experiment are limited to
finite times and/or finite system sizes (which restrict the GHD
regime to finite times, see section 2.3). However, in prac-
tice the GHD regime in XXZ spin chains sets in at times of
order unity. Therefore, exact numerical simulations in partic-
ular have been a valuable consistency check on GHD predic-
tions, and in particular on the validity of extensions of GHD
to treat anomalous transport in spin chains. In addition, exact
results from GHD can be used a stringent test of the validity of
approximate classical simulations, or of quantum simulations
using noisy quantum computers.

7.1. Numerical approaches

7.1.1. Tensor-network operator evolution. The most direct
approach to linear-response transport is to explicitly evalu-
ate the Kubo formula. This involves computing time-evolved
operators in the Heisenberg representation. At short times
such operators can be represented as matrix-product operat-
ors (MPOs), and the time-evolution of the MPOs can be com-
puted using TEBD [92]. By the Lieb–Robinson theorem, the
time-evolved operator lives inside the light-cone, so these cal-
culations effectively take place in the thermodynamic limit
if the system size is larger than the light cone at the latest
accessible time. In practice TEBD is exact only up to mod-
est times (t⩽ 25) before the MPO required to accurately rep-
resent the time evolved operator becomes too complex to work
with (this quantity is called the ‘bond dimension’ of theMPO).
At present, it is unclear whether the bond dimension asymp-
totically grows polynomially or exponentially with time. For
existing computational resources, TEBD is limited to similar
time windows as the other available methods.

7.1.2. Density matrix evolution from weak steps. Instead of
working in the Heisenberg picture, one could instead have star-
ted in the Schrödinger picture, with an initial density matrix
of the form ρ̂=

∏
i(1+µsgn(i)σ̂zi ). This represents an initial

state with a step profile of the density. One lets this initial state
evolve for time t and then measures Z(x, t)≡ Tr(σ̂zxρ̂(t)). In
the limit µ→ 0 a straightforward calculation [50, 57] shows
that the structure factor C(x, t) = ∂xZ(x, t). Like the previous
approach, the step profile approach has the appealing feature
that the density matrix does not evolve outside a light cone
emanating from the DW (since away from the DW the initial
state is a stationary state of the dynamics). Once again, one
represents the initial density matrix as an MPO and evolves
it using TEBD. A major difference between this and the pre-
vious approach is that the step initial profile need not be in

the linear-response regime: this is an advantage if one wants
to go beyond linear response, but can also have drawbacks if
one wants to establish the linear-response answer, since this
requires one to compute Z(t) as a function of µ and extrapol-
ate to the µ→ 0 limit.

For reasons that are not fully understood, fixing a bond
dimension, truncating the time-evolved density matrix to an
MPO of that bond dimension, and evaluating Z(t) gives phys-
ically sensible answers at surprisingly late times [50].Whether
the truncation causes quantitative errors remains unclear.

7.1.3. Boundary Lindblad. In a typical solid-state conductiv-
ity experiment, one does not directly time evolve the state, but
instead connects it to leads at different chemical potentials and
measures the current passing through it in its steady state. This
steady-state setup can be directly simulated as follows [49].
One considers the system coupled to Markovian leads at both
boundaries. At the left boundary, particles are injected at some
rateµL+ and absorbed at some rateµ−

L , and similarly at the right
boundary. If more particles are injected at the left and absorbed
at the right, then in the steady state there is (i) a net current
flowing through the bulk of the chain, and (ii) a density gradi-
ent across the chain. The dependence of the steady-state cur-
rent on the length of the chain allows one to extract the trans-
port exponent, as follows. Define V as the chemical potential
difference across a system of size L. The current is related to
this by j= (V/L)σ(L), where σ(L) is the conductivity for a
system of size L. For this finite system, we can use the Ein-
stein relation σ(L)∼ D(L). Assuming a length-time scaling
t∼ Lz, and using the fact that L∼

√
D(L)t, one can derive the

relation j∼ L1−z. Under the (numerically borne-out) assump-
tion that the steady-state density matrix can be represented as
a low-bond-dimension MPO, one can find the steady state for
large systems by variationally minimizing the norm ∥L(ρ̂)∥
across MPOs.

The boundary Lindblad method is a powerful approach that
has led to many new results on the dynamics of integrable sys-
tems, including the first identification of z= 3/2 scaling [49].
However, interpreting these results in terms of GHD requires
caution: GHD addresses the regime of times much less than
system size, while the boundary Lindblad technique finds the
slowest mode in a finite-size system. In general these limits
do not commute (section 2.3). An example where one sees
a discrepancy is at large ∆: direct time evolution is consist-
ent with the GHD result that the diffusion constant saturates
to a nonzero value as ∆→∞, whereas the boundary Lind-
blad approach shows a vanishing diffusion constant [49]. A
possible (but still speculative) explanation is that this is a con-
sequence of breaking integrability at the boundary and going
to very late times at finite system size.

7.1.4. Time evolution of pure states. A more direct method,
which avoids truncation at the expense of introducing finite-
size effects, is to replace the infinite-temperature state with
a random vector (by canonical typicality) and time-evolve
using sparse matrix-vector multiplication. Typicality methods
were used to compute the optical conductivity of charge and
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energy [158–160] and subsequently to explore full counting
statistics [128]. The gain from working with pure states is that
this approach avoids matrix multiplication, and instead only
requires the sequential application of sparse matrices to the
random initial state. Typicality approaches are ultimately lim-
ited by system size, since it is infeasible to store even a pure
state on more than L≈ 32 qubits (though slightly bigger sizes
are achievable using TPUs [161]).

For weak DWs and linear-response calculations, the direct
approach performs slightly worse than the MPO approaches
discussed above. Its relative advantage is in dealing with gen-
eral far-from-equilibrium pure states. For such states, TEBD
can fail at much earlier times than direct evolution: state-of-
the-art bond dimensions are limited to ∼2000, which is two
orders of magnitude lower than the bond dimension needed to
describe a maximally entangled state on 36 qubits.

7.1.5. Approximate methods. The past five years have
seen the development of multiple numerical methods
based on physically motivated truncations of MPS’s and
MPO’s. Examples of these methods include the time-
dependent variational principle [162], density-matrix trunca-
tion (DMT) [163], and dissipation-assisted operator evolution
(DAOE) [164]. These methods aim to truncate the growth
of entanglement in ways that do not affect the dynamics of
simple observables, such as spin or energy. In practice, all of
these truncation schemes break integrability, so it is unclear
a priori that they should be able to faithfully describe trans-
port in integrable systems. Nevertheless, promising results on
the Heisenberg spin chain have been achieved with DMT as
well as DAOE [164, 165]. One can regard our exact results
on integrable systems as providing a benchmark to test the
performance of these methods against.

7.1.6. Away from integrability: noisy evolution. Unitary evol-
ution of operators in the Heisenberg picture is limited to early
times for both integrable and nonintegrable spin chains. For
nonintegrable systems, operator entanglement grows some-
what faster, and the accessible simulation times are corres-
pondingly shorter (t⩽ 20). This makes the numerical study of
nearly integrable unitary dynamics challenging, since one gen-
erically expects integrability-breaking effects to become vis-
ible on timescales that scale as the square of the integrability-
breaking parameter. For this estimated Golden Rule decay rate
to be visible in the numerically accessible window, one has to
break integrability rather strongly, to a point where perturba-
tion theory is potentially no longer valid.

A more feasible way to study these effects is to sacrifice
the conservation of energy, and instead consider perturbations
that act randomly in time, i.e. as noise. In this case, one can
represent the dynamics averaged over the noise as a quantum
channel or Lindblad master equation [137]. Operator entan-
glement growth under quantum channels is slow, by the fol-
lowing logic. Instead of thinking of the channel as a noise-
average, one can equivalently think of it as the dynamics of
an open system. Under open-system dynamics, operators that

begin entirely inside the system spread into the environment.
Larger operators have more sites where they can leak into the
environment. Tracing over the environment annihilates these
parts of the time-evolved operator, which therefore loses oper-
ator norm over time but remains weakly entangled at all times.
Therefore, it is practical to simulate noisy evolution for much
longer times (t⩾ 100) than strictly unitary evolution.

One might worry that noise is too crude a way to break
integrability; however, as we discussed above, many of
the interesting consequences of breaking integrability occur
regardless of whether the perturbation is Hamiltonian.

7.2. Experimental studies

7.2.1. Magnetic materials probed by neutron scattering. As
we noted in the introduction, the study of high-temperature
transport was revived by experiments in ultracold atomic gases
and other forms of synthetic matter. Even in solid-state sys-
tems, the characteristic energy scales associated with mag-
netic excitations can be quite low, however, allowing one to
study high-temperature spin dynamics at absolute temperature
scales that are quite low (i.e. substantially below room temper-
ature). Many of the initial experiments addressing this ques-
tion were concerned with establishing the presence of ballistic
energy transport (which suggests integrability); accordingly,
they focused on the large (apparently) magnetic contribution
to the heat conductivity [79].

While measuring d.c. spin transport can be challenging,
one can extract the dynamical spin structure factor S(q,ω)
from neutron scattering. The first experimental evidence for
superdiffusion in Heisenberg spin chains came from a neutron
scattering experiment on the quasi-one-dimensional magnet
KCuF3 [64]. In this experiment, S(q,ω) was studied at fixed,
very low ω as a function of q. Over a wide range of temperat-
ures (from 70 to 200 K), it was found that S(q,ω)∼ q−z with
values of z ranging from 1.3 to 1.6, depending on the temper-
ature and the fitting window. While these results do not con-
clusively show z= 3/2, they are at least consistent with it, and
inconsistent with either ballistic or diffusive scaling.

While KCuF3 realizes the isotropic Heisenberg model,
a variety of other quasi-one-dimensional magnets exist that
realize anisotropic XXZ spin chains [166]. Exploring high-
temperature spin transport in the anisotropic regime is an inter-
esting task for future work.

7.2.2. Nuclear magnetic resonance. The dynamics of XXZ
spin chains can also be probed using nuclear magnetic reson-
ance (NMR) experiments. There are two conceptually distinct
contexts for using NMR; we will discuss these separately.

First, NMR can be used as a probe of electron spin dynam-
ics. In an NMR experiment, nuclei are placed in a static polar-
izing magnetic field and then excited using microwaves of
frequency ω0. The microwave frequency selects which nuc-
lei (if any) are excited. Assuming that nuclear spins decay by
coupling to magnetic fluctuations, the rate at which nuclear
spins depolarize (i.e. the T1 time) is related as follows to
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the local autocorrelation function of the nearby electron spins
[167, 168]:

T−1
1 ∝ Re

ˆ ω−1
0

0
dt⟨Ŝ0(t) · Ŝ0(0)⟩. (41)

Thus the dependence of the T1 time on ω0 is a diagnostic of the
transport exponent governing the local autocorrelation func-
tion. In particular, if the low-frequency conductivity diverges
with some power law α, then we expect 1/T1 ∼ ω−α

0 . A diver-
gence of this kind was in fact seen decades ago in NMR studies
of the Heisenberg magnet Sr2CuO3 [169], but NMR response
in the high-temperature regime merits further exploration in
light of the results on anomalous transport reviewed here.

In addition to using NMR techniques as a probe of elec-
tronic spins, one can also use these techniques to engineer and
study systems of interacting nuclear spins, as in recent work
on fluorapatite [170]. The active degrees of freedom in these
experiments are spins-1/2 of fluorine nuclei. Because of the
anisotropy of the material, interchain couplings are suppressed
by a factor of 1/40 relative to intrachain nuclear couplings, so
the system is effectively one-dimensional on the experimental
timescales of ⩽50 (in units of J). NMR experiments naturally
take place at high temperatures relative to the nuclear interac-
tion scales (10 kHz ∼10−7 K). However, measuring transport
in this setting has been challenging, because of the lack of local
addressability.

One traditional procedure for studying spin diffusion [171]
has been to create an initial state with an imprinted periodically
modulatedmagnetization profile (by applying a linear magnet-
ization gradient, discussed further below in section 7.2.3), and
track how the contrast of this imprinted spin spiral decays. A
different (and in some ways more versatile) approach to study-
ing spin transport was very recently explored in [172]. The
idea is as follows. The ‘intrinsic’ Hamiltonian for fluorine nuc-
lear spins in fluorapatite takes the form

Ĥ= ĤFF + Ĥdis.

ĤFF =
∑
j<k

1
|j− k|3

(2Ŝzj Ŝ
z
k− Ŝxj Ŝ

x
k− Ŝyj Ŝ

y
k).

Ĥdis =
∑
j

hjŜ
z
j . (42)

This Hamiltonian consists of two parts: the interactions among
the fluorine nuclear spins, and the interactions of each spin
with its random local environment (consisting mainly of phos-
phorus spins), which acts as a static random field. We will
think of ĤFF as effectively local—justified given the short
experimental timescales. Dynamical decoupling techniques
exist that can temporarily remove either ĤFF or Ĥdis to any
desired precision [173]. In addition, established Floquet engin-
eering techniques let one construct arbitrary XXZ Hamiltoni-
ans from ĤFF by applying particular pulse sequences [174].

The scheme of [172] uses these features as follows (we have
simplified the treatment a little to focus on the main ideas).
First, one applies a strong uniform field along the z direc-
tion, creating the state ρ̂∝ (In+ ϵŜzn)

⊗n. Second, one evolves

under Ĥdis (while decoupling ĤFF) in order to reach a state
where each spin has a random polarization along the z axis:
ρ̂∝ (In+αnŜzn)

⊗n, where εn is an effectively random number.
Third, one time evolves under the desired Floquet-engineered
XXZ Hamiltonian (while decoupling Ĥdis). Fourth, one again
decouples ĤFF and implements the second step in reverse, and
finally measures the total polarization along the z axis. This
entire process extracts the observable

C(x, t)≡ Tr
[∑

ij
αiαj⟨Ŝzi (t)Ŝzj ⟩

]
, (43)

where αi is a random, statistically translation-invariant, vari-
able with zero average (sampled over many runs of the
experiment). NMR experiments can therefore extract the
sample-averaged local autocorrelator C(x, t)∝ ⟨Ŝzi (t)Ŝzi (0)⟩.
The results [172] provide convincing evidence that interacting
integrable systems can have ballistic energy transport coexist-
ing with diffusive spin transport, unlike either nonintegrable
systems or free systems.

From the perspective of exploring high-temperature
dynamics, one valuable aspect of both NMR techniques dis-
cussed above is that they give access to the spatially local
autocorrelation function. For ∆> 1, as we discussed above
(section 4.3), this correlation function decays with an anom-
alous, continuously varying power law even in systems where
transport is ballistic [53].

7.2.3. Ultracold atomic gases. The revival of interest in
integrability owes much to experiments on one-dimensional
ultracold gases in the continuum [175]. These experiments
demonstrated, in a striking way, that integrability has phys-
ically relevant consequences—it causes far-from-equilibrium
initial states to remain out of equilibrium for extremely long
times.

Although these continuum experiments have made remark-
able progress in testing GHD [76, 176–178], they generally
realize the Lieb-Liniger model, in which transport is ballistic
rather than anomalous. Integrable spin chains are most nat-
urally realized on the lattice. One first realizes a Fermi- or
Bose–Hubbard model on a one-dimensional lattice by con-
fining an ultracold atomic gas in a strongly anisotropic three-
dimensional optical lattice, such that the lattice along two dir-
ections is so deep as to be essentially infinite. Along the third
direction, the lattice is deep enough to be in the single-band
tight-binding regime, but otherwise tunneling is allowed. In
the experiments of [62, 65] the Hamiltonian governing the sys-
tem is the Bose–Hubbard Hamiltonian

Ĥ=−
∑
i,σ

(b̂†i,σ b̂i+1,σ + h.c.)+Uστ n̂iσn̂iτ . (44)

Here, Greek indices denote the internal state (‘spin’) of the
atom. One could write a similar Hamiltonian for fermions,
except that by the exclusion principle U only affects pairs of
atoms with opposite spin. The Fermi-Hubbard model is itself
integrable in one dimension. The Bose–Hubbard model is not
integrable, but in the limit Uστ ≫ 1, the system enters a Mott
insulating phase in which charge fluctuations are suppressed
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and the only remaining dynamics is the spin dynamics due to
superexchange. This is governed by the Hamiltonian [62]

ĤXXZ =
∑
i

− 4
U↑↓

(Ŝxi Ŝ
x
i+1 + Ŝyi Ŝ

y
i+1)

+

(
4
U↑↓

− 4
U↑↑

− 4
U↓↓

)
Ŝzi Ŝ

z
i+1, (45)

up to an overall field that does not affect the dynamics. Absent
fine-tuning, all the Uστ tend to be similar in magnitude, so
∆≈ 1. However, by tuning the strength of one of the on-
site interactions using a Feshbach resonance, one can realize
strongly anisotropic XXZ models [62]. Whether such Fesh-
bach resonances are available depends on the atomic species:
rubidium has few usable resonances in the experimentally
relevant parameter range, whereas lithium and cesium have
many.

In general, there will also be defects in the filling of the
lattice, and these will give rise to residual charge dynamics
that breaks integrability. On the relatively short timescales that
have been experimentally studied, these effects do not seem to
break integrability, but do seem to renormalize the dynamical
timescales [65].

Two main strategies have been adopted to initialize the
effective XXZ spin chain and study its dynamics. The concep-
tually simpler approach requires a quantum gas microscope
with single-site resolution. Here, one can ‘dial in’ a variety of
initial states. In the experiments of [65], the initial state was a
random product state with net magnetization density±η/2 on
the left (right) half of the chain. This setup closely parallels the
numerical setup discussed above in section 7.1.2. After letting
the system evolve, one can take a simultaneous snapshot of all
the spins in the system; both average transport and fluctuations
can be read off from the statistics of these snapshots. These
experiments used rubidium atoms and were therefore restric-
ted to the isotropic limit. The average transport exponent was
consistent with z= 3/2; the fluctuations were anomalous, as
discussed in section 5.

In the experiments of [62], which did not use a quantum gas
microscope, the system was instead initialized in a spin spiral
of period 2π/q, rotating in the XZ plane, using amagnetic field
gradient. After some evolution time the spiral was unwound
and its residual contrast was read out. This method is restricted
to a specific class of initial states; however, in principle, one
can read out the full correlation function C(x, t) = ⟨Ŝzx(t)Ŝz0(t)⟩
as a function of time after the quench (i.e. one can wind the
spiral up at pitch q and unwind it at pitch q

′
, thus getting the

full instantaneous structure factor of the time evolved state).
Since the initial state is far from equilibrium, its dynam-

ical properties are very different from linear response transport
(section 5.5.3), and many questions still remain.

7.2.4. Superconducting circuits. In the past decade, arrays
of superconducting qubits have emerged as a platform for the
digital simulation of many-body systems [179]. These arrays
can implement a variety of one- and two-qubit gates, including
those needed for simulating the integrable Trotterization of the

XXZ spin chain. The geometry is tunable, allowing for con-
trolled studies of dimensional crossover in quasi-1D systems.
Some basic features of the Trotterized XXZ spin chain, includ-
ing the presence of stable string states in the spectrum [180]
and of nearly conserved quantities [181], have recently been
established in these systems. These works exploited some of
the distinctive capabilities of superconducting circuits: in par-
ticular, the ability to measure arbitrary Pauli strings. However,
transport from initial finite-entropy states has not yet been
explored in this setting.

At present, the lifetimes of superconducting circuit exper-
iments are somewhat lower than those of experiments with
ultracold atoms. Experiments in superconducting circuits are
limited by finite single-qubit decay (T1) and decoherence (T2)
times, as well as errors due to finite gate fidelity. All of these
errors except for the T1 process are integrability-breaking per-
turbations that preserve the U(1) symmetry; therefore, one
can study the properties of transport in nearly integrable sys-
temswithout mitigating or correcting these errors. Qubit decay
breaks the U(1) symmetry; however, since all decay events
increase the number of ↓ spins relative to the initial state,
one can remove the effects of decay at the expense of post-
selecting samples with the right number of ↑ spins. Asymptot-
ically, however, samples with no decay events become expo-
nentially rare in both system size and evolution time, so that
the need to post-select limits the scalability of such experi-
ments. In state-of-the-art work, the stability of strings in the
∆> 1 regime has been demonstrated for timescales that are
on the order of ≈30 layers of gates, on a system of 24 qubits.
A subsequent experiment [181] demonstrated that one could
use this platform to perform direct measurements of conserved
charges and how they evolve under noisy approximately integ-
rable dynamics. Superconducting circuits are particularly well
suited for such experiments since they allow for single-site
measurements in arbitrary bases: therefore, one can measure
arbitrary Pauli strings, as opposed to just strings in the com-
putational basis.

8. Conclusion

Integrable systems at finite temperature have unusual dynam-
ical properties because they have stable ballistic quasiparticles
whose properties are nontrivially renormalized by the interac-
tions between them. In particular, interactions can strip qua-
siparticles of their charge, leading to sub-ballistic transport
of the types we have discussed here. The picture of transport
through thermal fluctuations that we have presented here was
fleshed out in the past four years, and continues to see rapid
development; as it stands, it is a relatively complete theory of
the low-frequency limit of the q→ 0 linear-response conduct-
ivity. Beyond linear response, there are more questions than
answers, but progress in extending the theory to this regime
has been rapid.

An area where progress has been significantly more limited
is the study of nearly integrable spin chains. The specific case
where integrability is broken by noisy couplings seems both
numerically and theoretically tractable: quasiparticles scatter
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and decay at a rate set by the Golden Rule, and the main the-
oretical challenge is to compute the matrix elements that enter
the Golden Rule. These can be calculated, or at least estimated,
in many specific cases, including some with nontrivial phys-
ics like subdiffusion. For Hamiltonian perturbations that break
integrability, much less is understood. In both classical and
quantum systems in the thermodynamic limit, all initial condi-
tions eventually lead to chaos, but the rate at which chaos sets
in can be much slower than the naive Golden Rule estimate:
this can happen, e.g. because some parts of the perturbation
can be absorbed into the unperturbed Hamiltonian through a
unitary rotation [145, 182]. The prospects for studying these
phenomena in near-term simulations or experiments involving
quantum spin chains are not very favorable, because of the
rapid growth of entanglement and the late times required. A
more promising near-term avenue might be to perform large-
scale simulations on nearly integrable classical Hamiltoni-
ans and develop a quantitative understanding of the effects of
integrability breaking there.
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