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Ionic coherence in resonant above-threshold attosecond ionization spectroscopy
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The ionization of atoms with sequences of attosecond pulses gives rise to excited ionic states that are entangled
with the emitted photoelectron. Still, the ionic ensemble preserves some coherence that can be controlled through
the laser parameters. In helium, control of the 2s/2p He+ coherence is mediated by the autoionizing states below
the N = 2 threshold [Phys. Rev. Res. 3, 023233 (2021)]. In the present work we study the role of the resonances
both below and above the N = 3 threshold on the coherence of the N = 3 He+ ion, in the attosecond pump-probe
ionization of the helium atom, which we simulate using the NEWSTOCK ab initio code. Due to the fine-structure
splitting of the N = 3 He+ level, the ionic dipole beats on a picosecond timescale. We show how, from the dipole
beating, it is possible to reconstruct the polarization of the ion at its inception.
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I. INTRODUCTION

The typical spectrum of a polyelectronic atom comprises
several excited bound and metastable states. In the vicinity of
an ionization threshold, many of these states can be coher-
ently populated by short light pulses, giving rise to electronic
motion that unfolds on a subfemtosecond timescale [1–3].
The advent of tabletop sources of attosecond light pulses has
unlocked the door to the observation and control of such
electronic motion at its natural time scale [1,4–10]. Once the
production of attosecond pulses became routine, attosecond
extreme ultravoilet (XUV) pump infrared (IR) probe photo-
electron spectroscopies emerged as a powerful tool to explore
attosecond dynamics at the nano [11,12] and the molecu-
lar scale [13–17]. The generation of coherent superposition
of electronic states above the ionization threshold bears the
promise of quantum control in the electronic continuum.
However, since ions and photoelectrons normally form en-
tangled pairs, either of the photofragments is only partially
coherent, with their coherence depending on the parameters
of the ionization process [18,19].

In a recent work, we examined how the autoionizing states
below the N = 2 threshold of the helium atom could be
leveraged to control the relative coherence between the 2s

and 2p states of the He+ ion [20]. In this work, we explore
the entangled character of the wave function for a system
comprised of the He+ parent ion in the N = 3 manifold and
the photoelectron that emerge from the ionization of a helium
atom. We also describe a protocol to reconstruct the density
matrix of the He+ ensemble from the measurement of the
picosecond time-scale beatings of its dipole moment, which
are caused by the fine splitting of the N = 3 level.

*luca.argenti@ucf.edu

On a femtosecond timescale, the effects of spin-orbit inter-
actions do not manifest themselves, and hence the coherence
between He+ ionic states with the same principal quantum
number appears as a permanent polarization of the ion. The
ion can be produced in such a polarized state by triggering ion-
ization in the presence of a strong infrared dressing pulse with
a pulse of extreme ultraviolet radiation with duration shorter
than half the period of the IR pulse [21,22]. Alternatively, it is
possible to exploit the interference between different resonant
ionization paths [20,23,24].

Resonant states play a crucial role in multiphoton ion-
ization since, in contrast to photofragments, they are fully
coherent states and they have long lifetimes compared with
direct-ionization photoelectron wave packets, which leave the
interaction region in a matter of few tens of attoseconds
[25–30]. Such long-lived metastable states provide resonant
multiphoton pathways for ionization in atoms [31,32], ultra-
fast decay of electrons [33], and dissociative photoionization
in molecules [34,35].

A variety of experiments have studied autoionizing reso-
nances in an attempt to resolve the electron-correlation-driven
dynamics that underpins Auger decay [26,30,36–38]. In the
present study, we examine the interplay between the au-
toionizing states below and above the N = 3 threshold in
multiphoton ionization paths that are resonant both in the
intermediate and in the final states. We do so by comparing
the relative coherences of the He+ 3s, 3pm, and 3dm states
computed either in the absence or in the presence of the
resonances above the N = 3 threshold.

As in the case of the N = 2 manifold [20], in the nonrel-
ativistic limit, N = 3 He+ parent-ion states are degenerate,
and hence their coherence results in a permanent dipole mo-
ment. On a timescale of few picoseconds, the dipole moment
fluctuates even in the absence of external fields, due to fine-
structure terms, and in particular to spin-orbit interaction [39].
In contrast to the N = 2 case, however, the reconstruction
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of the He+ density matrix from the sole observation of the
system’s dipole fluctuations cannot be complete. Indeed, the
coherence between the 3s and 3dm states does not result in
any dipole emission. Here we describe an algorithm to maxi-
mally reconstruct the initial ionic coherences from the optical
observations alone.

The paper is organized as follows. Section II offers an
overview of the ab initio theoretical and numerical methods
used to compute, at the end of a pulse sequence, the pho-
toelectron distribution entangled with each ion. Section III
describes the pump-probe scheme used for the simulations.
Section IV discusses the partial photoelectron distributions as
well as the corresponding reduced density matrix for the ion.
Section V describes the reconstruction of the ionic coherence
from the picosecond beating of the ion dipole. Section VI
summarizes the conclusions and perspectives of this work.
Finally, the Appendix describes in detail the algorithm used
to reconstruct, from the observation of the electric dipole
beatings, the off-diagonal elements of the ion density matrix.

II. THEORETICAL METHODS

This section describes the calculation of bound and single-
ionization states of the helium atom using the close-coupling
approach [25,40,41]. The theory and implementation of a
time-dependent close-coupling code dedicated to helium, and
of the NEWSTOCK code, for general polyelectronic atoms, is
described elsewhere [20,42,43]. Here we offer a brief sum-
mary of the protocols implemented in NEWSTOCK , adapted to
the helium atom.

A. Structural calculations

The close-coupling (CC) representation of a single ioniza-
tion function �(x1, x2; t ) for the helium atom is

�(x1, x2; t ) = 1 − P̂12√
2

∑

Ŵα

�Ŵ
α (x1; r̂2, ζ2)ϕŴ

α (r2; t )

+
∑

Ŵi

χŴ
i (x1, x2)cŴ

i (t ), (1)

where xi = (�ri, ζi ) is the spatial-spin component of the i

th electron, P̂ swaps the coordinates of the two electrons,
�Ŵ

α (x1; r̂2, ζ2) is a channel function in which the orbital and
spin angular momentum of the ion are coupled to the photo-
electrons,

�Ŵ
α (x1; r̂2, ζ2) = RNαLα

(r1)YLM
Lαℓα

(r̂1, r̂2)
S� (ζ1, ζ2), (2)

and ϕŴ
α (r2; t ) is the radial component of the photoelectron

wave function in channel (Ŵ, α) [28,30,44].
In (2), Rnℓ(r) is an hydrogenic radial wave function with

principal quantum number n, orbital angular momentum ℓ, for
a system with nuclear charge Z = 2. The functions Ycγ

ab
(r̂1, r̂2)

and 
S� (ζ1, ζ2) are bipolar spherical harmonics and two-
electron spin functions [45], respectively,

YLM
ℓ1ℓ2

(r̂1, r̂2) =
∑

m1m2

CLM
ℓ1m1,ℓ2m2

Yℓ1m1 (r̂1)Yℓ2m2 (r̂2),


S� (ζ1, ζ2) =
∑

σ1σ2

CS�
1
2 σ1,

1
2 σ2

2χσ1 (ζ1)2χσ2 (ζ2),
(3)

where Yℓm(r̂) are spherical harmonics, 2χσ (ζ ) = 〈ζ |σ 〉 = δζσ

are spin- 1
2 functions, and C

cγ

aα,bβ
are Clebsch-Gordan coeffi-

cients [45].
The collective symmetry label Ŵ stands for the quantum

numbers of the two-electron system, i.e., the total parity � and
the total orbital and spin angular momenta and projections L,
S, �, and M, whereas α identifies the parent-ion shell NαLα

and the photoelectron orbital angular momentum ℓα . Finally,
the functions χi(x1, x2) are symmetry-adapted two-electron
configurations state functions (CSF) 2S+1(n1ℓ1, n2ℓ2)LM with
principal quantum numbers ni and angular quantum numbers
ℓi restricted to ni � Nmax, ℓ1 � Lmax.

The CC wave functions (1) and the time evolution of he-
lium from an initial bound state as a result of the interaction
with external fields are computed with NEWSTOCK [41,42].
In this work, the time-dependent Hamiltonian H (t ) comprises
the electrostatic Hamiltonian H0 and the velocity-gauge inter-
action Hamiltonian HI ,

H (t ) = H0 + HI (t )

H0 = p2
1 + p2

2

2
− 2

r1
− 2

r2
+ 1

r12

HI (t ) = α �A(t ) · ( �p1 + �p2),

(4)

where �A(t ) is the vector potential and α is the fine-structure
constant, α = e2/h̄c ≈ 1/137 [46]. Unless stated otherwise,
atomic units and the Gauss system are used. The reduced
radial function of all one-electron orbitals, rϕ(r), is expanded
in B-splines [40,47,48].

In this work, two CSF bases are used. A first smaller set, re-
ferred to as case 1, comprises all the configurations of the form
nℓiℓ′, with n � 3, ℓ � 2, ℓ′ � 5, and the index i runs over all
the radial functions in the quantization box (several hundred),
which do not necessarily resemble hydrogenic bound orbitals.
This first basis is unable to represent any resonance above the
N = 3 threshold, as these are known to originate from config-
urations of the form nℓn′ℓ′, with n � 4 [49]. A second, larger
basis, referred to as case 2, comprises all the configurations of
the form nℓiℓ′, with n � 4, ℓ � 3, ℓ′ � 5, and the index i has
the same meaning as above. This second basis does give rise
to resonances between the N = 3 and N = 4 thresholds, most
of which have dominant configuration 4ℓn′ℓ′.

This energy interval includes also a couple of so-called
intruder states of the form 5ℓ5ℓ′ [40,49,50]. These intruder
states, however, fall close to the N = 4 threshold, which is
not reached by our pump-probe scheme, and hence are not
expected to play any major role here. Since the He+ ion has
only one electron, within the electrostatic approximation, its
eigenstates, numerically computed using the ATSP2K package
[51], are virtually exact.

In the present work we will focus our attention on the
effects of the probe pulse to the lowest perturbative order.
For this reason, for both cases, we will consider only the
total symmetries 1Se, 1Po, and 1De, using 1F o only to check
the convergence of our simulations. Notice that we are not
including any 1Pe, 1Do, or 1F e state in the basis because non-
natural symmetries (i.e., whose parity differs from the total
angular momentum parity) cannot be populated by collinearly
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polarized light pulses starting from an initial state with mag-
netic quantum number M = 0.

Each symmetric space comprises a localized channel con-
structed by adding, in all possible ways, an electron to a
CSF configuration in any of the 3s, 3p, 3d , 4s, and 4p active
orbitals. There are 20 (10), 20 (8), 21 (7), and 12 (2) such
states for the 1Se, 1Po, 1De, and 1F o symmetries for the case-2
(case-1) basis, respectively. To represent the radial part of both
bound and continuum atomic orbitals, we use B-splines of
order 7 with asymptotic separation between consecutive nodes
of 0.4 a.u., up to a maximum radius of 300 a.u. With this
choice, each partial-wave channel comprises approximately
1285 states.

The NEWSTOCK package builds the field-free Hamiltonian
matrix HŴ

i j = 〈�Ŵ
i |Ĥ0|�Ŵ

j 〉 for each of the four main symme-
tries Ŵ =1 Se, 1Po, 1De, 1F o, where �Ŵ

j is any of the functions
in the generalized close-coupling space with symmetry Ŵ,
as well as the reduced dipole matrix elements 〈�Ŵ

i ‖P1‖�Ŵ′
j 〉

between S and P , P and D , and D and F states. For
case 1 (no N = 4 channels) the electronic configuration basis
comprises, beyond the minimal set of close-coupling channels
Nℓǫℓ′ with N � 3, also the full configuration interaction (CI)
set of configuration nℓn′ℓ′ constructed from all the localized
orbitals with orbital angular momentum ℓ, ℓ′ � 5, and total
angular momentum L up to 3. The overall size of the 1Lπ

spaces, with L = 0, 1, 2 and 3, are 4766, 7147, 7946, and
7948, respectively, for a total size of 27 807. The energy
of the ground state is Eg = −2.8866308 a.u. For case 2,
the basis includes also the N = 4 close-coupling channels,
which brings the size of the 1Lπ spaces, with L = 0, 1, 2
and 3, to 7940, 12 700, 15 090, and 15 093, respectively
(total size 50 823). The energy of the ground state changes
only marginally, Eg = −2.887340 a.u. This value is to be
compared on the one side with the Hartree-Fock limit, Eg,HF =
−2.86180 a.u. [52], and on the other side with the accurate
limit for ℓmax = 3, which is the maximum orbital angular mo-
mentum represented in 1Se configurations, in our calculations,
Eg,ℓ�3 = 2.903321 a.u. [52]. This means that our ground state
energy includes about 62% of the theoretical maximum for
ℓmax = 3. This discrepancy is to be mostly attributed to the
convergence in the radial basis which, for the localized con-
figurations nℓn′ℓ′, is restricted to n, n′ � 3, for case 1 and
n, n′ � 4, for case 2.

B. Temporal evolution

The initial ground state is obtained by diagonalizing the
Hamiltonian in the 1Se sector of the full close-coupling
space. The time evolution of the atomic wave function, from
the initial ground state, under the influence of the external
pulses is governed by the time-dependent Schrödinger equa-
tion (TDSE),

i∂t |�(t )〉 = H (t )|�(t )〉, (5)

which is integrated numerically in time steps of the duration of
approximately dt = 0.033 a.u., using a unitary second-order
exponential split operator. The propagator includes also the
effect of a complex absorption potential (CAP), confined to
the last 50 Bohr radii of the spherical quantization box, which

prevents unphysical reflections from the box walls,

|�(t + dt )〉 = UCAP(dt )U (t + dt, t )|�(t0)〉
U (t + dt, t ) = e−i H0 dt/2e−i HI (t+dt/2) dt e−i H0 dt/2

UCAP(dt ) = e−iVCAPdt

VCAP = −ic

2∑

i=1

θ (ri − RCAP )(ri − RCAP )2,

(6)

where θ (x) is the Heaviside step function [θ (x) = 0 if x < 0,
θ (x) = 1 if x > 0], c is a positive real parameter, c = 5 ×
10−4, and RCAP = 250 a.u.. The reflection by the CAP itself
and by the box boundary are both negligible. The unitary
evolution under the action of the dipole operator is evaluated
with an iterative Krylov method [25].

C. Partitioning of the time-dependent wave function

The photoelectron component of the wave function grows
rapidly in size. Indeed, in 100 fs, the typical size of an at-
tosecond pump-probe time-delay scan, a photoelectron with
asymptotic energy of about 1 a.u. (≃ 27 eV) covers a distance
of more than 4000 Bohr radii. In order to recover the spectrum
of the photoelectron, the whole wave function must be pre-
served. On the other hand, once the photoelectron has reached
a distance of a few hundred atomic units, the coupling be-
tween different channels is negligible and hence the electron
propagates in what is essentially a pure monopolar electro-
static potential plus the potential due to the external radiation
field. In these conditions, an explicit numerical representation
of the whole photoelectron wave packet is highly impractical.
Luckily, at large distances, we can exploit a useful approxima-
tion, which we describe below. The propagator from an initial
time t0 to a final time t reads

U (t, t0) = T̂ exp

[
−i

∫ t

t0

dt1H (t1)

]
, (7)

where T̂ exp is the time-ordered exponential [53]. This prop-
agator can be factorized using Magnus expansion [54],

U (t, t0) = exp [−i�(t, t0)], (8)

where

�(t, t0) =
∞∑

n=1

�n(t, t0),

�1(t, t0) =
∫ t

t0

H (t1)dt1

�2(t, t0) = 1

2i

∫ t

t0

dt1

∫ t1

t0

dt2 [H (t1), H (t2)]

· · ·

(9)

When the photoelectron is sufficiently far from the associated
ion, the time evolution of the electron and that of the ion
become independent. The Hamiltonian of the photoelectron,
in particular, becomes

H (t ) = p2

2
− 1

r
+ α �A(t ) · �p. (10)
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The commutator between the field-free component of the
photoelectron Hamiltonian and the interaction term scales as
1/r2, and hence, for a photoelectron sufficiently far from the
ion, all higher-order terms in the Magnus expansion become
negligible,

U (t, t0) ≈ exp

[
−i

∫ t

t0

H (t )dt

]
=

= exp

[
−i

(
p2

2
− 1

r

)
(t − t0) − i �p ·

∫ t

t0

�A(t )dt

]
.

(11)

Whenever the integral of the vector potential between an
initial and a final time vanishes, therefore, the interaction term
itself vanishes, and hence the photoelectron propagator can be
accurately approximated by the field-free propagator alone.
We take advantage of this circumstance in our simulations
because about every half period of the Mid-InfraRed (MIR)
field ti the integral

∫ ∞
ti

A(t ′)dt ′ does vanish. At these times,
we split the wave function into a mid- to short-range (r � 150
a.u.) and a mid- to long-range component (r � 150 a.u.),

|�0,SR(t0)〉 = |�(t0)〉
|�i(ti )〉 = |�i,SR(ti)〉 + |�i,LR(ti )〉,

|�i,LR(ti) = P|�i−1,SR(ti )〉,
|�i,SR(ti) = (1 − P)|�i−1,LR(ti )〉,

(12)

where P extracts the long-range distance of the wave function.
In coordinate representation, in particular

〈x1, x2|P =
∑

i=1,2

�

(
ri − RMASK

σMASK

)
〈x1, x2|, (13)

where �(x) is the normal cumulative distribution func-
tion, �(x) = (2π )−1/2

∫ x

−∞ e−t2/2dt . By choosing RMASK =
RBOX/2, and 1 ≪ σMASK ≪ RMASK, we ensure that �LR(ti ) is
nonnegligible only at large distances from the ion, that it does
not acquire unphysical incoming components (and hence, that
under the subsequent evolution it remains at a large distance
from the ion), and that |�SR(ti)〉 is negligible in the last third
or so of the quantization box.

As explained above, as far as the wave-function long-range
components extracted at the times ti are concerned, to all prac-
tical purposes, the field-free and the interaction Hamiltonians
commute, and hence the effect of the interaction Hamiltonian
itself vanishes. Each of these long-range components there-
fore can be propagated analytically to the end of the pulse t

by means of the field-free evolution operator,

|�i,LR(t )〉 = e−iH0 (t−ti )|�i,LR(ti )〉. (14)

Furthermore, once the external pulses are over, the last resid-
ual short-range component �N,SR(tN ) can also be propagated
in the same way,

|�N,SR(t )〉 = e−iH0 (t−tN )|�N,SR(tN )〉. (15)

This procedure allows us to carry out simulations for long
pulses in comparatively small quantization boxes. These prop-
agations can be carried out exactly, since in our approach we
operate in a spectral basis.

D. Asymptotic observables

To determine the probability amplitude in interaction rep-
resentation A

A;�kσ
for the coincidence detection of the parent

ion in the (MA, �A) state A and of the photoelectron with
asymptotic momentum �k, and with spin projection σ , we
project the full wave packet |�(t )〉 on a complete set of scat-
tering states,

A
A;�kσ

= ei(EA+ε)t 〈�−
A;�kσ

|�(t )〉, (16)

where |�−
A;�kσ

〉, normalized as 〈�−
A;�kσ

|�−
B;�k′σ ′〉 = δABδ(3)(�k −

�k′)δσσ ′ , is a scattering state in which the parent ion and the
photoelectron are not angularly or spin coupled, which fulfills
incoming boundary conditions [25,55,56]. We can now use
the partitioning of the wave function in a last short-range
component and many long-range components,

|�(t )〉 = |�N,SR(t )〉 +
N∑

i=1

|�i,LR(t )〉, (17)

to compute the amplitude as

A
A;�kσ

= ei(EA+k2/2)tN 〈�−
A;�kσ

|�N,SR(tN )〉

+
N∑

i=1

ei(EA+k2/2)ti〈�−
A;�kσ

|�i,LR(ti)〉. (18)

In the simulation of a pump-probe experiment, the wave
function depends parametrically on the pump-probe delay τ ,
|�(t ; τ )〉, and so do the ionization amplitudes, A

A;�kσ
(τ ). The

reduced density matrix for the parent-ion ensemble, ρAB(τ ), is
obtained tracing out the photoelectron states [57],

ρAB(τ ) =
∑

σ

∫
d3kA

A�kσ
(τ )A∗

B�kσ
(τ ). (19)

In practice, we never evaluate the three-dimensional integral
in Eq. (20). Instead, we directly use the ionization am-
plitudes AŴ

αε(τ ) = 〈�Ŵ(−)
αε |�(t ; τ )〉 to scattering states with

well-defined total symmetry and asymptotic photoelectron an-
gular momentum ℓα and energy ε,

ρAB(τ ) =
∑

ŴŴ′αβ

∫
dεAŴ

αε(τ )AŴ′∗
βε (τ ), (20)

where the sum over α and β are restricted to the channels
generated by coupling the ionic states A and B to the same
orbital angular momentum ℓ = ℓα = ℓβ .

The coherence between ionic states [57,58] is

gAB(τ ) = |ρAB(τ )|√
ρAA(τ )ρBB(τ )

. (21)

When considering ionic states with the same principal quan-
tum number, within the electrostatic approximation, the
density matrix ρAB(τ ) is independent of time even in the
Schrödinger representation. Due to the fine-structure terms in
the Hamiltonian, Hfs, however, even the block of the density
matrix with a same principal quantum number undergoes slow
periodic oscillations, on a picosecond timescale, reproduced
by the unitary transformation

ρ(t ; τ ) = e−iHfstρ(τ )eiHfst . (22)
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By the same token, the ion dipole moment is not stationary
either, exhibiting fluctuations at the Bohr fine frequencies of
the ion, 〈μz(t ; τ )〉 = Tr[μzρ(t ; τ )]. In this work, we make a
semiempirical approximation to the fine-splitting Hamiltonian
by assuming that the split levels originating from a given
principal quantum number n are expressed in terms of the cor-
responding subspace {|nℓmσ 〉}, with ℓ < n, |m| � ℓ, σ = ± 1

2 .
With this approximation we can write, for the He+ ion,

Hfs ≃
∑

nℓmm′σσ ′ jμ

|nℓmσ 〉 〈nℓm′σ ′|C
jμ

ℓm, 1
2 σ

(
Eπ

n j+
2

n2

)
C

jμ

ℓm′, 1
2 σ ′

(23)

where Eπ
n j is the energy of the sublevel with principal quantum

number n, total angular momentum j, and parity π = (−1)ℓ.
The time evolution of the He+ state in the N = 3 manifold is
discussed more in detail in the Appendix.

III. SIMULATION SCHEME

Figure 1 illustrates the energy scheme of the system, in
relation to the transitions above the N = 3 threshold promoted
by the XUV pump and IR probe pulses, for the two cases
examined in this work, either excluding (case 1) or including
(case 2) the N = 4 close-coupling channels. The compari-
son between these two cases allows us to highlight the role
of the Feshbach resonances above threshold in influencing
the polarization of the N = 3 ion. A weak single attosecond
XUV pulse excites the neutral helium atom from the ground
state to the 1Po continuum in the energy interval between
the first autoionizing states in the series converging to the
N = 3 threshold up to the N = 4 threshold. In case 1, the
configuration basis does not give rise to any autoionizing state
above N = 3, whereas case 2 features several resonances from
the series converging to N = 4, starting from ∼0.5 eV above
the N = 3 threshold.

The autoionizing states in helium exhibit a large static
correlation, i.e., most of them are given by a combination
of multiple configurations with comparable coefficients. For
this reason, they cannot normally be identified by any single
dominant configuration. Still, approximate quantum num-
bers alternative to the hydrogenic ones can often be used to
meaningfully label them. Several such schemes have been
proposed. Beyond the original Fano’s classification [59], it is
worth mentioning the N (K, T )A

n scheme [60], the hyperspher-
ical scheme [61], the Stark scheme [N1N2m]A

n [49], and the
molecular scheme (nλnμ)A [62,63]. Here we will use the Stark
scheme, whose quantum numbers have an intuitive interpre-
tation: in the doubly excited states (DESs) formed by two
electrons with principal quantum numbers n1 and n2 ≫ n1,
the outer electron acts as the source of an adiabatic uniform
electric field on the inner electron. Due to the anomalous
Stark effect, the n1ℓ states split into terms with higher or
lower energy, depending on how the inner electron is polarized
towards or away from the satellite electron. The Stark states
of the inner electron are classified with the parabolic quantum
numbers N1, N2, and m [64]. Finally, the DES is uniquely iden-
tified by its total symmetry (multiplicity, total orbital angular

FIG. 1. Energy scheme for the two cases examined in this work.
In case 1, only resonances leading up to N = 3 ionization threshold
are included, whereas case 2 comprises also the resonance series
above the N = 3 and converging to the N = 4 threshold. In ei-
ther case, an XUV pump pulse, centered just above the [011]+3
DES, coherently populates several resonances below N = 3, as well
as directly ionizes the atom to the N ′

Lǫ
′
ℓ channels. An IR probe

pulse subsequently induces transitions from the DES to the N = 3
channels, whose interference with the above-threshold amplitudes
promoted by the XUV pulse results in the ion polarization. Due to
the presence of DES above N = 3, case 2 features differ from case 1
in three main respects. First, the one-photon ionization above N = 3
is itself altered by the resonances. Second, it supports radiative tran-
sitions between DES below and DES above the threshold. Third, it
accounts for radiative transitions from the DES above N = 3 to the
N = 3 ionization channels themselves. The effect of these additional
interferences depend on the lifetime of and the Bohr frequencies with
the N = 4 resonances, and hence they can be revealed in the optical
response of the ion as a function of the time delay between the pump
and the probe pulses.

momentum, and parity), by the principal quantum number n

of the satellite electron, and by an additional quantum number
A = ±, borrowed from the molecular scheme, which specifies
whether the DES wave function at r1 = r2 has an antinode or
a node, respectively.

As discussed in Ref. [20], where ionization in the prox-
imity of the N = 2 threshold was considered, a single-photon
transition cannot give rise to an asymmetrically polarized ion.
Instead, multiphoton transitions are necessary to induce and
control any coherence in the N = 2 He+ ion. The case of
the ionization above the N = 3 threshold, examined here, is
different in that the 3s and the 3d states have the same parity.
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Hence, also one-photon transitions can result in the formation
of a partly coherent state. Even in this case, however, the
parent ion is not electrically polarized.

To polarize the parent ion, it is still necessary to associate
the XUV pulse with additional control fields. In our simula-
tion, we include an 800 nm IR probe pulse with a controllable
delay with respect to the XUV pulse. The IR pulse promotes
nonsequential transition paths to the N = 3 ionization chan-
nels, when the pump and probe pulses overlap, as well as
sequential transition paths that have intermediate DESs in
that energy region. Thanks to several interfering multiphoton
ionization-excitation paths, a coherence between degenerate
opposite-parity ionic states now does emerge.

The XUV pump pulse employed in the simulation has a
Gaussian temporal profile, with central frequency h̄ωXUV =
72.0 eV (2.646 a.u.), a duration of 970 as [full width at half
maximum (FWHM) of the envelope of the intensity, fwhmXUV]
with the bandwidth of 1.88 eV, and a peak intensity IXUV =
0.1 TW/cm2. The IR probe pulse has a cosine-squared tem-
poral profile, with central frequency h̄ωIR = 1.55 eV (0.057
a.u.), an entire duration of 10.66 fs (fwhmIR ≈ 3.77 fs), and
peak intensity IIR = 1 GW/cm2.

In this calculation, the photoionization cross section from
the ground state to the resonant region below the N = 3
threshold is virtually the same for case 1 and case 2, as shown
in Fig. 2 in Sec. IV below. We assume, therefore, that despite
the missing correlation energy and orbital-relaxation energy
in case 1 (we expand the wave function in hydrogenic orbitals
for the ion, rather than self-consistent-field orbitals for the
neutral), our photoionization results are qualitatively accurate.

IV. RESULTS

In this section, we analyze the effect of above-threshold
resonances on the loss of ionic coherence between opposite
parity states. We compare the two cases, with and without
the inclusion of (N + 1)Lnℓ resonances, with a focus on the
ionization channels N ′

Lǫ′
ℓ above N ′ = 3. The XUV is broad

enough to coherently populate multiple resonances below and
above the N = 3 ionization threshold. The central energy of
the XUV pulse is chosen not to populate any state below the
N = 2 threshold, where resonances have a large cross section.
The one-photon photoionization amplitudes for the two bases
are compared in Fig. 2; resonances above N = 3 are present
in one case (red dashed line) and absent in the other (blue
line). The parameters of the resonances below the N = 3 case
change only slightly between the two cases.

In both cases, the XUV pulse populates the DESs below
the N = 3 threshold, which the IR probe pulse can probe be-
fore their Auger decay. The combined absorption of an XUV
photon and the additional exchange of IR photons creates a
metastable wave packet that evolves in time with the beating
frequencies ωi j = Ei − E j between the multiple autoionizing
states coherently populated by the pulse sequence. When the
atom is ionized, these beatings can be found imprinted in the
time delay scan of the photoelectron distribution. In case 2,
where we populate resonances above as well as below the
N = 3 threshold, we observe additional beating frequencies
among N = 4 resonances as well as between resonances be-
low and above the N = 3 threshold.

FIG. 2. Comparison of the energy-resolved total photoionization
cross section of the helium atom between the N = 2 and N = 4
threshold, computed with (dashed red line) and without (solid blue
line) the N = 4 close-coupling channels. 1Po Doubly excited states,
which manifest themselves as Fano profiles in the photoionization
cross section, are identified here by their Stark quantum numbers
[N1N2m]A

n .

A combination of attosecond XUV pump and IR probe
pulses cause the shake-up ionization of helium through sev-
eral multiphoton paths, some of which involve intermediate
resonances. The interference between direct and multiphoton
ionization paths gives rise to new partial coherences between
ionic states, compared with those elicited by the XUV pulse
alone. The ensemble of He+ ions emerging from the ion-
ization with principal quantum number N = 3, in particular,
exhibits coherence between the 3s and 3p (m = 0) states, the
3p and 3d (m = 0, 1) states, and the 3s and 3d states. Of these
coherences, however, only those between states with opposite
parity contribute to the expectation value of the ionic dipole.
From a measurement of the optical response of the system
alone, therefore, it is not possible to reconstruct the density
matrix of the ion ensemble to the full. The framed panels
in Fig. 3 show the coherence terms g3p1,3d1 (τ, t ) (a) and (d),
g3p0,3d0 (b) and (e), and g3s,3p0 (τ, t ) (c) and (f), plotted as a
function of both the pump-probe delay τ (on a femtosecond
timescale) and the real-time t (on a picosecond time scale),
computed in case 1 [N = 4 channels excluded, Figs. 4(a)–
4(c)] and in case 2 [N = 4 channels included, Figs. 4(d)–4(f)].

At the low intensity of the IR considered here (IIR =
109W/cm2), the dominant cause for the coherence between
even and odd states is the overlap of the direct one-photon
(XUV) amplitude and the two-photon (XUV + IR) Above-
Threshold Ionization (ATI) amplitudes above the N = 3
threshold. It is natural, therefore, that all the coherences are
modulated, as a function of the pump-probe delay, at twice the
frequency of the IR, throughout the time delay scan. When the
two pulses overlap, the nonsequential path can contribute to
the two-photon transitions, which justifies the stronger ampli-
tude of the modulation. When the two pulses do not overlap,
on the other hand, the absorption of an IR photon can only take
place from one of the autoionizing states either above or below
the threshold, and hence the coherence exhibits weaker mod-
ulations. In fact, the quite stronger contrast of the coherence
in the sequential regime in case 2 compared to case 1 suggests
either that the two-photon amplitude mediated by the [021]+4
state is stronger than the one mediated by [011]+4 , or that
the ATI transitions mediated by the [011]+n DESs are much
stronger in the presence, in the final states, of the N = 4 S
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FIG. 3. Partial coherence between states of the He+ ion with opposite parity and contiguous orbital angular momentum, g3p1,3d1 (τ, t ) (a)
and (d), g3p0,3d0 (b) and (e), and g3s,3p0 (τ, t ) (c) and (f), which contribute to the ionic dipole. Left panels (a)–(c) correspond to simulations that
exclude the 4ℓǫ ′

ℓ close-coupling channels, and hence that does not account for the contribution from the resonances above the N = 3 threshold
(case 1). Right panels, on the other hand, show the same quantities computed by including the contribution of the 4ℓǫ′

ℓ close-coupling channels,
and of the associated above-threshold resonances (case 2). The images on top illustrate the asymmetry of the ionic charge distribution, with
respect to the inversion of the laser polarization axis, ρ(x, y, z) − ρ(x, y, −z), at the same selected time delays (2, 4, 14, 15, and 16 fs), in the two
cases. The first two snapshots, at 2 and 4 fs, belong to the region where pulses overlap. In this case, the ionic polarization is mostly driven by the
dressing field, and it virtually coincides in the two cases. When the probe pulse follows the pump pulse, on the other hand, such as is the case at
14, 15, and 16 fs, the charge asymmetry is visibly different as a result of the significant contribution of the intermediate 4ℓnℓ′ resonances to the
multiphoton transition amplitudes that populate the 3ℓ ionic states. The color scale is linear, with green/yellow/red representing increasingly
positive and purple/blue/black increasingly negative excess of charge.

and D resonances [50]. The second most prominent change
observed when the N = 4 channels are included is the appear-
ance of a prominent bump in the coherence for time delays
between 10 and 20 fs, and a clear dip in the coherence around
τ = 9 fs. We attribute this effect to the multiphoton transitions

FIG. 4. Left: Energy diagram of the five levels of the He+ states
with principal quantum number N = 3. The energies, in μeV, are
computed from those tabulated in CODATA [46]. Due to this splitting,
the charge distribution of the He+ ions that emerge with N = 3 from
an attosecond photoionization event fluctuates in real time t on a
picosecond timescale, as shown on the right for a section of the
density in the xy plane at two different values of the pump-probe
delay, τ = 14 fs and τ = 15 fs. The densities are computed by
including the N = 4 channels in the calculations (case 2).

mediated by the [021]+4 and [021]+5
1Po DESs. Indeed, these

states have lifetimes of 6.7 and 11.2 fs, respectively [49],
which compare well with the duration of the sequential signal
in Figs. 3(d)–3(f). The minimum at 9 fs is arguably due to
destructive interference between the polarization effect of the
ion induced by the tail of the IR and the resonant multiphoton
transition.

The top row in Fig. 3 shows the asymmetry of the ionic
charge density ρ(x, 0, z; τ ) − ρ(x, 0,−z; τ ), immediately af-
ter the end of the pulses, as a function of the time delay,
where ρ(x, y, z; τ ) is the charge density, and the external
fields are polarized along z. In the figure, the x and z axes
point up and right, respectively. This quantity illustrates two
other aspects of the control of ion coherence. When the two
pulses overlap, the inclusion of the N = 4 resonances does not
have any major effect. This circumstance confirms that, up to
∼5 fs, the polarizing effect of the IR probe pulse domi-
nates. At higher values of the delay, in absence of the N = 4
resonances the density asymmetry experiences only minor
changes. On the other hand, when the N = 4 resonances are
included, the density asymmetry at the peak of the coherence
revival changes drastically, inverting its polarization twice
between τ = 14, 15, and 16 fs.

As discussed in Sec. II, when the fine structure is taken into
account, the N = 3 states of the He+ ion are partly resolved
in energy, and hence the charge distribution of the subset of
the ions with N = 3 is no longer stationary [see Eq. (22)].
Figure 4 illustrates the relative position of the N = 3 sub-
levels, and the characteristic picosecond duration of the

033103-7



MEHMOOD, LINDROTH, AND ARGENTI PHYSICAL REVIEW A 107, 033103 (2023)

FIG. 5. The expectation value of the electric dipole moment is
plotted as a function of time delay and real-time for case 1(top panel)
and case 2 (bottom panel). The effect of the IR is more pronounced
in case 2, since the N = 4 channels enhance the polarization of the
N = 3 ionic states. The color scale is linear.

beatings they induce. Samples of the charge density computed
in case 2, in the case of nonoverlapping pulses, show how the
polarization can change substantially as a result of the angu-
lar momentum precession. The 2 Se

1
2
−2 Po

3
2

and 2 Po
1
2
−2 De

3
2

splittings are responsible for a periodicity of about 20 ps in
the dipole signal, whereas the 2 Po

3
2
−2 De

5
2

splitting causes a

longer beating, with a period of about 60 ps.
While coherence is not directly measurable, the dipole mo-

ment, closely related to coherence between states of opposite
parity, is.Figure 5 shows the ionic dipole as a function of
pump-probe delay and real time, in both case 1 [Fig. 5(a)] and
case 2 [Fig. 5(b)]. As commented above, the dipole fluctuates
as a function of real time with two dominant frequency com-
ponents, with a period of ≃ 20 and ≃ 60 ps. When the pump
and probe pulses overlap, the ≃ 60 ps period dominates. A
similar phenomenon was observed in the dipole of He+ in the
N = 2 level, in pump-probe simulations with a much more in-
tense IR pulse, where a clear checkerboard structure appeared
in the dipole spectrum, with independent time and time-delay
beatings [20]. Here, this simple checkerboard structure is
much less pronounced, due to the comparative weakness of
the IR field.

The dipole oscillates also as a function of real time, on a
picosecond timescale. When the pulses do not overlap, in case
1 [Fig. 5(a)], when the N = 4 channels are not included, we
observe an interesting phenomenon: in certain regions of the
time/time-delay domain, e.g., τ ∈ [15, 22] fs, t ∈ [60, 90] ps,

FIG. 6. Window Fourier transform (FWHM = 4.2 fs) of the
ion-dipole moment, with respect to the pump-probe time delay,
as a function of the window center. (a) N = 4 channels excluded.
(b) N = 4 channels included. The color scale is linear.

the phase of the femtosecond beating maps linearly to that
of the picosecond beating, with the period being amplified
by a factor of about 6000. Such magnification, if observable,
would allow one to determine the polarization of the ionic
ensemble at its inception, with subfemtosecond precision,
from a microwave spectroscopy measurement conducted with
picosecond resolution. As Fig. 5(b) shows, the more realistic
case in which the N = 4 channels are included is quite less
regular. While the phases of the femtosecond and picosecond
beating are not independent, the regions in which they exhibit
an approximately linear dependence are much smaller.

Figure 6 shows the window Fourier transform of the dipole
moment with respect to the time delay,

μ̃(τw, ωτ ) = 1√
8π3σw

∫
dτ eiωτ τ−(τ−τw )2/2σ 2

wμ(τ ), (24)

where σw = 1.8 fs. The 1Po DESs below the N = 3 are
common to the two cases, giving rise to beatings with fre-
quencies between 1 and 2 eV. The inclusion of the N = 4
channel results in a much stronger signal between 15 and
30 fs, at the central IR energy (≃ 1.55 eV), which supports
the interpretation that, at large delays, the dipolar coherence
comes predominantly from sequential two-photon transitions
(one XUV plus one IR) mediated by the N = 4 resonances,
and only to a smaller extent by those mediated by the N = 3
resonances. In both cases, we observe a loss of both structure
and contrast in the coherence at large times. The reason is
that when the pump and probe pulses do not overlap, the
coherence between N = 3 ionic states with opposite parity
is entirely due to the indirect multiphoton ionization ampli-
tudes through intermediate DESs. As the delay between the
pump and the probe pulse increases, the intermediate DESs
decay, thus reducing the contrast, with the population of the
shortest-lived resonances decaying faster, hence the reduction
in the complexity of the signal. In the case in which the N = 4
channels are included, the coherences are stronger and last
longer. The reason is that the multiphoton shake-up ioniza-
tion is amplified by radiative transitions between resonant
states below and above the threshold, and by the additional
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FIG. 7. Polar representation of the trajectory of eiφ ρ3α3β (τ ), as a function of the time delay τ . The two axes are in units of 10−3 a.u. In
the (α, β) = (3s, 3p0) case, φ = 37◦, and for (α, β) = (3p1, 3d1)φ = 40◦, whereas for the (α, β) = (3p0, 3d0) case, φ = 0◦. Notice that the
vertical and horizontal axes are on different scales. When the two pulses overlap, ρ3s3p0 has opposite helicity in the N = 3 and N = 4 cases.

long-lived resonances above N = 3. Indeed, when the res-
onances that lie above the N = 3 threshold are included, we
observe an additional peak at the energy of 2eV which cor-
responds to a beating between a resonance from below and
above the threshold.

V. RECONSTRUCTION OF IONIC COHERENCE

As described in the previous section, the spin-orbit interac-
tion induces slow fluctuations in the stationary dipole. There
are five distinct frequencies ωab between pairs of states a and b

with opposite parity, which appear in the beating of the dipole
of the N = 3 ionic ensemble. The dipole therefore can be
expressed as a real function of these frequencies as follows:

μ(τ, t ) ∝
∑

ab

zab(τ )eiωabt . (25)

The time-delay-dependent matrix of coefficients zab(τ ) is
Hermitian, zab = z∗

ba. These parameters can be extracted from
the beating measured in any sufficiently long finite interval,
such as the signal recorded in a time-resolved microwave-
spectroscopy measurement of the dipole fluctuation. The
Appendix shows in detail how, from the coefficients zab(τ ),
it is possible to maximally reconstruct the density matrix of
the ionic ensemble at the time of the ion inception. The
result is

ρ(α) = UR[U†
RMUR]−1U†

Rz + UKα, (26)

where α = (α1, α2, . . . , αNK
)t is a vector of arbitrary com-

plex numbers, with the same dimension as the null space of
the dipole expectation value, μ = tr(μρ), as a functional of
the vector space defined by the matrix elements of ρ. The
eigenvectors over which the particular solution is expressed
represent the linear combination of density-matrix elements
that can be reconstructed from an all-optical measurement.

The excitation scheme described in Sec. III has a duration
of a few tens of femtoseconds, i.e., three orders of magni-
tude smaller than the period of the spin precession caused by
the fine-structure splitting. As long as the electron spin does
not affect the excitation process itself, therefore, the dipole

expectation value at the end of the pulses is dictated only
by the coherence between ionic states with the same spin
projection, such as the 3s, 3p0 and 3pm, 3dm states, whereas
any coherence between states with opposite spin projection,
such 3s and 3p̄1, 3pm and 3d̄m+1, or 3dm and 3p̄m+1 states,
are supposed to be zero. At larger times, the nonstationary
character of the 3pm and 3dm configurations emerges, and the
dipole moment is observed to oscillate.

The combinations of density-matrix elements that can be
determined using the procedure detailed in the Appendix, for
the N = 3 He+ states, are

ρ3s0,3p0 , ρ3s0,3p̄1 (27)

A = ρ3p0,3d0 −
√

3/2 ρ3p0,3d̄1
(28)

B = ρ3p̄1,3d̄1
−

√
2/3 ρ3p̄1,3d0 (29)

C =
√

3ρ3p0,3d̄1
+ ρ3p̄1,3d0 , (30)

where, for the suffixes, we use the notation 3ℓm for spin-up
states and 3ℓ̄m for spin-down states. As said above, our calcu-
lations neglect spin-orbit effects during the initial ionization
event, and hence all the density-matrix elements between
states with opposite spin reconstructed immediately after ion-
ization must vanish. In particular, in our calculation, the
C coefficient in (30) should and does vanish. Besides ρ3s0,3p̄1 ,
therefore, C is a second independent observable measurable
with optical methods that is sensitive to fine-structure effects
during the attosecond-ionization event. Furthermore, even if
the fine-structure of the ion did have a role during ionization, it
would appreciably affect only the matrix elements that would
otherwise vanish, whereas its effect on the other ones would
arguably be negligible. For all practical purposes, therefore,
the quantities A and B, from Eqs. (28) and (29), coincide
with the matrix elements ρ3p0,3d0 and ρ3p̄1,3d̄1

(= ρ3p1,3d1 ), re-
spectively. The only missing nondiagonal matrix element of ρ

that this method cannot reconstruct is ρ3s0,3d0 , since it does
not manifest itself in the dipolar response of the ion. To
check the consistency of this method, we compared the five
reconstructed quantities in Eqs. (27)–(30) with the same exact
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quantities computed in our ab initio simulations, finding a
perfect agreement.

Figure 7 compares the complex value of the nonvanishing
off-diagonal density-matrix elements that can be recon-
structed with this procedure, ρ3s0,3p0 , ρ3p0,3d0 , and ρ3p1,3d1 ,
as functions of the pump-probe delay, highlighted by open
circles, computed either excluding or including the N = 4
channels in the calculation. In this representation, it is possible
to appreciate a qualitative difference between the two cases
when the two pulses overlap: in the case of N = 3, ρ3s3p0

winds clockwise around the origin, whereas in the case of
N = 4, it goes around the origin counterclockwise. It would
be tempting to attribute this result to a hypothetical propensity
of the doubly excited states either below or above the N = 3
threshold to be preferentially photoionized to the 2p channel,
as it is observed for the N = 2 case [42]. Indeed, when only
resonances below N = 3 are present, since their photoioniza-
tion would entail the absorption of IR photons, they would
contribute to the 3p state with an amplitude with argument that
increases with the time delay, and in turn so would the phase
of ρ3s,3p0 . Conversely, when the N = 4 resonances are present,
they would introduce a photoionization amplitude associated
to the emission of IR photons, with decreasing phase as the
time delay increases, resulting in a counterclockwise contribu-
tion to ρ3s,3p0 . Regardless of whether this interpretation bears
any merit for the leftmost panel of Fig. 7, however, it certainly
is not sufficient to explain the other two plots. Indeed, while
ρ3p0,3d0 goes around the origin counterclockwise for both case
1 and case 2, ρ3p1,3d1 , which differs from the former only by
the m quantum number, exhibits the exact opposite behavior.
A definitive interpretation of this phenomenon is beyond the
scope of the present work, and will be the subject of future
investigations.

VI. CONCLUSION

In this work, we have extended to the N = 3 excited state
our study on the control of the He+ ion generated in attosec-
ond pump-probe spectroscopy. We have assessed the role of
the resonances above the N = 3 threshold, which converge
to the subsequent N = 4 threshold, and ascertain that they
significantly extend the range of time delays beyond which the
ionic coherence is enhanced. This phenomenon is understood
to be due to the sequential XUV + IR two-photon ampli-
tudes to the N = 3 channels with even parity, mediated by
N = 4 intermediate autoionizing states. We also describe a
generalization of the reconstruction protocol of the density-
matrix off-diagonal elements from the picosecond fluctuation
of the ionic dipole, which can in principle be measured with
microwave spectroscopy. While the reconstruction cannot be
complete, owing to the presence of coherences that do not
contribute to the expectation value of the dipole, it does al-
low to reconstruct all the coherences between opposite-parity
same-spin states. Furthermore, it is possible to use this re-
construction procedure to measure two independent ratios
between opposite-spin and same-spin coherences, namely,
ρ3s,3p̄1/ρ3s,3p0 and (

√
3ρ3p0,3d̄1

+ ρ3p̄1,3d̄0
)/ρ3p0,3d0 . A nonzero

result for these measurements would quantify the role of rela-
tivistic effects during the attosecond ionization event itself.
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APPENDIX: RECONSTRUCTION MODEL

This Appendix describes the algorithm used to reconstruct
the off-diagonal elements of the N = 3 transition density ma-
trix from the measurement of the asymptotic beating of the
ionic electric dipole moment due to the fine-structure splitting
of the N = 3 levels. To illustrate the procedure, let us consider
a positive square-integrable window function W (t ) that is van-
ishingly small at any time prior to the end of the pump-probe
sequence, such as W (t ) = φ[(t − tW 1)/σW ]φ[(tW 2 − t )/σW ],
where φ(x) = 1√

2π

∫ x

−∞ e−t2/2dt is the normal cumulative dis-
tribution function. The associated window Fourier transform
(WFT) is f̄ (ω) =

∫
dt f (t )W (t )e−iωt . The WFT of Eq. (25)

therefore becomes

μ̄(τ, ω) ∝
5∑

i=1

[ci(τ )W̃ (� j − ω) + c∗
i (τ )W̃ (� j + ω)], (A1)

where f̄ (ω) =
∫

dt f (t )e−iωt is the ordinary FT, and the first
and second terms correspond to positive and negative fre-
quency, respectively. If the duration of the window step, σW ,
and plateau, tW 2 − tW 1, are much larger than the beating period
of any two frequencies �i and � j , then Eq. (A1) exhibits
an isolated peak for each frequency ω = � j . Indeed, the FT
of the W (t ) itself is strongly localized at ω = 0. In these
conditions,

μ̄(τ,�i ) ∝ ci(τ )W̃ (0), ci(τ ) = μ̄(τ,�i )

μ̄(τ,� j )
c j (τ ), (A2)

which means that we can reconstruct the amplitude and phase
of each oscillation frequency, relative to one of them, used
as a reference. In the case of the He+ N = 2 states, these
conditions can be easily met, since all the fundamental fine-
structure frequencies that are visible in the dipole beatings are
well separated from each other.

If the aforementioned conditions are not met, such as in the
case of the N = 3 He+ states, in which at least two pairs of
frequencies are very close to each other, a different algorithm
is needed. Let us define Mi j = W̃ (�i − � j ), Ni j = W̃ (�i +
� j ), and bi = μ̄(τ,�i ), with which Eq. (A1) can be cast in
matrix form,

b = Mc + Nc
⋆, (A3)

which can be readily solved by considering separately the real
and imaginary part of each vector and matrix, A

ℜ = ℜeA,
A

ℑ = ℑeA,
[
c

ℜ

c
ℑ

]
= 2

[
(M + N )ℜ (N − M)ℑ

(M + N )ℑ (M − N )ℜ

]−1[
b

ℜ

b
ℑ

]
. (A4)

This latter equation gives the correct solution even if the
different peaks of μ̃(τ, ω) overlap.

Once the amplitude |ci(τ )| and phase arg ci(τ ) are known,
we must determine the set of density matrices that are
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compatible with these observations. For extremely simple
systems, such as He+ N = 2 states, the beating coefficients
are enough to reconstruct the phase of the density matrix
off-diagonal elements. In a more complex system, such as
the one at hand here, the reconstruction cannot be complete
because there are more off-diagonal elements than dipole-
beating modes.

The slow fluctuations caused by the relativistic interactions
can be accurately modeled taking into account that, in the fine-
structure basis for the one-electron He+ system, the energy
is diagonal. We call LS the one-electron basis |L, S, M, �〉,
in which the orbital and intrinsic angular momenta are un-
coupled, and f s the basis of the fine-structure states, |�〉 =
|LS〉U, H |�〉 = |�〉E, where Ei j = Eiδi j is a diagonal matrix
with the energy of the fine-structure states on the diagonal,
and U is a unitary matrix whose elements are Clebsh-Gordan
coefficients. The density matrix in the LS basis, then, has the
simple time dependence

ρLS (τ, t ) = Ue−iEtρ f s(τ, 0)eiEt U†, (A5)

where ρ f s(τ, 0) is the representation of the density matrix in
the fine-structure basis. As a consequence, the dipole moment
can be written as

μ(τ, t ) = tr[Ue−iEtρ f s(τ, 0)eiEt U†μLS], (A6)

or, using the cyclic property of the trace, as

μ(τ, t ) = tr[ρLS (τ, 0)UeiEt U†μLSUe−iEt U†] (A7)

Let us call Pa the projector on the fine-structure state a in
the LS basis, [Pa]i j = UiaU∗

ja, and let us introduce the matrix

�ab = Paμ
LSPb, where a and b are indices of spin-coupled

states. Equation (A7) can be expressed as

μ(τ, t ) =
∑

ab

tr[ρLS (τ, 0) �ab] eiωabt , (A8)

where ωab = Ea − Eb. Following the procedure describe
above from Eqs. (25)–(A4), we can extract the complex co-
efficients zab of terms in (A8),

tr[ρLS (τ, 0) �ab] = zab(τ ). (A9)

We can regard (A9) as a system of linear equations for the
unknowns ρLS (τ, 0), where �ab is known analytically and
zab is measured experimentally. Since the dipole moment is
sensitive only to coherences between states with opposite
parity, it is clear that some of the matrix elements of ρ are not
constrained by (A9). In particular, none of the diagonal terms
are. To solve (A9) systematically, let us express the density
matrix as

ρ =
∑

i

I
iiρii +

∑

i< j

[
(Ii j + I

ji )ρℜ
i j + i(Ii j − I

ji )ρℑ
i j

]
(A10)

where (Ii j )kl = δikδ jl , ρℜ
i j = ℜe(ρi j ), and ρℑ

i j = ℑm(ρi j ), and
the indices i and j correspond the LS states, in which spin and
orbital angular momenta are not coupled. By replacing (A10)
into (A8), we obtain

zab =
∑

i< j

′
tr[(Ii j + I

ji )�ab] ρℜ
i j + i

∑

i< j

′
tr[(Ii j − I

ji )�ab]ρℑ
i j,

(A11)

where we used the fact that tr[Iii�ab] = 0, and the prime in
the summation indicates that we skip over pairs of states i

and j that have the same parity. To avoid redundancy, we can
assume that a is an even state and b is odd (only states with
opposite parity beat with each other). It is also convenient to
order the LS basis such that the even states precede the odd
ones. If i and j have even and odd parity, respectively, then
the trace tr[I ji�ab] = 0. Therefore, we can rewrite (A11) as

zab =
e∑

i

o∑

j

tr[Ii j�ab] ρi j . (A12)

The relation has now been cast in the form of a linear
system for the complex upper-diagonal components of the
density matrix between opposite-parity states. Let us define
the superindexes I = (i, j) and A = (a, b), and introduce the
notation MAI = tr[Ii j�ab] and ρI = ρi j (τ, t = 0) and zA =
zab. The system (A12) then becomes

Mρ = z (A13)

The matrix M is rectangular with five rows and six columns.
Since M has more columns than rows, the general solution ρ

can only be written up to an arbitrary solution of the associated
homogeneous system, Aρh = 0,

ρ = ρp + ρh, (A14)

where ρp is a particular solution. To determine the particular
solution and the linear space of homogeneous solutions, we
can solve the problem

M†Mρ = M†z, (A15)

where S = M†M is a positive definite, symmetric real matrix
with a rank smaller than its dimension. S and M have the same
null space, which is spanned by the NK eigenvectors of S, UK,
with eigenvalue zero. We can search for a particular solution
of (A13) in the range of S, UR, orthogonal to the null space,
U†

R
UK = 0, which has size NR = N − NK,

ρp = URc. (A16)

This expression leads to the following equation for the set of
coefficients c:

U†
RMURc = U†

Rz, (A17)

which is readily solved,

c = [U†
RMUR]−1U†

Rz. (A18)

To summarize, the general solution to (A13) is

ρ(α) = UR[U†
RMUR]−1U†

Rz + UKα, (A19)

where α = (α1, α2, . . . , αNK
)t is a vector of arbitrary complex

numbers, with the same dimension as the null space.

033103-11



MEHMOOD, LINDROTH, AND ARGENTI PHYSICAL REVIEW A 107, 033103 (2023)

[1] F. Krausz and M. Ivanov, Attosecond physics, Rev. Mod. Phys.
81, 163 (2009).

[2] R. Pazourek, S. Nagele, and J. Burgdörfer, Attosecond
chronoscopy of photoemission, Rev. Mod. Phys. 87, 765
(2015).

[3] F. Calegari, G. Sansone, S. Stagira, C. Vozzi, and M. Nisoli,
Advances in attosecond science, J. Phys. B: At. Mol. Opt. Phys.
49, 062001 (2016).

[4] F. Lépine, G. Sansone, and M. J. J. Vrakking, Molecular ap-
plications of attosecond laser pulses, Chem. Phys. Lett. 578, 1
(2013).

[5] F. Lépine, M. Y. Ivanov, and M. J. J. Vrakking, Attosecond
molecular dynamics: Fact or fiction? Nat. Photonics 8, 195
(2014).

[6] S. R. Leone, C. W. McCurdy, J. Burgdörfer, L. S. Cederbaum,
Z. Chang, N. Dudovich, J. Feist, C. H. Greene, M. Y. Ivanov,
R. Kienberger, U. Keller, M. F. Kling, Z.-H. Loh, T. Pfeifer,
A. N. Pfeiffer, R. Santra, K. J. Schafer, A. Stolow, U. Thumm,
and M. J. J. Vrakking, What will it take to observe processes in
“real time”? Nat. Photonics 8, 162 (2014).

[7] S. R. Leone and D. M. Neumark, Attosecond science in atomic,
molecular, and condensed matter physics, Faraday Discuss.
194, 15 (2016).

[8] M. Nisoli, P. Decleva, F. Calegari, A. Palacios, and F. Martín,
Attosecond electron dynamics in molecules, Chem. Rev. 117,
10760 (2017).

[9] G. Sansone, T. Pfeifer, K. Simeonidis, and A. I. Kuleff, Electron
correlation in real time, Chem. Phys. Chem. 13, 661 (2012).

[10] S. R. Leone and D. M. Neumark, Probing matter with nonlinear
spectroscopy, Science 379, 536 (2023).

[11] M. F. Ciappina, J. A. Pérez-Hernández, A. S. Landsman, W. A.
Okell, S. Zherebtsov, B. Förg, J. Schötz, L. Seiffert, T. Fennel,
T. Shaaran, T. Zimmermann, A. Chacón, R. Guichard, A. Zaïr,
J. W. G. Tisch, J. P. Marangos, T. Witting, A. Braun, S. A.
Maier, L. Roso et al., Attosecond physics at the nanoscale, Rep.
Prog. Phys. 80, 054401 (2017).

[12] P. Dombi, Z. Pápa, J. Vogelsang, S. V. Yalunin, M.
Sivis, G. Herink, S. Schäfer, P. Groß, C. Ropers, and C.
Lienau, Strong-field nano-optics, Rev. Mod. Phys. 92, 025003
(2020).

[13] S. Haessler, J. Caillat, W. Boutu, C. Giovanetti-Teixeira, T.
Ruchon, T. Auguste, Z. Diveki, P. Breger, A. Maquet, B. Carré,
R. Taïeb, and P. Salières, Attosecond imaging of molecular
electronic wavepackets, Nat. Phys. 6, 200 (2010).

[14] E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J.
Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T.
Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, Single-
cycle nonlinear optics, Science 320, 1614 (2008).

[15] J. Itatani, F. Quéré, G. L. Yudin, M. Y. Ivanov, F. Krausz, and
P. B. Corkum, Attosecond Streak Camera, Phys. Rev. Lett. 88,
173903 (2002).

[16] G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R.
Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S.
Stagira, S. De Silvestri, and M. Nisoli, Isolated single-cycle
attosecond pulses, Science 314, 443 (2006).

[17] A. L. Cavalieri, N. Müller, T. Uphues, V. S. Yakovlev, A.
Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth,
S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique,
R. Kienberger, F. Krausz, and U. Heinzmann, Attosecond

spectroscopy in condensed matter, Nature (London) 449, 1029
(2007).

[18] S. Pabst, M. Lein, and H. J. Wörner, Preparing attosecond
coherences by strong-field ionization, Phys. Rev. A 93, 023412
(2016).

[19] C. Bourassin-Bouchet, L. Barreau, V. Gruson, J.-F. Hergott, F.
Quéré, P. Salières, and T. Ruchon, Quantifying Decoherence in
Attosecond Metrology, Phys. Rev. X 10, 031048 (2020).

[20] S. Mehmood, E. Lindroth, and L. Argenti, Coherence control in
helium-ion ensembles, Phys. Rev. Res. 3, 023233 (2021).

[21] M. Ossiander, F. Siegrist, V. Shirvanyan, R. Pazourek, A.
Sommer, T. Latka, A. Guggenmos, S. Nagele, J. Feist, J.
Burgdörfer, R. Kienberger, and M. Schultze, Attosecond cor-
relation dynamics, Nat. Phys. 13, 280 (2017).

[22] E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, N. Rohringer,
V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F.
Kling, S. R. Leone, and F. Krausz, Real-time observation of
valence electron motion, Nature (London) 466, 739 (2010).

[23] R. Guillemin, P. Decleva, M. Stener, C. Bomme, T. Marin, L.
Journel, T. Marchenko, R. K. Kushawaha, K. Jänkälä, N. Trcera,
K. P. Bowen, D. W. Lindle, M. N. Piancastelli, and M. Simon,
Selecting core-hole localization or delocalization in CS2 by
photofragmentation dynamics, Nat. Commun. 6, 6166 (2015).

[24] M. Shapiro, Generating and controlling chains of entangled
atoms by coherent control techniques, Phys. Rev. A 84, 053432
(2011).

[25] L. Argenti and E. Lindroth, Ionization Branching Ratio Con-
trol with a Resonance Attosecond Clock, Phys. Rev. Lett. 105,
053002 (2010).

[26] V. Gruson, L. Barreau, Á. Jiménez-Galan, F. Risoud, J. Caillat,
A. Maquet, B. Carré, F. Lepetit, J.-F. Hergott, T. Ruchon, L.
Argenti, R. Taïeb, F. Martín, and P. Salières, Attosecond dy-
namics through a Fano resonance: Monitoring the birth of a
photoelectron, Science 354, 734 (2016).

[27] E. Lindroth and L. Argenti, Atomic resonance states and their
role in charge-changing processes, in Advances in Quantum

Chemistry, edited by C. A. Nicolaides, E. Brändas, and J. R.
Sabin (Academic Press, New York, 2012), Vol. 63, Chap. 5,
pp. 247–308.

[28] A. Jiménez-Galán, L. Argenti, and F. Martín, Modulation of
Attosecond Beating in Resonant Two-Photon Ionization, Phys.
Rev. Lett. 113, 263001 (2014).

[29] M. Kotur, D. Guénot, Á. Jiménez-Galán, D. Kroon, E. W.
Larsen, M. Louisy, S. Bengtsson, M. Miranda, J. Mauritsson,
C. L. Arnold, S. E. Canton, M. Gisselbrecht, T. Carette, J. M.
Dahlström, E. Lindroth, A. Maquet, L. Argenti, F. Martín, and
A. L’Huillier, Spectral phase measurement of a Fano reso-
nance using tunable attosecond pulses, Nat. Commun. 7, 10566
(2016).

[30] C. Ott, A. Kaldun, L. Argenti, P. Raith, K. Meyer, M. Laux,
Y. Zhang, A. Blättermann, S. Hagstotz, T. Ding, R. Heck,
J. Madroñero, F. Martín, and T. Pfeifer, Reconstruction and
control of a time-dependent two-electron wave packet, Nature
(London) 516, 374 (2014).

[31] M. Nagasono, E. Suljoti, A. Pietzsch, F. Hennies, M. Wellhöfer,
J.-T. Hoeft, M. Martins, W. Wurth, R. Treusch, J. Feldhaus, J. R.
Schneider, and A. Föhlisch, Resonant two-photon absorption
of extreme-ultraviolet free-electron-laser radiation in helium,
Phys. Rev. A 75, 051406(R) (2007).

033103-12



IONIC COHERENCE IN RESONANT ABOVE-THRESHOLD … PHYSICAL REVIEW A 107, 033103 (2023)

[32] K. Hütten, M. Mittermair, S. O. Stock, R. Beerwerth, V.
Shirvanyan, J. Riemensberger, A. Duensing, R. Heider, M. S.
Wagner, A. Guggenmos, S. Fritzsche, N. M. Kabachnik, R.
Kienberger, and B. Bernhardt, Ultrafast quantum control of
ionization dynamics in krypton, Nat. Commun. 9, 719 (2018).

[33] A. Föhlisch, P. Feulner, F. Hennies, A. Fink, D. Menzel, D.
Sanchez-Portal, P. M. Echenique, and W. Wurth, Direct obser-
vation of electron dynamics in the attosecond domain, Nature
(London) 436, 373 (2005).

[34] G. Sansone, F. Kelkensberg, J. F. Pérez-Torres, F. Morales,
M. F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda,
E. Benedetti, F. Ferrari, F. Lépine, J. L. Sanz-Vicario, S.
Zherebtsov, I. Znakovskaya, A. L’Huillier, M. Y. Ivanov, M.
Nisoli, F. Martín, and M. J. J. Vrakking, Electron localiza-
tion following attosecond molecular photoionization, Nature
(London) 465, 763 (2010).

[35] F. Martin, J. Fernandez, T. Havermeier, L. Foucar, T. Weber,
K. Kreidi, M. Schoffler, L. Schmidt, T. Jahnke, O. Jagutzki, A.
Czasch, E. P. Benis, T. Osipov, A. L. Landers, A. Belkacem,
M. H. Prior, H. Schmidt-Bocking, C. L. Cocke, and R. Dorner,
Single photon-induced symmetry breaking of H2 dissociation,
Science 315, 629 (2007).

[36] B. Doughty, L. H. Haber, C. Hackett, and S. R. Leone, Pho-
toelectron angular distributions from autoionizing 4s14p66p1

states in atomic krypton probed with femtosecond time reso-
lution, J. Chem. Phys. 134, 094307 (2011).

[37] M. Wickenhauser, J. Burgdörfer, F. Krausz, and M. Drescher,
Attosecond streaking of overlapping Fano resonances, J. Mod.
Opt. 53, 247 (2006).

[38] C. Cirelli, C. Marante, S. Heuser, C. L. M. Petersson, Á.
Jiménez-Galán, L. Argenti, S. Zhong, D. Busto, M. Isinger,
S. Nandi, S. Maclot, L. Rading, P. Johnsson, M. Gisselbrecht,
M. Lucchini, L. Gallmann, J. M. Dahlström, E. Lindroth, A.
L’Huillier, F. Martín et al., Anisotropic photoemission time
delays close to a Fano resonance, Nat. Commun. 9, 955 (2018).

[39] G. Drake, Springer Handbook of Atomic, Molecular, and Optical

Physics (Springer, New York, 2006).
[40] L. Argenti and R. Moccia, K-matrix method with B-splines:

σN , βN and resonances in He photoionization below N = 4
threshold, J. Phys. B: At. Mol. Opt. Phys. 39, 2773 (2006).

[41] T. Carette, J. M. Dahlström, L. Argenti, and E. Lindroth,
Multiconfigurational Hartree-Fock close-coupling ansatz: Ap-
plication to the argon photoionization cross section and delays,
Phys. Rev. A 87, 023420 (2013).

[42] L. Argenti and E. Lindroth, arXiv:2105.10847 (2021).
[43] N. Harkema, C. Cariker, E. Lindroth, L. Argenti, and A.

Sandhu, Autoionizing Polaritons in Attosecond Atomic Ioniza-
tion, Phys. Rev. Lett. 127, 023202 (2021).

[44] L. Argenti, A. Jiménez-Galán, C. Marante, C. Ott, T. Pfeifer,
and F. Martín, Dressing effects in the attosecond transient ab-
sorption spectra of doubly excited states in helium, Phys. Rev.
A 91, 061403(R) (2015).

[45] D. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quan-

tum theory of angular momentum (World Scientific, Singapore,
1989), p. 514.

[46] P. J. Mohr, D. B. Newell, and B. N. Taylor, Codata recom-
mended values of the fundamental physical constants: 2014,
Rev. Mod. Phys. 88, 035009 (2016).

[47] C. de Boor, A Practical Guide to Splines (Springer, New York,
1978).

[48] H. Bachau, E. Cormier, P. Decleva, J. E. Hansen, and F. Martín,
Applications of B-splines in atomic and molecular physics,
Rep. Prog. Phys. 64, 1815 (2001).

[49] J.-M. Rost, K. Schulz, M. Domke, and G. Kaindl, Resonance
parameters of photo doubly excited helium, J. Phys. B: At. Mol.
Opt. Phys. 30, 4663 (1997).

[50] A. Bürgers, D. Wintgen, J. M. Rost, A. Burgers, and J. M. Rest,
Highly doubly excited S states of the helium atom, J. Phys. B:
At. Mol. Opt. Phys. 28, 3163 (1995).

[51] P. Jönsson, X. He, C. Froese Fischer, and I. P. Grant, The
grasp2K relativistic atomic structure package, Comput. Phys.
Commun. 177, 597 (2007).

[52] D. P. Carroll and R. M. Metzger, Piecewise polynomial config-
uration interaction natural orbital study of 1s2 helium, J. Chem.
Phys. 71, 4142 (1979).

[53] J. Sakurai and J. Napolitano, Modern Quantum Mechanics

(Cambridge University Press, Cambridge, 2017).
[54] S. Blanes, F. Casas, J. Oteo, and J. Ros, The magnus expansion

and some of its applications, Phys. Rep. 470, 151 (2009).
[55] L. Argenti, R. Pazourek, J. Feist, S. Nagele, M. Liertzer, E.

Persson, J. Burgdörfer, and E. Lindroth, Photoionization of he-
lium by attosecond pulses: Extraction of spectra from correlated
wave functions, Phys. Rev. A 87, 053405 (2013).

[56] L. Argenti and R. Moccia, He photoionization: βN and σN below
N = 5 and 6 thresholds, Theor. Chem. Acc. 118, 485 (2007).

[57] U. Fano, Description of states in quantum mechanics by den-
sity matrix and operator techniques, Rev. Mod. Phys. 29, 74
(1957).

[58] S. Pabst, L. Greenman, P. J. Ho, D. A. Mazziotti, and R. Santra,
Decoherence in Attosecond Photoionization, Phys. Rev. Lett.
106, 053003 (2011).

[59] J. W. Cooper, U. Fano, and F. Prats, Classification of Two-
Electron Excitation Levels of Helium, Phys. Rev. Lett. 10, 518
(1963).

[60] D. R. Herrick, Resonance-channel quantum numbers in
electron-hydrogen and proton-hydrogen scattering from group
theory of the long-range dipole interaction, Phys. Rev. A 12,
413 (1975).

[61] C. D. Lin, Correlations of excited electrons. The study of
channels in hyperspherical coordinates, Phys. Rev. A 10, 1986
(1974).

[62] S. Watanabe and C. D. Lin, Demonstration of moleculelike
modes of doubly excited states in hyperspherical coordinates,
Phys. Rev. A 34, 823 (1986).

[63] J. M. Rost and J. S. Briggs, Diabatic molecular description of
symmetric doubly excited atomic states, J. Phys. B: At. Mol.
Opt. Phys. 21, L233 (1988).

[64] H. A. Bethe and E. E. Salpeter, Atoms in external fields,
in Quantum Mechanics of One- and Two-Electron Atoms

(Springer-Verlag, Berlin, 1957), pp. 205–248.

033103-13


