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Abstract—Function as a Service (FaaS) paradigm is becoming
widespread and is envisioned as the next generation of cloud
computing systems that mitigate the burden for programmers
and cloud solution architects. However, the FaaS abstraction only
makes the cloud resource management aspects transparent but
does not deal with the application data aspects. As such, devel-
opers have to intervene and undergo the burden of managing
the application data, often via separate cloud services (e.g., AWS
S3). Similarly, the FaaS abstraction does not natively support
function workflow, hence, the developers often have to work
with workflow orchestration services (e.g., AWS Step Functions)
to build workflows. Moreover, they have to explicitly navigate
the data throughout the workflow. To overcome these inherent
problems of FaaS, our hypothesis is to design a higher-level
cloud programming abstraction that can hide the complexities
and mitigate the burden of developing cloud-native application
development. Accordingly, in this research, we borrow the notion
of object from object-oriented programming and propose a
new abstraction level atop the function abstraction, known as
Object as a Service (OaaS). OaaS encapsulates the application
data and function into the object abstraction and relieves the
developers from resource and data management burdens. It also
unlocks opportunities for built-in optimization features, such as
software reusability, data locality, and caching. OaaS natively
supports dataflow programming such that developers define a
workflow of functions transparently without getting involved in
data navigation, synchronization, and parallelism aspects. We
implemented a prototype of the OaaS platform and evaluated
it under real-world settings against state-of-the-art platforms
regarding the imposed overhead, scalability, and ease of use. The
results demonstrate that OaaS streamlines cloud programming
and offers scalability with an insignificant overhead to the
underlying cloud system.

Index Terms—FaaS, Serverless paradigm, Cloud computing,
Cloud-native programming, Abstraction.

I. INTRODUCTION

A. FaaS and Its Problems

Function-as-a-Service (FaaS) paradigm is getting

widespread and is envisioned as the next generation of

cloud computing systems [27] that mitigates the burden for

both programmers and cloud solution architects. Major public

cloud providers offer FaaS services, and several open-source

platforms for on-premise FaaS deployments are emerging

too. FaaS offers the function abstraction that allows users to

develop their business logic and invoke it via a predefined

trigger. In the back end, the serverless platform hides the

complexity of resource management details and deploys the

function in a seamless and scalable manner. In particular, the

platform enables FaaS to be truly pay-as-you-go via scale-to-

zero and charging the user only upon a function invocation.

FaaS is proven to reduce development and operation costs,

thus, is in alignment with modern software development

paradigms, such as CI/CD and DevOps [8].

As the FaaS paradigm is primarily centered around the

notion of stateless functions, it naturally does not deal with the

data. Thus, the developers have to intervene and undergo the

burden of managing the application data using separate cloud

services (e.g., AWS DynamoDB [6] and AWS S3 [5]). That is,

although FaaS makes the resource management details (e.g.,

load balancing and scaling) transparent from the developer’s

perspective, it does not do so for the data. Even though

stateless functions make the system scalable and manageable,

the state still exists in the external data store, and the developer

must intervene to connect the running service to the data store.

For instance, in a video streaming application, in addition to

developing the functions, the developer has to maintain the

video files, their metadata, and manage the access to them.

Apart from the data management aspect, current FaaS

systems do not offer any built-in semantics to limit access

to the internal (a.k.a. private) mechanics of the functions.

Nevertheless, providing unrestricted access to the developer

team has known side effects, such as function invocation in

an unintended context and data corruption via direct data

manipulation. To overcome such side-effects, developers again

need to intervene and undergo the burden of configuring

external services (e.g., AWS IAM [2] and API gateway [1])

to enable access control.

Last but not least, current FaaS abstractions do not natively

support function workflows. To pipeline functions and form a

workflow, for each function, the developer has to generate an

event that triggers another function in the workflow. However,

for large workflows, configuring and managing the chain of

events become complex and add a burden to the developer.

Although function orchestrator services (e.g., AWS Step Func-

tion [4] and Azure Durable Function [10]) can be employed

to mitigate this burden for the developers, the lack of data

management in FaaS forces the developer to intervene and

employ other cloud services to navigate the data throughout

the workflow manually.

B. Our Motivation and Proposed Solution

To overcome these inherent problems of FaaS, we propose

a new paradigm on top of the function abstraction that not
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only mitigates the burden of resource management but also

mitigates the burden of data management from the developer’s

perspective. We borrow the notion of “object” from the object-
oriented programming, and develop a new abstraction level
within the serverless paradigm, known as Object as a Service
(OaaS). Incorporating the application data into the object

abstraction unlocks opportunities for built-in optimization

features, such as data locality, data reliability, caching, and

software reusability [16]. Moreover, objects in OaaS offer

developers encapsulation and abstraction benefits in addition

to the ability to transparently define workflows of functions

(a.k.a. dataflow programming [43]) in the cloud.
Our motivation in this study is a cloud-based video stream-

ing system [15], [37] that needs developers to implement new

streaming services for the available video content rapidly. A

few examples of such services are: Generating multilingual

subtitles for safety-related videos; Removing harmful and

illicit content from child-safe videos, And developing a face

detection service on the surveillance videos. Implementing

these services using FaaS entails dealing with the data (i.e.,

videos), in addition to developing the business logic. In this

scenario, the OaaS paradigm can mitigate the developer’s job

by offering the encapsulation semantic. The video is defined

as object that contains its state and is bound to a set of

functions that can be called by the viewer’s application and

potentially change the object (video) state. For instance, the

request to generate Chinese subtitles for a video object invokes

subtitle(chinese) function of that particular object.
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Fig. 1: A bird-eye view of FaaS vs. OaaS. In FaaS, the developer
must implement the application logic and the state management in
the form of function(s) interacting with the developer-provisioned
storage. In OaaS, the developer only develops the application logic
and deploys it as an object with builtin state management.

As we can see in Figure 1, unlike FaaS, OaaS segre-

gates the state management from the developer’s source code

and incorporates it into the serverless platform to make it

transparent from the developer’s perspective. In this case,

the object’s function only includes the business logic, and

upon invocation, the OaaS platform executes the function and

then manages the object state (via API calls). In addition

to enabling encapsulation of the function and the state to

form the object abstraction, the OaaS platform offers features

including: macro functions to objects that facilitate dataflow

programming; and templates (analogous to the notion of class
in OOP) to developers that simplify defining properties and

functions of the object(s). We note that object abstraction

is not a replacement for FaaS. Instead, it is a complement

for it. There are use cases that are naturally stateless (e.g.,

mathematical functions), and FaaS is the appropriate solution.

C. Challenges and Contributions

The first and foremost challenge that has to be addressed

for OaaS is how to offer the object abstraction as a new

cloud-native programming paradigm? Addressing this chal-

lenge entails dealing with other problems: (a) How to en-

able encapsulation of data and functions at the cloud level

such that the internal mechanics of the object is hidden and

only the necessary functionalities are exposed? (b) How to

handle workflow functions that potentially include multiple

other function calls and seamlessly manage data navigation

throughout these functions? (c) How to define and handle high-

level objects that are composed of other objects?

Although enabling the OaaS paradigm is advantageous, it is

not free of charge. The challenge is that developing the OaaS

platform on top of FaaS entails unavoidable overheads. This is

because moving the data between OaaS components increases

the overhead of function invocation. This is particularly im-

portant for unstructured (binary) data that is usually persisted

on a different type of cloud storage, such as object storage. In

fact, the second challenge is how to design the OaaS platform

such that the overhead is minimal and tractable? The third
challenge is the scalability of the object access. Specifically,

concurrent accesses to an object can lead to the race condition

on the state and must be controlled to avoid data inconsistency.

Synchronization mechanisms to order the invocations can pro-

tect the state. However, they cause a bottleneck and downgrade

the scalability of the OaaS platform.

For the first challenge, OaaS offers an interface for de-

velopers to declare the behavior of objects in the form of

class and function. This interface also includes native

(built-in) workflow semantics and access modifiers to enable

encapsulation over objects. In workflow management, OaaS

instead offers it based on the dataflow semantics that hides

the detail of synchronization via defining the flow of data. The

dataflow is registered as a function and can be called in the

same way as any function. Thus, it hides the implementation

details from other developers and users. Additionally, the

object can have the references linked to other objects and

form the dataflow function on top of them. This object is

exposed as a high-level object and hides the detail of a low-

level object, which can be achieved by declaring the access

modifiers. Therefore, OaaS will reject any function calls or

dataflow declarations that involve invalid access.

To address the second challenge, in our initial experiments,

we realized that the overhead of the OaaS platform is mainly

due to the latency of accessing the object state. To reduce

the overhead, we develop a data tiering mechanism within

the OaaS platform that diminishes the latency of accessing

the object. The tiering mechanism uses a key-value database

to store the object specifications (a.k.a. metadata) that are

accessed frequently, in addition to an in-memory caching to
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accelerate accessing the infrequently-updated but frequently-

accessed metadata (e.g., class and function specifications).

OaaS also reduces unnecessary data movements within the

platform via employing a redirection mechanism instead of

relaying (transferring) the object state.

To address the third challenge and keep the object scalability

in check, we design the OaaS based on the microservices

architecture with the minimum contention between the self-

contained services. OaaS also minimizes object state syn-

chronization by implementing the immutable data processing

model. That is, upon invoking an object function, the platform

outputs a new/updated state instead of updating the existing

one. Implementing this semantic makes the function perform

a stateless operation and keep the state consistent without

synchronization, thereby appearing stateful at a high level.

In sum, this research proposes the OaaS paradigm that

extends FaaS to offer object abstraction to cloud developers.

The OaaS platform provides stateful objects with minimal

overhead while maintaining serverless characteristics. The key

contributions of this research are as follows:

1) Developing the OaaS paradigm to hide data and resource

management complexity from the user’s view.

2) Implementing a working prototype of the OaaS platform
1 that can support both structured and unstructured states.

3) Devising mechanisms based on data tiering and caching

and object immutability to minimize the imposed over-

head of OaaS and improve its scalability.

4) Analyzing the performance of OaaS from the scalability,

overhead, and ease-of-use perspectives.

In the rest of this paper, Section II reviews the state of

the art in the serverless paradigm. Section III discusses the

conceptual design and the architecture of OaaS. Section V

evaluates the overhead, scalability, and development efficiency

of OaaS. Finally, we conclude this paper in Section VI.

II. BACKGROUND AND PRIOR STUDIES

The FaaS paradigm allows the developer to implement the

application as a set of independent functions transparently

provisioned in isolation on the cloud infrastructure. FaaS is

offered by public cloud providers (e.g., AWS Lambda [3],

Azure Function [39], Google Function [12]). FaaS can also

be self-hosted via open-source platforms (e.g., OpenFaaS

[19], and OpenWhisk [21]). FaaS invokes the function upon

receiving the event that matches its predefined trigger(s).

A variant of FaaS, Container as a Service (CaaS) [29], does

not offer the function development framework. Instead, the

user must provide the already-containerized function. Kuber-

netes [13] is a widely-used platform that automates container

provisioning and manages the life cycle of containerized ser-

vices. Knative [23] complements Kubernetes by enabling CaaS

and is composed of two main components: Knative Serving,

and Knative Eventing. The former enables the auto-scaling,

scale to zero, and minimal configuration of the containerized

1The OaaS source code is available here: https://github.com/hpcclab/OaaS
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Fig. 2: The illustrated comparison of three different models of
stateful serverless.
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Function
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platform
services
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Complexity high depend on impl. low

Data locality high depend on impl. low

Unstructured
data support difficult yes yes

Deployment
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actor
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function)

function function

Maintain-
ability low high high

Solutions
Kalix [30],

Azure Entity
Func. [40]

Cloudburst [44],
FAASM [42],
Apiary [36],

OaaS

Kalix [30]
eigr [18],

Statefun [7],
OaaS

TABLE I: Comparing properties of various design patterns to build
a stateful serverless platform.

services. The latter enables pipelining and routing events to

streamline developing event-driven applications.

The idea of stateful serverless is explored in several research

works (e.g., [9], [38], [46]). As noted in Figure 2 and Table I,

these works can be categorized into actor model, datastore
abstraction, and pure function approaches depending on where

the platform stores the state data and how the function accesses

the data. According to Figure 2, the actor model places the

state inside the worker instance to achieve the data locality.

In the pure function, the state is placed on other services

(e.g., database) and is transferred to the worker instance upon

invocation. Hence, the state appears as part of the function

input argument, and the modified state appears as its output.

Thus, the function is still stateless while exhibiting stateful

features. Lastly, the datastore abstraction is a hybrid approach

where the platform provides the API for the function to access

the data on demand. Depending on the design, the state can

be stored in the database but can be cached in the worker too.

According to Table I, the actor model serverless platform

needs to maintain the availability of each actor where both data

and compute reside. Maintainability is particularly difficult

for bulky unstructured data because the platform needs to

balance the computing and storage utilization on each node. In

addition, the platform has to support a routing mechanism to

navigate a function call to the actor’s location. Alternatively,

the pure function approach disaggregates the state manage-

ment and compute (function) for the sake of system design
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simplicity. However, it compromises the data locality aspect.

Similar to pure functions, datastore abstraction also relaxes

the need to store the state on the worker node. Regardless,

it utilizes caching techniques to preserve data locality. The

deployment granularity of the actor model approach is an actor

with multiple functions that share the same state, whereas the

granularity in other approaches is a single function.

The actor model approach has been popular in program-

ming languages and OOP because it spurs asynchronous

messaging across actors, and it lends itself to distributed

deployments. That is why it has been an attractive choice for

stateful serverless platforms, even though it poorly supports

unstructured data. Kalix [30] and Azure Entity Functions [40],

which are part of Azure durable functions, are example

platforms implemented based on the actor model approach.

The serverless platforms based on datastore abstraction are

mostly popular in the research area. Cloudburst [44] offers

stateful functions using a shared distributed key-value database

to keep track of the state. FAASM [42] optimizes the function-

state interaction overhead via employing web assembly [26]

instead of containers [25], [41] for function isolation. Even

though web assembly enables multiple functions to share the

memory and achieve data locality, it implies compiling the

code into web assembly, which limits the usage of operating

system APIs. Apache Flink Stateful Function (StateFun) [7],

eigr [18], and Kalix [30] are solutions based on the pure

function approach. StateFun is built atop Apache Flink, which

is based on the actor model. However, it offloads the function

code to a dedicated node, thus, is categorized under the pure

function approach.

As OaaS intends to support both unstructured and struc-

tured state data efficiently, we chose to develop it based

on the pure function approach. However, for unstructured

data, OaaS allows the function to fetch the state on demand,

as opposed to including it as an input argument. Hence,

OaaS is practically between the pure function and datastore

abstraction approaches. Furthermore, OaaS supports the notion

of object that is beyond only stateful functions and provides

abstraction, encapsulation, inheritance, dataflow programming,

and polymorphism within the serverless paradigm.

Cherrier et al. [11] used the notion of Object as a Service to

establish Services Oriented Computing in the context of IoT.

They model the IoT system using objects where sensors are

data-gathering objects and actions (functions) are the actuators.

This differs from our OaaS that borrows the notion of object

from OOP to establish the object abstraction in serverless.

III. OBJECT AS A SERVICE (OAAS) PARADIGM

A. Design Goals

To accomplish the goal of providing a high-level abstraction

for cloud developers, OaaS should fulfill five objectives:

First, developing the concept of object in OaaS that can pro-

vide abstraction and encapsulation across data and functions in

the cloud. Moreover, developing the notion of class to define

a group of objects with the same characteristics. For instance,

using the notion of class, a video stream provider who is

developing an application for disabled viewers [15] can define

the accessible_videos class and assign all the accessibility

functions to it (e.g., gen_subtitle(lang) for deaf viewers;

and inc_contrast() for color-blind users). Without the no-

tion of class, the developer has to assign functions to each

individual video, which is tedious and error-prone, whereas

using class, several videos are defined as the object instances

of the class. That is, the notion of class provides a “type”

for a set of objects that are otherwise untyped. Furthermore,

class enables the notion of access modifier for each function,

thereby realizing encapsulation and access control for them.

Second, OaaS needs to provide transparency in the ob-

ject state management and workflow defining. Fulfilling this

objective realizes the notion of dataflow programming [43]

that allows developers to define a workflow without getting

involved in the concurrency and synchronization complexities.

To allow the developer to access an object in the workflow

without the knowledge of its status (i.e., whether or not the

object is instantiated in the workflow), the OaaS platform

exposes the object access interface (OAI) that enables the

developer to invoke a function, request the object state, or

both in a single request. For instance, while the first user is

invoking the inc_contrast() function for video1 and the

new object (video2) is being created in the output, the second

user can invoke the gen_subtitle(CN) function on video2,

and OaaS handles the ordering of invocations transparently.

Third, OaaS must efficiently support both structured (e.g.,

JSON) and unstructured state data (e.g., video contents) for the

objects to make them usable for a wide range of applications.

Fourth, to maximize the extensibility via employing the

pure function model that separates the control plane from

the execution plane. This enables OaaS to be extensible and

can accommodate various types of execution planes optimized

for the requirements of different use cases, e.g., supporting

latency-constrained function calls.

Fifth, to accomplish robustness, OaaS must be designed

with modularity and scalability in mind. To that end, OaaS

is developed as a set of loosely-coupled services on top of the

Knative serverless system. Each OaaS component is stateless

and preserves the state on a scalable distributed database.

B. Conceptual Modeling of OaaS

In OaaS, an object is defined as an immutable entity with a

state (i.e., data) that is associated with one or more functions.

The state is, in fact, the application data that can be in a

structured or unstructured form. Upon calling a function, a

task is created that can take action on the state. A function

can have one or more objects as its input. However, it cannot

modify them. Each object is instantiated from a class and is

bound to the set of functions and state(s) declared in that class.

To enable higher-level abstractions for the users or develop-

ers, the OaaS platform allows combining (nesting) objects into

one. The high-level object holds a reference to the lower-level

object(s), and the invoked function can leverage the reference

to fetch the lower-level object as the input. Moreover, it is

possible that the high-level object implements a new function
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(called macro function) and invokes a chain of functions

from the lower-level objects. This resembles configuring a

workflow in conventional FaaS systems. The major difference

between macro functions and function workflows is that macro

functions introduce the flow of execution via the flow of data

(transferring state) rather than the invocation order. Given the

dataflow semantic and immutable nature of the objects, the

execution flow in a macro function is determined by the flow

of data, and the developers only need to introduce the flow.

Then, in the background, OaaS takes care of the concurrency

and synchronization and guarantees state consistency.

Listing 1: An example script that declares a class, named test1,
and a function for it, named concat, in the YAML format.

1 classes:
2 - name: test1
3 stateSpec:
4 provider: s3
5 keySpecs:
6 - name: str
7 functions:
8 - access: PUBLIC
9 function: concat

10 functions:
11 - name: concat
12 type: TASK
13 outputClass: test1
14 provision:
15 knative:
16 image: concat:latest
17 ...
18 package: example

As shown in Figure 3, OaaS supports two user scenarios:

(A) The service provider (developer) who declares the class

and its functions for developing the application. (B) The end-

user who accesses the objects (e.g., via an application or a

web front-end) and calls their functions via the object access

interface. Declaring a new class and its functions in OaaS

are achieved using the YAML (or JSON) format. Listing 1

represents a declaration example for a class called test1
that has a state named str (Line 6) and a function named

concat (Line 11). The state is named str and is a s3 object

storage. The class has a public function called concat. The

specifications of the function are declared in Lines 10—16.

The type of a function (Line 12) can be a task (or a macro).

Because the objects in OaaS are immutable, Line 13 specifies

that the output of the function is another object instance of

type test1. Line 16 declares the function container image

URI. Declaring the function input(s) makes this example long.

C. OaaS Architecture

The OaaS platform is designed based on multiple self-

contained microservices communicating within a serverless

system. Figure 3 provides a birds-eye view of the OaaS

architecture that is composed of four modules: (a) Object
Control Module serves as the interface to instantiate, manage,

and use the objects; (b) Function Execution Module works

based on a serverless engine (e.g., Knative) to execute tasks

and report the results back to the Object Control Module; (c)

Data Management Module handles the object state; And (d)

Function Execution Module Data Management Module

Object Control Module

Object Controller

Kube 
Provisioner

Kubernetes API
Server

Storage
Adapter

Task Manager

Specs  
(Key-Value)
Database

Content Delivery
Service

Data Serving Module
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Kn. Serving 
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(Object Storage)

Function 
Provisioning 

End-User
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*

*

Fig. 3: A bird-eye view to the architecture of OaaS. Dashed lines
show the workflow of actions taken by the developer, and solid lines
show them for the end user. the yellow ones represent existing open-
source tools; the green ones represent our implemented components;
and the red ones are the containerized functions within OaaS.

Data Serving Module that is the end user’s interface to OaaS.

Details of these modules and their interactions are described

in Figure 4 and the following subsections.

D. Object Control Module

1) Object Controller: Object Controller is a key component

of the OaaS platform that: (a) interfaces with the developer

via REST APIs to manage object abstraction as a class; (b)

manages the deployment process of the class and function; (c)

provides object instantiation to service providers or users

Upon defining a class by the developer, it is first registered
by validating the specifications of its functions and state; and

then persisting them into a shared key-value database (called

Specs Database in Figure 3). Next, the class is deployed via

introducing the containers of its functions to the Kubernetes

orchestrator. To make the deployment process robust against

transient failures of the underlying system, it is carried out

asynchronously via a Kafka broker (Function Provisioning in

Figure 3) that guarantees the deployment is handled by the

next component (Kube Provisioner) in OaaS. Object Controller

is also responsible for instantiating objects. For that, upon

receiving the object specifications, Object Controller uses

the Storage Adapter to allocate a presigned URL where the

developer can upload the object state (e.g., video file).

2) Task Manager: Task Manager is the central component

of the Object Control Module that is primarily responsible

for handling the function invocations. Upon receiving an

invocation that includes the object ID, function name, and

input values, Task Manager augments it with other necessary

information to execute the function, including the necessary

details for accessing unstructured data. It spawns one (or

more) task(s) and submits it (them) to the Function Execu-

tion Module, where Knative Broker routes the task(s) to the
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corresponding container.

Enabling macro functions and dataflow abstraction within

OaaS involves dealing with the concurrency and ordering of

the function execution handled by the Task Manager. Upon

receiving a macro function invocation, the Task Manager

component generates the invocation graph as its internal state

and uses it to coordinate the ordering of the invocations. For

that purpose, once the task completion event (from the Task

Completion Handler) is received, the Task Manager readily

generates the next task based on the invocation graph. In the

case of a task failure, the Task Manager propagates the failure

status to the dependent tasks in the invocation graph.

Task Manager exposes the object access interface (OAI)

to enable end-users transparently access the object’s state

and functions. OAI operates based on the web services and

provides two modes of object access: (i) Synchronous mode
that the Task Manager holds the HTTP connection with the

user application until the output object state is ready. It is

suitable for interactive function calls and retrieving the object

state. For instance, let video1 be a video object identifier,

transcode(var=int) be one of its functions, and src.mp4
be the video content held in the output object. Then, a

synchronous function call to the object is in the form of:

video1:transcode(var=1024)/src.mp4. (ii) Asynchronous
mode that is suitable for non-interactive function calls (e.g.,

macro function invocations). In this case, the Task Manager

does not hold the HTTP connection. Instead, responds im-

mediately with the specifications of the prospective output

object. The user application can use the associated ID to check

the object status at a later time. An asynchronous function

call to the object of the previous example is in the form of:

video1:transcode(var=1024).

To reduce the overhead in accessing the unstructured content

of the output object, the Task Manager avoids unnecessary data

movements via leveraging the HTTP redirect mechanism [35]

to make the URL of the content provided by the Storage

Adapter available to the Content Delivery Service. This way,

the unstructured content bypasses Task Manager, and Content

Delivery Service can fetch the content in one hop and provide

it to the user application.

With all these responsibilities of the Task Manager, it can

potentially become the bottleneck. To avoid that, we design the

Task Manager to be scalable by making it stateless. Hence, its

container can be easily scaled out to multiple instances. The

problem in making the Task Manager stateless is the “internal

state” that it has to be maintained to support macro functions.

To overcome this problem, we configure Task Manager to

persist its internal state in the Specs Database.

E. Function Execution Module

1) Handling Task Execution: For a given function call on an

object, the Object Control Module is in charge of converting

it to a task that is composed of detail of the function call

and structured states of related objects. Then, the Function

Execution Module receives the created task and takes care of

its successful completion. Schematic view of the steps taken

to handle a function call is noted in Figure 4b. This module

utilizes Knative Broker, a component of Knative Eventing,

consumes the “task event” generated by the Task Manager

in the Cloud Events format [22], and routes the received

task to the associated function container. Knative Serving

is utilized to enable auto-scaling (and scale-to-zero) on the

function container. It is noteworthy that the OaaS is modular,

and other serverless engines can replace Knative without any

major change to the system.

The Task Completion Handler component tracks the func-

tion execution and updates the execution status in the Specs
Database. We note that each function container is an HTTP

server to handle the messages in the Cloud Events format.

Upon completing a task, the HTTP server issues a 2xx status

code, otherwise, the task is deemed failed.

2) Deploying Functions: Recall that, in addition to han-

dling tasks, the Function Execution Module is in charge of

deploying developer-defined functions. The key component of

OaaS that is responsible for this is the Kube Provisioner. As it

is expressed in Figure 4a, Kube Provisioner receives a function

deployment request (that includes function specifications) from

the Function Provision component via subscribing to Kafka

Topic [28]. Upon receiving the request, Kube Provisioner

translates the requested function specifications into the Kuber-

netes configuration format and forwards it to the Kubernetes

API server, where the function container image is fetched from

the container registry and is deployed. This process makes the

function ready for invocation by Knative Broker.

F. Data Management Module

The Storage Adapter component is responsible for efficient

and secure access to the object state. It also communicates

with the Specs Database (see Figure 3) to retrieve the class

specifications required to verify authorized accesses to the

object state. Any component of OaaS that needs to access the

state of an object has to do it through the Storage Adapter.

We originally designed the Storage Adapter to work with S3-

compatible object storage systems (e.g., Ceph [32], and MinIO

[31]), however, the adapter can be extended to support other

storage types too. To mitigate the overhead of retrieving the

object state data, Storage Adapter avoids unnecessary data

movements. That is, instead of relaying state data to the

requester component—because S3 protocol is HTTP-based—

the Storage Adapter can employ the HTTP redirect mechanism

and only send the URL of the state data to the requester.

For that purpose, the Storage Adapter digitally signs the

URL of the state data with a secret key to generate the

authorized presigned URL. As such, the presigned URL only

grants access to the state data addressed by the URL. In this

manner, the Storage Adapter preserves the object state security

by preventing unauthorized access of a function to another

object’s state through learning the URL pattern. Accordingly,

this mechanism decouples the object state storage from the

function logic, such that in implementing a function, the

developer does not need to know the storage details, such as

the storage type, location, organization, and authentication.
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G. Data Serving Module

The Content Delivery Service is to handle the object access

requests of the end user. It is implemented using the Nginx

server [20] that can load balance requests across multiple

instances of Task Manager. Moreover, it includes a caching

mechanism to increase the object access efficiency when

multiple users request access to the same object. Recall that the

synchronous-mode object access is replied to by Task Manager

through HTTP redirection. Content Delivery Service explores

the redirected location to retrieve the object state data from

the storage. Then, Content Delivery Service updates its local

cache and replies to the user with the object state data.

H. Object Data Modeling in OaaS

OaaS has to deal with four types of persisted data for each

object. Accessing such data frequently, if not handled properly,

can cause a slowdown of the platform. Hence, we develop

the data modeling scheme to efficiently organize different

types of data associated with each object such that the system

slowdown is minimized. As shown in the top part of Figure

5, the following four types of data have to be maintained for

each object: (a) Object State, which is the unstructured data the

object represents; (b) Object Specification (Metadata) defines

the object’s characteristics, including the execution status and

class name (which is linked to the class specification data).

Objects whose state is in the structured form piggyback this

metadata to store their structured state in the JSON format; (c)

Class Specification is the developer-provided details to intro-

duce the state and functions for the objects of a specific class;

(d) Function Specification includes the function signature (i.e.,

the type of inputs and output) and its deployment configuration

(e.g., the function container URL that is accessible to OaaS).

As the class and function specifications are common across

objects, they are accessed more frequently than the (often

large-size) unstructured object state. Accordingly, we employ

the object storage (e.g., S3 [5]), which offers a high space-

per-cost ratio, to persist the unstructured state. For other

frequently-accessed data, which are generally smaller in size,

we configure a fast and efficient key-value database (e.g., Infin-

ispan [33]) for persistence. The class and function metadata are

frequently-accessed but infrequently updated. Besides, they are

small in size and quantity. These features make them suitable

for in-memory caching. Hence, as depicted in Figure 5, we

configure every component of OaaS that deals with the class

and function metadata to locally cache them via an in-memory.

IV. DISCUSSIONS

a) Fault Tolerance: Since OaaS allows running data

transformation workloads, the first leading concern is the fault

tolerance property to guarantee that the accepted function call

will be executed or fail gracefully. The goal in this context is

usually an Exactly-Once guarantee that the system will be run

to the same result as if failure never happened. Since OaaS

use Kafka as the message broker, it will guarantee that the

received function call will never be lost by writing it to disk

and replicating it across multiple broker nodes. Regardless,

it can still be processed more than once, which normally

can lead to data inconsistency. However, OaaS is designed to

have an object as the immutable record, making the function

invocation innately idempotent. This property would prevent

data inconsistency even if the execution happens repeatedly.
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In future work, we plan to extend the fault tolerance feature,

such as the atomicity guarantee, across the workflow.

b) Security: Security is another primary concern when

working with cloud service that is shared between multiple

parties. We do not focus on security details in this paper,

but there are the following aspects that can be done or have

been done to harden the system. The first aspect is reducing

attacking surface by limiting the necessary outbound traffics

from the function container since it only requires access to

Storage Adapter and object storage. Therefore, the network

policy can be configured to block outbound traffic except for

the Storage Adapter and object storage. The second aspect

is avoiding reusing secret tokens. We employ the presigned

URL mechanism for object storage to prevent the function

container from accessing undesirable data. Thus, the security

of the object storage in OaaS is more than FaaS where the

same secret key is used for every request. To make the Storage

Adapter secure, we can make Task Manager to generate a

unique secret token for each task, and every request for Storage

Adapter must be authenticated via the secret token.

c) Cold Start in Object Invocation: Not only the de-

veloper functions, but also the OaaS components can benefit

from scale-to-zero to reduce the cost when there is no usage.

However, this has the side-effect of more col starts. Since OaaS

components are shared across functions, we can effectively

keep it warm to eliminate the additional cold start impact. In

such a case, the cold start performance is entirely derived from

the underneath serverless execution engine.

V. PERFORMANCE EVALUATION

A. Experimental Setup

We deploy the OaaS platform on three machines of

Chameleon Cloud [34], each with 2 sockets of 24-Core AMD

EPYC7352 processors that collectively have 144 cores, 768

GB memory, and NVMe storage. The cluster includes three

VMs with 16 vCPUs, 32 GB memory, and Kubernetes. We

configured Rook [24] and Ceph [32] for persistence. Infinis-

pan [33] is a distributed key-value database that we employed

for the Specs Database. OaaS is implemented using Java.

Baselines. Apache Flink Stateful Function (StateFun) [7],

OpenWhisk [21], and Knative [23] are configured as the

baselines. Unlike OaaS and OpenWhisk, that focus on API

calls and event handling, StateFun is an open-source stateful

serverless focusing on stream processing. Because StateFun

does not manage the function instances out of the box, we

configure Knative to complement it. OpenWhisk is a FaaS

platform that we use to represent the case where the function

state management is performed explicitly by the developer.

We used Gatling [14] for load generation and implemented

three scenarios to serve as the workload. Firstly, we developed

a video transcoding function using FFmpeg [45] that is CPU-

intensive and aligns with the motivation of this paper; Sec-

ondly, we developed a lightweight text concatenation function

that concatenates the content of a text file with an input

string. Thirdly, we developed a JSON update function that

randomly puts the data into the JSON state data. The other

workload characteristics are specific to each experiment and

are explained in the respective sections. As StateFun does not

support unstructured data as the state, we exclude it for the

video transcoding and text concatenation functions.

B. Analyzing the Imposed Overhead of OaaS

The abstractions provided by OaaS impose an overhead

to the underlying system that we aim to measure in this

experiment. The extra latency of a function call in OaaS

is the metric that represents the overhead. We mainly study

two sources of the overhead: (a) The object state size that

highlights the overhead of OaaS in dealing with the stored

data; and (b) The concurrency of function calls that highlights

the overhead of the OaaS platform itself.

We examine three types of objects: (i) An object with a one-

second-long video file (105 KB with resolution 1920×1080)

as its state and a transcoding function, which exhibits a

compute-intensive behavior; (ii) An object with a text file

(10 KB) as its state and a function that concatenates the

state with its input string (8 Bytes) argument. Because the

processing time is only a fraction of the data loading time, we

consider it as data-intensive; (iii) An object with structured

(JSON) data as the state and a JSON update function that

doubles the amount of persisted random key-value pairs.

The impact of changing the state size is shown in Figure 6.

To generate objects with various state sizes, we increased

the input video length from 1—30 seconds. To remove the

impact of video content on the result, the longer videos were

generated by repeating the 1-second video. Similarly, the text

files are from 0.01—20 MB. In the JSON object, the key and

value sizes are 10 and 40 bytes, respectively, and the number

of key-value pairs varies from 10—320. To concentrate only

on the overhead of data access and avoid other sources of

overheads, we configure Gatling to assign only one task at

a time and repeat this operation 100 times. To analyze the

improvements offered by the URL redirection and data tiering

(particularly metadata caching), we examine four versions of

OaaS: the full version; without metadata caching (expressed

as OaaS (no cache) in Figure 6); without URL redirection

(expressed as OaaS (relay)); and without both URL redirection

and metadata caching (expressed as OaaS (no both)).
In Figure 6, in general, the average task execution time

increases for larger state sizes. We also observe that the

caching impact on OaaS is insignificant because there is no

function concurrency where caching can become effective.

For both video and text (Figures 6a and 6b), OpenWhisk

outperforms Knative and OaaS. For video, the gap is negligible

because the time is dominated by the transcoding operation.

For text, however, OpenWhisk directly interacts with the

storage without any adapter layer in place. In Figure 6b, the

gap between OaaS (relay) and OaaS widens for larger state

sizes. For the 20 MB file, the redirection mechanism can

reduce the execution time by 24%, and collectively with the

caching, it can cause up to 27% improvement.

In the JSON update function (Figure 6c), the redirection

mechanism is not used, hence, OaaS (relay) is excluded from
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(a) Video transcoding function (b) Text concatenation function (c) JSON update function

Fig. 6: The average execution time of invocations with various state sizes on three types of workloads. Four versions of OaaS are examined.

the chart. We observe that OaaS imposes the least overhead

across stateful solutions (StateFun and OpenWhisk). However,

the gap between OaaS and Knative widens for the larger state

sizes because OaaS has to read and write the state from/to the

Specs Database, and both task and state have to travel through

multiple components. This is why we chose to separate the

unstructured state, which is generally bulky, from the object

specification. We also see that, unlike other platforms, the

execution time of StateFun does not change by increasing the

state size. This is because StateFun stores the state on the local

datastore without involving the external database.

The impact of concurrent function invocations on the OaaS

overhead is shown in Figure 7. We increase the number

of concurrent invocations of the same function and measure

the average time to complete one task. For the transcoding

function (Figure 7a), OaaS does not impose any significant

overhead in comparison to Knative. However, in Figure 7b, the

difference is noticeable (around 48 ms or 19% at 160 concur-

rencies) for Concatenation. The difference is because Concate-

nation is IO-intensive with short run-time (high-throughput)

and high network bandwidth demand that is also needed by

OaaS to store the object metadata. In OpenWhisk, however,

each container with the Python runtime is used just to handle

one function at a time, hence, it yields much higher execution

times for all the functions.

For the structured data (JSON update in Figure 7c), the

difference in overhead of OaaS and Knative (162 ms or 43%)

is attributed to the time OaaS needs to persist the state and

metadata. Note that the reported time for Knative on structured

data only includes the function execution time (stateless part).

In contrast, StateFun imposes a lower overhead than OaaS at

the high concurrency because it uses the local datastore to

reduce the cost of persisting state and uses Protobuf [17] to

encode the data between the platform service and the function,

which is more efficient than JSON (used by other and OaaS).

Takeaway: The overhead analysis testifies that OaaS can
operate with an insignificant latency overhead, specifically,
for objects with unstructured state. Importantly, the redi-
rection mechanism is decisive in mitigating the latency
overhead for objects with large state sizes.

C. Scalability of the OaaS Platform

To study the scalability, we scale out OaaS from 3—

12 VMs, each one with 16 vCPU cores (in total 48—192

vCPUs), and measure the speedup. We examine the JSON

update function because it is supported by all the baselines,

and its computing and I/O parts are balanced. We assume

three VMs as the base with speedup=1, and the speedup of

other configurations is calculated with respect to the base

value. In each case, we measure the throughput (i.e., the

average number of completed update operations per second).

Then, the speedup value (Figure 8a) is calculated relative to

the throughput of three VMs. We continuously increase the

concurrency until the throughput stops growing, then choose

the peak as the maximum throughput of a specific cluster

size (see Figure 8b). In this figure, the Knative throughput

is calculated by excluding the state persistence part, and it

serves only as the theoretic benchmark by providing the ideal

upper bound throughput. According to Figure 8a, all platforms

have a similar speedup at 6 VMs. After that, StateFun offers

the highest speedup and throughput in comparison to OaaS

and OpenWhisk. The reason is that StateFun is built on top

of Apache Flink, a mature stream processing platform. While

we observe that Knative speedup slows down at 12 VMs,

potentially due to limitations in its internal mechanics, OaaS

continues to scale. According to Figure 8b, this is because

both OaaS and StateFun are far to be bottlenecked by the

limitations of Knative. For OpenWhisk, even though more

VMs added, its autoscaling stops deploying new workers after

reaching a certain number of containers. Thus, the speedup

stops increasing after 6 VMs.

Takeaway: The scalability analysis testifies that OaaS is as
horizontally scalable as its underlying Knative framework.

D. Case Study: Development Efficiency Using OaaS

In this part, we provide a real-world use case of object

development using OaaS and its FaaS counterpart and then

demonstrate how OaaS makes the development process of

cloud-native serverless applications easier and faster. The use

case is a video processing application that employs a machine

learning model to perform face detection on video content.

Figure 9 shows the workflow of functions needed: Function1
to split the input video into multiple video segments that can
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(a) Video transcoding function (b) Text concatenation function (c) JSON update function

Fig. 7: The average execution time of invocations with various concurrent intensities on three types of workloads.

(a) Speedup (b) Throughput

Fig. 8: Evaluating the scalability of OaaS against other baselines.
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Fig. 9: Use case of developing a face detection workflow for a video.

be processed concurrently on multiple instances of Function2
whose job is to extract the frames of each video segment;

Function3 is in charge of performing the face detection on the

requested video frames and generating an object in the JSON
format. These functions have to persist their output object so

that the next function in the workflow can consume it.

FaaS implementation. The developer must implement the

following steps: (i) Configuring cloud-based object storage and

maintaining the credential access token for the functions to

use. (ii) The functions’ business logic has to be implemented

and configured to react to the trigger events. (iii) Data man-

agement within the functions that itself involves three steps:

(a) allocating the storage addresses to fetch or upload data; (b)

authenticating access to the object storage via the access token;

and (c) implementing the fetch and upload operations on the

allocated addresses. Upon implementing these functions, the

developer has to connect them as a workflow via a function

orchestrator service (e.g., AWS Step Functions). Finally, the

dashboard service invokes the workflow upon receiving a

request from the end user and collects the results.

OaaS implementation. The developer defines three classes,

namely Video, Image, and Detection_Result in form

of the three following classes: (a) Video class with

split_video() and extract_frame() functions; and a

macro function, df_detect_face(detect_interval), that

includes the whole workflow of function calls, with

the requested face detection period as its input, and a

Detection_Result object, as the output. (b) Image class with

the detect_face() function. (c) Detection_Result class

that does not require any function. The Dashboard Service

calls the df_detect_face(detect_interval) macro func-

tion directly using the object access interface, and receives

the Detection_Result object as the output. We note that in

developing the class functions, the developer does not need to

involve in the data locating and authentication steps.

Takeaway: The OaaS paradigm aggregates the state storage
and the function workflow in its platform and enables cloud-
native dataflow programming. As such, the developers are
relieved from the burden of state management, learning the
internal mechanics of the functions and pipelining them.

VI. CONCLUSIONS

In this research, we presented the OaaS paradigm that

incorporates state management into cloud functions and offers

cloud object abstraction. We developed a prototype of the

OaaS platform that relieves the developer from the burden of

state management, hence, improving the cloud-native applica-

tions development efficiency. To make the OaaS scalable, we

make the object state immutable. This approach preserves the

object state consistency without requiring any synchronization

mechanism that limits the scalability. Moreover, OaaS enables

cloud-based dataflow programming where a workflow of func-

tions can be transparently defined without concurrency and

synchronization concerns. We evaluated the OaaS in terms of

ease of use, imposed overhead, and scalability. The evaluation

results demonstrate that OaaS streamlines cloud programming

and is ideal for the use cases that require persisting the

state or defining a workflow. OaaS offers scalability with

negligible overhead, particularly, for compute-intensive tasks.

In the future, we plan to develop an object-based platform

via replacing the underlying software platforms with our cus-

tomized solutions to further improve data locality, invocation

efficiency, and scheduling optimizations.
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