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Abstract— We design and implement LDRP, a device-based, standard-compliant solution to latency diagnosis and reduction in mobile
networks without root privilege. LDRP takes a data-driven approach and works with a variety of latency-sensitive applications. After
identifying elements in LTE uplink latency, we design LDRP that can infer the critical parameter used in data transmission and infer them
for diagnosis. In addition, LDRP designates small dummy messages, which precede uplink data transmissions, thus eliminating latency
elements due to power-saving, scheduling, etc. It imposes proper timing control among dummy messages and data packets to handle
various conflicts. We achieve the latency diagnosis and reduction without requiring root privilege and ensure the latency is no worse
than the legacy LTE design. The design of LDRP is also applicable for 5G . The evaluation shows that, LDRP infers the latency with at
most 4% error and reduces the median LTE uplink latency by a factor up to 7.4 x (from 42 to 5ms) for four apps over 4 mobile carriers.

1 INTRODUCTION

Low latency is critical to the proper functioning of
various delay-sensitive mobile applications, such as mobile
VR/AR, mobile gaming, mobile sensing, mobile machine
learning, and emerging robot/drone-based image/speech
recognition [1], [2], [3], [4]. These applications typically run
on 4G LTE and 5G mobile networks, which offer ubiquitous
access and seamless service. In this work, we study how to
diagnose and reduce network latency over LTE networks for
such applications in the connected state. This complements
the work that reduces the connection setup latency [5].

Many emergent latency-sensitive mobile apps differen-
tiate themselves for their heavier uplink data transfer (e.g.,
user motion control, sensory data, and live camera stream-
ing) from the device to the infrastructure. Our experiments
further reveal that, uplink latency contributes to a large
portion of overall latency in tested apps over operational
LTE. Diagnosing which latency elements are the bottleneck
and reducing them is thus as important as reducing the
downlink latency. While the downlink transfer has been ex-
tensively optimized, the uplink data transfer is less studied.

In this paper, we take one step further and aim to both
diagnose and reduce uplink latency on the application without
root privilege or violating 3GPP standards. This is challeng-
ing from two aspects. Firstly, the uplink data transfer in
LTE is complex to diagnose and reduce due to complex
interactions. This is because LTE adopts the feedback-based
scheduling, on-demand radio resource allocation, retrans-
missions, etc. Second, these interactions are invisible to
application layer without root. Mobile OS does not expose
cellular-specific APIs to the applications.

We overcome the challenge with a key observation. The
uplink latency for the applications with predictable packets
can be diagnosed with cell-specific parameters. They man-
date the latency for each device-base station interaction. In
addition, these parameters can be inferred on the applica-
tion layer. By sending packets in specific patterns and ob-
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serving the latency differences on the application layer, we
can infer critical parameters for each solution component.
Both diagnosis and reduction operate on the device side,
which complement those existing infrastructure-centric so-
lutions that are better for downlink. Therefore, our solution
is readily applicable to every off-the-shelf commodity device
without root, including Android and iOS.

We thus design and implement LDRP, a device-based,
application-layer, and software-only LTE latency diagnosis
and reduction solution that is readily usable for every com-
modity smartphone device. To identify the elements for di-
agnosis, the overall design takes the data-driven approach.
Through analysis of operational LTE traces, we identify all
elements in LTE uplink latency, and quantify them via two
popular applications. LDRP thus learns how each latency
component can be inferred with critical LTE parameters.
To enable its functions on every device, LDRP infers the
parameters at the application layer without root privilege. It
then uses the parameters to diagnose the latency elements.

LDRP further reduces the latency given the diagnosis
results. The major goal is to reduce elements on the applica-
tion layer with small overhead. No 3GPP standard change is
needed. We find out that the transmission resources can be
pre-acquired with early data packets. LDRP thus designates
small dummy messages, which precede those uplink data
packet transfers. It thus eliminates the latency elements due
to power-saving and scheduling.

LDRP performs proper timing control among dummy
messages and data packet streams to ensure marginal data
and power overhead. It further resolves the conflict that arises
among data packets and dummy messages. LDRP is also
capable of predicting handover without root, thus providing
applications with sufficient information to mask the latency.
All these solution components only rely on the critical
parameters learned for diagnosis without root privilege.

LDRP could be widely applied for applications in mobile
networks. While LDRP is mainly designed for 4G LTE, it
can be readily generalized to benefit the emergent 5G. LDRP
mainly works for regular or predictable traffic, but can also
help when the traffic is not strictly regular. LDRP does not
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arise fairness concern, as the sent dummy packets are in-
deed delivered and charged by networks, without breaking
any standardized operation. It has no impact on network
resource efficiency or other application’s performance. LDRP
leverages the practice that a base station usually schedules
more resource than requested data, which could be used to
carry the additional dummy packet.

We implement LDRP on commodity Android phones (§7)
and our experiments confirm its effectiveness (§8). LDRP can
diagnose each latency component with at most 4% error. It
then reduces the median LTE uplink latency by up to 7.4x
(from 42ms to 5ms) for four tested applications over four US
mobile carriers. In any case, LDRP ensures that the network
latency for data transfer is no worse than the legacy LTE
design. The energy and data volume overhead is negligible.

2 BACKGROUND
2.1 Mobile Networks Primer

Architecture The mobile networks, such as 4G LTE and
5G, offer the only large-scale infrastructure that ensures
universal coverage and “anytime, anywhere” access. Its
infrastructure consists of radio base stations (BSes) and the
core network (see Figure 1). A mobile device transfers its
data with a local BS (“cell”), which covers a geographic area.
The BS further relays the data to the Internet via the core.

Data Transmission A mobile device has uplink (or UL,
device—BS) and downlink (or DL, BS—device) transmis-
sions. In 4G/5G, data transfer uses scheduling-based mech-
anisms. Each data must be delivered in the granted time
and frequency units, called Resource Block (RB). For uplink
grant, a device sends a Scheduling Request (SR) to the
BS in Physical Uplink Control Channel (PUCCH). Upon
receiving it, the grant is sent to the device via Downlink
Control Indicator (DCI) in Physical Downlink Control Chan-
nel (PDCCH). The device can then send user data in the
scheduled RB in Physical Uplink Shared Channel (PUSCH).
For downlink, BS directly allocates RBs upon data arrival in
PDCCH without extra requests. The downlink data is sent
in Physical Downlink Shared Channel (PDSCH).

Power Saving through DRX The power-saving mecha-
nism Discontinuous Reception (DRX) is a technique for a
device to save power over LTE. Instead of continuously
waking up for potential downlink delivery from the BS,
the device might sleep in the absence of data transfer, thus
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reducing its energy consumption. In DRX, a device has three
states: Long DRX Cycle, Short DRX Cycle, and Continuous
Reception (CRX) [6]. In CRX, the device wakes up during
the ON period to monitor downlink channels. In long/short
DRX, the device only wakes up for a short period of time
(set by the onDuration Timer) at the start of each DRX cycle.
It dozes off during the OFF period for the remaining time.

The DRX state transition is shown in Figure 2. In the
Long/Short cycle state, if any downlink data is received
during the ON period, the device enters the CRX state and
starts the drx-InactivityTimer. Upon sending uplink data,
the device initiates an SR request. It then switches to the
CRX state as well. If the device receives downlink data or
initiates another SR request, the timer restarts. The short
DRX state is entered once the drx-InactivityTimer expires.
In this state, the device enters long DRX after the number
of drxShortCycleTimer short cycles. All such involved timer
parameters are negotiated between the device and the BS
during connection setup through RRC.

Handover in LTE A device might disconnect from the
serving BS and connect to a new one for better signal.
This is called handover (or HO). The serving BS determines
whether to perform the handover based on device-perceived
radio qualities due to mobility. After the radio connectivity
is established, the serving BS sends the instructions for the
device to perform measurement on neighboring cells. When
the measurement results meet the pre-configured condi-
tions, a report is sent to the serving BS. It will determine the
handover decision based on the results and send command
to the device. The device first disconnects from the old BS,
and then connects to the new BS.

2.2 Latency-Sensitive Apps over Mobile Networks

In this section, we exemplify some representative latency-
sensitive applications over the mobile networks.

Mobile VR A mobile virtual reality (VR) app typically
involves 3D scenes and associated graphical engines [1], [7],
[8], [9]. Standalone VR headsets such as Google Daydream
[10] render 3D scenes locally. However, due to limited com-
putation resources and high power consumption on mobile
devices, high-quality VR applications typically need the
edge/cloud servers to offload the rendering task [11]. In this
client-server scheme, the mobile headsets or pads provide
sensory/control data, while the server renders the 3D scene
in the form of graphical frames. The server coordinates
multiple devices, renders the VR graphical frames based on
the device’s input, and constructs the appropriate 3D scene
for each given device.

o Showcase VR prototype: Following the above paradigm, we
have built an example VR game with Unity 3D engine [12]
on Android phones to study latency in mobile networks. It
has three modules: the controller at the device, the camera
controller at the server, and the streaming component. The
Android controller app acquires the device rotation data
from the gyroscope sensor to control the in-game camera
rotation. The GPS location is fed into the VR game so that
the virtual character moves with the player’s location up-
dates. Upon receiving the player’s sensory data, the camera
controller at the server processes them and makes corre-
sponding position and rotation movements for the virtual
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Fig. 3: An overview of LDRP.

camera. We implement the streaming module with open-
sourced libraries Unity Render Streaming [13] and WebRTC
for Unity [14]. With the streaming module, the camera view
is rendered and streamed back in 60FPS to the player with
WebRTC. Players open the camera stream with the Web
browser on the phone to get the real-time camera view.

Mobile sensing Smartphones today are equipped with
multiple sensors: accelerometer, gyroscope, camera, micro-
phone, to name a few. Many mobile sensing apps collect
sensory data and upload them at runtime to the cloud for
fast processing. For example, a localization app sends the
GPS data to the cloud for real-time navigation. All such
sensing apps are latency sensitive.

Mobile gaming In multi-player mobile games, the device
acts as a controller that collects user motion, while the
remote server processes the game logic. The server further
provides proper synchronization and coordination among
players. Moreover, pure cloud-based gaming (with render-
ing being processed in the cloud) is also trendy [1]. It is a
new gaming paradigm being pushed by companies [2].

Cloud/edge-assisted machine learning Mobile apps with
machine learning features (e.g., image/object recognition or
speech understanding [3], [15]) also pose latency require-
ments. Network latency becomes a bottleneck for smart
assistants, such as Alexa [16] and Siri [17]. Users may
tolerate at most 200ms response time, while deep learning
based local transcriptions take only 10ms [18].

Networking usage patterns by these mobile apps All
the above representative mobile apps involve frequent and
regular uplink data transfer. The mobile VR, sensing, and
gaming [19], [20] applications collect data from device sen-
sors and upload them to the server for subsequent actions.
These sensors typically produce small data periodically. The
user can only configure the sampling periodicity through
the API provided by the mobile OS [21]. The machine learn-
ing based apps also have predictable traffic. They typically
perform local computations with predictable latency before
an uplink data transfer. For example, face recognition apps
process a video frame locally using a fixed-sized neural
network (NN). A user can gauge the delay based on the
NN size. Emerging robotic or drone-based applications per-
form local tasks for a certain duration (e.g., scanning the
surrounding environment for a few seconds [22]) before
uploading the result. Such apps also exhibit uplink traffic
that can be accurately predicted.

3 LDRP OVERVIEW

We devise LDRP, an in-device software solution to latency
for mobile apps. Figure 3 shows LDRP’s components. It
has two major functionalities, Latency Diagnosis and
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Latency Reducer, which provide the user apps with real-
time breakdown analysis and reduction of LTE network
latency, respectively. LDRP runs as a user-space daemon
and is thus applicable to both Android and iOS. Its benefits
come without system /root privilege, firmware modification,
or hardware support. To achieve so, both components infer
critical cellular parameters by carefully-constructed schemes
at the application layer without root access.

e Latency Diagnosis (§4): LDRP diagnoses latency
elements in LTE network for applications. By a data-driven
analysis on LTE latency analysis, we find that uplink latency
is the bottleneck and each latency element has a strong cor-
relation with cell-specific configurations. Therefore, LDRP
leverages these parameters to infer each latency element for
diagnosis. Although these low-level parameters are not ac-
cessible without root, Latency Diagnosis designs intel-
ligent algorithms to accurately infer them in the application
layer without root.

e Latency Reducer (§5): LDRP masks the LTE latency
elements on the application layer with inferred parame-
ters. As an application-layer solution, LDRP cannot directly
control the low-level LTE mechanisms (that require root
privilege or even firmware change). Instead, it indirectly
regulates the LTE uplink transfer with well-crafted dummy
packets. They proactively request the needed radio resources
and high-speed transfer mode with standard-compliant
mechanisms. By selecting proper timing based on param-
eters, the solution retains low energy and data consumption
overhead. LDRP complements solutions designed to reduce
other non-network latency elements [23], [24], [25].

4 ROOTLESS LATENCY DIAGNOSTICS

In this section, we introduce how LDRP diagnoses the
latency from the application layer. For this purpose, we
address three issues:

o How large is the uplink latency over LTE? We use measure-
ments to quantify it in §4.1.

o Why is the uplink latency prohibitively high over LTE? We
break down this latency into multiple elements. We
quantify their impact, identify root causes, and share
insights in §4.2. We show that, each element is closely
related to a few LTE parameters assigned by the BS.
With these parameters, the latency can be deduced.

o How to infer these parameters from the application layer? We
further show that in §4.3, these LTE-specific parameters
can be inferred from the application layer, without any
infrastructure assistance or root privilege. Therefore,
LDRP infers these parameters and leverages them to
diagnose the latency components.

4.1 Measuring LTE Latency: Who is the Bottleneck

Methodology = We analyze the traces from our showcase
VR game and another popular mobile application PUBG
Mobile [2]. Our VR application uploads user motion pack-
ets (~60Bytes) and receives 60FPS, 5Mbps downlink video

1. We cannot measure VR downlink network latency on AT&T and
Sprint, since their firewalls in core networks block the traffic. However,
we could still study the uplink latency breakdown between device and
BS (e.g., in Table 2).



TRANSACTIONS ON MOBILE COMPUTING

App Latency | AT&T | T-Mobile | Verizon | Sprint
UL Net 10.7 9.9 10.0 17.7
PUBG | DL Net 5.0 5.0 5.0 5.0
UL/Total | 68.2% 66.4% 66.7% 78.0%
UL Net N/A'T 18.4 23.8 N/A
VR DL Net N/A 85 10.6 N/A
UL /Total N/A 68.4% 69.2% N/A

TABLE 1: LTE latency (ms) for two mobile apps.

stream. Downlink packets are sent from the server to the de-
vice over LTE. PUBG is a mobile game with frequent uplink
data (~40ms interval) and downlink responses. Both uplink
and downlink packets are small (<100Bytes). The latency
due to server processing is less than 1ms. The mobile devices
(a Pixel 2 and a Pixel XL) run the apps. We collect both app
logs and LTE signaling traces via Mobilelnsight [26]. We
carry out our experiments over four US mobile carriers from
12/2019 to 09/2020. The tests cover static, low-mobility
(~1m/s), and high-mobility (~30mph) cases, with varying
signal strength (-120~-80dBm).

Results ~ We measure the LTE uplink latency. We mon-
itor the device buffer and compute the latency for each
data packet. This information is available in the Mobileln-
sight message “LTE MAC UL Buffer Status Internal”. Despite
small packet size, the uplink latency turns out to be non-
negligible, as shown in Table 1. For all four carriers, the
uplink latency (UL NET) ranges from 9.9-17.7ms for PUBG
and 18.4-23.8ms for VR. These latency values might not meet
the requirements of a number of latency-sensitive apps [27].

Who is the latency bottleneck? We further discover that,
instead of downlink, the uplink latency poses as a major
component in overall latency. We compute the downlink
latency from logs of “MAC DL Transport Block” in MobileIn-
sight. The results (DL NET) are in Table 1. We see that,
uplink latency accounts for 66.4-78.0% in PUBG and 68.4-
69.2% in VR. Surprisingly, even for the downlink-heavy
VR app, uplink latency still contributes to a large portion
of the overall latency. Recent techniques (e.g.,, MIMO and
carrier aggregation) and 5G further reduce the DL latency
with faster PHY designs. In contrast, as we will see later,
the scheduling design employed for the uplink will likely
be retained in 5G. As a result, we will focus on the uplink
latency in this paper.

Disruption during Handover =~ We also analyze the latency
triggered by handover. Due to the PHY layer design in LTE,
any uplink or downlink service will be interrupted during
the switching. We find the handover event in the message
“RRC OTA PACKET” and then check the disruption latency
from “MAC UL TRANSPORT BLOCK”.

4.2 Uplink Latency Components for Diagnostics

We next analyze the root causes for long network latency in
4G LTE. We identify various latency elements for the LTE
uplink latency by analyzing the 3GPP standards [6], [28].

We breakdown the uplink latency as shown in Figure 4.
The average number of each latency element is shown in
Table 2. We can observe that, the major uplink latency bottle-
necks are Td’I"ZL’_dOZE/ Tsr_grant/ and Tsr_wait/ while Tbsr_grant
and T, are one magnitude smaller compared to other
elements. When a handover happens, T will disable the
UL access for more than 50ms in every operator.

4
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Fig. 4: LTE uplink procedure & latency elements.

Latency (ms) | AT&T | T-Mobile | Verizon | Sprint
Tire_doze 29.7 31.9 28.3 29.2
Tsr_wait 44 4.4 4.6 9.0
Tsr_grant 8.2 8.5 8.0 10.1
Tosr_grant 0.03 0.00 0.03 0.16
Tretx 0.17 0.14 0.32 0.72
THoO 59.4 60.6 75.7 52.6

TABLE 2: Measured UL latency elements for VR applica-
tion. T,z doze is the average value when present.

4.2.1 DRX Doze Latency.

How downlink DRX incurs long uplink latency DRXis
designated for power saving over downlink transmissions.
It should not block any uplink transfer. In fact, the 3GPP
specification [6] stipulates that, upon the uplink sending an
SR, downlink DRX should enter the CRX state as if receiving
a downlink data packet. However, we found that this is not
the case in practice. A new data packet refuses to invoke an
SR if the device is in the doze mode. Instead, it continues
to doze for a while (the time is denoted as Tiry_doze)- It
then waits for an SR slot to initiate the SR, while migrating
the device to the CRX state. Table 2 shows that, Tg,5_doze is
28.3-31.9ms on average in the four carriers. The maximum
latency is 59ms with the 90th percentile being 42ms.

Note that the DRX doze latency is different from the
known downlink delay due to waiting for DRX ON state.
3GPP [6], [28] does not mandate to prepare for SR at the
DRX state. Although this latency element is not standard-
ized, it is common for vendors as they use DRX doze to save
energy. The DRX-induced doze timer is hinted in Qualcomm
patents [29], where the device defers its SR during DRX OFF
for energy savings. We indirectly validate this behavior in
a ZTE 7820 with Mediatek Chipset. For packets with an
interval of 1 second, the measured average RIT is 35ms
longer than that of packets with a small interval.

4.2.2 Scheduling Latency.

How scheduling incurs long latency We show in §2 that
uplink data cannot be immediately sent out before the device
is granted resource. An SR must be sent through PUCCH for
uplink grants. However, an SR signaling cannot be sent at
any time. It can only be sent during certain time slots (called
SR occasions). The periodicity of SR occasions is notified by
the BS during connection setup.

Therefore, the device must wait for an SR occasion before
receiving a grant from the BS to upload its data packet.
The latency element, denoted as T, waqit, is thus affected
by the periodicity of an SR occasion T, period- The device
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Parameters AT&T | T-Mobile | Verizon | Sprint

8ms 96.6% 96.5% 98.8% 0
Tsr_grant 10ms 0 0.2% 0.1% 98.1%
others 3.4% 3.3% 1.2% 1.9%
10ms 94.0% 98.1% 92.3% 11.9%
Tsr_period 20ms 6.0% 1.9% 0 48.9%
40ms 0 0 7.7% 39.%
T o 200ms | 100.0% 99.5% 99.6% 84.5%
‘nactivity  [others 0 05% 04% | 155%

TABLE 3: Critical LTE parameters for uplink latency.

then waits for a grant, which the device could use 4ms later.
If the grant is not received before the next available slot
due to SR failure, the device will resend SR until a grant is
received. The latency from sending the first SR to sending
the data packet is denoted as T’s;_grant. The two elements
of scheduling are shown in Figure 4. We measure them in
Table 2. The SR waiting latency T, qi¢ is 4.4ms for AT&T,
4.4ms for T-Mobile, 4.6ms for Verizon, and 9.0ms for Sprint.
Sprint has the largest T, it because it has the longest
SR cycle. Tsy_grant is 8.2ms, 8.5ms, 8.0ms, and 10.1ms for
the four carriers. The accumulative latency is denoted as
Tscheduling = Tsr_wait + Tsr_grant-

4.2.3 Handover Disruption

Another latency deficiency stems from handover (HO).
Table 2 shows that, the average disruptions are 59.4 ms,
60.6 ms, 75.7 ms, and 52.6 ms in AT&T, T-Mobile, Verizon,
and Sprint, respectively.

At first glance, the LTE design could prevent the dis-
ruption. A possible solution is soft handover, which follows
the “make before break” strategy in 3G [30] and the device
maintains concurrent access to both base stations, thus re-
taining always-available service. Unfortunately, the LTE’s
radio technology prohibits it. 4G LTE uses the Orthogo-
nal Frequency-Division Multiplexing (OFDM) technology.
Compared with 3G (using CDMA), it is hard (if not impos-
sible) for OFDM to keep simultaneous connectivity to both
base stations. 4G thus decides to not support soft handover.

Long latency for LTE hard HO.  Following the standards
[31], we derive the bound of the disruption time in LTE
handover as follows THO < Tdem’cefproc + Trandomfaccess
where Tjcpice—proc is the time spent by the device to prepare
for connecting to the new BS, and Tjandom—access is the
random access round-trip. Tyeyice—proc can be further de-
composed as Tseqren, + 20 ms, where Tseqrch is the scanning
of the new BS. To guarantee sufficient time for local process-
ing, [31] allows for 20ms safeguard interval. In reality, as we
observed in all operators, the HO disruption time is much
larger than 20ms, as the HO preparation and switching logic
for new cell will consume no less than 30ms. Such design
choice of hard handover is thus not friendly for latency-
sensitive applications.

4.2.4 Minor latency elements not in diagnosis.

Buffer status report (BSR) SR is an indicator that informs
the BS of new pending data, without specifying how much.
When the packet that triggers SR is large, the initial grant
might be insufficient. The device then sends a BSR (Buffer
Status Report) together with the data packets in the sched-
uled RBs. Unlike SR, a BSR includes the info on how much
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Fig. 5: Inferring parameters at application layer.

data remains in the device buffer. Upon receiving the BSR,
the BS will process it and respond with sufficient grants for
the buffered uplink data.

We note BSR’s impact on uplink latency is negligible for
most applications in §2.2. The latency between a BSR and
the time to use the grant (denoted as Tys,_grane) is illustrated
in Figure 4. Conceptually, it is the request processing time +
4ms, similarly to T, _grant (= 10ms). However, it equals to 0
when the initial grant is sufficient. The measurement results
are in Table 2. The BSR latency is less than 1ms on average.
This is because a BS usually provides a large grant (>100B)
sufficient for our apps in response to SR.

MAC Retransmission latency = An uplink data packet
might be corrupted during transfer. Upon receiving a cor-
rupted packet, the BS notifies the device by sending a NACK
and a grant. The device uses the grant to retransmit the
corrupted data. Similar to BSR latency, the retransmission
has limited impact on the uplink latency for apps in §2.2.
The ReTx latency for uplink data packet is fixed at 8ms if
needed [28] and 0 otherwise. We denote this latency as T;.c¢,
and the procedure is shown in Figure 4. Among all data
packets, 2.1% in AT&T, 1.7% in T-Mobile, 4.0% in Verizon,
and 9.1% in Sprint perceive ReTx latency. Less than 1ms
latency is incurred on average, shown in Table 2. Unlike
downlink with up to 10% retransmissions [32], uplink pack-
ets are small and less prone to corruption.

4.3 BRootless Diagnostics

We note that, the uplink latency decomposition can be calcu-
lated by observing each operation in the mobile networks.
Unfortunately, observing such events from the application
is impossible without root. The existing tools all require
system privilege (e.g.,, Mobilelnsight [26]) or additional
hardware (e.g., QXDM [33]), since they require the mobile
OS to open Diag port for cellular-specific information. Our
goal is to let LDRP work with every commodity device;
therefore, we seek to infer these parameters or events at the
application layer.

From the previous analysis, we learn a critical insight.
The latency components depend on LTE parameters or
remain near-constant under a base station. To infer these
critical LTE configurations, LDRP takes the following idea.
If we can send packets with certain pattern and infer which
latency element is experienced by different packets, we can
observe their latency difference to infer each parameter.

With this idea, LDRP exploits packet pairs for probing.
Figure 5 shows the general procedure. LDRP sends two
consecutive probing requests and records their interval ¢;.
Upon receiving the responses to both packets, LDRP com-
pares the responses’ intervals t, with ¢;, and estimates
the corresponding timers. This approach is based on the
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premise that, the difference between ¢; and ¢, mainly arises
from the different uplink LTE latency experienced by two
packets. This premise largely holds in practice, because
latency fluctuations from the base station are much larger
than those in the core network or servers®. Compared with
the conventional packet-pair technique, LDRP customizes
probing packets with the LTE domain knowledge for ac-
curate inference.

Diagnose DRX Doze Latency  Recall that the DRX doze
latency is only present when the packet interval is large.
The idea is to let ¢; be large enough so that the first
response packet cannot keep the second request in DRX ON.
The second packet in the pair experiences UL DRX doze
latency, while the first does not as we immediately start
next pair after one is done. We can thus use the interval
difference t3 — t; to infer DRX doze latency. Considering
that two requests can also be different in terms of scheduling
latency, we repeat the pair for 10 times and take the interval
difference average. Figure 5(a) illustrates this procedure.

One caveat is that we need to know how large ¢; is
so that the second request suffers from DRX doze latency.
We increase the interval ¢; gradually until a certain spike
appears in measured RIT for the second request, caused
by DRX doze latency (~30ms as shown in §4). The time
interval between the first response and the second request
that triggers such spike infers Tjnactivity. We can thus
diagnose that Tyyry_doze = t2 — 1.

Diagnose Scheduling Latency  To diagnose the schedul-
ing latency, LDRP needs to infer T, gran: and T wait-
Figure 5(b) shows how LDRP learns T, _grqnt. We let ¢1 as 0
by sending both requests together. As we just showed, the
grant is sufficient for a single request packet. We increase
the size of the second request so that the grant will not be
sufficient for both request packets. According to the scheme,
the first request experiences only scheduling latency while
the second experiences the same scheduling latency plus
Tysr_grant, Which equals to T, grqn: under a same BS. We
thus can derive latency element T, _grqn¢ from the measured
ta as Ter_grant = to. Besides, T, a4t is the wait time for
scheduling request, expected to be 1/2 - Ty, period — 1. To
get Ts period, We enumerate all possible SR periodicity in
[28], from the largest to the smallest. For each periodicity Tg,
LDRP sends 15 packet pairs with ¢; = T;. If Tsr_period < T;,
all pairs will be sent out separately with different grants, so
to > 0. For a T;; that LDRP spots a pair with 3 = 0, we find
Tor period = Tg. With both inferred from application with-
out root, LDRP diagnoses Tscheduling = Lsr_wait + Tsr_grant-

Diagnose Handover Latency  To diagnose handover la-
tency, LDRP does not require packet pair. Instead, it uses the
OS API to query the current cell and monitor the cell change.
Once the cell is switched after handover, LDRP records the
time of the last packet before the cell change and the first
packet after the handover. This is the inferred handover
disruption time experienced by the device.

2. We have validated this premise in operational LTE. We send a pair
of DNS requests at t; = 0. A UL grant sulffices to send both requests;
they arrive at the BS simultaneously. t2 is solely affected by the core
network and DL. The results show that to < 1ms for >99% responses.

5 LDRP ROOTLESS LATENCY REDUCTION

The next goal of LDRP is to reduce latency elements af-
ter quantifying them. Similar to diagnosis, we aim to
achieve latency reduction without any privilege, such as
root or firmware access. Therefore, LDRP must be standard-
compliant, while naively changing current protocols or
scheduling practice (e.g., keep sending an SR) is out of the
question.

The design is based on one insight from our diagno-
sis. For doze and scheduling latency elements, they can
be proactively reduced with small dummy packets. These
packets can wake up the device or request resources before
the data arrival. However, this is not trivial. Sending these
packets improperly can incur huge power or even hurt
latency. Therefore, they must be timed with the critical
configurations from the diagnosis.

We next elaborate on how LDRP leverages this insight to
mitigate the uplink latency while achieving the most latency
reduction with low overhead. We also show that, handover
could be predicted with limited information exposed to the
application layer. LDRP addresses three challenges:

e Accurate dummy packet delivery for each latency el-
ement to maximize reduction and minimize cost (§5.1-
5.2) : Initializing the dummy packets at the right time is
crucial to both reducing latency and minimizing energy
consumption, signaling overhead, and radio resource us-
age. The proper timing depends on critical parameters for
each latency element and traffic pattern. To this end, LDRP
customizes the timing control for critical latency elements,
including the DRX doze and scheduling (§4.2).

e Conflict handling for overall latency reduction (§5.3):
Simply reducing each latency element does not suffice to
reduce the overall latency. Due to the complex interactions
between LTE latency elements, reducing one latency ele-
ment may increase other latency elements. Moreover, the
dummy packets may compete radio resources with the
legitimate data, incurring additional data latency. To this
end, LDRP devises resolution and avoidance schemes for
both types of conflicts.

e Handover Prediction (§5.4):  Since the HO hard disrup-
tion is rooted in LTE design, it is critical to predict it and
notify the application for preparation. Henceforth, LDRP
provides a lightweight application-layer predictor which
accurately predicts the HO occurrence with reasonable ear-
liness. This is achieved by using measurement reports and
handover stateful design.

5.1 Energy-Efficient DRX Doze Elimination

To reduce the DRX doze latency in §4.2.1, LDRP should
ensure the device is in ON period when a data packet arrives
at the device buffer. As an application layer solution, LDRP
cannot directly switch the device to the CRX state (that
needs firmware modification). Instead, it sends a dummy
packet (rouser) before the data packet’s arrival.

Seemingly straightforward, rouser is only effective if sent
at the right time. An imprudent rouser can either incur
unacceptable energy waste or cannot help reduce latency.
Therefore, timing control is crucial to balancing latency and
energy cost. We first discuss some straightforward solutions
with limitations, and then present our design.
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Naive timing control One naive solution is to keep DRX
at CRX state at all times by frequently sending rousers. As
shown in Figure 6(a), this can be achieved by sending a
rouser every Tinqactivity. Unfortunately, this results in unac-
ceptable energy waste, as the device never enters DRX OFF.

A Dbetter choice is to send a rouser with the time in
advance, denoted as t,,, being set to t, = Tjpactivity (Fig-
ure 6(b)). On one hand, as the packet keeps the ON period
for Tinactivity after dozing, ¢, = Tipactivity €nsures that the
data packet enters the buffer during the ON period. On the
other hand, this saves power compared to the first naive
choice, since the extra ON period is capped at T;pqctivity for
each packet at most. However, extra energy consumption is
still incurred. Since Tinqctivity (~200ms) is typically much
larger than T4,y doze (~30ms) in reality, the ON period
between wakeup from the doze mode and the data packet
is unnecessary.

LDRP’s approach LDRP prioritizes latency over marginal
energy waste with proper timing control. Instead of frequent
rousers in naive solutions, LDRP only sends a rouser for the
time Tiy5_doze in advance. If the device enters the ON period
during doze, i.e. t; > Tyry_doze, the rouser finishes dozing
before the data packet arrives, thus eliminating the doze
latency for the data packet. It is also likely that Ty, 5 doze
for a rouser exceeds t,. In this case, the packet enters the
buffer and endures the dozing latency together with the
rouser. Although the doze latency is not eliminated, the
rouser reduces it by t,.

The solution can be achieved in the application with-
out root. First, the required Ti,4 goze parameter can be
inferred with techniques introduced in §4.3. We note that,
the inference on the application layer could be smaller
than the actual T4y doze due to the packets arriving in
DRX ON. Therefore, we run the inference for 3 times and
select the maximum reference result of Ty,, do.e denoted
as Tdraz_doze max to prioritize latency reduction. Second,
sending rouser can also be done by a normal application.
No infrastructure or extra privilege is used in the process.

5.2 Resource-Efficient Proactive Scheduling

LDRP next seeks to mask the round trips of the scheduling
in §4.2.2 for the mobile app. The idea is to send a schedul-
ing request (SR) before the arrival of the data, so that the
data does not need to wait for the radio grants. As an
application-layer solution, LDRP cannot directly trigger the
SR early (which requires modifying the firmware). Instead,

@ Prefetcher
O Data
Time ¢ Grant

Buffer
BS

(@)

NNNRNZ77%
Buffer

(b) 8s SR

Fig. 8: Corner case: a prefetcher increases latency.

Grant Data/BSRTGrant iData

Time

it requests a grant from the BS in advance by sending a
dummy message, named prefetcher. This is feasible since the
grant is not tied with the packet that requests it. Moreover,
since the BS responds to each SR regardless of the pending
data size, a small dummy message can receive a grant that
allows for much-larger-size transmission than itself, thus
sufficing to accommodate the followup data packet transfer
in a single transmission.

Similar to the DRX doze elimination in §5.1, an effective
prefetcher also needs accurate timing control. As shown in
Figure 7, imprudent timing can offset the latency reduction,
and/or waste radio resources. We next discuss both naive
solutions in Figure 7, and then show LDRP’s approach.

Naive timing control  An early prefetcher might result in
both resource waste and prolonged latency as shown in
Figure 7(a). The prefetcher is sent too early so that the timing
to use the returned grant is already passed when the data
packet arrives. The resource is wasted, while the data packet
misses the opportunity to reduce its scheduling latency.

Similarly, a late prefetcher could also miss the opportu-

nity to reduce the scheduling latency for the data packet,
as shown in Figure 7(b). If the prefetcher is sent too late
after a potential SR that could reduce latency, the data
packet might have to wait for scheduling latency as if no
prefetcher is issued. In the worst case for both early and
late prefetcher, it may result in missed latency savings up
to Tsr_period + Tsr_grant-
LDRP’s approach LDRP aims at reducing the scheduling
latency at marginal radio resource cost. Let a prefetcher be
sent ¢, before the data packet. The parameter ¢, must meet
two requirements. First, we should ensure ¢, > T, grant-
Note that, an SR can only request a grant to be used at
Tsr_grant after the SR. Therefore, t,, > T, grant guarantees
that the SR is sent only if it helps to reduce the schedul-
ing latency for the data packet. Second, we must ensure
ty < Top grant. This is to let the requested grant be used
to transmit the data packet. No resource waste or premature
SR is incurred.

Consequently, our timing design is to set the time ad-
vance as t, = Tsy_grant, Which meets both requirements.
Note that T, grant is typically constant for a BS, being
the accumulative latency of SR processing latency + 4ms,
where 4ms is a standardized parameter in [28]. In our
experiment, more than 96.5% of T, _grqnt is identical under
a BS regardless of the carrier. If T, grqan¢ changes after
handover to a new BS, we update T, grqn: immediately.
If the SR requested by the prefetcher is lost, the solution is
still no worse than the current practice. Similar to rouser, the
timing to insert a prefetcher, Ts,_grant, could be inferred from
application layer with techniques in §4.3. Therefore, no root
access is necessary.

Impact of the data packet size A prefetcher helps reduce
scheduling latency if the data packet size < grant - prefetcher
size, which is common in reality as >99% of initial grants
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in our experiments exceed 100B in all operators, while the
uplink sensory data is smaller than half of that. Therefore,
a prefetcher initiates an SR, and gets a returned grant that
suffices for the data packet to be sent with the prefetcher.

However, a corner case arises when the grant in response
to SR is enough for the data packet, but not for a prefetcher +
the data packet. As shown in Figure 8(b), the device could
only send the prefetcher and a portion of the data packet. A
BSR further requests a grant for the remaining data. The
data packet thus suffers extra BSR latency compared to
the case without prefetcher (Figure 8(a)). In the worst-case
scenario, this latency increases by Ty, grant (~8ms). We
discuss the probability of this case in Appendix B. However,
even in this corner case, the worst case happens only when
the data and the prefetcher arrive in the same SR period,
with probability Ty, grant /Tsr_wait- For other conditions in
the corner case, the latency is the same as vanilla LTE.

5.3 Handling the Conflicts for Low Latency

LDRP further resolves several conflicts for overall latency
reduction. Figure 9 illustrates the workflow of LDRP. Let
Tinterval be the time interval between the last and the
next expected packet. LDRP thus reduces various latency
elements. It handles improper interplay between latency
elements, and between dummy and data packets.

5.3.1

LDRP issues two types of dummy packets for latency reduc-
tion: rousers for DRX-induced doze latency, and prefetchers
for scheduling latency. Figure 10(a) illustrates their conflicts.
A rouser itself is a dummy message that needs to be sent
before a prefetcher. Once turning the device to DRX ON,
it asks for the grant, which could carry both rouser and
prefetcher. Therefore, the prefetcher is sent by the grant re-
quested by the rouser. The grant-induced scheduling latency
is not reduced at all. The latency penalty can be as large
as Tsr_period + Tsr_grant compared to no-conflict case in
Figure 10(b).

LDRP’s approach and benefits To resolve this conflict, we
refine the timing control to ensure both dummy packets’
effectiveness. Specifically, we should make sure a rouser is
sent when a prefetcher hits the device buffer, so that the
prefetcher can take effect and reduce the scheduling latency.
A rouser takes at most Ty, period + Lsr_grant to be sent out as
a dummy message and a prefetcher needs to be sent T, grant
before the data packet. Therefore, we adapt the timer from
tp = Td7‘17d0zejnax to Tdrm?dozefmaac + Tsrfperiod + 2T97;grant
to ensure a rouser is sent before a prefetcher. The rouser
thus endures Tro doze_mas that guarantees the doze is
completed and then sent out. The latency penalty is thus
reduced to zero.

Conflict Resolution Between Latency Elements

5.3.2 Conflict Avoidance Between Dummy and Data

The next conflict arises between LDRP’s dummy packets and
the last legitimate data packet. If a rouser conflicts with the
last packet, this does not pose an issue: the rouser can still
help the device to remain in the ON period for Tinactivity-
We thus only discuss where a prefetcher intervenes with the
last packet. We show how LDRP adapts this for latency
reduction.

There are two instances when a prefetcher arrives in the
buffer before the last data packet being completely sent out,
shown in Figure 11. In case (a), the prefetcher does not
provide any latency reduction. The grant for the last packet
has enough room to carry the prefetcher, which will be sent
together. There is no prefetcher-requesting grant for the next
data packet. In case (b), a prefetcher may increase the latency.
The grant for the last data packet cannot accommodate the
piggy-backed transmission of the prefetcher. A BSR request is
thus triggered by the device to request for more grants. Since
BSR specifies the size for the dummy message prefetcher,
the returned grant does not suffice to transmit the data
packet. This subsequently invokes another round of BSR-
grant operations. The data packet might suffer from extra
BSR latency.

LDRP’s approach and benefits To avoid the conflicts,
LDRP adjusts the timing of a prefetcher. It leaves enough
time for the last packet to complete its transmission before
the prefetcher. Recall that the theoretical maximum uplink
latency that the last packet would experience after opti-
mization is Ty grant. The dummy prefetcher is then sent
at least Ty, 4rqnt after the application sent its last packet.
Specifically, if the time gap (between the last packet arrival
and the next packet arrival) is larger than 275, ;.qn, We
send a prefetcher Ty, grqnt before the next packet. This is
the timing we designed in §5.2; it will not break the above
condition. Otherwise, we send a prefetcher T, _grqnt after the
last packet. This choice will reduce less latency compared
to the timing in §5.2 without conflicts. However, we avoid
the cases of Figure 11, where a conflict negatively affects
the latency. We thus reduce the maximum optimization lost
from Ts"rfgrant to 0.

5.4 Rootless Handover Prediction

Recall that, we cannot mitigate the handover disruption
time, as it is rooted in the 4G hard handover design in PHY
layer. One solution is to incorporate a handover predictor,
which allows users to be notified of such a long disruption
time in advance. The notification prepares the users for the
handover using techniques such as pre-rendering.

Like other components, LDRP aims to predict handover
on the device side without root. Existing works on handover
prediction cannot satisfy the requirements. The conven-
tional handover prediction is deployed on the base station
side, which needs users’ history and global cell coverage
information [34], [35], [36], [37], [38]. Several recent works
propose solutions to predict handover on the device side,
but they require low-level information that cannot be easily
acquired without root [32], [39].

We discover that, the LTE handover decision logic is
interactive, stateful and stable. Appendix D details how the
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Algorithm 1: Handover prediction using measure-
ment reports in LDRP.

Input: Serving cell s and measurement report m
which reports an event m.event on cell s;.
Output: Prediction of handover.

1 if s and s; have the same frequency and m.event = As

then return true;

2 else if s and s; have different frequency and signal
strength of s satisfies A and m.event = A; then
return true;

3 return false otherwise;

base station configures the device with the standardized cri-
teria [40] of measuring the current and nearby base stations’
radio signal strength. The device measures and reports to
the base station if any criteria is satisfied. The base station
then determines whether a handover is necessary based on
a pre-determined algorithm. While different base stations
may have varying configurations for the thresholds of trig-
gering criteria, the decision logic largely remains invariant.
By mapping the measurements (reports to network) to the
handovers (response from network), the device can infer the
base station’s decision algorithm and predict the handovers.

LDRP leverages it and devises a lightweight predictor
based on our experimental data and popular base station’s
internal decision logic [41], shown in Algorithm 1. It clas-
sifies the handover into two categories: Intra-frequency han-
dover using the same frequency band, and inter-frequency
handover using different frequencies. In reality, they are
triggered by different criteria. The intra-frequency handover
is triggered when a nearby base station’s signal strength is
better than the current one (event A3). Otherwise, Inter-
frequency handover is triggered when the current base
station’s signal strength is weak (event A2), and a nearby
base station’s signal strength is satisfactory (event A5). LDRP
monitors these events to predict the handover, which offers
high accuracy in reality. This result is insensitive to thresh-
old configurations across base stations. Our algorithm, as
well as the inferred decision logic, is based on measurement
events.

Prediction analysis. LDRP prediction algorithm is accu-
rate as it approximates the base stations’ handover deci-
sions. In addition, it is robust to noisy wireless channels.
Even if a handover is missed or a normal event triggers a
false alarm, LDRP is no worse than legacy LTE.

o Robustness to dynamic/noisy wireless channels. Our pre-
diction is robust to channel dynamics and noises. Algo-
rithm 1 is based on measurement-triggered events, rather
than direct radio measurements. To handle transient dy-
namics, the standards [40] have defined thresholds for event
triggering (in Appendix D). False measurements due to
radio fluctuations/noises are thus mitigated, resulting in a
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robust prediction.

o Tackling false positives/negatives. If handover is mis-
predicted, LDRP ensures that VR experiences latency no
larger than 4G LTE. There are two scenarios. First, LDRP may
predict a handover that would not happen. Both network
and app-level adaptations do not incur extra latency or
overhead. Second, LDRP may miss a handover. This rolls
back to the standard LTE and no extra latency is occurred.

Predict measurement reports from at the APP layer
Measurement reports provide a strong indication to predict
HO. If LDRP detects that the device has root access, it
acquires this low-level information from modem with Mo-
bileInsight to accurately predict handover. To serve the users
without such privilege, LDRP further infers measurement
reports using OS APIs, which demand no root permission
or firmware access (e.g., Android API).

To achieve so, we make an observation that mea-
surement report configurations in a single cell remain
variant for all users. Besides, they are infrequently
changed over time. This is because that, the handover
config for a cell is mostly determined by local cell
deployment. We construct a database that records <
cell_id, measurement_report_con figuration > tuples. For
a device, LDRP checks whether the root access is available. If
so, it directly acquires such info from debug port and reports
a new data point to the database. The database will replace
the cell configuration with the latest copy. Otherwise, LDRP
gets the id for the current serving cell from OS and queries
its configuration from the database. With the parameters,
LDRP uses OS API to learn the real-time signal strength and
infer the measurement report for HO prediction.

Prediction-enabled latency masking. The handover pre-
diction helps mask latency at app levels. It notifies apps for
early adaption (e.g., pre-rendering or FPS adaption [8], [42]).
The concrete masking technique is out of the scope of this
paper. The notification is sent to apps via OS APIs.

6 LDRP DISCUSSION AND 5G APPLICABILITY

We analyze LDRP and extend the discussion to irregular
traffic and 5G.

6.1 Miscellaneous Issues

Energy Analysis LDRP incurs extra energy overhead
from four sources. First, transmitting a rouser incurs a longer
ON period. The time to send a rouser can be as long as
Tsr_period + Tsr_grant- It incurs Tsr_period/2 + Tsr_grant on
average. Second, T4 doze is not predictable so we select
Tire_doze_max to prioritize latency over energy. The ex-
tra ON period is 0 = Tyry_doze_maz — Ldre_doze for each
rouser. If the packet arrives during DRX OFF, Ty, _doze_max
equals to Tgrq doze and § = 0. Otherwise, Tgrg doze = 0
and 0 = Turg dozemaz- The expectation of d is thus
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Don * Ldra_doze_maxz, Where Do, is the probability of a packet
arriving during DRX ON period. If we ignore background
traffic and assume the packet arrives in the buffer at a
random time, p,, = onDurationTimer / DRX cycle. Third,
an early rouser (due to inaccurate estimation) also causes a
longer ON period. Denote ¢ as the estimation error. When
the rouser arrives during DRX OFF, the extra ON period is
€. Otherwise, ¢ incurs no extra ON period. Finally, sending
extra small messages incurs extra energy waste.

Impact on the network spectrum efficiency For ev-
ery data packet, we define its spectrum efficiency SE =
___ sizeof {data packer) . When a data packet suffers from
sizeof (Total UL resource granted)
doze latency and LDRP sends a rouser, it reduces SE by half:
the rouser and the prefetcher initiate two grants, while the
legacy LTE only requests for one. The extra grant occupies
~2 RB in commercial networks. LDRP trades-off SE for low
latency. When LDRP sends a prefetcher only, two scenarios
arise. In the normal case, the grant from SR can carry both
the data packet and a prefetcher. Therefore, LDRP requests
no extra grant and SE is the same as the legacy LTE. In
the corner case discussed in §5.2, the BS allocates at most
sizeof (prefetcher) extra grant. One extra RB is thus wasted,
since a single RB is sufficient to carry a prefetcher. SE' is
reduced by — (pf;;(c’i;f :"f;ﬁf{ ) sy This value multiplying
the probability of the corner case (see Appendix B) yields
the expectation of SE reduction.

Impact of background traffic LDRP still reduces latency
in the presence of background traffic. No matter whether
the background packet is sent before a rouser or between
a rouser and a data packet, the rouser will keep the data
packet at the DRX ON state, thus eliminating the DRX doze
latency. On scheduling latency, if the background traffic is
sent after the data packet, it does not affect the prefetcher. If
the background traffic is in between, the prefetcher reduces
its latency, which indirectly reduces latency for the real data
packet. It still does not increase the latency compared to
legacy LTE without LDRP. When the background traffic is
sent before a prefetcher, it will be sent out through BSR
before the data packet in the worst case, equivalent to no
optimization.

What if the uplink traffic is not strictly regular? While
mobile sensors produce regular data packets, the actual
uplink data packets might not be strictly periodic. This can
be caused by mobile OS overhead, prediction inaccuracy, or
sensor periodicity variance. LDRP still guarantees no worse
latency than legacy LTE, and saves LTE latency in most
scenarios. We show the following Theorem 6.1 and prove
it in Appendix C.

Theorem 6.1. For the data packet that should have arrived at
Tintervai but actually arrives at T, LDRP does not incur extra
latency compared with the legacy 4G LTE.

LDRP for multiple applications LDRP can reduce latency
for multiple applications on a single device that use its APIs.
LDRP treats them equally as if from the same application.
For each request, LDRP checks the interval between the
packet and the last packet and makes the decision of which
component to use, as shown in Figure 9. This will not incur
much additional overhead, as LDRP will ensure the dummy
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packets are sent only when necessary without conflict.

Impact on other applications in the device that do not use
LDRP  An application which does not use LDRP will not
be negatively impacted by an application that does so in
the same device. Instead, it might even benefit from LDRP
despite not calling its API. For simplicity, we denote a packet
Y that uses LDRP and a packet X that does not. 1) If X is
sent after Y. In this case, Y uses LDRP to finish transmission
earlier. This will not affect X’s transmission. Instead, it might
accelerate it as the scheduled request for Y can now be used
to deliver X. 2) If X is sent before Y. In this case, Y might
incur dummy packets using LDRP. If the small packets are
later than X, the X’s transmission is not affected. Otherwise,
the dummy packets can help reduce X’s doze or scheduling
latency, benefiting its performance.

LDRP for non-regular traffic For ML/AI apps in §2.2 with
irregular but predictable uplink traffic, LDRP works equally
well. we do not recommend LDRP for apps with irregular
yet unpredictable uplink traffic. If users intend to use our
APIs, latency reduction cannot be ensured.

Network side overhead LDRP incurs little overhead
on the network side. The overhead stems from processing
extra signaling, which is marginal compared with normal
operations. This is because BS monitors the control and data
channels continuously, regardless of whether it receives SR.

Impact on other users in the same cell We first note that
LDRP does not modify the scheduling policy or operations.
Instead, the device asks for grant using data packets. This is
standard-compliant as the dummy packets will still be sent
and charged. Besides, if the devices under a BS all use LDRP,
they will still benefit from LDRP. The core idea of LDRP is to
schedule a device’s allocated resources in advance if its data
arrival can be predicted. The procedure does not sacrifice
other users’ access in general. Moreover, if a certain device
does not adopt LDRP, its latency may be slightly prolonged.
This arises when the BS assigns the last available resource
to an LDRP user who advances its scheduling, while this
resource could have been available to the non-LDRP user.
However, the impact is minimal, as the BS will serve the
user the next slot (1Ims) and the throughput is not affected.

6.2 LDRP is applicable to 5G

In principle, LDRP is applicable to 5G, which has three
usage cases. Enhanced Mobile Broadband (eMBB) extends
4G technology. Massive Machine Type Communication
(mMTC) is for cellular IoT, whose design is based on LTE-M
and NB-IoT [43]. The scheduling mechanisms and handover
logic of both modes largely remain unchanged [40], [44].
Consequently, LDRP can still diagnose latency components
and reduce latency for the 5G scenarios. Ultra Reliable
Low Latency Communications (URLLC) targets low-latency
communication. Although not fully standardized, the po-
tential grant-free scheduling might partially achieve LDRP’s
latency reduction for scheduling latency. However, LDRP’s
latency diagnosis, DRX doze latency reduction, and han-
dover prediction will still help URLLC applications.

7 IMPLEMENTATION

We implement LDRP as a standalone user-space daemon
with Android NDK. A similar implementation is also feasi-
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Fig. 12: Implementation of LDRP in Android.

ble for iOS. Figure 12 shows its key components, including
an inference engine that offers key LTE parameter inference,
a latency manager for latency diagnosis and reduction with
conflict resolution, and a set of APIs for latency-sensitive
applications. To use LDRP, a latency-sensitive mobile app
requests LDRP service using its APIs as detailed below. At
runtime, LDRP first detects if the device connects to a new
base station by checking the change of serving cell ID. Upon
cell changes, LDRP starts to infer the key LTE parameters
for this new cell. Once they are obtained, LDRP initiates its
latency manager to diagnose and reduce latency.

APIs LDRP provides easy-to-use application-layer APIs
for mobile application developers. Figure 12 showcases
these APIs with a mobile VR application. The app first
calls startParlnf() so that LDRP daemon starts and infers the
LTE parameters relevant to latency reduction components.
The daemon detects possible parameter changes (say, upon
handover) and re-runs the inference procedure whenever
necessary. The app can then call registerLatencyDiagnostic()
to start the diagnostics functionality. As our VR application
uploads periodic sensory data packets, it calls setInterval(t)
to inform LDRP such periodicity. Whenever a data packet
is sent, the application calls reduceDozeAndSchedule() for
LDRP to reduce latency for the next packet.

LTE inference engine It first infers the key LTE param-
eters for LDRP’s latency reduction based on the approaches
in §4.3. We use DNS requests/responses as probing packets,
which have low deployment cost (by using LTE’s readily-
available DNS servers) and higher accuracy (compared to
other probing packets delivered with low priority such as
ICMP). For DNS servers, LTE assigns its own in-network
DNS server when the device attaches to it, which provides
fast and stable service. We use such DNS servers for our
experiment.

In addition, the inference engine predicts HO as de-
scribed in §5.4. It interacts with the centralized server to
query for the latest measurement report configurations for
the current cell stored in the database. When a HO happens,
it re-query the results. It then actively leverages the Signal-
Strength class to get the signal strength for the current and
neighboring cells. When the measurement results satisfy the
condition, it predicts a measurement report. When the re-
ports meet the condition as shown in Algorithm 1, it predicts
a handover and sends a broadcast Android notification.

Moreover, we note that simply running the inference in
§4.3 may be inaccurate in practice, since it is sensitive to the
noises from background traffic, vendor-specific base station
behaviors, and server load. To this end, we optimize our
implementation to mitigate these noises and improve infer-
ence accuracy. Specifically, we add a few filters to reduce the
noise. For instance, when measuring the scheduling-related
parameters, we know that T} should be greater than 4ms
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in reality, therefore, if the packet response pair is received
within 4ms, we ignore this round of experiment.

Latency manager It realizes the latency diagnostics in
84 and reduction in §5. A practical issue to realize them is
to optimize the dummy packet’s construction and delivery
for low cost. Both prefetcher and rouser messages in LDRP
should be as small as possible so that extra data overhead is
minimized. In addition, a smaller prefetcher will decrease the
likelihood of the corner case discussed in §5.2. The smallest
packet we could generate in the Android device without
root is an ICMP ping packet with IP header only via system
command. Our implementation issues only one small ICMP
packet to the local gateway in LTE that serves the users.

8 EVALUATION

We assess how LDRP diagnoses each latency component
and improves the overall latency and QoEs for emergent
mobile applications, evaluate the effectiveness of solution
components in LDRP, and quantify LDRP’s overhead.

Experimental setup We run LDRP on Google Pixel, Pixel
2, Pixel XL, and Pixel 5. We quantify the latency diagnosis
and reduction over AT&T, Verizon, T-Mobile, and Sprint.
The evaluation covers 355 unique cells. We repeat the tests
in static, walking (~1m/s), and driving (~30mph) scenarios.
We do experiments mostly in metropolitan areas while driv-
ing tests cover rural areas as well. The radio signal strength
varies from -120 to -80dBm, covering good (>-90dBm),
fair ([-105, -90dBm]), and bad (<-105dBm) conditions. To
quantify LDRP, we use Mobilelnsight [26] to extract the
ground truth of fine-grained per-packet latency breakdown
from the chipset.

To gauge LDRP’s impact on the network side, we build
a USRP-based testbed. A server with Intel i7-9700k CPU
and 32G RAM runs srsRAN [45] for the functions of core
network and BS processing. A USRP B210 connects to the
server and provides wireless access for the devices. We plug
sysmoUSIM [46] into the test phones, and register them.

8.1 Overall Latency Diagnosis and Reduction

We showcase LDRP’s latency diagnosis, reduction, and QoE
improvements with four representative emergent mobile
applications:

o Mobile VR. We use the showcase VR game as described in
§2.2. We measure the latency of the sensor data and control
data, and use it to gauge how our design reacts to VR games.

o Localization. We write an Android app that uploads the
periodic GPS location status to the cloud via the Android
API [21]. We encode each location update in 22 bytes and
send it to the cloud every second.

o Object recognition. We prototype an object recognition
app using MobileNetV2 [47], a phone-based deep learning
model. The app processes camera frames and uploads the
recognition result to cloud. Inference typically takes 250ms.

o Gaming. We evaluate its latency by replaying the traces
from PUBG Mobile [2], one of the most popular multi-
player online mobile games. Since PUBG traffic is not strictly
regular, we use it to demonstrate the effectiveness of LDRP
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A AT&T Verizon T-Mobile Sprint
PP Teg | 1DRP | n | Leg. | tDRP | 7 | Leg. | bRP | 7 | Leg. | LDRP | 7
Mobile VR Med. | N/A | N/A | N/A | 120 8.0 0.5x | 11.0 6.0 0.8x | N/A | N/A | N/A
95% N/A | N/JA | N/JA | 280 15.0 09x | 40.0 14.0 19x | N/JA | N/A | N/A
Gamin Med. 10.0 6.0 0.7x 9.0 7.0 0.3x 9.0 7.0 0.3 % 17.0 11.0 0.5%
& 95% 17.0 15.0 0.1x 15.0 15.0 0x 15.0 15.0 0x 27.0 21.0 0.3%x
Localization Med. 38.0 5.0 6.6 50.0 14.0 2.6x | 420 5.0 7.4x 30.5 14.0 1.2x
95% 46.0 14.0 2.3% 59.0 23.0 1.6x | 48.0 10.0 3.8% 61.7 25.8 14x
Object Med. 23.0 7.0 2.3% 38.0 9.0 3.2x | 33.0 5.0 5.6 30.0 15.0 1.0x
Detection 95% 47.8 16.0 2.0x 51.0 15.3 23x | 45.0 10.0 3.5x% 59.0 27.5 1.1x
TABLE 4: Uplink network latency (ms) reduction by LDRP in evaluations with four apps. 7=(Legacy-LDRP)/LDRP.
100y __o-========== 100y __———======= __100 Somemeeeeemem e e == _100{ _oemeeeememmemmmmme
8 7 8 o 8 e 2
E 50 ’,,/’ Legacy E 50 /,/ Legacy E 50 // Legacy E 50 // Legacy
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(a) Mobile VR . (b) Gamin . (c) Localization (d) Object Detection
Fig. 13: LTE latency with and without LDRP in representative apps.
TEIZOZ rla_te ?,Tzﬁf Vcir;zozn T’g/[gl};ﬂe S; (r)f)zt with/without LDRP. Figure 14 shows the average Mean
r_sﬁ;z duo';'r;g 3.0% 1.3% 3.0% 1.3% Opinion Score (MOS) on three aspects: graphical visual
THo 4.0% 3.2% 3.4% 2.8% quality, responsiveness, and overall experience. Participants

TABLE 5: Evaluation of LDRP latency diagnosis.

AT&T | Verizon | T-Mobile | Sprint
Predict HO (Precision) 58% 55% 54% 60%
Predict HO (Recall) 83% 70% 75% 65%

TABLE 6: Evaluation of LDRP handover prediction.

as discussed in §6.1. We use the traffic emulator to send data
packets based on the trace.

Accuracy of latency diagnosis =~ We check how accurate
LDRP can diagnose each latency element from the applica-
tion layer. For each cell, we first collect ground truth by
analyzing the physical/link messages from Mobilelnsight.
We then use LDRP component to infer the parameters,
diagnose the latency, and compare them with the ground
truth. We calculate the average error rate for each compo-
nent. The results are shown in Table 5. As we can see, the
inference error rate is at most 4.0% for any parameters in all
4 operators. LDRP diagnosis is accurate as argued in §4.3.

Overall LTE latency reduction Table 4 and Figure 13
show LDRP’s latency reduction for these apps in static
settings with fair-good signal strength; other scenarios have
similar results as detailed in §8.2. On average, LDRP
achieves 4-5ms (0.5-0.8x) latency reduction in mobile VR,
8-37ms (1.2-7.4x) reduction in localization, 8-29ms (1.0-
5.6x) reduction in object detection, and 1-6ms (0.3-0.7x)
reduction in gaming for all 4 LTE carriers. Our breakdown
analysis further shows these apps suffer from different
latency bottlenecks. For the localization and object detection,
the majority of data packets suffer from both DRX doze
and scheduling latency. For the VR and gaming with more
frequent packets, the scheduling latency is the major latency
bottleneck. LDRP can reduce both bottleneck latencies and
thus benefit all these applications.

QoE improvement To showcase the impact of LDRP on
the mobile VR, we conduct a user study with 10 partic-
ipants to evaluate the subjective experiences of using VR

rate 1 (Bad) to 5 (Excellent) on these three aspects of the VR
game with constant head position changes. The results show
that LDRP can improve the visual quality by 8% (3.1—4.0),
responsiveness by 63% (2.4—3.9), and overall experience by
46% (2.4—3.5).

5G latency diagnosis and reduction LDRP works for 5G
in theory as we discussed in §6.2. We evaluate that LDRP
can reduce 5G eMBB latency under AT&T and T-Mobile 5G
networks. Since we do not have access to its fine-grained
data-plane traces, we measure RTT at the application layer
for AT&T (T-Mobile). LDRP reduces RTT by 4.6ms (2.5ms)
for Gaming, 20.5ms (32.0ms) for Localization, and 19.8ms
(27.0ms) for Object Detection. The results are similar to the
latency reduction in their 4G networks. Although we cannot
directly measure the diagnosis accuracy without viable tool
to capture and decode 5G logs, the reduction experiment
indirectly verifies that our analysis is accurate, since the
reduction is based on the parameters inferred for diagnosis.

8.2 Micro-Benchmarks

We next assess LDRP’s solution components under various
signal strengths and user mobility patterns.

DRX-induced latency reduction (§5.1) As shown in §5.1,
LDRP helps reduce the DRX doze latency if the inter-
packet interval larger than T}y qctivity (Otherwise the DRX
doze latency is always 0 with/without LDRP). Figure 15
shows LDRP’s DRX latency reduction under various signal
strengths and mobility patterns. We run this test under
the most popular setting of Tinactiviey = 200ms (Table 3)
when the inter-packet interval is 1.5 - T qctivity- We also test
other intervals and get similar results. In all scenarios, LDRP
reduces the DRX doze latency to O for all LTE carriers. This
results in 21-41ms mean latency reduction and 40-57ms 95%
latency reduction.

Scheduling latency reduction (§5.2) We next quantify
the reduction in uplink scheduling latency. The latency
reduction ratio, 7, is defined as that of the reduced latency
and the LDRP latency. Table 7 shows the results in different
carriers, signal strengths, and mobility patterns. In all these



TRANSACTIONS ON MOBILE COMPUTING

Legacy S
== LDRP 100 g
75 ;o
S
50 et oRe
25 J == AT&T-Legacy
BiPte ++++ Verizon-Legacy

i i 0
Quality ~ Responsiveness  Overall 0 10 20 30 40 50 60 70 80

. . Latency(ms)
Fig. 14: MOS of mobile VR.

MOS
O N WSHAWUV
CDF(%)

100
75
50
25

CDF(%)

0
0

- Poor-legacy

LDRP

Fair-legacy
Good-legacy

10 20 30 40 50

Latency(ms)

Fig. 15: LDRP reduces DRX doze under different operators, signals, and mobility.

60 70 80

100
75
50
25

CDF(%)

0 "
0 10 20 30 40 50 60 70 80

o

& LDRP
2 -~ Static-legacy

g ++++ Walking-legacy
2 Driving-legacy

Latency(ms)

13

Scenario AT&T Verizon T-Mobile Sprint
Leg. | LDRP n Leg. | LDRP n Leg. | LDRP n Leg. | LDRP n
Static-Poor Med. | 12.0 5.0 1.4x 12.0 9.0 0.3x 11.0 7.0 0.6% 20.0 12.0 0.7x
95% 17.0 11.0 0.5x | 17.0 17.0 0x 17.0 16.0 0.1x | 30.0 26.0 0.2x
Static-Fair Med. | 13.0 8.0 0.6 11.0 8.0 0.4x 17.0 13.0 0.3x 18.0 14.0 0.3x
95% 17.0 15.0 0.1x 17.0 13.0 0.3x 12.0 6.0 1.0x | 32.0 29.0 0.1x
Static-Good Med. | 13.0 6.0 1.2x | 10.0 5.0 1.0x 8.0 6.0 0.3x | 13.0 7.0 0.9%x
95% 17.0 11.0 0.5x 17.0 16.0 0.1x 16.0 11.0 0.5x 27.0 18.0 0.5x
Walkin Med. | 11.0 8.0 0.4x 13.0 6.0 1.2x 12.0 7.0 0.7x 19.0 13.0 0.5%
& 95% 17.0 11.0 05x | 16.0 16.0 0x 17.0 16.0 0.1x | 30.0 26.0 0.2x
Drivin. Med. | 14.0 8.0 0.8x | 14.0 8.0 0.8x | 12.0 8.0 0.5x | 17.0 13.0 0.3x
ving 95% 18.0 17.0 0.1x 17.0 11.0 0.5x 17.0 16.0 0.1x | 29.0 27.0 0.1x
TABLE 7: Scheduling latency (ms) in four mobile carriers. n=(Legacy-LDRP)/LDRP.
scenarios, LDRP reduces the median scheduling latency by Conﬂliss/o Res A}]{;&BT V%r(;zoo L T_I;/If gﬂe S%IS !
0.3-2.5x%, and reduces the 95th latency by up to 1.7 x. ;igf;;}f; IDRD 33.0 36.0 37.0 16.0
Conflict handling for latency reduction (§5.3) We confirm Evl‘t/r;‘ Ilieej 173'95% 202'%% 8';;20% 6;)Z°
the effectiveness of LDRP’s conflict resolution/avoidance. Data & TDRE 70 50 50 50
We adapt LDRP’s APIs to enable/disable the conflict | U™ | FifaRed [ 143% | 0.0% 0.0% 20%
handling in §5.3. Table 8 compares the overall latency TABLE 8: Latency (ms) reduction with conflict handle.
with/without LDRP’s conflict handling. We first illustrate
LDRP can resolve rouser and prefetcher conflict. We use Lo- AT&T | Verizon | T-Mobile | Sprint
calization as its traffic pattern satisfies the condition (long Extra Data (KB/s) 0.20 0.15 0.41 0.23
interval) for potential conflict. Compared with no conflict Extra Sig. Msg 3.8% 3.7% 4.3% 3.3%
Extra DRX ON period 1.7% 4.2% 5.8% 2.1%

resolution, LDRP reduces extra 8.82-60.0% latency in all
operators. We next evaluate how LDRP handles data and
dummy packets conflicts. The heavy traffic in the Gaming
application potentially causes such conflict. We run the
Gaming application with LDRP and the APIs without con-
flict avoidance. Compared with no conflict avoidance, LDRP
reduces up to 20% extra latency.

Predicting HO occurrence (§5.4) We check how accu-
rate our rootless HO prediction is. We first collect ground
truth by analyzing the RRC-layer signaling messages from
Mobilelnsight. Our implementation then makes prediction
when we drive around. Among all operators, LDRP predicts
797 handovers in total, and achieves 54-60% precision and
65-83% recall for each operator. Although the performance
is not as accurate as alternative device-side prediction [32],
whose recall and precision are both >80%, LDRP achieves
the prediction without root privilege or network-side as-
sistance. We have observed two factors that affect the pre-
diction accuracy: (a) Late API results: The signal strength
reading from Android API is delayed compared to real-
time measurement; (b) Difference of event handling: Some base
stations might change their handover decision over time,
making our history-based scheme inaccurate. LDRP predic-
tion is early enough. On average, it predicts the handover
35.9ms ahead of its occurrence.

8.3 Overhead

Overhead of dummy messages The dummy messages
may incur additional data usage and thus billing. Table 9

TABLE 9: Overhead of LDRP.

shows that LDRP incurs no more than 0.6KB data per
second under all carriers. The data overhead depends on
the frequency of calling LDRP APIs. For heavy traffic ap-
plications (VR, Gaming), the extra overhead is 0.33KB/s
while the number for the other two apps is 0.05KB/s. The
overhead is acceptable in typical data plans and extra data
is only incurred when LDRP APIs are called. As explained
in §7, LDRP has minimized the use of dummy for latency
reduction.

Extra signaling message The dummy messages incur
extra signaling between the device and the BS. We measure
this overhead as shown in Table 9. LDRP incurs up to
4.3% messages, which are marginal compared with the total
volume of signaling messages. Reducing latency for apps
with DRX doze generates more messages. LDRP incurs on
average 1.6 extra signaling messages per second for Loca-
tion and Object Detection. While the other two apps with
LDRP generate 0.8 extra message every second on average.

Energy consumption While LDRP exploits the DRX for
lower latency, it still respects the LTE’s energy saving with
accurate timing control and incurs marginal energy cost. We
first compare the percentage of the extra DRX ON period
with and without LDRP. We track the CDRX events with
Mobilelnsight. As shown in Table 9, for all carriers, at most
5.8% of extra ON period is invoked.

Furthermore, we directly measure the extra energy cost.
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We fully charge the device and run Object Detection (with
DRX doze) and VR (no DRX doze) applications for one
hour, and compare the energy consumption with or without
LDRP (under Verizon). With LDRP, two applications incur
2.5% (16.12% to 16.52% of total battery) and 1.0% (37.04% to
37.40% of total battery) extra battery consumption, respec-
tively. This overhead is marginal, as we adjust the timing
of rousers to reduce unnecessary energy waste. We also run
both applications with Object Detection in the backend. The
consumption is 1.8% (40.10% to 40.82%)

Network impact We measure the network impact of
LDRP in our SDR testbed. Even in the absence of data
transfer, the server spends 0.055ms on average to process
the collected signal in every subframe (Ims). In contrast,
processing LDRP’s extra signaling costs 0.002ms, about 3.6%
extra overhead.

Impact on other users or applications We first exam-
ine whether LDRP affects another application in the same
device that does not use LDRP. We run two applications
simultaneously: an active VR application and an emulator
with VR traffic that runs on the background. The emulator
does not use LDRP. The VR application uses LDRP first and
then stops using it. We compare the latency experienced
by the emulator when VR uses LDRP or not. Its latency is
actually reduced from 10.1 to 8.5ms. As we discussed in §6,
the dummy packets from one application can even benefit
another application that does not use LDRP.

We next examine whether LDRP affects those non-LDRP
users in the same cell. We test a two-device scenario, with
both running the Gaming app. Device A never uses LDRP,
whereas device B turns on/off LDRP in the test. When B
does not run LDRP, A’s average uplink network latency is
15.79ms, and the 95th percentile is 24.0ms. When B activates
LDRP, A’s average latency becomes 15.84ms and the 95th
percentile is 24.0ms. Both numbers are not visibly affected.
Therefore, the latency of non-LDRP device is not affected,
regardless of whether the other runs LDRP or not.

9 RELATED WORK

Many cross-layer techniques have been designed to improve
user experience and application performance in mobile net-
works (see [23] for a survey). They use lower-layer informa-
tion to improve video streaming [24], to optimize Web access
[25], [48], [49], [50], [51], to name a few. Most such solutions
seek to boost the application-perceived throughput. Other
recent proposals detect whether LTE is the bottleneck for
applications [52], estimate the radio link speed [53], or
examine how LTE configs affect apps [54]. In contrast, we
focus on LTE latency-oriented diagnosis and reduction.
Early efforts are also made to diagnose and reduce LTE
network latency. They analyze the latency for Web access
over LTE [55], [56], devise application-specific solutions to
LTE scheduling latency with modified modem firmware
[32], measure the impact of DRX upon LTE from the energy
perspective [57], and adjust the RRC parameters to reduce
data-plane latency with infrastructure update [58]. Recent
work [52], [59] also makes device-based throughput predic-
tion for performance improvement. Our work differs from
them since we work on the latency elements that cannot be
eliminated with higher throughput. Authors from [5], [60]
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target reducing one-time connection setup latency, while
LDRP reduces latency elements for every data packet in
the connected state. Other recent efforts seek to refine the
4G/5G network infrastructure [61], [62].

Studies in [32], [34], [35], [36], [37], [38], [39] aim to pre-
dict handover for mobility optimization, but they require ei-
ther access to low level signaling messages or infrastructure-
side intelligence. In contrast, we propose an effective solu-
tion on the device side application layer.

10 CONCLUSION

Diagnosing latency bottleneck and reducing it is criti-
cal to many delay-sensitive applications, such as mobile
AR/VR, mobile gaming, sensing, machine learning, and
robot/drone-based image/speech recognition. In mobile
networks, reducing uplink latency is more challenging than
its downlink counterpart, since it involves multiple latency
elements stemming from power-saving, scheduling, on-
demand resource allocation, mobility, etc.

We have designed and implemented LDRP, a device-
based solution to LTE latency without any infrastructure
changes. LDRP does not require root privilege at the device
and works with mobile apps directly. It learns the critical
LTE parameters to infer the uplink latency components for
latency diagnosis. LDRP then leverages them to reduce the
latency. It ensures the network latency is no worse than the
legacy 4G LTE, and is applicable to 5G with experimental
validation. By design, LDRP uses small dummy messages
with proper timing control and conflict handling, in order to
eliminate unnecessary latency components from scheduling
and power-saving operations. Our experiments have con-
firmed its effectiveness with a variety of mobile apps.

In the broader context, reducing latency poses a more
challenging problem than improving throughput for the net-
worked system community. In the mobile network domain,
various tricks have been invented for boosting throughput
(e.g., massive MIMO, new modulation, mmWave, etc.). This
is not the case for latency. Both its fundamental theory
and effective practice are lacking. Moreover, exploring pure
device-based solution, which does not require root privi-
lege, offers a nice complement to the infrastructure-centric
design, which typically takes years to be deployed.
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